

ADVANCED
COMPLIANCE LABORATORY

6 Randolph Way
Hillsborough, NJ 08876
Tel: (732) 560-9010
Fax: (732) 560-9173

ELECTROMAGNETIC EMISSION COMPLIANCE REPORT

of

Wireless Door Bell Transmitter
MODEL: DC-22 / DC-23 /DC-25 (TX)
FCC ID: JB3DC-22

October 01, 2001

This report concerns (check one): Original grant Class II change
Equipment type: LOW POWER TRANSMITTER

Deferred grant requested per 47 CFR 0.457(d)(1)(ii)? yes no
If yes, defer until: _____ (date)

Company agrees to notify the Commission by _____ (date)
of the intended date of announcement of the product so that the grant can be
issued on that date.

Transition Rules Request per 15.37? yes no
If no, assumed Part 15, Subpart B for unintentional radiators - the new 47 CFR
[10-1-90 Edition] provision.

Report prepared for: ABOL COMPANY LIMITED
Report prepared by: Advanced Compliance Lab
Report number: 0048-010925-02TX

NVLAP®

The test result in this report IS supported and covered by the NVLAP accreditation

Table of Contents

Report Cover Page	1
Table of Contents	2
Figures	3
1. GENERAL INFORMATION	4
1.1 Verification of Compliance	4
1.2 Equipment Modifications	5
1.3 Product Information	6
1.4 Test Methodology	6
1.5 Test Facility	6
1.6 Test Equipment	6
1.7 Statement of the Document Use.....	7
2. PRODUCT LABELING.....	8
3. SYSTEM TEST CONFIGURATION.....	9
3.1 Justification	9
3.2 Special Accessories.....	9
3.3 Configuration of Tested System.....	9
4. SYSTEM SCHEMATICS	12
5. RADIATED EMISSION DATA.....	13
5.1 Field Strength Calculation	13
5.2 Test Methods and Conditions	13
5.3 Test Data	13
6. PHOTOS OF TESTED EUT	16

Figures

Figure 2.1 FCCLabel.....	8
Figure 2.2 Location of Label on Back of the EUT.....	8
Figure 3.1 Radiated Test Setup, Position 1	10
Figure 3.2 Radiated Test Setup, Position 2	10
Figure 3.3 Radiated Test Setup, Position 3	11
Figure 4.1 EUT Schematics	12

1. GENERAL INFORMATION

1.1 Verification of Compliance

EUT: WIRELESS DOOR BELL TRANSMITTER
 Model: DC-22 / DC-23 / DC-25 (TX)
 Applicant: ABOL COMPANY LIMITED
 BLOCK C, 5/F. SUPERME INDUSTRIAL BLDG.,
 15-17 SHAN MEI STREET, FOTAN, SHATIN, N.T.,
 HONG KONG
 Test Type: FCC Part 15C CERTIFICATION
 Result: PASS
 Tested by: ADVANCED COMPLIANCE LAB
 Test Date: October 01, 2001
 Report Number: 0048-010925-02TX

The above equipment was tested by Advanced Compliance Laboratory for compliance with the requirement set forth in the FCC rules and regulations Part 15, subpart C. This said equipment in the configuration described in the report, shows the maximum emission levels emanating from equipment are within the compliance requirements.

The estimated uncertainty of the test result is given as following. The method of uncertainty calculation is provided in Advanced Compliance Lab. Doc. No. 0048-01-01.

	Prob. Dist.	Uncertainty(dB)	Uncertainty(dB)	Uncertainty(dB)
		30-1000MHz	1-6.5GHz	Conducted
Combined Std. Uncertainty u_c	norm.	± 2.36	± 2.99	± 1.83

Wei Li
 Lab Manager
 Advanced Compliance Lab

Date: October 01, 2001

1.2 Equipment Modifications

N/A

1.3 Product Information

System Configuration

ITEM	DESCRIPTION	FCC ID	CABLE
Product	TRANSMITTER	JB3DC-22	
Housing	PLASTICS		
Power Supply	12VDC BATTERY		
Clock/OSC Freq.	303MHz		
Device Type	Periodic Operation		
Receiver	FCC DoC		

(1) EUT submitted for grant.

1.4 Test Methodology

Radiated tests were performed according to the procedures in ANSI C63.4-1992 at an antenna to EUT distance of 3 meters.

1.5 Test Facility

The open area test site and conducted measurement facility used to collect the radiated and conducted data are located at Somerset, New Jersey. This site has been accepted by FCC to perform measurements under Part 15 or 18 in a letter dated May 19, 1997 (Refer to: 31040/PRV 1300F2). The NVLAP Lab code for accreditation of FCC EMC Test Method is: 200101-0.

1.6 Test Equipment

Manufacture	Model	Serial No.	Description	Last Cal dd/mm/yy	Cal Due dd/mm/yy
Hewlett-Packard	HP8546A	3625A00341	EMI Receiver	08/01/01	08/01/02
Fischer Custom	LISN-2	900-4-008	Line Impedance Stabilization Networks	14/06/01	14/06/02
Fischer Custom	LISN-2	900-4-009	Line Impedance Stabilization Networks	14/06/01	14/06/02
EMCO	3115	4945	Double Ridge Guide Horn Antenna	24/01/01	24/01/02
EMCO	3104C	4396	30-200MHz Biconical Antenna	19/05/01	19/05/02
EMCO	3146	3350	200-1000MHz Log-Periodic Antenna	12/01/01	12/01/02
EMCO	6502	2665	10KHz-30MHz Active Loop Antenna	02/02/01	02/02/02

All Test Equipment Used are Calibrated Traceable to NIST Standards.

1.7 Statement for the Document Use

This report shall not be reproduced except in full, without the written approval of the laboratory. And this report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

2. PRODUCT LABELING

See attachment: Figure 2.1 fcclabel.pdf

3. SYSTEM TEST CONFIGURATION

3.1 Justification

The system was configured for testing in a typical fashion (as a customer would normally use it). .

Testing was performed as EUT was operated at frequency channel 303 MHz continuously.

3.2 Special Accessories

N/A

3.3 Configuration of Tested System

Figure 3.1 and Figure 3.3 illustrate this system, which is tested standing along.

Figure 3.1 Radiated Test Setup, Position 1

Figure 3.2 Radiated Test Setup, Position 2

Figure 3.3 Radiated Test Setup, Position 3

4. SYSTEM SCHEMATICS

See attachment: schematic.pdf

Figure 4.1 EUT Schematics

5. RADIATED EMISSION DATA

5.1 Field Strength Calculation

The corrected field strength is automatically calculated by EMI Receiver using following:

$$FS = RA + AF + CF + AG$$

where FS: Corrected Field Strength in dB μ V/m

RA: Amplitude of EMI Receiver before correction in dB μ V

AF: Antenna Factor in dB/m

CF: Cable Attenuation Factor in dB

AG: Built-in Preamplifier Gain in dB (Stored in receiver as part of the calibration data)

5.2 Test Methods and Conditions

The initial step in collecting radiated data is a EMI Receiver scan of the measurement range below 30MHz using peak detector and 9KHz IF bandwidth / 30KHz video bandwidth. For the range 30MHz - 5GHz, IF bandwidth / 30KHz video bandwidth are used. Both bandwidths are 1MHz for above 1GHz measurement.

5.3 Test Data

The following data lists the significant emission frequencies, polarity and position, peak reading of the EMI Receiver, the FCC limit, and the difference between the peak reading and the limit. Explanation of the correction and calculation are given in section 5.1.

Test Personnel:

Tester Signature

Typed/Printed Name: David Tu

Date: October 01, 2001

Radiated Test Data (CH-303MHz)

Frequency (MHz)	Polarity [H, V] Position	Height (m)	Azimuth (Degree)	Peak(2) Reading (dBmV/m)	Class B(1) 3m Limit (dBmV/m)	Difference from limit (dB)
303.2	X,H	1.0	0	69.1	74.9	-5.8
606.6	X,H	1.0	25	42.1	54.9	-12.8
910.2	X,H	1.0	70	42.0	54.9	-12.9
1213.0	X,H	1.0	70	47.0	54.0	-7
303.2	X,V	1.0	0	51.1	74.9	-23.8
606.6	X,V	1.0	0	42.2	54.9	-12.7
910.2	X,V	1.0	20	39.2	54.9	-15.7
303.2	Y,H	1.5	90	52.4	74.9	-22.5
606.6	Y,H	1.2	30	42.4	54.9	-12.5
910.1	Y,H	1.0	20	42.7	54.9	-12.2
303.2	Y,V	2.3	30	64.1	74.9	-10.8
606.7	Y,V	1.9	50	38.9	54.9	-16
909.1	Y,V	1.3	20	43.0	54.9	-11.9
1213.0	Y,V	1.0	40	48.0	54.0	-6
303.2	Z,H	2.5	330	59.7	74.9	-15.2
606.8	Z,H	1.5	340	39.8	54.9	-15.1
910.4	Z,H	1.5	20	40.6	54.9	-14.3
303.2	Z,V	2.3	70	66.2	74.9	-8.7
606.8	Z,V	1.0	40	46.0	54.9	-8.9
910.4	Z,V	1.3	0	42.7	54.9	-12.2
1213.1	Z,V	1.5	10	46.4	54.0	-7.6

(1) See Figure 3.1, 3.2 and 3.3 for definition of position X-1, Y-2, Z-3.

(2) Restricted band.

(3) Fundamental limit is 3750-12500 microvolts/meter linear interpolations.

(4) Spurious limit is 375-1250 microvolts/meter linear interpolations.

(5) Because each peak reading is less than the FCC average limit, it is not necessary to show the calculated average reading based on the pulse train characteristics.

6. PHOTOS OF TESTED EUT

The following photos show the inside details of the EUT.

See Attachments: external.pdf, internal.pdf