

*FCC PART 15, SUBPART B and C
TEST REPORT*
for
**2.4 GHZ WIRELESS INTERCOM
MODEL: BPW-300**

Prepared for

 ANCHOR AUDIO, INC.
 2565 WEST 237TH STREET
 TORRANCE, CALIFORNIA 90505

 Prepared by:

KYLE FUJIMOTO

 Approved by:

MICHAEL CHRISTENSEN

 COMPATIBLE ELECTRONICS INC.
 114 OLINDA DRIVE
 BREA, CALIFORNIA 92823
 (714) 579-0500

DATE: JULY 24, 2006

	REPORT BODY	APPENDICES					TOTAL
		<i>A</i>	<i>B</i>	<i>C</i>	<i>D</i>	<i>E</i>	
PAGES	23	2	2	2	19	77	125

This report shall not be reproduced except in full, without the written approval of Compatible Electronics.

Brea Division
 114 Olinda Drive
 Brea, CA 92823
 (714) 579-0500

Agoura Division
 2337 Troutdale Drive
 Agoura, CA 91301
 (818) 597-0600

Silverado Division
 19121 El Toro Road
 Silverado, CA 92676
 (949) 589-0700

Lake Forest Division
 20621 Pascal Way
 Lake Forest, CA 92630
 (949) 587-0400

TABLE OF CONTENTS

Section / Title	PAGE
GENERAL REPORT SUMMARY	4
SUMMARY OF TEST RESULTS	5
1. PURPOSE	6
2. ADMINISTRATIVE DATA	7
2.1 Location of Testing	7
2.2 Traceability Statement	7
2.3 Cognizant Personnel	7
2.4 Date Test Sample was Received	7
2.5 Disposition of the Test Sample	7
2.6 Abbreviations and Acronyms	7
3. APPLICABLE DOCUMENTS	8
4. DESCRIPTION OF TEST CONFIGURATION	9
4.1 Description of Test Configuration - EMI	9
4.1.1 Cable Construction and Termination	10
5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT	11
5.1 EUT and Accessory List	11
5.2 EMI Test Equipment	12
6. TEST SITE DESCRIPTION	13
6.1 Test Facility Description	13
6.2 EUT Mounting, Bonding and Grounding	13
7. CHARACTERISTICS OF THE TRANSMITTER	14
7.1 Transmitter Power	14
7.2 Channel Number and Frequencies	14
7.3 Antenna Gain	14
8. TEST PROCEDURES	15
8.1 RF Emissions	15
8.1.1 Conducted Emissions Test	15
8.1.2 Radiated Emissions (Spurious and Harmonics) Test	16
8.3 20 dB Bandwidth	18
8.4 Peak Output Power	19
8.5 RF Antenna Conducted Test	19
8.6 RF Band Edges	20
8.7 Carrier Frequency Separation	20
8.8 Number of Hopping Frequencies	20
8.8 Average Time of Occupancy Test	21
8.9 Spectral Density Test	22
9. CONCLUSIONS	23

LIST OF APPENDICES

APPENDIX	TITLE
A	Laboratory Recognitions
B	Modifications to the EUT
C	Additional Models Covered Under This Report
D	Diagrams, Charts, and Photos <ul style="list-style-type: none"> • Test Setup Diagrams • Radiated and Conducted Emissions Photos • Antenna and Effective Gain Factors
E	Data Sheets

LIST OF FIGURES

FIGURE	TITLE
1	Conducted Emissions Test Setup
2	Plot Map And Layout of Test Site – 3 Meters
3	Plot Map And Layout of Test Site – 10 Meters

GENERAL REPORT SUMMARY

This electromagnetic emission test report is generated by Compatible Electronics Inc., which is an independent testing and consulting firm. The test report is based on testing performed by Compatible Electronics personnel according to the measurement procedures described in the test specifications given below and in the "Test Procedures" section of this report.

The measurement data and conclusions appearing herein relate only to the sample tested and this report may not be reproduced without the written permission of Compatible Electronics, unless done so in full.

This report must not be used to claim product endorsement by NVLAP or any other agency of the U.S. Government.

Device Tested: 2.4 GHz Wireless Intercom
Model: BPW-300
S/N: N/A

Product Description: See Expository Statement.

Modifications: The EUT was not modified during the testing.

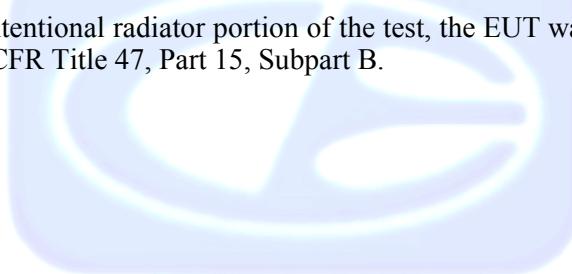
Manufacturer: Anchor Audio, Inc.
2565 West 237th Street
Torrance, California 90505

Test Dates: June 28, 29, 30; and July 3, 5, and 6, 2006

Test Specifications: EMI requirements
CFR Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.207, 15.209, and 15.247

Test Procedure: ANSI C63.4: 2003

Test Deviations: The test procedure was not deviated from during the testing.


SUMMARY OF TEST RESULTS

TEST	DESCRIPTION	RESULTS
1	Conducted RF Emissions, 150 kHz – 30 MHz	Complies with the Class B limits of CFR Title 47, Part 15 Subpart B; and the limits of CFR Title 47, Part 15, Subpart C, section 15.207
2	Spurious Radiated RF Emissions, 30 MHz – 1000 MHz	Complies with the Class B limits of CFR Title 47, Part 15 Subpart B; and the limits of CFR Title 47, Part 15, Subpart C, section 15.209
3	Spurious Radiated RF Emissions, 10 kHz – 30 MHz and 1000 MHz – 25000 MHz	Complies with the Class B limits of CFR Title 47, Part 15, Subpart B; and CFR Title 47, Part 15, Subpart C, section 15.247(d)
4	Fundamental and Emissions produced by the intentional radiator in non-restricted bands, 10 kHz – 25 GHz	Complies with the relevant requirements of CFR Title 47, Part 15, Subpart C, section 15.247(d)
5	Emissions produced by the intentional radiator in restricted bands, 10 kHz – 25 GHz	Complies with the relevant requirements of CFR Title 47, Part 15, Subpart C, section 15.205, 15.209, and section 15.247 (d)
6	20 dB Bandwidth	Complies with the relevant requirements of FCC Title 47, Part 15, Subpart C, section 15.247 (a)(1) and (a)(1)(iii)
7	Peak Power Output	Complies with the relevant requirements of FCC Title 47, Part 15, Subpart C, section 15.247 (b)(1)
8	RF Conducted Antenna Test	Complies with the relevant requirements of FCC Title 47, Part 15, Subpart C, section 15.247 (d)
9	Carrier Frequency Separation	Complies with the relevant requirements of CFR Title 47, Part 15, Subpart C, section 15.247 (a)(1) and 15.247 (a)(1)(iii)
10	Average Time of Occupancy	Complies with the relevant requirements of CFR Title 47, Part 15, Subpart C, section 15.247 (a)(1)(iii)
11	Peak Power Spectral Density from the Intentional Radiator to the Antenna	This test was not performed because the EUT is a frequency hopper.

1. PURPOSE

This document is a qualification test report based on the Electromagnetic Interference (EMI) tests performed on the 2.4 GHz Wireless Intercom Model: BPW-300. The EMI measurements were performed according to the measurement procedure described in ANSI C63.4: 2003. The tests were performed in order to determine whether the electromagnetic emissions from the equipment under test, referred to as EUT hereafter, are within the Class B specification limits defined by CFR Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.207, 15.209, and 15.247.

Note: For the unintentional radiator portion of the test, the EUT was within the **Class B** specification limits defined by CFR Title 47, Part 15, Subpart B.

2. ADMINISTRATIVE DATA

2.1 Location of Testing

The EMI tests described herein were performed at the test facility of Compatible Electronics, 114 Olinda Drive, Brea, California 92823.

2.2 Traceability Statement

The calibration certificates of all test equipment used during the test are on file at the location of the test. The calibration is traceable to the National Institute of Standards and Technology (NIST).

2.3 Cognizant Personnel

Anchor Audio, Inc.

Jon Watkins Engineer

Compatible Electronics, Inc.

Kyle Fujimoto Test Engineer
Michael Christensen Lab Manager

2.4 Date Test Sample was Received

The test sample was received on June 27, 2006.

2.5 Disposition of the Test Sample

The sample has not been returned to Anchor Audio, Inc. as of July 24, 2006.

2.6

Abbreviations and Acronyms

The following abbreviations and acronyms may be used in this document.

RF	Radio Frequency
EMI	Electromagnetic Interference
EUT	Equipment Under Test
P/N	Part Number
S/N	Serial Number
HP	Hewlett Packard
ITE	Information Technology Equipment
CML	Corrected Meter Limit
LISN	Line Impedance Stabilization Network
N/A	Not Applicable

3. APPLICABLE DOCUMENTS

The following documents are referenced or used in the preparation of this EMI Test Report.

SPEC	TITLE
FCC Title 47, Part 15 Subpart C	FCC Rules - Radio frequency devices (including digital devices) – Intentional Radiators
ANSI C63.4 2003	Methods of measurement of radio-noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz
FCC Title 47, Part 15 Subpart B	FCC Rules - Radio frequency devices (including digital devices) – Unintentional Radiators

4. DESCRIPTION OF TEST CONFIGURATION

4.1 Description of Test Configuration - EMI

Setup and operation of the equipment under test.

Specifics of the EUT and Peripherals Tested

The 2.4 GHz Wireless Intercom Model: BPW-300 (EUT) was connected to a pair of headphones and an AC Adapter via its audio out and power ports, respectively. The EUT was continuously transmitting or receiving depending on the test performed.

Operation of the EUT during the testing

For the intentional radiator portion of the test: The EUT was programmed so that the low, middle, and high channels could be tested. This allowed the EUT to be in a no hopping mode. The EUT was tested in three orthogonal axis. The carrier was modulated in the same way it would be when the EUT was in its normal frequency hopping mode.

For the receiver portion of the test: The EUT was programmed so that the low, middle, and high channels could be tested. This allowed the EUT to receive at the same frequency on a continuous basis. The EUT was tested in three orthogonal axis.

For the unintentional radiator and conducted emission portion of the test: The EUT was programmed to function as normal (the channels frequency hopping) on a continuous basis.

The final radiated as well as the conducted data was taken in the mode above. Please see Appendix E for the data sheets.

4.1.1 **Cable Construction and Termination**

Cable 1

This is a 1-meter braid shielded cable connecting the EUT to the headphones. The cable has a 6 pin DIN connector at the EUT end and is hard wired into the headphones. The shield of the cable was grounded to the chassis via the connector.

Cable 2

This is a 2-meter unshielded cable connecting the EUT to the AC Adapter. The cable has a 1/8 inch power connector at the EUT end and is hard wired into the AC Adapter.

5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT**5.1 EUT and Accessory List**

EQUIPMENT	MANUFACTURER	MODEL NUMBER	SERIAL NUMBER	FCC ID
2.4 GHZ WIRELESS INTERCOM (EUT)	ANCHOR AUDIO, INC.	BPW-300	N/A	J8ZBPW-300
AC ADAPTER	APS	M10050U	N/A	N/A
HEADPHONES	ANCHOR AUDIO, INC.	BC2514	E603465	N/A

5.2 EMI Test Equipment

EQUIPMENT TYPE	MANUFACTURER	MODEL NUMBER	SERIAL NUMBER	CALIBRATION DATE	CALIBRATION DUE DATE
GENERAL TEST EQUIPMENT USED FOR ALL RF EMISSIONS TESTS					
Spectrum Analyzer – Main Section	Hewlett Packard	8566B	3638A08784	May 26, 2006	May 26, 2007
Spectrum Analyzer – Display Section	Hewlett Packard	85662A	3701A22279	May 26 2006	May 26, 2007
Quasi-Peak Adapter	Hewlett Packard	85650A	2430A00424	May 26, 2006	May 26, 2007
Computer	Hewlett Packard	4530	US91912319	N/A	N/A
EMI Receiver	Rohde & Schwarz	ESIB40	100172	October 28, 2004	October 28, 2006
Monitor	Hewlett Packard	D5258A	TW74500641	N/A	N/A
RF RADIATED EMISSIONS TEST EQUIPMENT					
Radiated Emissions Data Capture Program	Compatible Electronics	2.0	N/A	N/A	N/A
Preamplifier	Com-Power	PA-103	1582	January 19, 2006	Jan. 19, 2007
Biconical Antenna	Com Power	AB-900	15251	March 9, 2006	March 9, 2007
Log Periodic Antenna	Com Power	AL-100	16247	August 22, 2005	Aug. 22, 2006
Horn Antenna	Com Power	AH-118	10067	July 27, 2004	July 27, 2006
Microwave Preamplifier	Com Power	PA-122	181917	January 20, 2006	Jan. 20, 2007
Antenna Mast	Com Power	AM-100	N/A	N/A	N/A
Microwave Preamplifier	Com Power	PA-840	711013	January 20, 2006	Jan. 20, 2007
Loop Antenna	Com-Power	AL-130	17089	September 21, 2006	Sept. 21, 2007
Horn Antenna	Com-Power	AH826	0071957	December 12, 2005	Dec. 12, 2007
RF CONDUCTED EMISSIONS TEST EQUIPMENT					
Emissions Program	Compatible Electronics	2.3 (SR19)	N/A	N/A	N/A
LISN	Com Power	LI-215	12090	September 1, 2005	Sept.1, 2006
LISN	Com Power	LI-215	12076	September 1, 2005	Sept. 1, 2006
Transient Limiter	Seaward	252A910	K39-0220	August 17, 2005	Aug. 17, 2006

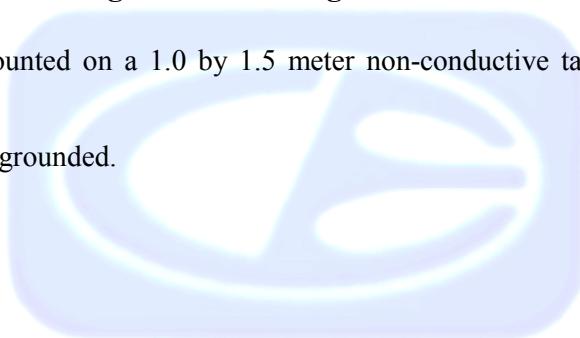
Brea Division
114 Olinda Drive
Brea, CA 92823
(714) 579-0500

Agoura Division
2337 Troutdale Drive
Agoura, CA 91301
(818) 597-0600

Silverado Division
19121 El Toro Road
Silverado, CA 92676
(949) 589-0700

Lake Forest Division
20621 Pascal Way
Lake Forest, CA 92630
(949) 587-0400

6. TEST SITE DESCRIPTION


6.1 Test Facility Description

Please refer to section 2.1 and 7.1 of this report for EMI test location.

6.2 EUT Mounting, Bonding and Grounding

The EUT was mounted on a 1.0 by 1.5 meter non-conductive table 0.8 meters above the ground plane.

The EUT was not grounded.

7. CHARACTERISTICS OF THE TRANSMITTER

7.1 Transmitter Power

Transmit power is herein defined as the power delivered to a 50 ohm load at the RF output of the EUT.

Power	Channel
18.45 dBm	LOW
19.19 dBm	MIDDLE
19.97 dBm	HIGH

7.2 Channel Number and Frequencies

There are a total of 34 channels. The low channel is at 2416.0 MHz and the high channel is at 2449.0 MHz. There is a 1 MHz separation between channels.

Channel 1: 2416 MHz
Channel 2: 2417 MHz
(Etc.)

7.3 Antenna Gain

The antenna used is the Linx Technologies Ultra Compact Chip Antenna P/N: ANT-2.45-CHP-x. The maximum gain of this antenna is 0.8 dBi.

8. TEST PROCEDURES

The following sections describe the test methods and the specifications for the tests. Test results are also included in this section.

8.1 RF Emissions

8.1.1 Conducted Emissions Test

The spectrum analyzer was used as a measuring meter. The data was collected with the spectrum analyzer in the peak detect mode with the "Max Hold" feature activated. The quasi-peak was used only where indicated in the data sheets. A transient limiter was used for the protection of the spectrum analyzer input stage, and the offset was adjusted accordingly to read the actual data measured. The LISN output was measured using the spectrum analyzer. The output of the second LISN was terminated by a 50 ohm termination. The effective measurement bandwidth used for this test was 9 kHz.

Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The EUT was powered through the LISN, which was bonded to the ground plane. The LISN power was filtered and the filter was bonded to the ground plane. The EUT was set up with the minimum distances from any conductive surfaces as specified in ANSI C63.4: 2003. The excess power cord was wrapped in a figure eight pattern to form a bundle not exceeding 0.4 meters in length.

The conducted emissions from the EUT were maximized for operating mode as well as cable placement. The final data was collected under program control by the Compatible Electronics conducted emissions software in several overlapping sweeps by running the spectrum analyzer at a minimum scan rate of 10 seconds per octave. The final qualification data is located in Appendix E.

Test Results:

The EUT complies with the **Class B** limits of CFR Title 47, Part 15 Subpart B; and the limits of CFR Title 47, Part 15, Subpart C, Section 15.207 for conducted emissions.

8.1.2 Radiated Emissions (Spurious and Harmonics) Test

The spectrum analyzer and EMI Receiver were used as a measuring meter along with the quasi-peak adapter. Amplifiers were used to increase the sensitivity of the instrument. The Com Power Preamplifier Model: PA-102 was used for frequencies from 30 MHz to 1 GHz, the Com Power Microwave Preamplifier Model: PA-122 was used for frequencies above 1 GHz, and the Com Power Microwave Preamplifier Model: PA-840 was used for frequencies above 18 GHz. The spectrum analyzer was used in the peak detect mode with the "Max Hold" feature activated. In this mode, the spectrum analyzer records the highest measured reading over all the sweeps.

The quasi-peak adapter was used only for those readings which are marked accordingly on the data sheets.

The frequencies above 1 GHz were averaged manually by narrowing the video filter down to 10 Hz and putting the sweep time on AUTO on the spectrum analyzer to keep the amplitude reading calibrated.

After the readings above 1 GHz were average manually, the reading was further adjusted by a "duty cycle correction factor", derived from $20 \log(\text{dwell time} / 100 \text{ ms})$. Since the duty cycle was below 10%, the maximum allowed 20 dB was subtracted from the peak reading. The duty cycle correction factor is explained in Appendix E.

The measurement bandwidths and transducers used for the radiated emissions test were:

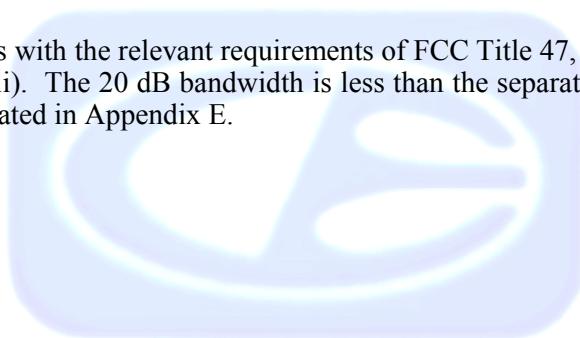
FREQUENCY RANGE	EFFECTIVE MEASUREMENT BANDWIDTH	TRANSDUCER
10 kHz to 150 kHz	200 Hz	Active Loop Antenna
150 kHz to 30 MHz	9 kHz	Active Loop Antenna
30 MHz to 300 MHz	120 kHz	Biconical Antenna
300 MHz to 1 GHz	120 kHz	Log Periodic Antenna
1 GHz to 25 GHz	1 MHz	Horn Antenna

The open field test site of Compatible Electronics, Inc. was used for radiated emission testing. This test site is set up according to ANSI C63.4: 2003. Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The turntable supporting the EUT is remote controlled using a motor. The turntable permits EUT rotation of 360 degrees in order to maximize emissions. Also, the antenna mast allows height variation of the antenna from 1 meter to 4 meters. Data was collected in the worst case (highest emission) configuration of the EUT by the Radiated Emission Manual Test software. At each reading, the EUT was rotated 360 degrees and the antenna height was varied from 1 to 4 meters (for E field radiated field strength). The gunsight method was used when measuring with the horn antenna in order to ensure accurate results.

Radiated Emissions (Spurious and Harmonics) Test (con't)

The presence of ambient signals was verified by turning the EUT off. In case an ambient signal was detected, the measurement bandwidth was reduced temporarily and verification was made that an additional adjacent peak did not exist. This ensures that the ambient signal does not hide any emissions from the EUT. The EUT was tested at a 10 meter test distance from 10 kHz to 30 MHz, and at a 3 meter test distance from 30 MHz to 25 GHz to obtain the final test data.

Test Results:


The EUT complies with the **Class B** limits of CFR Title 47, Part 15, Subpart B; and the limits of CFR Title 47, Part 15, Subpart C, Sections 15.209 and 15.247 (d) for radiated emissions. Please see Appendix E for the data sheets.

8.3 **20 dB Bandwidth**

The 20 dB Bandwidth was measured using the EMI Receiver. The bandwidth was measured using a direct connection from the RF output of the EUT. The resolution bandwidth was 30 kHz and the video bandwidth was 100 kHz.

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.247 (a)(1) and (a)(1)(iii). The 20 dB bandwidth is less than the separation between channels. Please see the data sheets located in Appendix E.

8.4 Peak Output Power

The Peak Output Power was measured using the EMI Receiver. The peak output power was measured using a direct connection from the RF output of the EUT. The resolution bandwidth was 3 MHz and the video bandwidth was 3 MHz. The cable loss was also added back into the reading using the reference level offset.

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.247 (b)(2). The maximum peak output power is less than 1 watt. Please see the data sheets located in Appendix E.

8.5 RF Antenna Conducted Test

The RF antenna conducted test was performed using the EMI Receiver. The RF antenna conducted test measured using a direct connection from the RF out on the EUT into the input of the EMI Receiver. The resolution bandwidth was 100 kHz, and the video bandwidth was 300 kHz. The spans were wide enough to include all the harmonics and emissions that were produced by the intentional radiator.

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.247 (d). The RF power that is produced by the intentional radiator is at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of desired power. Please see the radiated emission data sheets located in Appendix E.

8.6 RF Band Edges

The RF band edges were taken at the edges of the ISM spectrum (2400 MHz when the EUT was on the low channel and 2483.5 MHz when the EUT was on the high channel) using the EMI Receiver. A preamplifier was used to boost the signal level, with the plots being taken at a 3 meter test distance. The radiated emissions test procedure as describe in section 8.2 of this test report was used to maximize the emission.

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.247 (d). The RF power at the band edges at 2400 MHz and 2483.5 MHz meet the requirements of FCC Title 47, Part 15, Subpart C section 15.247 (d). Please see the data sheets located in Appendix E.

8.7 Carrier Frequency Separation

The Channel Hopping Separation Test was measured using the EMI Receiver. The EUT was operating in its normal operating mode. The resolution bandwidth was 100 kHz, and the video bandwidth 1 MHz. The frequency span was wide enough to include the peaks of two adjacent channels.

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.247 (a)(1) and 15.247 (a)(1)(iii). The Channel Hopping Separation is greater than the 20 dB bandwidth. Please see the data sheets located in Appendix D.

8.8 Number of Hopping Frequencies

The Channel Hopping Separation Test was measured using the EMI Receiver. The EUT was operating in its normal operating mode. The resolution bandwidth was 1 MHz, and the video bandwidth was 1 MHz. The frequency span was wide enough to include all of the peaks in the frequency band of operation.

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.247 (a)(1) and 15.247 (a)(1)(iii). The number of hopping frequencies is 79. Please see the data sheets located in Appendix E.

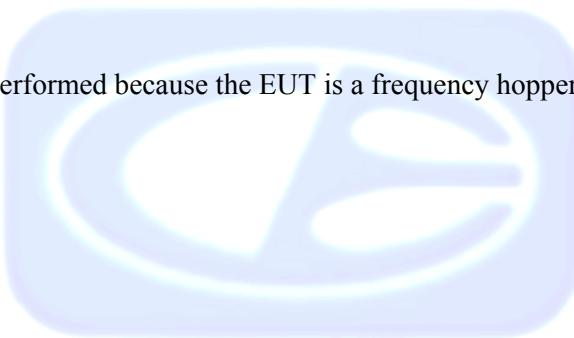
8.8 Average Time of Occupancy Test

The Average Time of Occupancy Test was measured using the EMI Receiver. The EUT was operating in normal operating mode. The frequency span was taken to 0 Hz with a sweep time of 5 msec to determine the time for each transmission.

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. This means the time of occupancy of any one channel cannot be greater than 0.4 seconds in a 13.6 second period (0.4 seconds * 34 channels).

The sweep time was then changed to 1 second and the number of pulses taken. The number of pulses was then multiplied by 13.6 to determine the number of pulses in a 13.6 second period. The number of pulses in a 13.6 second period was then multiplied by the time for each pulse to determine the average time of occupancy.

Test Results:


The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.247 (a)(1)(iii). The EUT does not transmit for more than 400 msec in a 13.6 second period on any frequency. Please see the data sheets located in Appendix E.

8.9 Spectral Density Test

The spectrum density output was measured using the EMI Receiver. The spectral density output was measured using a direct connection from the RF out on the EUT into the input of the EMI Receiver. The resolution bandwidth 3 kHz, and the video bandwidth was 10 kHz. The highest 1.5 MHz of the signal was used as the frequency span with the sweep rate being 1 second for every 3 kHz of span.

Test Results:

This test was not performed because the EUT is a frequency hopper.

9. CONCLUSIONS

The 2.4 GHz Wireless Intercom Model: BPW-300 meets all of the specification limits defined in FCC Title 47, Part 15, Subpart C, sections 15.205, 15.207, 15.209, and 15.247.

Note: For the unintentional radiator portion of the test, the EUT was within the **Class B** specification limits defined by CFR Title 47, Part 15, Subpart B.

APPENDIX A

LABORATORY RECOGNITIONS

Brea Division
114 Olinda Drive
Brea, CA 92823
(714) 579-0500

Agoura Division
2337 Troutdale Drive
Agoura, CA 91301
(818) 597-0600

Silverado Division
19121 El Toro Road
Silverado, CA 92676
(949) 589-0700

Lake Forest Division
20621 Pascal Way
Lake Forest, CA 92630
(949) 587-0400

LABORATORY RECOGNITIONS

Compatible Electronics has the following agency accreditations:

National Voluntary Laboratory Accreditation Program - Lab Code: 200528-0

Voluntary Control Council for Interference - Registration Numbers: R-983, C-1026, R-984 and C-1027

Bureau of Standards and Metrology Inspection - Reference Number: SL2-IN-E-1031

Conformity Assessment Body for the EMC Directive Under the US/EU MRA Appointed by NIST

Compatible Electronics is recognized or on file with the following agencies:

Federal Communications Commission

Industry Canada

Radio-Frequency Technologies (Competent Body)

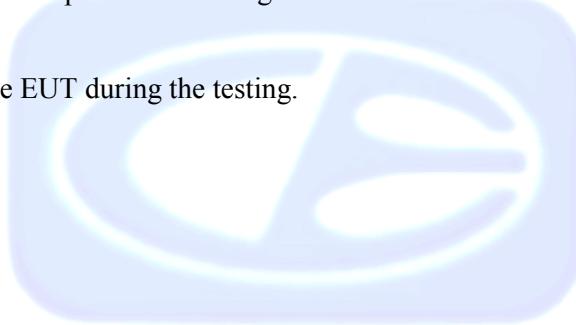
APPENDIX B

MODIFICATIONS TO THE EUT

Brea Division
114 Olinda Drive
Brea, CA 92823
(714) 579-0500

Agoura Division
2337 Troutdale Drive
Agoura, CA 91301
(818) 597-0600

Silverado Division
19121 El Toro Road
Silverado, CA 92676
(949) 589-0700


Lake Forest Division
20621 Pascal Way
Lake Forest, CA 92630
(949) 587-0400

MODIFICATIONS TO THE EUT

The modifications listed below were made to the EUT to pass FCC Subpart B and FCC 15.247 specifications.

All the rework described below was implemented during the test in a method that could be reproduced in all the units by the manufacturer.

No modifications were made to the EUT during the testing.

Brea Division
114 Olinda Drive
Brea, CA 92823
(714) 579-0500

Agoura Division
2337 Troutdale Drive
Agoura, CA 91301
(818) 597-0600

Silverado Division
19121 El Toro Road
Silverado, CA 92676
(949) 589-0700

Lake Forest Division
20621 Pascal Way
Lake Forest, CA 92630
(949) 587-0400

APPENDIX C

ADDITIONAL MODELS COVERED UNDER THIS REPORT

Brea Division
114 Olinda Drive
Brea, CA 92823
(714) 579-0500

Agoura Division
2337 Troutdale Drive
Agoura, CA 91301
(818) 597-0600

Silverado Division
19121 El Toro Road
Silverado, CA 92676
(949) 589-0700

Lake Forest Division
20621 Pascal Way
Lake Forest, CA 92630
(949) 587-0400

ADDITIONAL MODELS COVERED UNDER THIS REPORT

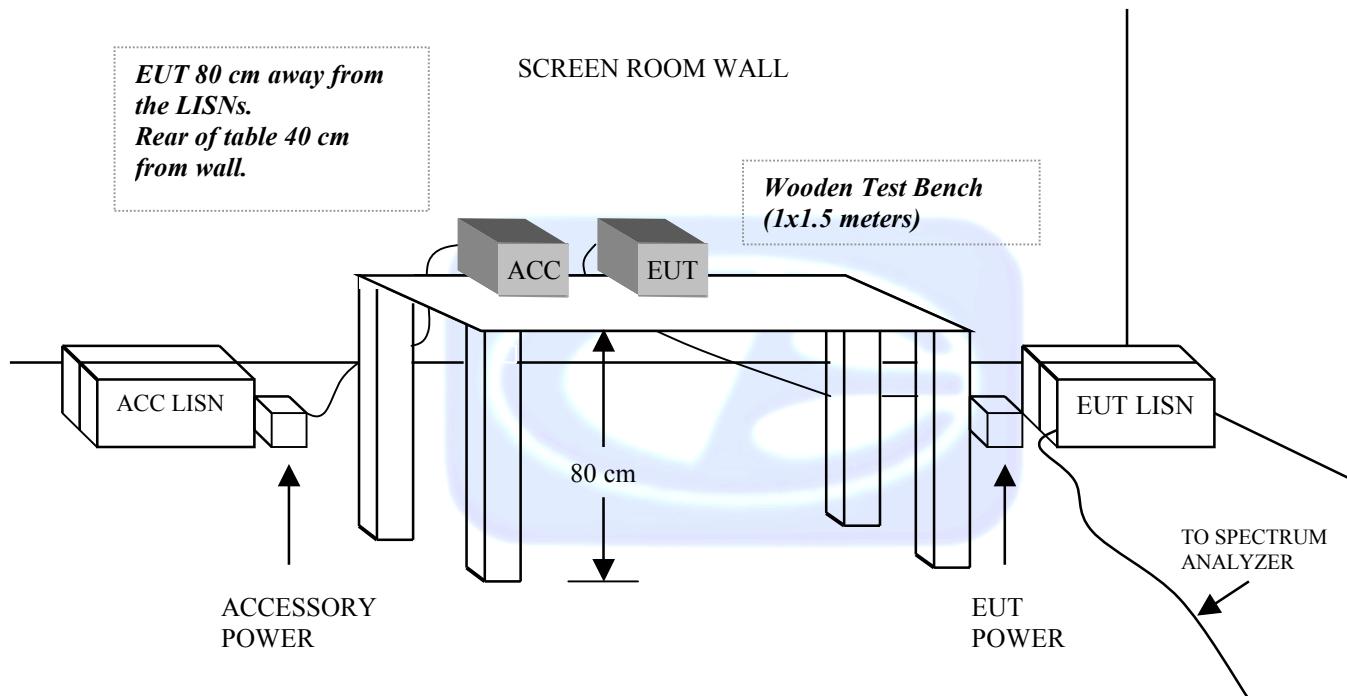
USED FOR THE PRIMARY TEST

2.4 GHz Wireless Intercom
Model: BPW-300
S/N: N/A

There were no additional models covered under this report.

APPENDIX D

DIAGRAMS, CHARTS, AND PHOTOS


Brea Division
114 Olinda Drive
Brea, CA 92823
(714) 579-0500

Agoura Division
2337 Troutdale Drive
Agoura, CA 91301
(818) 597-0600

Silverado Division
19121 El Toro Road
Silverado, CA 92676
(949) 589-0700

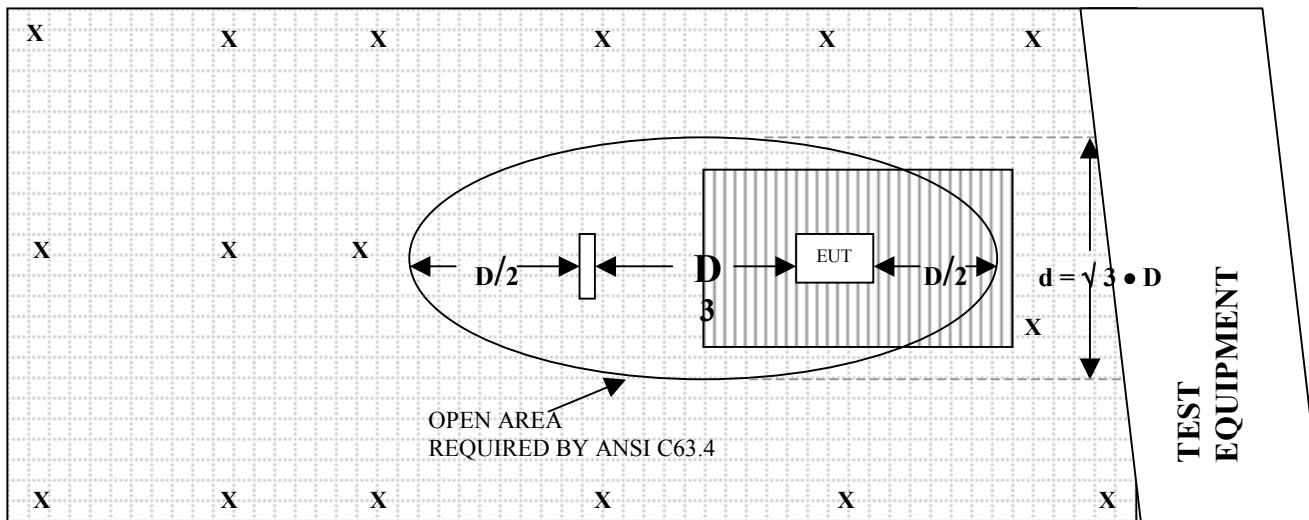

Lake Forest Division
20621 Pascal Way
Lake Forest, CA 92630
(949) 587-0400

FIGURE 1: CONDUCTED EMISSIONS TEST SETUP

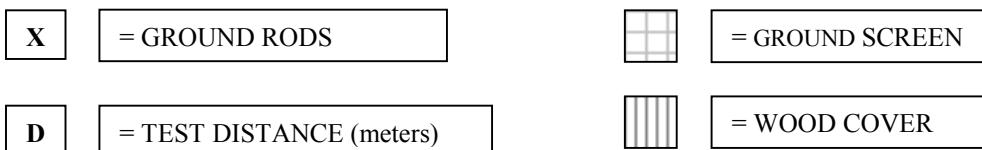
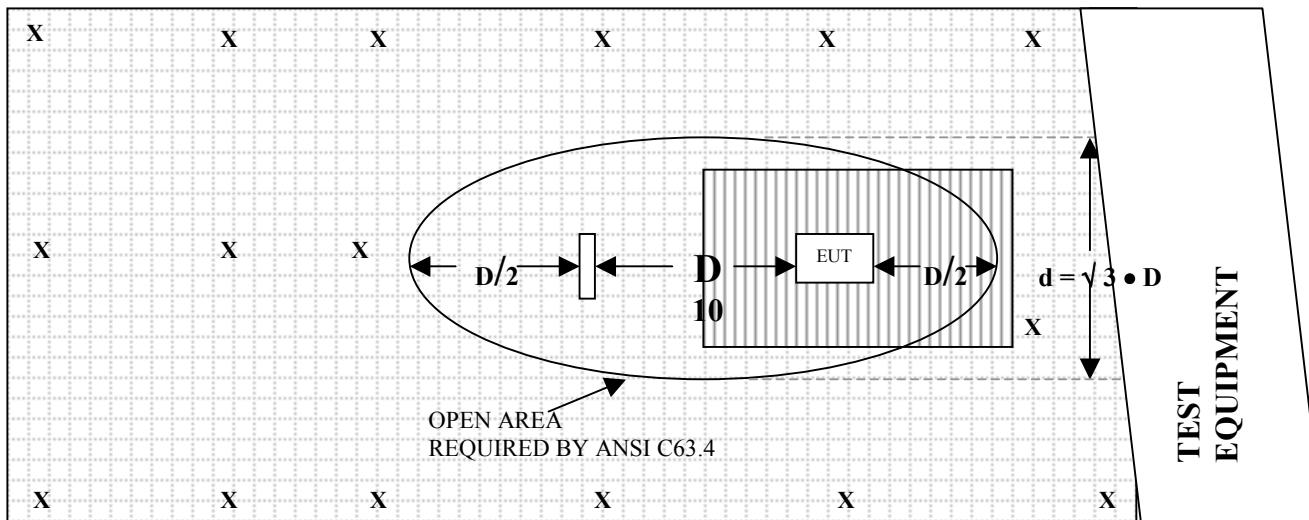


FIGURE 2: PLOT MAP AND LAYOUT OF RADIATED SITE – 3 METERS

OPEN LAND > 15 METERS



OPEN LAND > 15 METERS

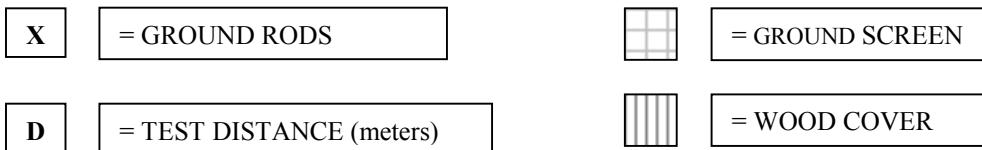


FIGURE 3: PLOT MAP AND LAYOUT OF RADIATED SITE – 10 METERS

OPEN LAND > 15 METERS

OPEN LAND > 15 METERS

COM-POWER AB-900

BICONICAL ANTENNA

S/N: 15251

CALIBRATION DATE: MARCH 9, 2006

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
30	11.27	120	13.04
35	10.29	125	12.67
40	9.72	140	11.91
45	11.45	150	11.61
50	13.34	160	13.67
60	11.44	175	15.97
70	8.41	180	16.64
80	6.21	200	16.54
90	7.5	250	16.96
100	11.65	300	17.48

COM-POWER AL-100**LOG PERIODIC ANTENNA****S/N: 16247****CALIBRATION DATE: AUGUST 22, 2005**

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
300	12.70	700	19.72
400	13.19	800	20.59
500	14.99	900	21.10
600	15.95	1000	24.35

COM-POWER PA-103

PREAMPLIFIER

S/N: 1582

CALIBRATION DATE: JANUARY 19, 2006

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
30	32.7	300	32.4
40	32.6	350	32.4
50	32.6	400	32.1
60	32.8	450	32.1
70	32.7	500	31.8
80	32.7	550	31.8
90	32.7	600	32.0
100	32.6	650	31.9
125	32.6	700	31.5
150	32.5	750	31.7
175	32.4	800	31.4
200	32.5	850	31.6
225	32.5	900	30.8
250	32.3	950	31.1
275	32.4	1000	30.9

COM-POWER PA-122

PREAMPLIFIER

S/N: 181917

CALIBRATION DATE: JANUARY 20, 2006

FREQUENCY (GHz)	FACTOR (dB)	FREQUENCY (GHz)	FACTOR (dB)
1.0	34.697	10.0	36.558
1.5	33.817	10.5	35.048
2.0	33.587	11.0	33.258
2.5	33.804	11.5	32.960
3.0	33.850	12.0	33.312
3.5	33.943	12.5	33.836
4.0	34.399	13.0	34.178
4.5	34.847	13.5	34.197
5.0	35.172	14.0	33.769
5.5	35.383	14.5	33.392
6.0	35.539	15.0	33.387
6.5	34.802	15.5	34.038
7.0	33.793	16.0	34.884
7.5	33.511	16.5	35.740
8.0	33.910	17.0	35.341
8.5	34.907	17.5	34.729
9.0	36.036	18.0	33.760
9.5	36.661		

COM POWER AH-118

HORN ANTENNA

S/N: 10067

CALIBRATION DATE: JULY 27, 2004

FREQUENCY (GHz)	FACTOR (dB)	FREQUENCY (GHz)	FACTOR (dB)
1.0	25.0	10.0	37.8
1.5	27.9	10.5	39.4
2.0	31.5	11.0	39.4
2.5	31.1	11.5	40.6
3.0	30.6	12.0	40.8
3.5	30.5	12.5	40.5
4.0	30.6	13.0	41.2
4.5	31.4	13.5	42.0
5.0	33.7	14.0	43.1
5.5	33.8	14.5	43.4
6.0	34.7	15.0	39.2
6.5	35.0	15.5	38.8
7.0	35.9	16.0	40.1
7.5	38.1	16.5	40.2
8.0	38.2	17.0	43.4
8.5	37.7	17.5	46.6
9.0	37.7	18.0	45.8
9.5	38.4		

COM-POWER AL-130
LOOP ANTENNA
S/N: 17089
CALIBRATION DATE: SEPTEMBER 21, 2005

FREQUENCY (MHz)	MAGNETIC (dB/m)	ELECTRIC (dB/m)
0.009	-42.84	8.66
0.01	-41.93	9.57
0.02	-41.29	10.21
0.05	-42.37	9.13
0.07	-41.8	9.7
0.1	-41.83	9.67
0.2	-44.13	7.37
0.3	-41.73	9.77
0.5	-41.8	9.7
0.7	-41.53	9.97
1	-41.46	10.04
2	-41.14	10.36
3	-41.26	10.24
4	-41.46	10.04
5	-41.10	10.40
10	-40.83	10.67
15	-41.47	10.03
20	-35.44	16.06
25	-42.37	9.13
30	-42.94	8.56

COM-POWER PA-840

MICROWAVE PREAMPLIFIER

S/N: 711013

CALIBRATION DATE: JANAUARY 20, 2006

FREQUENCY (GHz)	FACTOR (dB)	FREQUENCY (GHz)	FACTOR (dB)
18.0	26.240	29.5	27.909
18.5	25.650	30.0	27.656
19.0	25.295	30.5	27.590
19.5	24.601	31.0	27.583
20.0	24.292	31.5	27.247
20.5	24.042	32.0	27.133
21.0	23.877	32.5	27.013
21.5	23.698	33.0	26.789
22.0	23.942	33.5	27.473
22.5	24.138	34.0	26.742
23.0	24.366	34.5	26.612
23.5	24.691	35.0	26.077
24.0	25.179	35.5	26.042
24.5	25.713	36.0	25.616
25.0	26.235	36.5	26.248
25.5	26.403	37.0	26.388
26.0	26.429	37.5	27.079
26.5	27.956	38.0	26.155
27.0	27.015	38.5	24.706
27.5	27.235	39.0	23.867
28.0	27.196	39.5	23.833
28.5	27.569	40.0	24.943
29.0	27.132		

COM-POWER AH826

HORN ANTENNA

S/N: 71957

CALIBRATION DATE: DECEMBER 12, 2005

FREQUENCY (GHz)	FACTOR (dB)	FREQUENCY (GHz)	FACTOR (dB)
18.0	32.4	22.5	32.0
18.5	31.4	23.0	32.2
19.0	31.5	23.5	31.2
19.5	30.9	24.0	33.1
20.0	33.1	24.5	33.1
20.5	33.4	25.0	33.4
21.0	32.1	25.5	33.4
21.5	32.5	26.0	32.9
22.0	32.3	26.5	33.6

FRONT VIEW

ANCHOR AUDIO, INC.
2.4 GHZ WIRELESS INTERCOM
MODEL: BPW-300
FCC SUBPART B AND C – RADIATED EMISSIONS – LAB B

**PHOTOGRAPH SHOWING THE EUT CONFIGURATION
FOR MAXIMUM EMISSIONS**

Brea Division
114 Olinda Drive
Brea, CA 92823
(714) 579-0500

Agoura Division
2337 Troutdale Drive
Agoura, CA 91301
(818) 597-0600

Silverado Division
19121 El Toro Road
Silverado, CA 92676
(949) 589-0700

Lake Forest Division
20621 Pascal Way
Lake Forest, CA 92630
(949) 587-0400

REAR VIEW

ANCHOR AUDIO, INC.
2.4 GHZ WIRELESS INTERCOM
MODEL: BPW-300
FCC SUBPART B AND C – RADIATED EMISSIONS – LAB B

**PHOTOGRAPH SHOWING THE EUT CONFIGURATION
FOR MAXIMUM EMISSIONS**

Brea Division
114 Olinda Drive
Brea, CA 92823
(714) 579-0500

Agoura Division
2337 Troutdale Drive
Agoura, CA 91301
(818) 597-0600

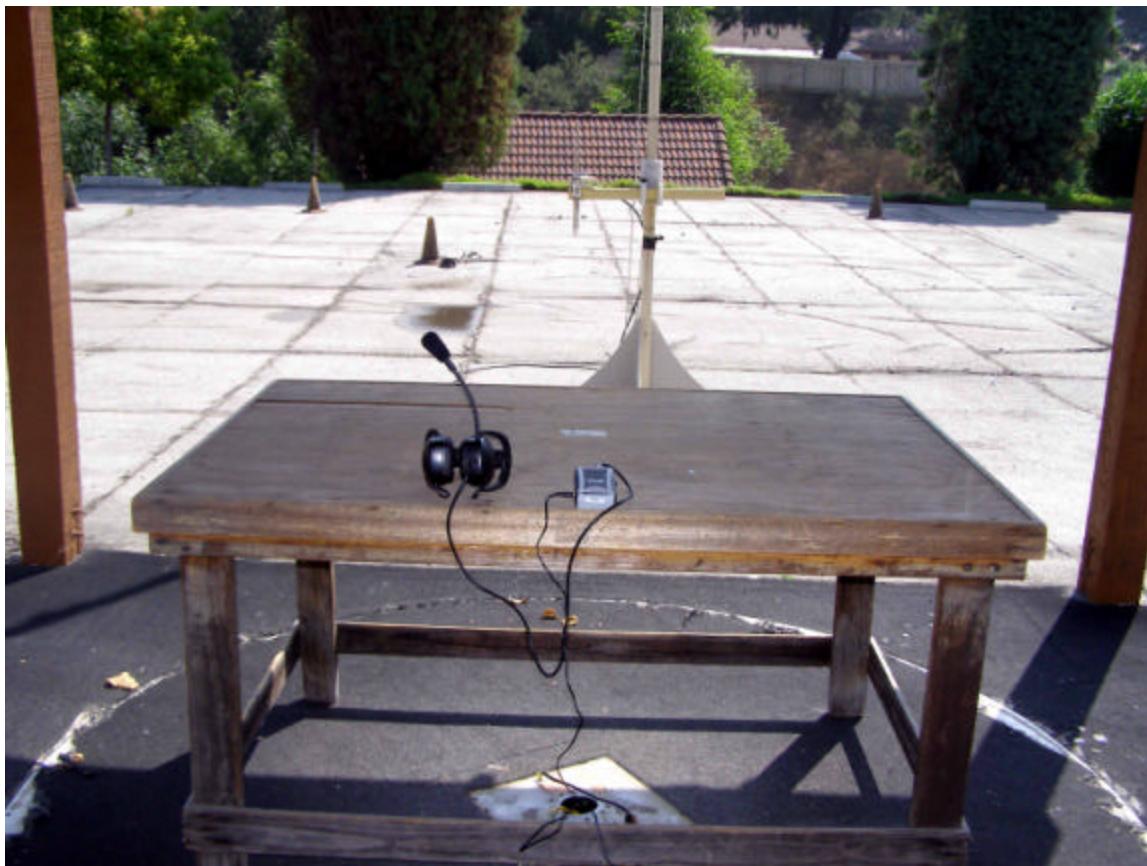
Silverado Division
19121 El Toro Road
Silverado, CA 92676
(949) 589-0700

Lake Forest Division
20621 Pascal Way
Lake Forest, CA 92630
(949) 587-0400

FRONT VIEW

ANCHOR AUDIO, INC.
2.4 GHZ WIRELESS INTERCOM
MODEL: BPW-300
FCC SUBPART B AND C – RADIATED EMISSIONS – LAB A

**PHOTOGRAPH SHOWING THE EUT CONFIGURATION
FOR MAXIMUM EMISSIONS**



Brea Division
114 Olinda Drive
Brea, CA 92823
(714) 579-0500

Agoura Division
2337 Troutdale Drive
Agoura, CA 91301
(818) 597-0600

Silverado Division
19121 El Toro Road
Silverado, CA 92676
(949) 589-0700

Lake Forest Division
20621 Pascal Way
Lake Forest, CA 92630
(949) 587-0400

REAR VIEW

ANCHOR AUDIO, INC.
2.4 GHZ WIRELESS INTERCOM
MODEL: BPW-300
FCC SUBPART B AND C – RADIATED EMISSIONS – LAB A

**PHOTOGRAPH SHOWING THE EUT CONFIGURATION
FOR MAXIMUM EMISSIONS**

Brea Division
114 Olinda Drive
Brea, CA 92823
(714) 579-0500

Agoura Division
2337 Troutdale Drive
Agoura, CA 91301
(818) 597-0600

Silverado Division
19121 El Toro Road
Silverado, CA 92676
(949) 589-0700

Lake Forest Division
20621 Pascal Way
Lake Forest, CA 92630
(949) 587-0400

FRONT VIEW

ANCHOR AUDIO, INC.
2.4 GHZ WIRELESS INTERCOM
MODEL: BPW-300
FCC SUBPART B AND C – CONDUCTED EMISSIONS

**PHOTOGRAPH SHOWING THE EUT CONFIGURATION
FOR MAXIMUM EMISSIONS**

Brea Division
114 Olinda Drive
Brea, CA 92823
(714) 579-0500

Agoura Division
2337 Troutdale Drive
Agoura, CA 91301
(818) 597-0600

Silverado Division
19121 El Toro Road
Silverado, CA 92676
(949) 589-0700

Lake Forest Division
20621 Pascal Way
Lake Forest, CA 92630
(949) 587-0400

REAR VIEW

ANCHOR AUDIO, INC.
2.4 GHZ WIRELESS INTERCOM
MODEL: BPW-300
FCC SUBPART B AND C – CONDUCTED EMISSIONS

**PHOTOGRAPH SHOWING THE EUT CONFIGURATION
FOR MAXIMUM EMISSIONS**

Brea Division
114 Olinda Drive
Brea, CA 92823
(714) 579-0500

Agoura Division
2337 Troutdale Drive
Agoura, CA 91301
(818) 597-0600

Silverado Division
19121 El Toro Road
Silverado, CA 92676
(949) 589-0700

Lake Forest Division
20621 Pascal Way
Lake Forest, CA 92630
(949) 587-0400