

MET Laboratories, Inc. Safety Certification - EMI - Telecom Environmental Simulation 914 WEST PATAPSCO AVENUE • BALTIMORE, MARYLAND 21230-3432 • PHONE (410) 354-3300 • FAX (410) 354-3313 33439 WESTERN AVENUE • UNION CITY, CALIFORNIA 94587 • PHONE (510) 489-6300 • FAX (510) 489-6372 3162 BELICK STREET • SANTA CLARA, CALIFORNIA 95054 • PHONE (408 748-3585 • FAX (510) 489-6372

June 30, 2011

Echelon Corporation 550 Meridian Avenue San Jose, CA 95126

Dear James Smith,

Enclosed is the EMC Wireless test report for compliance testing of the Echelon Corporation, Edge Control Node (ECN) 70101-0026 as tested to the requirements of Title 47 of the CFR, Ch. 1 (10-1-06 ed.), Title 47 of the CFR, Part 15, Subpart B, Industry Canada ICES-003 Issue 4 February 2004 for Unintentional Radiators and Part 15.407, Industry Canada RSS-210, Issue 8, Dec. 2010 for Intentional Radiators.

Thank you for using the services of MET Laboratories, Inc. If you have any questions regarding these results or if MET can be of further service to you, please feel free to contact me.

Sincerely yours,

MET LABORATORIES, INC.

Jennifer Warnell

Documentation Department

Reference: (\Echelon Corporation\EMCS83011-FCC407 Rev. 3)

Certificates and reports shall not be reproduced except in full, without the written permission of MET Laboratories, Inc.

MET Laboratories, Inc. Safety Certification - EMI - Telecom Environmental Simulation 33439 WESTERN AVENUE • UNION CITY, CALIFORNIA 94587-3201 • PHONE (510) 489-6300 • FAX (510) 489-6372

Electromagnetic Compatibility Criteria Test Report

for the

Echelon Corporation Model Edge Control Node (ECN) 70101-0026

Tested under

the Certification Rules
contained in

Title 47 of the CFR, Part 15, Subpart B and
ICES-003 Issue 4 February 2004
for Unintentional Radiators
and
Title 47 of the CFR, Part 15.407 and
Industry Canada RSS-210, Issue 8, Dec. 2010
for Intentional Radiators

MET Report: EMCS83011-FCC407 Rev. 3

June 30, 2011

Prepared For:

Echelon Corporation 550 Meridian Avenue San Jose, CA 95126

> Prepared By: MET Laboratories, Inc. 914 W. Patapsco Ave. Baltimore, MD 21230

Electromagnetic Compatibility Criteria Test Report

for the

Echelon Corporation Model Edge Control Node (ECN) 70101-0026

the Certification Rules
contained in

Title 47 of the CFR, Part 15, Subpart B and
ICES-003 Issue 4 February 2004
for Unintentional Radiators
and
Title 47 of the CFR, Part 15.407 and
Industry Canada RSS-210, Issue 8, Dec. 2010
for Intentional Radiators

Lionel Gabrillo, Project Engineer Electromagnetic Compatibility Lab Jennifer Warnell

Documentation Department

Engineering Statement: The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of Parts 15B, 15.407, of the FCC Rules and ICES-003 and RSS-210 of the Industry Canada rules under normal use and maintenance.

Shawn McMillen, Wireless Manager Electromagnetic Compatibility Lab

Report Status Sheet

Revision	Report Date	Reason for Revision	
Ø	June 17, 2011	Initial Issue.	
1	June 22, 2011	Revised to reflect customer corrections.	
2	June 27, 2011	Revised to reflect engineer corrections.	
3	June 30, 2011	Revised to reflect engineer corrections.	

Table of Contents

I.	Executive Summary	1
	A. Purpose of Test	2
	B. Executive Summary	2
II.	Equipment Configuration	3
	A. Overview	4
	B. References	5
	C. Test Site	5
	D. Description of Test Sample	6
	E. Equipment Configuration	
	F. Support Equipment	
	G. Ports and Cabling Information	8
	H. Mode of Operation	
	I. Method of Monitoring EUT Operation	
	J. Modifications	
	a) Modifications to EUT	9
	b) Modifications to Test Standard	9
	K. Disposition of EUT	9
III.	Electromagnetic Compatibility Criteria for Unintentional Radiators	10
	§ 15.107(a) Conducted Emissions Limits	11
	§ 15.109(a) Radiated Emissions Limits	
IV.	Electromagnetic Compatibility Criteria for Intentional Radiators	21
	§ 15.203 Antenna Requirement	
	§ 15.207 Conducted Emissions Limits	
	§ 15.403(c) 26dB Bandwidth	28
	§ 15.407(a) RF Power Output	
	§ 15.407(a)(1)(2) Peak Power Spectral Density	47
	§ 15.407(a)(6) Peak Excursion Ratio	
	§ 15.407(b) Undesirable Emissions	60
	a) EIRP	81
	b) Conducted Band Edge	88
	§ 15.407(f) RF Exposure	90
	§ 15.407(g) Frequency Stability	
	RSS-GEN Receiver Spurious Emissions	94
V.	Test Equipment	97
VI.	Certification & User's Manual Information	99
	A. Certification Information	100
	B. Label and User's Manual Information	104
VII.	ICES-003 Procedural & Labeling Requirements	106

List of Tables

Table 1. Executive Summary of EMC Part 15.407 Compilance resting	2
Table 2. EUT Summary	4
Table 3. References	
Table 4. Equipment Configuration	
Table 5. Support Equipment	
Table 6. Ports and Cabling Information	
Table 7. Conducted Limits for Radio Frequency Devices calculated from FCC Part 15 Subsections 15.107	
15.207(a)	
Table 8. Conducted Emissions - Voltage, AC Power, Phase Line 1 (240 VAC, 60 Hz)	
Table 9. Conducted Emissions - Voltage, AC Power, Phase Line 2 (240 VAC, 60 Hz)	
Table 10. Conducted Emissions - Voltage, AC Power, Neutral Line (240 VAC, 60 Hz)	
Table 11. Radiated Emissions Limits calculated from FCC Part 15, §15.109 (a) (b)	
Table 12. Radiated Emissions Limits, Test Results, 30 MHz – 1 GHz, FCC Limits	
Table 13. Radiated Emissions Limits, Test Results, Above 1 GHz, FCC Limits	
Table 14. Radiated Emissions Limits, Test Results, ICES-003 Limits	
Table 15. Conducted Limits for Intentional Radiators from FCC Part 15 § 15.207(a)	
Table 16. Conducted Emissions, 15.207(a), Test Results, TX ON, Line 1	
Table 17. Conducted Emissions, 15.207(a), Test Results, TX ON, Line 2	
Table 18. Conducted Emissions, 15.207(a), Test Results, TX ON, Neutral	
Table 20. 26 dB Occupied Bandwidth, Test Results	
Table 21. 99% Occupied Bandwidth, Test Results	
Table 22. Output Power Requirements from §15.407	
Table 23. RF Power Output, Test Results	
Table 24. RF Power Output, Test Results, Summed Ports, 802.11n 20 MHz	
Table 25. RF Power Output, Test Results, Summed Ports, 802.11n 40 MHz	
Table 26. Peak Power Spectral Density, Test Results	
Table 27. Peak Power Spectral Density, Test Results, Summed Ports, 802.11n 20 MHz	
Table 28. Peak Power Spectral Density, Test Results, Summed Ports, 802.11n 40 MHz	
Table 29. Restricted Bands of Operation.	
Table 30. EIRP Calculation	
Table 31. Frequency Stability, Test Results	
Table 32. Spurious Emission Limits for Receivers	
Table 33. Test Equipment List	
List of Figures	
List of Figures	
Figure 1. Block Diagram of Test Configuration	7
Figure 2. Occupied Bandwidth Test Setup	
Figure 3. Peak Power Output Test Setup	
Figure 4. Peak Power Spectral Density Test Setup	
Tigute ii Touk To ii Speetur Bensky Test Setup	
List of Photographs	
List of Photographs	
Photograph 1. Echelon Corporation Edge Control Node (ECN) 70101-0026, Front View	<i>6</i>
Photograph 2. Echelon Corporation Edge Control Node (ECN) 70101-0026, Rear View	
Photograph 3. Conducted Emissions, Test Setup	
Photograph 4. Radiated Emission, Test Setup, 30 MHz – 1 GHz	
Photograph 5. Radiated Emission, Test Setup, 1 GHz – 10 GHz	
Photograph 6. Conducted Emissions, 15.207(a), Test Setup	27

List of Plots

	Conducted Emission, Phase Line I Plot	
	Conducted Emission, Phase Line 2 Plot	
	Conducted Emission, Neutral Line Plot	
Plot 4.	Radiated Emissions, 30 MHz - 1 GHz, FCC Limits	17
Plot 5.	Radiated Emissions, Above 1 GHz, FCC Limits	18
Plot 6.	Radiated Emissions, ICES-003 Limits	19
Plot 7.	Conducted Emissions, 15.207(a), TX ON, Line 1	24
Plot 8.	Conducted Emissions, 15.207(a), TX ON, Line 2	25
	26 dB Occupied Bandwidth, 802.11a, Low Channel	
	26 dB Occupied Bandwidth, 802.11a, Mid Channel	
	26 dB Occupied Bandwidth, 802.11a, High Channel	
	26 dB Occupied Bandwidth, 802.11n 20 MHz, Port 0, Low Channel	
	26 dB Occupied Bandwidth, 802.11n 20 MHz, Port 0, Mid Channel	
Plot 14.	26 dB Occupied Bandwidth, 802.11n 20 MHz, Port 0, High Channel	31
	26 dB Occupied Bandwidth, 802.11n 20 MHz, Port 1, Low Channel	
	26 dB Occupied Bandwidth, 802.11n 20 MHz, Port 1, Mid Channel	
Plot 17.	26 dB Occupied Bandwidth, 802.11n 20 MHz, Port 1, High Channel	32
	26 dB Occupied Bandwidth, 802.11n 40 MHz, Port 0, Low Channel	
Plot 19.	26 dB Occupied Bandwidth, 802.11n 40 MHz, Port 0, High Channel	33
Plot 20.	26 dB Occupied Bandwidth, 802.11n 40 MHz, Port 1, Low Channel	34
	26 dB Occupied Bandwidth, 802.11n 40 MHz, Port 1, High Channel	
Plot 22.	99% Occupied Bandwidth, 802.11a, Low Channel	35
Plot 23.	99% Occupied Bandwidth, 802.11a, Mid Channel	35
	99% Occupied Bandwidth, 802.11a, High Channel	
Plot 25.	99% Occupied Bandwidth, 802.11n 20 MHz, Port 0, Low Channel	36
Plot 26.	99% Occupied Bandwidth, 802.11n 20 MHz, Port 0, Mid Channel	36
Plot 27.	99% Occupied Bandwidth, 802.11n 20 MHz, Port 0, High Channel	36
Plot 28.	99% Occupied Bandwidth, 802.11n 20 MHz, Port 1, Low Channel	37
Plot 29.	99% Occupied Bandwidth, 802.11n 20 MHz, Port 1, Mid Channel	37
Plot 30.	99% Occupied Bandwidth, 802.11n 20 MHz, Port 1, High Channel	37
Plot 31.	99% Occupied Bandwidth, 802.11n 40 MHz, Port 0, Low Channel	38
	99% Occupied Bandwidth, 802.11n 40 MHz, Port 0, High Channel	
Plot 33.	99% Occupied Bandwidth, 802.11n 40 MHz, Port 1, Low Channel	39
	99% Occupied Bandwidth, 802.11n 40 MHz, Port 1, High Channel	
	RF Power Output, 802.11a, Low Channel	
Plot 36.	RF Power Output, 802.11a, Mid Channel	42
	RF Power Output, 802.11a, High Channel	
	RF Power Output, 802.11n 20 MHz, Port 0, Low Channel	
Plot 39.	RF Power Output, 802.11n 20 MHz, Port 0, Mid Channel	43
Plot 40.	RF Power Output, 802.11n 20 MHz, Port 0, High Channel	43
	RF Power Output, 802.11n 20 MHz, Port 1, Low Channel	
Plot 42.	RF Power Output, 802.11n 20 MHz, Port 1, Mid Channel	44
Plot 43.	RF Power Output, 802.11n 20 MHz, Port 1, High Channel	44
Plot 44.	RF Power Output, 802.11n 40 MHz, Port 0, Low Channel	45
Plot 45.	RF Power Output, 802.11n 40 MHz, Port 0, High Channel	45
	RF Power Output, 802.11n 40 MHz, Port 1, Low Channel	
	RF Power Output, 802.11n 40 MHz, Port 1, High Channel	
Plot 48.	PPSD, 802.11a, Low Channel	49
	PPSD, 802.11a, Mid Channel	
	PPSD, 802.11a, High Channel	
Plot 51.	PPSD, 802.11n 20 MHz, Port 0, Low Channel	50
	PPSD, 802.11n 20 MHz, Port 0, Mid Channel	
Plot 53.	PPSD, 802.11n 20 MHz, Port 0, High Channel	50

Plot 54.	PPSD, 802.11n 20 MHz, Port 1, Low Channel	51
Plot 55.	PPSD, 802.11n 20 MHz, Port 1, Mid Channel	51
Plot 56.	PPSD, 802.11n 20 MHz, Port 1, High Channel	51
	PPSD, 802.11n 40 MHz, Port 0, Low Channel	
	PPSD, 802.11n 40 MHz, Port 0, High Channel	
	PPSD, 802.11n 40 MHz, Port 1, Low Channel	
Plot 60.	PPSD, 802.11n 40 MHz, Port 1, High Channel	53
Plot 61.	Peak Excursion, 802.11a, Low Channel	55
	Peak Excursion, 802.11a, Mid Channel	
	Peak Excursion, 802.11a, High Channel	
	Peak Excursion, 802.11n 20 MHz, Port 0, Low Channel	
	Peak Excursion, 802.11n 20 MHz, Port 0, Mid Channel	
Plot 66.	Peak Excursion, 802.11n 20 MHz, Port 0, High Channel	56
	Peak Excursion, 802.11n 20 MHz, Port 1, Low Channel	
	Peak Excursion, 802.11n 20 MHz, Port 1, Mid Channel	
	Peak Excursion, 802.11n 20 MHz, Port 1, High Channel	
Plot 70.	Peak Excursion, 802.11n 40 MHz, Port 0, Low Channel	58
Plot 71.	Peak Excursion, 802.11n 40 MHz, Port 0, High Channel	58
Plot 72.	Peak Excursion, 802.11n 40 MHz, Port 1, Low Channel	59
	Peak Excursion, 802.11n 40 MHz, Port 1, High Channel	
	Radiated Spurious Emissions, 802.11a, Low Channel, 30 MHz – 1 GHz	
	Radiated Spurious Emissions, 802.11a, Low Channel, 1 GHz – 7 GHz, Average	
	Radiated Spurious Emissions, 802.11a, Low Channel, 1 GHz – 7 GHz, Peak	
	Radiated Spurious Emissions, 802.11a, Low Channel, 7 GHz – 18 GHz, Average	
	Radiated Spurious Emissions, 802.11a, Low Channel, 7 GHz – 18 GHz, Peak	
	Radiated Spurious Emissions, 802.11a, Low Channel, 18 GHz – 26.5 GHz	
	Radiated Spurious Emissions, 802.11a, Low Channel, 26.5 GHz – 40 GHz	
Plot 81	Radiated Spurious Emissions, 802.11a, Mid Channel, 30 MHz – 1 GHz	64
	Radiated Spurious Emissions, 802.11a, Mid Channel, 1 GHz – 7 GHz, Average	
	Radiated Spurious Emissions, 802.11a, Mid Channel, 1 GHz – 7 GHz, 11vetage	
	Radiated Spurious Emissions, 802.11a, Mid Channel, 7 GHz – 18 GHz, Average	
	Radiated Spurious Emissions, 802.11a, Mid Channel, 7 GHz – 18 GHz, Peak	
	Radiated Spurious Emissions, 802.11a, Mid Channel, 18 GHz – 26.5 GHz	
	Radiated Spurious Emissions, 802.11a, Mid Channel, 26.5 GHz – 40 GHz	
	Radiated Spurious Emissions, 802.11a, High Channel, 30 MHz – 1 GHz	
	Radiated Spurious Emissions, 802.11a, High Channel, 1 GHz – 7 GHz, Average	
	Radiated Spurious Emissions, 802.11a, High Channel, 1 GHz – 7 GHz, Peak	
	Radiated Spurious Emissions, 802.11a, High Channel, 7 GHz – 18 GHz, Average	
	Radiated Spurious Emissions, 802.11a, High Channel, 7 GHz – 18 GHz, Peak	
	Radiated Spurious Emissions, 802.11a, High Channel, 18 GHz – 26.5 GHz	
	Radiated Spurious Emissions, 802.11a, High Channel, 26.5 GHz – 40 GHz	
	Radiated Spurious Emissions, 802.11n 20 MHz, Low Channel, 30 MHz – 1 GHz	
	Radiated Spurious Emissions, 802.11n 20 MHz, Low Channel, 1 GHz – 7 GHz, Average	
	Radiated Spurious Emissions, 802.11n 20 MHz, Low Channel, 1 GHz – 7 GHz, Peak	
	Radiated Spurious Emissions, 802.11n 20 MHz, Low Channel, 7 GHz – 8 GHz, Average	
	Radiated Spurious Emissions, 802.11n 20 MHz, Low Channel, 7 GHz – 18 GHz, Peak	
	Radiated Spurious Emissions, 802.11n 20 MHz, Low Channel, 18 GHz – 26.5 GHz	
	Radiated Spurious Emissions, 802.11n 20 MHz, Low Channel, 26.5 GHz – 40 GHz	
	Radiated Spurious Emissions, 802.11n 20 MHz, Mid Channel, 30 MHz – 1 GHz	
	Radiated Spurious Emissions, 802.11n 20 MHz, Mid Channel, 1 GHz – 7 GHz, Average	
	Radiated Spurious Emissions, 802.11n 20 MHz, Mid Channel, 1 GHz – 7 GHz, Peak	
	Radiated Spurious Emissions, 802.11n 20 MHz, Mid Channel, 7 GHz – 18 GHz, Average	
	5. Radiated Spurious Emissions, 802.11n 20 MHz, Mid Channel, 7 GHz – 18 GHz, Peak	
	Radiated Spurious Emissions, 802.11n 20 MHz, Mid Channel, 18 GHz – 26.5 GHz	
	Radiated Spurious Emissions, 802.11n 20 MHz, Mid Channel, 26.5 GHz – 40 GHz	
	Radiated Spurious Emissions, 802.11n 20 MHz, High Channel, 30 MHz – 1 GHz	
	Radiated Spurious Emissions, 802.11n 20 MHz, High Channel, 1 GHz – 7 GHz, Average	
	r	

Plot 1	11.	Radiated Spurious Emissions, 802.11n 20 MHz, High Channel, 1 GHz – 7 GHz, Peak	74
		Radiated Spurious Emissions, 802.11n 20 MHz, High Channel, 7 GHz – 18 GHz, Average	
		Radiated Spurious Emissions, 802.11n 20 MHz, High Channel, 7 GHz – 18 GHz, Peak	
		Radiated Spurious Emissions, 802.11n 20 MHz, High Channel, 18 GHz – 26.5 GHz	
		Radiated Spurious Emissions, 802.11n 20 MHz, High Channel, 26.5 GHz – 40 GHz	
		Radiated Spurious Emissions, 802.11n 40 MHz, Low Channel, 30 MHz – 1 GHz	
		Radiated Spurious Emissions, 802.11n 40 MHz, Low Channel, 1 GHz – 7 GHz, Average	
		Radiated Spurious Emissions, 802.11n 40 MHz, Low Channel, 1 GHz – 7 GHz, Peak	
		Radiated Spurious Emissions, 802.11n 40 MHz, Low Channel, 7 GHz – 18 GHz, Average	
		Radiated Spurious Emissions, 802.11n 40 MHz, Low Channel, 7 GHz – 18 GHz, Peak	
		Radiated Spurious Emissions, 802.11n 40 MHz, Low Channel, 18 GHz – 26.5 GHz	
		Radiated Spurious Emissions, 802.11n 40 MHz, Low Channel, 26.5 GHz – 40 GHz	
		Radiated Spurious Emissions, 802.11n 40 MHz, High Channel, 30 MHz – 1 GHz, Average	
		Radiated Spurious Emissions, 802.11n 40 MHz, High Channel, 1 GHz – 7 GHz, Average	
		Radiated Spurious Emissions, 802.11n 40 MHz, High Channel, 1 GHz – 7 GHz, Peak	
		Radiated Spurious Emissions, 802.11n 40 MHz, High Channel, 7 GHz – 18 GHz, Average	
		Radiated Spurious Emissions, 802.11n 40 MHz, High Channel, 7 GHz – 18 GHz, Peak	
		Radiated Spurious Emissions, 802.11n 40 MHz, High Channel, 18 GHz – 26.5 GHz	
		Radiated Spurious Emissions, 802.11n 40 MHz, High Channel, 26.5 GHz – 40 GHz	
		EIRP, 802.11a, 5715 MHz	
		EIRP, 802.11a, 5725 MHz, Peak	
Plot 1	32.	EIRP, 802.11a, 5725 MHz	82
Plot 1	33.	EIRP, 802.11a, 5825 MHz, Peak	83
Plot 1	34.	EIRP, 802.11a, 5825 MHz	83
Plot 1	35.	EIRP, 802.11a, 5835 MHz	83
Plot 1	36.	EIRP, 802.11n 20 MHz, 5715 MHz	84
Plot 1	37.	EIRP, 802.11n 20 MHz, 5725 MHz, Peak	84
Plot 1	38.	EIRP, 802.11n 20 MHz, 5725 MHz	84
Plot 1	39.	EIRP, 802.11n 20 MHz, 5825 MHz, Peak	85
Plot 1	40.	EIRP, 802.11n 20 MHz, 5825 MHz	85
Plot 1	41.	EIRP, 802.11n 20 MHz, 5835 MHz	85
		EIRP, 802.11n 40 MHz, 5715 MHz	
		EIRP, 802.11n 40 MHz, 5725 MHz, Peak	
		EIRP, 802.11n 40 MHz, 5725 MHz	
		EIRP, 802.11n 40 MHz, 5825 MHz, Peak	
		EIRP, 802.11n 40 MHz, 5825 MHz	
		EIRP, 802.11n 40 MHz, 5835 MHz	
		Conducted Band Edge, 802.11a, 5580 MHz, Port 0	
		Conducted Band Edge, 802.11a, 5580 MHz, Port 1	
		Conducted Band Edge, 802.11n 20 MHz, 5580 MHz, Port 0	
		Conducted Band Edge, 802.11n 20 MHz, 5580 MHz, Port 1	
		Conducted Band Edge, 802.11n 40 MHz, 5670 MHz, Port 0	
		Conducted Band Edge, 802.11n 40 MHz, 5670 MHz, Port 1	
		Receiver Spurious Emissions, Port 0, 30 MHz – 1 GHz	
		Receiver Spurious Emissions, Port 0, 1 GHz – 18 GHz	
		Receiver Spurious Emissions, Port 1, 30 MHz – 1 GHz	
Plot 1	57.	Receiver Spurious Emissions, Port 1, 1 GHz – 18 GHz	96

List of Terms and Abbreviations

AC	Alternating Current	
ACF	Antenna Correction Factor	
Cal	Calibration	
d	Measurement Distance	
dB	Decibels	
dBμA	Decibels above one microamp	
$dB\mu V$	Decibels above one microvolt	
dBμA/m	Decibels above one microamp per meter	
$dB\mu V/m$	Decibels above one microvolt per meter	
DC	Direct Current	
E	Electric Field	
DSL	Digital Subscriber Line	
ESD	Electrostatic Discharge	
EUT	Equipment Under Test	
f	Frequency	
FCC	Federal Communications Commission	
GRP	Ground Reference Plane	
Н	Magnetic Field	
НСР	Horizontal Coupling Plane	
Hz	H ert z	
IEC	International Electrotechnical Commission	
kHz	kilohertz	
kPa	kilopascal	
kV	kilovolt	
LISN	Line Impedance Stabilization Network	
MHz	Megahertz	
μΗ	microhenry	
μ	microfarad	
μs	microseconds	
PRF	Pulse Repetition Frequency	
RF	Radio Frequency	
RMS	Root-Mean-Square	
TWT	Traveling Wave Tube	
V/m	Volts per meter	
VCP	Vertical Coupling Plane	

I. Executive Summary

A. Purpose of Test

An EMC evaluation was performed to determine compliance of the Echelon Corporation Edge Control Node (ECN) 70101-0026, with the requirements of Part 15, §15.407. All references are to the most current version of Title 47 of the Code of Federal Regulations in effect. In accordance with §2.1033, the following data is presented in support of the Certification of the Edge Control Node (ECN) 70101-0026. Echelon Corporation should retain a copy of this document which should be kept on file for at least two years after the manufacturing of the Edge Control Node (ECN) 70101-0026, has been **permanently** discontinued.

B. Executive Summary

The following tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15, §15.407, in accordance with Echelon Corporation, purchase order number 32432. All tests were conducted using measurement procedure ANSI C63.4-2003.

FCC Reference	Industry Canada Reference	Description	Results
15.107	ICES-003 Issue 4	Conducted Emissions	Compliant
15.109	February 2004	Radiated Emissions	Compliant
15.203	RSS-GEN 7.1.4	Antenna Requirements	Compliant
15.205/15.209	2.2	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Compliant
15.207	RSS-GEN 7.2.2; RSS-210 2.2	AC Conducted Emissions 150KHz – 30MHz	Compliant
15.403 (c)	A8.2	26dB Occupied Bandwidth	Compliant
15.407 (a)(1), (2), (3)	A9.2(3)	Conducted Transmitter Output Power	Compliant
15.407 (a)(1), (2), (3), (5)	A9.2(3)	Power Spectral Density	Compliant
15.407 (a)(6)	A8.2	Peak Excursion	Compliant
15.407 (b)(1), (2), (5), (6)	A9.3(4)	Undesirable Emissions	Compliant
15.407(f)	RSS-GEN	RF Exposure	Compliant
15.407(g)	2.1	Frequency Stability Com	

Table 1. Executive Summary of EMC Part 15.407 Compliance Testing

II. Equipment Configuration

A. Overview

MET Laboratories, Inc. was contracted by Echelon Corporation to perform testing on the Edge Control Node (ECN) 70101-0026, under Echelon Corporation's purchase order number 32432.

This document describes the test setups, test methods, required test equipment, and the test limit criteria used to perform compliance testing of the Echelon Corporation Edge Control Node (ECN) 70101-0026.

The results obtained relate only to the item(s) tested.

Model(s) Tested:	Edge Control Node (ECN) 70101-0026		
Model(s) Covered:	Edge Control Node (ECN) 70101-0026		
	Primary Power: 240 VAC, 60 Hz		
	FCC ID: IZP70101-R003		
EUT	Type of Modulations:	OFDM	
Specifications:	Equipment Code:	NII	
	Peak RF Output Power:	16.681 dBm	
	EUT Frequency Ranges:	5745 MHz – 5805MHz	
Analysis:	The results obtained relate only to the item(s) tested.		
	Temperature: 15-35° C		
Environmental Test Conditions:	Relative Humidity: 30-60%		
_ 000 000000000000000000000000000000000	Barometric Pressure: 860-1060 mbar		
Evaluated by:	Lionel Gabrillo		
Report Date(s):	June 30, 2011		

Table 2. EUT Summary

B. References

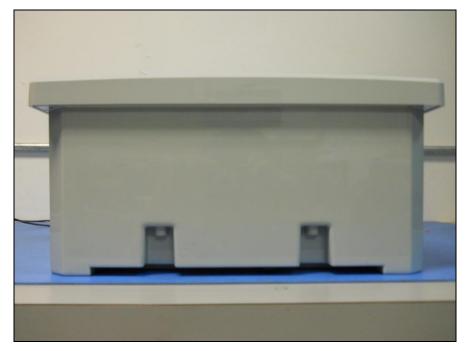
CFR 47, Part 15, Subpart B Electromagnetic Compatibility: Criteria for Radio Frequency Device		
CFR 47, Part 15, Subpart E	Unlicensed National Information Infrastructure Devices (UNII)	
RSS-210, Issue 8, Dec. 2010	Low-power Licence-exempt Radiocommunications Devices (All Frequency Bands): Category I Equipment	
ICES-003, Issue 4 February 2004	Electromagnetic Compatibility: Criteria for Radio Frequency Devices	
ANSI C63.4:2003	Methods and Measurements of Radio-Noise Emissions from Low-Voltage Electrical And Electronic Equipment in the Range of 9 kHz to 40 GHz	
ANSI/NCSL Z540-1-1994	Calibration Laboratories and Measuring and Test Equipment - General Requirements	
ANSI/ISO/IEC 17025:2000	General Requirements for the Competence of Testing and Calibration Laboratories	

Table 3. References

C. Test Site

All testing was performed at MET Laboratories, Inc., 3162 Belick Street, Santa Clara, CA 95054. All equipment used in making physical determinations is accurate and bears recent traceability to the National Institute of Standards and Technology.

Radiated Emissions measurements were performed in a 3 meter semi-anechoic chamber (equivalent to an Open Area Test Site). In accordance with §2.948(a)(3), a complete site description is contained at MET Laboratories.


D. Description of Test Sample

The Echelon Corporation Edge Control Node (ECN) 70101-0026, Equipment Under Test (EUT), is as follows:

The nBox is a telemetry device that is intended to collect electrical power usage data from electrical utility power meters, and gas meters. Electrical power meters can communicate over PLC band A or band C; or they can use 900 MHz ISM band.

The new version added an OEM 802.11a/b/g/n Wi-Fi simultaneous dual band access point, a 900 MHz ISM band receiver, a second PLC (Power Line Communications) card, a serial (RS-232) interface, and a local power line current monitor. The unit is a fixed stationary device, powered from the AC line, with a battery backup option. This unit is intended for mounting on a utility pole or on a pad mounted distribution transformer. The original unit has FCC ID number IZP70101-0002. Generic information on the product can be found on our web page at "http://www.echelon.com/metering/ecn.htm."

List of Interfaces
Ethernet
802.11a/an/b/g/gn 2x2 simultaneous dual band Wi-Fi access point.
RS-232 2X
Power Line Communications (PLC) Band A
Power Line Communications (PLC) Band C
900 MHz ISM band receiver

Photograph 1. Echelon Corporation Edge Control Node (ECN) 70101-0026, Front View

Photograph 2. Echelon Corporation Edge Control Node (ECN) 70101-0026, Rear View

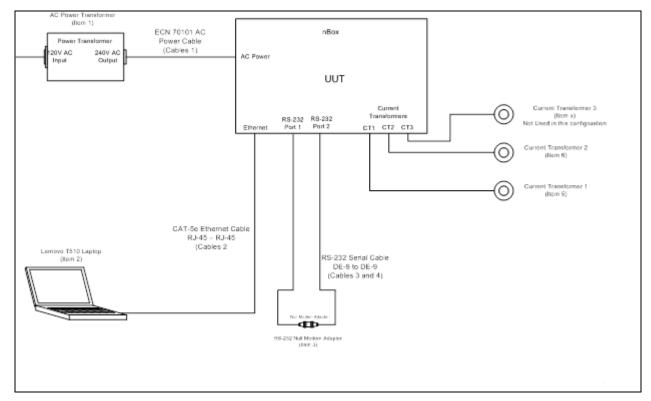


Figure 1. Block Diagram of Test Configuration

E. Equipment Configuration

The EUT was set up as outlined in Figure 1, Block Diagram of Test Setup. All cards, racks, etc., incorporated as part of the EUT is included in the following list.

Ref. ID	Name / Description	Model Number	Serial Number
1	7xxx series Edge Control Node	770101-0026	0020, 0093, 0094

Table 4. Equipment Configuration

F. Support Equipment

Echelon Corporation supplied support equipment necessary for the operation and testing of the Edge Control Node (ECN) 70101-0026. All support equipment supplied is listed in the following Support Equipment List.

Ref. ID	Name / Description	Manufacturer	Model Number
1	Power Transformer 120V in 240V CT out	Echelon	NA
2	Laptop PC (Echelon Asset 105331)	Lenovo	T510
3	Null Modem Adapter	Pan Pacific	D25NM3
5	Current Transformer	Dent Instruments	CT-RMV-16-1000
6	Current Transformer	Dent Instruments	CT-RMV-16-1000

Table 5. Support Equipment

G. Ports and Cabling Information

Ref. ID	Port Name on EUT	Cable Description	Qty.	Length (m)	Shielded (Y/N)	Termination Point
1	AC Power	AC Power cable	1	6'	N	1
2	Ethernet	CAT-5e Ethernet cable with clamp on ferrites on the PC end.	1	6'	N	2
3	RS-232 Serial Port 1	DE-9 –DE-9 Serial Cable	1	6'	Y	3
4	RS-232 Serial Port 2	DE-9 –DE-9 Serial Cable	1	6'	Y	3

Table 6. Ports and Cabling Information

H. Mode of Operation

The Ethernet port will be connected to a Lenovo laptop PC which will be used to control the UUT and provide stimulus to the Ethernet port.

A script will be run on the UUT main processor that sends data on the Serial port.

A script will be run on the UUT main processor that sends data on the PLC Band A port.

A script will be run on the UUT main processor that sends data on the PLC Band C port.

The laptop will be used to run the ART (Atheros Radio Test) software to control the Wi-Fi access point. A laptop could also be used as a client connecting to the wireless point to provide traffic in the normal Wi-Fi operation.

A script can be run on the UUT main processor or the laptop that reads the data from the 900 MHz ISM band receiver over the Ethernet.

I. Method of Monitoring EUT Operation

A series of ping messages were sent from the laptop to the UUT over the Ethernet and monitored in a separate command window to verify the Ethernet port and the UUT main CPU is operating normally.

Data received on the Serial port can be forwarded to a terminal session window on the PC where it can be monitored to verify activity.

A PLC A band and C band node can be connected to the PC to monitor PLC data sent by the UUT.

Read data from the 900 MHz ISM band receiver.

J. Modifications

a) Modifications to EUT

No modifications were made to the test standard.

b) Modifications to Test Standard

No modifications were made to the test standard.

K. Disposition of EUT

The test sample including all support equipment submitted to the Electro-Magnetic Compatibility Lab for testing was returned to Echelon Corporation upon completion of testing.

III. Electromagnetic Compatibility Criteria for Unintentional Radiators

Electromagnetic Compatibility Criteria

§ 15.107 Conducted Emissions Limits

Test Requirement(s):

15.107 (a) Except for Class A digital devices, for equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in Table 7. Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminals.

15.107 (b) For a Class A digital device that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in Table 7. Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminals. The lower limit applies at the band edges.

Frequency range	Class A Cond (dB)		*Class B Conducted Limits (dBµV)		
(MHz)	Quasi-Peak	Average	Quasi-Peak	Average	
* 0.15- 0.45	79	66	66 - 56	56 - 46	
0.45 - 0.5	79	66	56	46	
0.5 - 30	73	60	60	50	

Note 1 — The lower limit shall apply at the transition frequencies.

Note 2 — The limit decreases linearly with the logarithm if the frequency in the range 0.15 MHz to 0.5 MHz.

* -- Limits per Subsection 15.207(a).

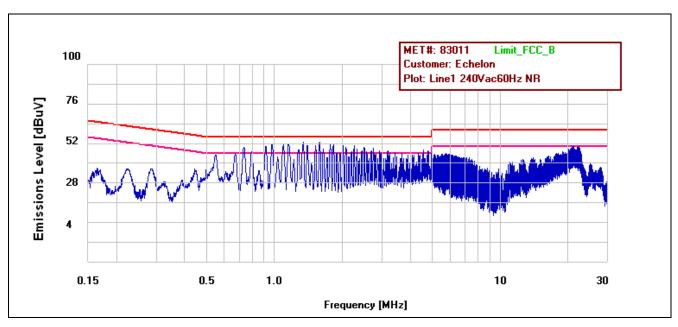
Table 7. Conducted Limits for Radio Frequency Devices calculated from FCC Part 15 Subsections 15.107(a) (b) and 15.207(a)

Test Results: The EUT was compliant with the Class B requirement(s) of this section. Measured emissions

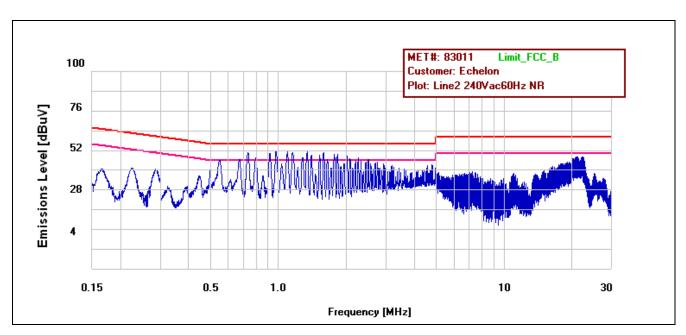
were below applicable limits.

Test Engineer(s): Lionel Gabrillo and Tunji Yusuf

Test Date(s): 05/09/11


Conducted Emissions - Voltage, AC Power

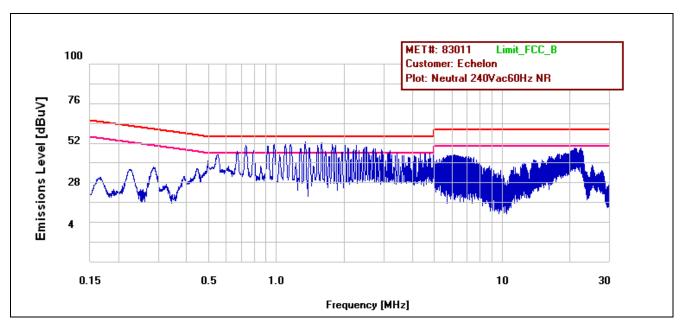
Line	Freq. (MHz)	QP Amplitude	QP Limit	Delta	Pass	Average Amplitude	Average Limit	Delta	Pass
Line1 240Vac60Hz	0.162	48.3	65.363	-17.063	Pass	35.1	55.363	-20.263	Pass
Line1 240Vac60Hz	0.542	50.87	56	-5.13	Pass	39.6	46	-6.4	Pass
Line1 240Vac60Hz	0.650	49.91	56	-6.09	Pass	38.6	46	-7.4	Pass
Line1 240Vac60Hz	0.706	54.95	56	-1.05	Pass	43.56	46	-2.44	Pass
Line1 240Vac60Hz	0.762	51.42	56	-4.58	Pass	39.9	46	-6.1	Pass
Line1 240Vac60Hz	0.922	54.4	56	-1.6	Pass	42.6	46	-3.4	Pass
Line1 240Vac60Hz	0.978	48.41	56	-7.59	Pass	37.3	46	-8.7	Pass
Line1 240Vac60Hz	1.086	54.2	56	-1.8	Pass	43	46	-3	Pass
Line1 240Vac60Hz	1.142	53.5	56	-2.5	Pass	42.5	46	-3.5	Pass
Line1 240Vac60Hz	1.302	52.57	56	-3.43	Pass	41.6	46	-4.4	Pass
Line1 240Vac60Hz	1.522	53.34	56	-2.66	Pass	42.32	46	-3.68	Pass
Line1 240Vac60Hz	1.783	51.72	56	-4.28	Pass	40.6	46	-5.4	Pass
Line1 240Vac60Hz	22.006	44.15	60	-15.85	Pass	29.8	50	-20.2	Pass


Table 8. Conducted Emissions - Voltage, AC Power, Phase Line 1 (240 VAC, 60 Hz)

Line	Freq. (MHz)	QP Amplitude	QP Limit	Delta	Pass	Average Amplitude	Average Limit	Delta	Pass
Line2 240Vac60Hz	0.162	55.65	65.363	-9.713	Pass	43.34	55.363	-12.023	Pass
Line2 240Vac60Hz	0.546	50.85	56	-5.15	Pass	39.8	46	-6.2	Pass
Line2 240Vac60Hz	0.654	51.07	56	-4.93	Pass	39.6	46	-6.4	Pass
Line2 240Vac60Hz	0.706	55.69	56	-0.31	Pass	44.3	46	-1.7	Pass
Line2 240Vac60Hz	0.762	51.98	56	-4.02	Pass	40.73	46	-5.27	Pass
Line2 240Vac60Hz	0.870	53.82	56	-2.18	Pass	42.71	46	-3.29	Pass
Line2 240Vac60Hz	0.926	53.77	56	-2.23	Pass	42.5	46	-3.5	Pass
Line2 240Vac60Hz	1.086	53.39	56	-2.61	Pass	42.02	46	-3.98	Pass
Line2 240Vac60Hz	1.142	53.14	56	-2.86	Pass	41.91	46	-4.09	Pass
Line2 240Vac60Hz	1.306	52.43	56	-3.57	Pass	41.21	46	-4.79	Pass
Line2 240Vac60Hz	1.522	51.84	56	-4.16	Pass	40.6	46	-5.4	Pass
Line2 240Vac60Hz	1.738	49.69	56	-6.31	Pass	38.2	46	-7.8	Pass
Line2 240Vac60Hz	22.014	44.32	60	-15.68	Pass	30.8	50	-19.2	Pass

Table 9. Conducted Emissions - Voltage, AC Power, Phase Line 2 (240 VAC, 60 Hz)

Plot 1. Conducted Emission, Phase Line 1 Plot


Plot 2. Conducted Emission, Phase Line 2 Plot

Conducted Emissions - Voltage, AC Power

Line	Freq. (MHz)	QP Amplitude	QP Limit	Delta	Pass	Average Amplitude	Average Limit	Delta	Pass
Neutral 240Vac60Hz	0.162	45.78	65.363	-19.583	Pass	33.6	55.363	-21.763	Pass
Neutral 240Vac60Hz	0.546	49.92	56	-6.08	Pass	38.9	46	-7.1	Pass
Neutral 240Vac60Hz	0.654	50.58	56	-5.42	Pass	39.4	46	-6.6	Pass
Neutral 240Vac60Hz	0.706	54.76	56	-1.24	Pass	43.75	46	-2.25	Pass
Neutral 240Vac60Hz	0.762	51.15	56	-4.85	Pass	39.92	46	-6.08	Pass
Neutral 240Vac60Hz	0.870	53.7	56	-2.3	Pass	42.3	46	-3.7	Pass
Neutral 240Vac60Hz	0.926	53.94	56	-2.06	Pass	42.67	46	-3.33	Pass
Neutral 240Vac60Hz	1.086	53.87	56	-2.13	Pass	42.6	46	-3.4	Pass

Table 10. Conducted Emissions - Voltage, AC Power, Neutral Line (240 VAC, 60 Hz)

Plot 3. Conducted Emission, Neutral Line Plot

Conducted Emission Limits Test Setup

Photograph 3. Conducted Emissions, Test Setup

Radiated Emission Limits

§ 15.109 Radiated Emissions Limits

Test Requirement(s):

15.109 (a) Except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the Class B limits expressed in Table 11.

15.109 (b) The field strength of radiated emissions from a Class A digital device, as determined at a distance of 10 meters, shall not exceed the Class A limits expressed in Table 11.

	Field Strengt	h (dBμV/m)
Frequency (MHz)	§15.109 (b), Class A Limit (dBμV) @ 10m	§15.109 (a),Class B Limit (dBμV) @ 3m
30 - 88	39.00	40.00
88 - 216	43.50	43.50
216 - 960	46.40	46.00
Above 960	49.50	54.00

Table 11. Radiated Emissions Limits calculated from FCC Part 15, §15.109 (a) (b)

Test Procedures:

The EUT was placed on a 0.8m-high wooden table inside a semi-anechoic chamber. The method of testing and test conditions of ANSI C63.4 were used. An antenna was located 3 m from the EUT on an adjustable mast. A pre-scan was first performed in order to find prominent radiated emissions. For final emissions measurements at each frequency of interest, the EUT was rotated and the antenna height was varied between 1 m and 4 m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. Unless otherwise specified, measurements were made using a quasi-peak detector with a 120 kHz bandwidth (30MHz – 1GHz) and 1MHz bandwidth (1GHz – 10GHz).

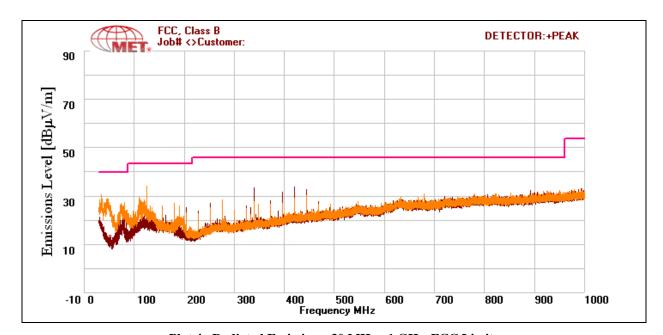
Test Results:

The EUT was compliant with the Class B requirement(s) of this section. Measured emissions were below applicable limits.

Test Engineer(s):

Joe Vang

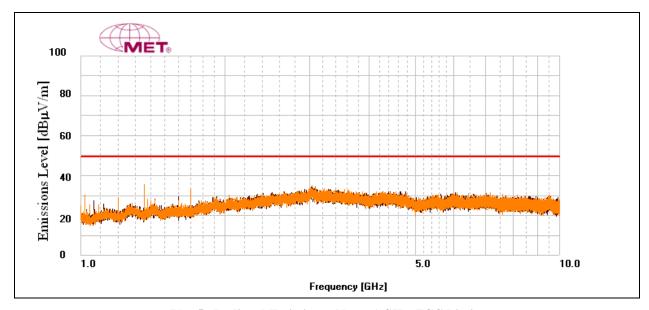
Test Date(s):


05/12/11

Radiated Emissions Limits Test Results, Class B

Frequency (MHz)	Antenna Polarity	EUT Azimuth (Degrees)	Antenna Height (cm)	Uncorrected Amplitude (dBuV)	ACF (dB/m)	Pre Amp Gain (dB)	CBL (dB)	DCF (dB)	Corrected Amplitude (dBuV)	Limit (dBuV)	Margin (dB)
45.24	V	86	100	15.24	10.156	0	1.684	0	27.08	40	-12.92
125	V	151	110.4	20.49	12.2	0	3.115	0	35.805	43.5	-7.695
276	V	324	100	8.03	13.18	0	3.652	0	24.862	46	-21.138
340	Н	116	100	12.54	14.1	0	3.802	0	30.442	46	-15.558
420	Н	239	100	11.67	16.3	0	4.264	0	32.234	46	-13.766
444	Н	227	100	11.62	16.48	0	4.401	0	32.501	46	-13.499

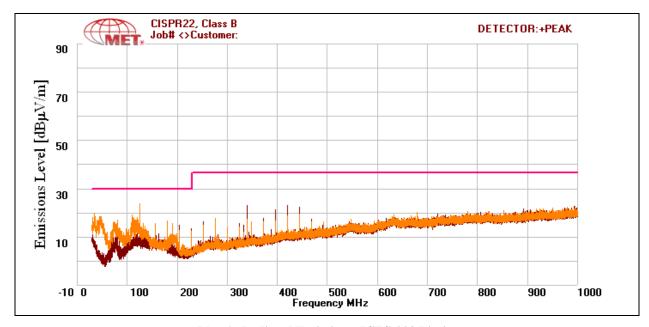
Table 12. Radiated Emissions Limits, Test Results, 30 MHz - 1 GHz, FCC Limits


Plot 4. Radiated Emissions, 30 MHz - 1 GHz, FCC Limits

Radiated Emissions Limits Test Results, Class B

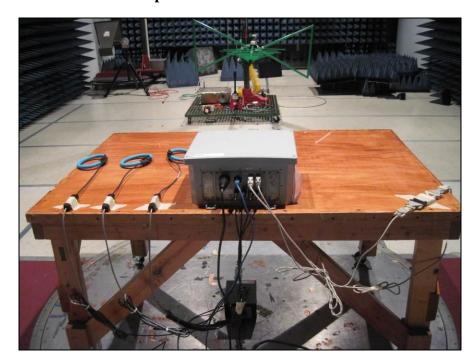
Frequency (MHz)	Antenna Polarity	EUT Azimuth (Degrees)	Antenna Height (cm)	Uncorrected Amplitude (dBuV)	ACF (dB/m)	Pre Amp Gain (dB)	CBL (dB)	DCF (dB)	Corrected Amplitude (dBuV)	Limit (dBuV)	Margin (dB)
1360	V	277.0	100.0	75.38	29.005	76.258	8.602	0	36.729	54	-17.271
1700	V	329.0	100.0	74.81	28.495	75.636	9.59	0	37.259	54	-16.741
1700	Н	116.0	134.35	68.66	28.495	75.636	9.59	0	31.109	54	-22.891

Table 13. Radiated Emissions Limits, Test Results, Above 1 GHz, FCC Limits


Plot 5. Radiated Emissions, Above 1 GHz, FCC Limits

Radiated Emissions Limits Test Results, Class B

Frequency (MHz)	Antenna Polarity	EUT Azimuth (Degrees)	Antenna Height (cm)	Uncorrected Amplitude (dBuV)	ACF (dB/m)	Pre Amp Gain (dB)	CBL (dB)	DCF (dB)	Corrected Amplitude (dBuV)	Limit (dBuV)	Margin (dB)
45.24	V	86	100	15.24	10.156	0	1.684	-10.46	16.62	30	-13.38
125	V	151	110.4	20.49	12.2	0	3.115	-10.46	25.345	30	-4.655
276	V	324	100	8.03	13.18	0	3.652	-10.46	14.402	37	-22.598
340	Н	116	100	12.54	14.1	0	3.802	-10.46	19.982	37	-17.018
420	Н	239	100	11.67	16.3	0	4.264	-10.46	21.774	37	-15.226
444	Н	227	100	11.62	16.48	0	4.401	-10.46	22.041	37	-14.959


Table 14. Radiated Emissions Limits, Test Results, ICES-003 Limits

Plot 6. Radiated Emissions, ICES-003 Limits

Radiated Emission Limits Test Setup

Photograph 4. Radiated Emission, Test Setup, 30 MHz - 1 GHz

Photograph 5. Radiated Emission, Test Setup, 1 GHz – 10 GHz

IV. Electromagnetic Compatibility Criteria for Intentional Radiators

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.203 Antenna Requirement

Test Requirement:

§ 15.203: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

The structure and application of the EUT were analyzed to determine compliance with Section 15.203 of the Rules. Section 15.203 states that the subject device must meet at least one of the following criteria:

- a.) Antenna must be permanently attached to the unit.
- b.) Antenna must use a unique type of connector to attach to the EUT.
- c.) Unit must be professionally installed. Installer shall be responsible for verifying that the correct antenna is employed with the unit.

Results: The EUT as tested is compliant the criteria of §15.203. Antennas are internal (not accessible to the

user) and are permanently attached to the radio transceivers.

Test Engineer(s): Lionel Gabrillo

Test Date(s): 05/31/11

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.207 Conducted Emissions Limits

Test Requirement(s):

§ 15.207 (a): For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 Ω line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency range	§ 15.207(a), Cond	ucted Limit (dBµV)
(MHz)	Quasi-Peak	Average
* 0.15- 0.45	66 - 56	56 - 46
0.45 - 0.5	56	46
0.5 - 30	60	50

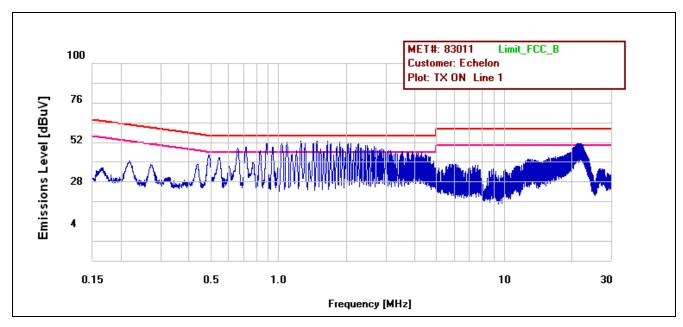
Table 15. Conducted Limits for Intentional Radiators from FCC Part 15 § 15.207(a)

Test Procedure:

The EUT was placed on a 0.8 m-high wooden table inside a semi-anechoic chamber. The EUT was situated such that the back of the EUT was 0.4 m from one wall of the vertical ground plane, and the remaining sides of the EUT were no closer than 0.8 m from any other conductive surface. The EUT was powered from a 50 Ω /50 μ H Line Impedance Stabilization Network (LISN). The EMC receiver scanned the frequency range from 150 kHz to 30 MHz. Conducted Emissions measurements were made in accordance with ANSI C63.4-1992 "Methods and Measurements of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40 GHz". The measurements were performed over the frequency range of 0.15 MHz to 30 MHz using a 50 Ω /50 μ H LISN as the input transducer to an EMC/field intensity meter.

Test Results: The EUT was compliant with this requirement. Measured emissions were below applicable limits.

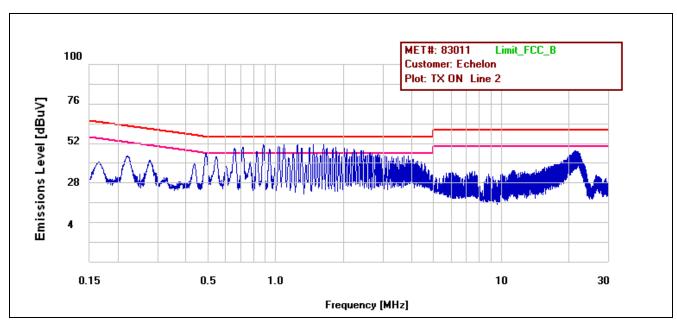
Test Engineer(s): Lionel Gabrillo


Test Date(s): 05/09/11

15.207(a) Conducted Emissions Test Results

Line	Freq. (MHz)	QP Amplitude	QP Limit	Delta	Pass	Average Amplitude	Average Limit	Delta	Pass
TX ON Line 1	0.162	47.62	65.363	-17.743	Pass	37.19	55.363	-18.173	Pass
TX ON Line 1	0.870	55.23	56	-0.77	Pass	45.5	46	-0.5	Pass
TX ON Line 1	0.218	52.12	62.903	-10.783	Pass	42.45	52.903	-10.453	Pass
TX ON Line 1	0.654	53.11	56	-2.89	Pass	43.45	46	-2.55	Pass
TX ON Line 1	0.706	53.12	56	-2.88	Pass	42.65	46	-3.35	Pass
TX ON Line 1	0.926	52.1	56	-3.9	Pass	42.66	46	-3.34	Pass
TX ON Line 1	1.088	54.7	56	-1.3	Pass	45.35	46	-0.65	Pass
TX ON Line 1	1.632	53.1	56	-2.9	Pass	43.4	46	-2.6	Pass
TX ON Line 1	1.468	53.22	56	-2.78	Pass	43.71	46	-2.29	Pass
TX ON Line 1	2.232	51.11	56	-4.89	Pass	41.6	46	-4.4	Pass
TX ON Line 1	2.448	48.59	56	-7.41	Pass	39.14	46	-6.86	Pass
TX ON Line 1	3.268	44.75	56	-11.25	Pass	35.94	46	-10.06	Pass
TX ON Line 1	21.448	49.12	60	-10.88	Pass	34.54	50	-15.46	Pass

Table 16. Conducted Emissions, 15.207(a), Test Results, TX ON, Line 1



Plot 7. Conducted Emissions, 15.207(a), TX ON, Line 1

Line	Freq. (MHz)	QP Amplitude	QP Limit	Delta	Pass	Average Amplitude	Average Limit	Delta	Pass
TX ON Line 2	0.870	54.94	56	-1.06	Pass	45.31	46	-0.69	Pass
TX ON Line 2	0.654	54.24	56	-1.76	Pass	44.57	46	-1.43	Pass
TX ON Line 2	0.218	57.33	62.903	-5.573	Pass	47.07	52.903	-5.833	Pass
TX ON Line 2	0.706	53.93	56	-2.07	Pass	44.32	46	-1.68	Pass
TX ON Line 2	0.162	54.14	65.363	-11.223	Pass	44.15	55.363	-11.213	Pass
TX ON Line 2	0.818	50.1	56	-5.9	Pass	40.36	46	-5.64	Pass
TX ON Line 2	1.088	53.95	56	-2.05	Pass	44.34	46	-1.66	Pass
TX ON Line 2	1.252	53.43	56	-2.57	Pass	43.69	46	-2.31	Pass
TX ON Line 2	1.036	52.29	56	-3.71	Pass	42.62	46	-3.38	Pass
TX ON Line 2	1.472	51.44	56	-4.56	Pass	41.74	46	-4.26	Pass
TX ON Line 2	2.068	48.65	56	-7.35	Pass	38.76	46	-7.24	Pass
TX ON Line 2	2.232	48.42	56	-7.58	Pass	38.35	46	-7.65	Pass
TX ON Line 2	2.016	48.23	56	-7.77	Pass	38.34	46	-7.66	Pass
TX ON Line 2	3.704	42.19	56	-13.81	Pass	31.6	46	-14.4	Pass
TX ON Line 2	21.56	45.35	60	-14.65	Pass	33.77	50	-16.23	Pass

Table 17. Conducted Emissions, 15.207(a), Test Results, TX ON, Line 2

Plot 8. Conducted Emissions, 15.207(a), TX ON, Line 2

Line	Freq. (MHz)	QP Amplitude	QP Limit	Delta	Pass	Average Amplitude	Average Limit	Delta	Pass
TX On Neutral	0.870	53.72	56	-2.28	Pass	44	46	-2	Pass
TX On Neutral	1.09	53.35	56	-2.65	Pass	43.66	46	-2.34	Pass
TX On Neutral	0.710	53.33	56	-2.67	Pass	42.6	46	-3.4	Pass
TX On Neutral	0.654	53.84	56	-2.16	Pass	43.05	46	-2.95	Pass
TX On Neutral	1.254	53.23	56	-2.77	Pass	42.94	46	-3.06	Pass
TX On Neutral	1.47	52.46	56	-3.54	Pass	43.05	46	-2.95	Pass
TX On Neutral	0.218	52.74	62.903	-10.163	Pass	42.5	52.903	-10.403	Pass
TX On Neutral	0.490	51.85	56.173	-4.323	Pass	42.56	46.173	-3.613	Pass
TX On Neutral	0.926	51.45	56	-4.55	Pass	41.98	46	-4.02	Pass
TX On Neutral	1.634	51.17	56	-4.83	Pass	41.53	46	-4.47	Pass
TX On Neutral	2.07	49.63	56	-6.37	Pass	39.92	46	-6.08	Pass
TX On Neutral	2.234	48.84	56	-7.16	Pass	39.08	46	-6.92	Pass
TX On Neutral	21.456	46.59	60	-13.41	Pass	35.33	50	-14.67	Pass

Table 18. Conducted Emissions, 15.207(a), Test Results, TX ON, Neutral

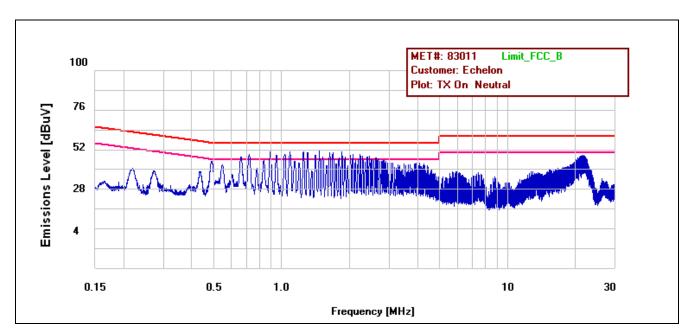


Table 19. Conducted Emissions, 15.207(a), TX ON, Neutral

15.207(a) Conducted Emissions Test Setup Photo

Photograph 6. Conducted Emissions, 15.207(a), Test Setup

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15. 403(c) 26dB Bandwidth

Test Requirements: § 15.403 (c): Operation under the provisions of this section is limited to frequency hopping and

digitally modulated intentional radiators that comply with the following provisions:

Test Procedure: The transmitter was set to the mid channel at the highest output power and connected to the

spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using a RBW approximately equal to 1% of the total emission bandwidth, VBW > RBW. The 26 dB Bandwidth was measured and recorded. The measurements

were repeated at the low, mid and high channels.

Test Results Equipment complies with § 15.407 (c). The 26 dB Bandwidth was determined from the plots on the

following pages.

Test Engineer(s): Lionel Gabrillo

Test Date(s): 05/11/11 - 05/12/11

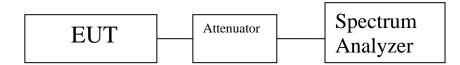
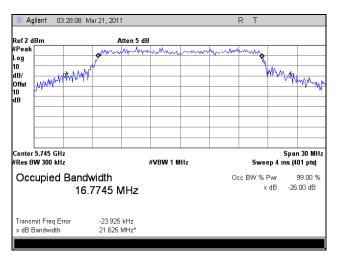
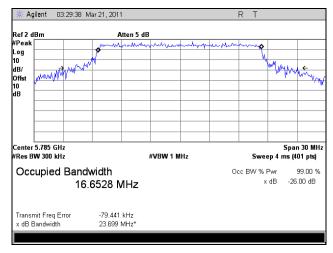


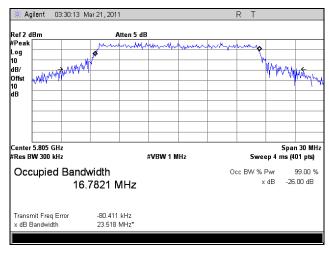
Figure 2. Occupied Bandwidth Test Setup

26 dB Occupied Bandwidth						
Mode	Channel	Frequency (MHz)	Measured 26 dB Bandwidth (MHz)			
	Low	5745	21.625			
802.11a	Mid	5785	23.699			
	High	5805	23.518			
	Low	5745	23.149			
802.11n 20 MHz Port 0	Mid	5785	23.450			
	High	5805	23.684			
	Low	5745	24.140			
802.11n 20 MHz Port 1	Mid	5785	23.765			
	High	5805	23.074			
902 11m 40 MHz Dout 0	Low	5755	49.962			
802.11n 40 MHz Port 0	High	5795	49.917			
902 11m 40 MHz Dout 0	Low	5755	49.841			
802.11n 40 MHz Port 0	High	5795	49.819			

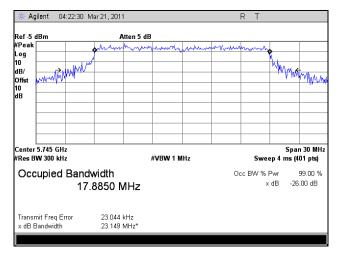

Table 20. 26 dB Occupied Bandwidth, Test Results

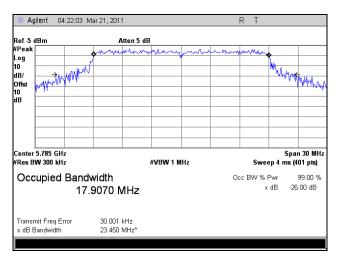
99% Occupied Bandwidth						
Mode	Channel	Frequency (MHz)	99 % Bandwidth (MHz)			
	Low	5745	16.5275			
802.11a	Mid	5785	16.5969			
	High	5805	16.5293			
	Low	5745	17.7831			
802.11n 20 MHz Port 0	Mid	5785	17.7289			
	High	5805	17.7770			
	Low	5745	17.7548			
802.11n 20 MHz Port 1	Mid	5785	17.7789			
	High	5805	17.7647			
002 11 - 40 MH - D 4 0	Low	5755	36.6683			
802.11n 40 MHz Port 0	High	5795	36.6501			
002 11 - 40 MH - D 4 0	Low	5755	36.6388			
802.11n 40 MHz Port 0	High	5795	36.5386			

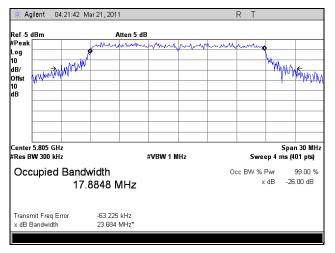

Table 21. 99% Occupied Bandwidth, Test Results


26 dB Occupied Bandwidth, 802.11a

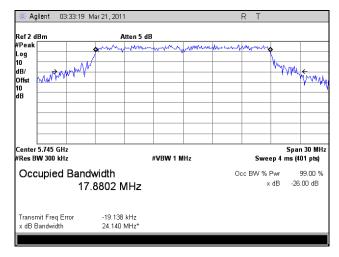
Plot 9. 26 dB Occupied Bandwidth, 802.11a, Low Channel

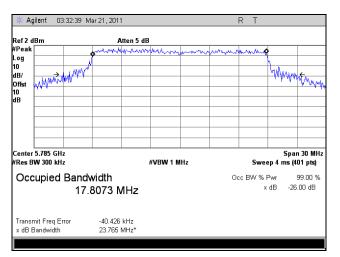

Plot 10. 26 dB Occupied Bandwidth, 802.11a, Mid Channel

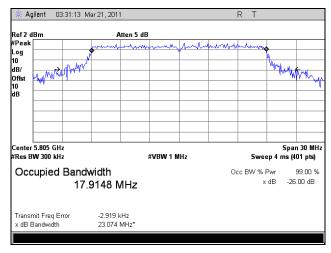

Plot 11. 26 dB Occupied Bandwidth, 802.11a, High Channel


26 dB Occupied Bandwidth, 802.11n 20 MHz, Port 0

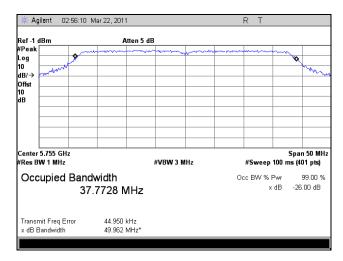
Plot 12. 26 dB Occupied Bandwidth, 802.11n 20 MHz, Port 0, Low Channel

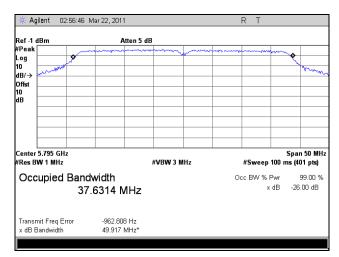

Plot 13. 26 dB Occupied Bandwidth, 802.11n 20 MHz, Port 0, Mid Channel


Plot 14. 26 dB Occupied Bandwidth, 802.11n 20 MHz, Port 0, High Channel

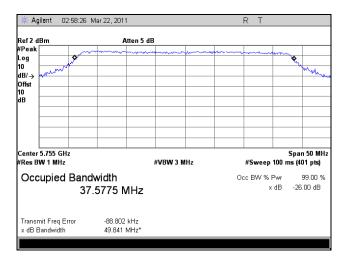

26 dB Occupied Bandwidth, 802.11n 20 MHz, Port 1

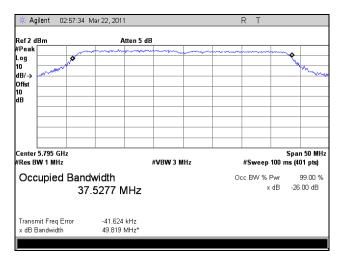
Plot 15. 26 dB Occupied Bandwidth, 802.11n 20 MHz, Port 1, Low Channel


Plot 16. 26 dB Occupied Bandwidth, 802.11n 20 MHz, Port 1, Mid Channel

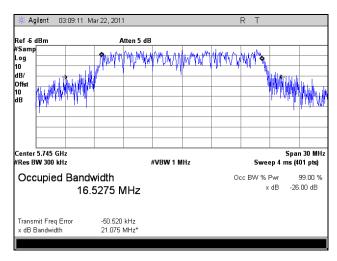

Plot 17. 26 dB Occupied Bandwidth, 802.11n 20 MHz, Port 1, High Channel

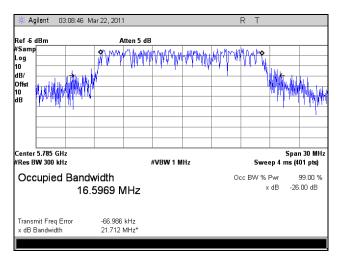
26 dB Occupied Bandwidth, 802.11n 40 MHz, Port 0

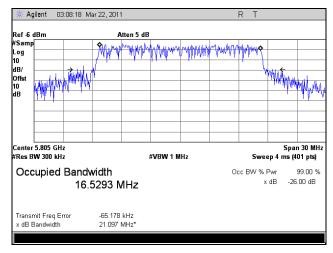

Plot 18. 26 dB Occupied Bandwidth, 802.11n 40 MHz, Port 0, Low Channel


Plot 19. 26 dB Occupied Bandwidth, 802.11n 40 MHz, Port 0, High Channel

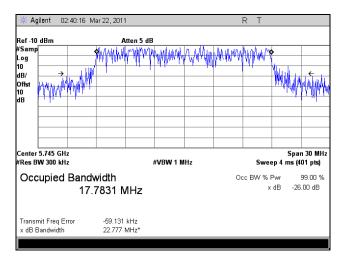
26 dB Occupied Bandwidth, 802.11n 40 MHz, Port 1

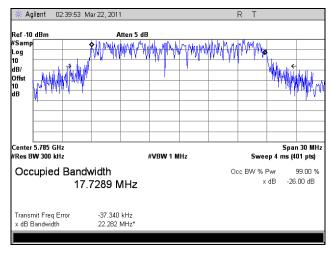

Plot 20. 26 dB Occupied Bandwidth, 802.11n 40 MHz, Port 1, Low Channel

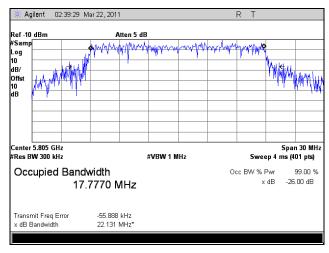

Plot 21. 26 dB Occupied Bandwidth, 802.11n 40 MHz, Port 1, High Channel


99% Occupied Bandwidth, 802.11a

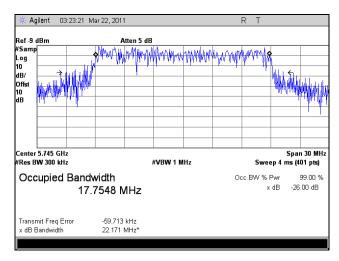
Plot 22. 99% Occupied Bandwidth, 802.11a, Low Channel

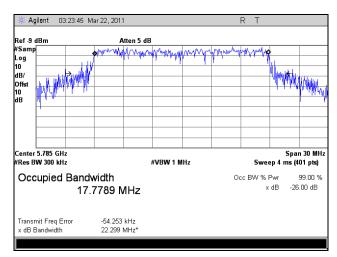

Plot 23. 99% Occupied Bandwidth, 802.11a, Mid Channel

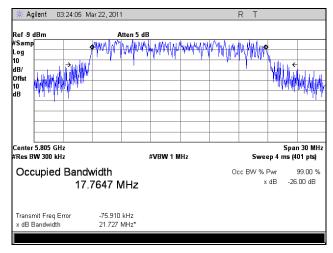

Plot 24. 99% Occupied Bandwidth, 802.11a, High Channel


99% Occupied Bandwidth, 802.11n 20 MHz, Port 0

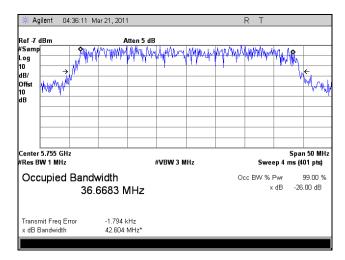
Plot 25. 99% Occupied Bandwidth, 802.11n 20 MHz, Port 0, Low Channel

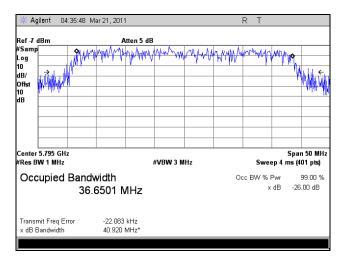

Plot 26. 99% Occupied Bandwidth, 802.11n 20 MHz, Port 0, Mid Channel


Plot 27. 99% Occupied Bandwidth, 802.11n 20 MHz, Port 0, High Channel

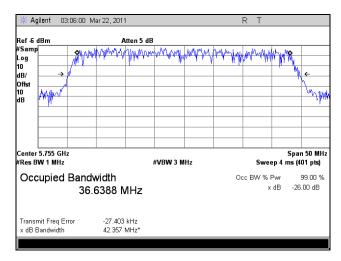

99% Occupied Bandwidth, 802.11n 20 MHz, Port 1

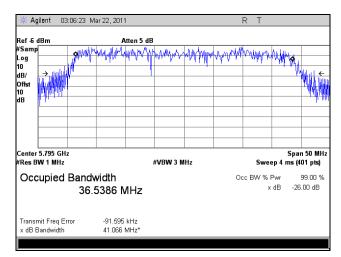
Plot 28. 99% Occupied Bandwidth, 802.11n 20 MHz, Port 1, Low Channel


Plot 29. 99% Occupied Bandwidth, 802.11n 20 MHz, Port 1, Mid Channel


Plot 30. 99% Occupied Bandwidth, 802.11n 20 MHz, Port 1, High Channel

99% Occupied Bandwidth, 802.11n 40 MHz, Port 0


Plot 31. 99% Occupied Bandwidth, 802.11n 40 MHz, Port 0, Low Channel


Plot 32. 99% Occupied Bandwidth, 802.11n 40 MHz, Port 0, High Channel

99% Occupied Bandwidth, 802.11n 40 MHz, Port 1

Plot 33. 99% Occupied Bandwidth, 802.11n 40 MHz, Port 1, Low Channel

Plot 34. 99% Occupied Bandwidth, 802.11n 40 MHz, Port 1, High Channel

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15. 407(a) (1), (2) RF Power Output

Test Requirements:

§15.407(a) (1), (2): The maximum output power of the intentional radiator shall not exceed the following:

Digital Transmission Systems (MHz)	Output Limit (mW)
5150-5250	50
5250-5350	250
5470-5725	250
5725-5825	1000

Table 22. Output Power Requirements from §15.407

§15.407(a) (1): For the band 5.15-5.25 GHz the peak transmit power over the frequency band of operation shall not exceed the lesser 50mW or 4dBm + 10logB, where B is the 26-dB emission bandwidth in MHz.

§15.407(a) (2): For the band 5.25-5.35GHz & 5.470-5.72GHz the peak transmit power over the frequency band of operation shall not exceed the lesser of 250mW or 11dBm + 10logB, where B is the 26-dB emission bandwidth in MHz.

 $\S15.407(a)$ (3): For the band 5.725 - 5.825 GHz the peak transmit power over the frequency band of operation shall not exceed the lesser 1W or 17dBm + 10logB, where B is the 26-dB emission bandwidth in MHz.

Test Procedure:

The transmitter was connected to a calibrated Spectrum analyzer. The EUT was measured at the low, mid and high channels of each band with the data rate that produced the highest output power.

Test Results:

Equipment complies with the Peak Power Output limits of § 15.401(a) (3).

Test Engineer(s):

Lionel Gabrillo

Test Date(s):

05/25/11

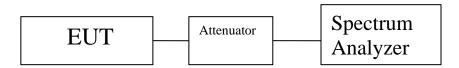
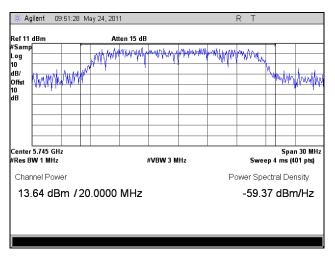


Figure 3. Peak Power Output Test Setup

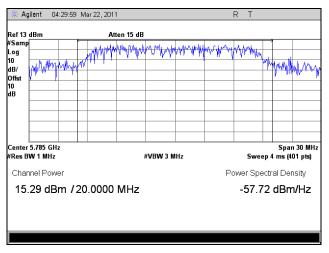
RF POWER OUTPUT							
Mode	Channel	Frequency (MHz)	Measured Output Power (dBm)				
	Low	5745	13.64				
802.11a	Mid	5785	15.29				
	High	5805	13.84				
	Low	5745	11.49				
802.11n 20 MHz Port 0	Mid	5785	10.48				
	High	5805	10.80				
	Low	5745	13.03				
802.11n 20 MHz Port 1	Mid	5785	15.49				
	High	5805	13.18				
002 11 40 MH P 40	Low	5755	9.54				
802.11n 40 MHz Port 0	High	5795	8.54				
002 11 40 MH D 4 1	Low	5755	8.21				
802.11n 40 MHz Port 1	High	5795	7.83				

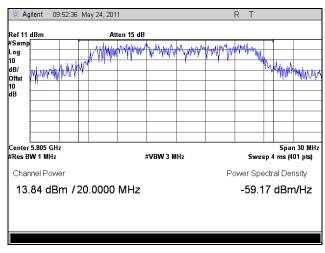
Table 23. RF Power Output, Test Results

Channel	Port 0 (dBm)	Port 0 (mW)	Port 1 (dBm)	Port 1 (mW)	Sum (mW)	Sum (dBm)	Limit (dBm)	Delta
Low	11.49	14.093	13.03	20.091	34.184	15.338	29	-13.662
Mid	10.48	11.169	15.49	35.400	46.568	16.681	29	-12.319
High	10.8	12.023	13.18	20.797	32.820	15.161	29	-13.839

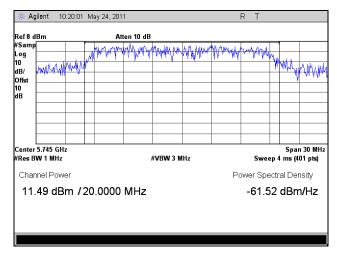

Table 24. RF Power Output, Test Results, Summed Ports, 802.11n 20 MHz

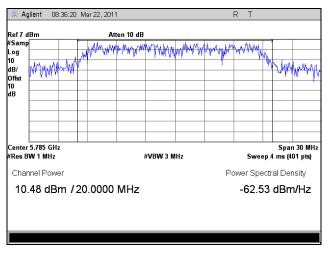
Channel	Port 0 (dBm)	Port 0 (mW)	Port 1 (dBm)	Port 1 (mW)	Sum (mW)	Sum (dBm)	Limit (dBm)	Delta
Low	9.54	8.995	8.21	6.622	15.617	11.936	29	-17.064
High	8.54	7.145	7.83	6.067	13.212	11.210	29	-17.790


Table 25. RF Power Output, Test Results, Summed Ports, 802.11n 40 MHz


RF Power Output, 802.11a

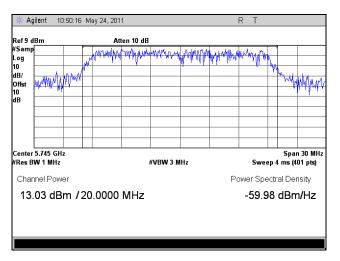
Plot 35. RF Power Output, 802.11a, Low Channel

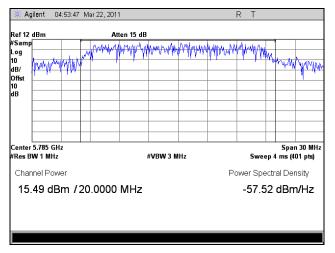

Plot 36. RF Power Output, 802.11a, Mid Channel

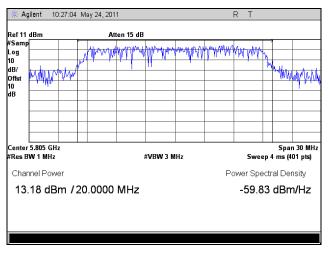

Plot 37. RF Power Output, 802.11a, High Channel


RF Power Output, 802.11n 20 MHz, Port 0

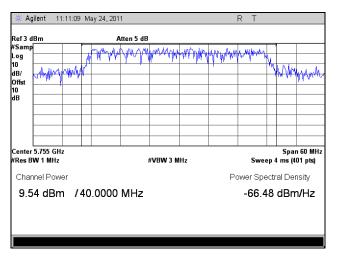
Plot 38. RF Power Output, 802.11n 20 MHz, Port 0, Low Channel

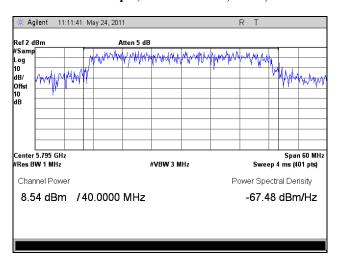

Plot 39. RF Power Output, 802.11n 20 MHz, Port 0, Mid Channel


Plot 40. RF Power Output, 802.11n 20 MHz, Port 0, High Channel

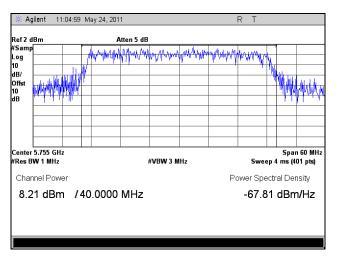

RF Power Output, 802.11n 20 MHz, Port 1

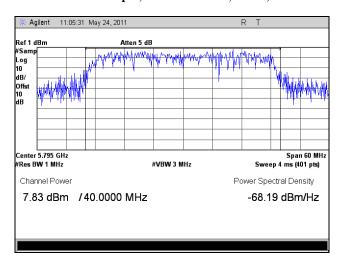
Plot 41. RF Power Output, 802.11n 20 MHz, Port 1, Low Channel


Plot 42. RF Power Output, 802.11n 20 MHz, Port 1, Mid Channel


Plot 43. RF Power Output, 802.11n 20 MHz, Port 1, High Channel

RF Power Output, 802.11n 40 MHz, Port 0


Plot 44. RF Power Output, 802.11n 40 MHz, Port 0, Low Channel


Plot 45. RF Power Output, 802.11n 40 MHz, Port 0, High Channel

RF Power Output, 802.11n 40 MHz, Port 1

Plot 46. RF Power Output, 802.11n 40 MHz, Port 1, Low Channel

Plot 47. RF Power Output, 802.11n 40 MHz, Port 1, High Channel

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.407(a)(1), (a)(2) Peak Power Spectral Density

Test Requirements: § 15.407(a)(3): For digitally modulated systems, the conducted peak power spectral density from

the intentional radiator to the antenna shall not be greater than 17dBm/MHz in the frequency band

5.725 - 5.825GHz.

Test Procedure: The transmitter was connected directly to a Spectrum Analyzer through an attenuator. The power

level was set to the maximum level on the EUT. The RBW was set to 1MHz and the VBW was set to 3MHz. The combined ports were measured using a splitter/combiner. The method of

measurement #2 from the FCC Public Notice CA 02-2138 was used.

Test Results: Equipment complies with the peak power spectral density limits of § 15.407(a)(3). The peak power

spectral density was determined from plots on the following page(s).

Test Engineer(s): Lionel Gabrillo

Test Date(s): 05/25/11

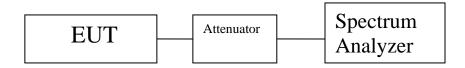


Figure 4. Peak Power Spectral Density Test Setup

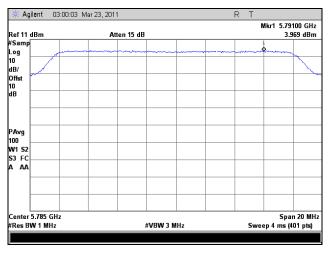
Peak Power Spectral Density							
Mode Channel Frequency (MHz) Measured PPSD Limit Margin (dBm) (dBm) (dB)							
	Low	5745	4.067	16	-11.933		
802.11a	Mid	5785	3.969	16	-12.031		
	High	5805	3.784	16	-12.216		

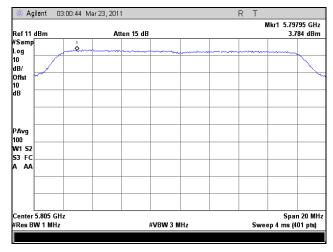
Table 26. Peak Power Spectral Density, Test Results

Channel	Port 0 (dBm)	Port 0 (mW)	Port 1 (dBm)	Port 1 (mW)	Sum (mW)	Sum (dBm)	Limit (dBm)	Delta
Low	-0.022	0.995	3.946	2.481	3.476	5.411	17	-11.589
Mid	-1.049	0.785	3.361	2.168	2.954	4.704	17	-12.2965
High	-0.624	0.866	3.709	2.349	3.215	5.072	17	-11.9278

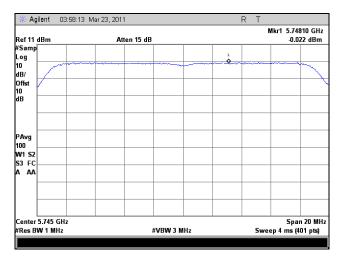

Table 27. Peak Power Spectral Density, Test Results, Summed Ports, 802.11n 20 MHz

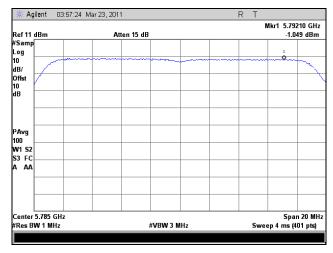
Channel	Port 0 (dBm)	Port 0 (mW)	Port 1 (dBm)	Port 1 (mW)	Sum (mW)	Sum (dBm)	Limit (dBm)	Delta
Low	-4.586	0.348	0.828	1.210	1.558	1.925	17	-15.0746
High	-4.245	0.376	0.746	1.187	1.564	1.941	17	-15.0585

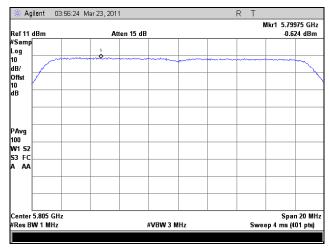

Table 28. Peak Power Spectral Density, Test Results, Summed Ports, 802.11n 40 MHz


Peak Power Spectral Density, 802.11a

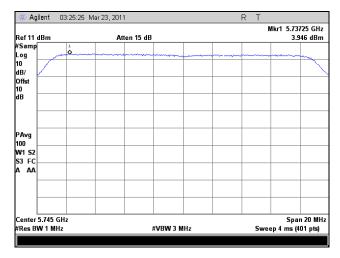
Plot 48. PPSD, 802.11a, Low Channel

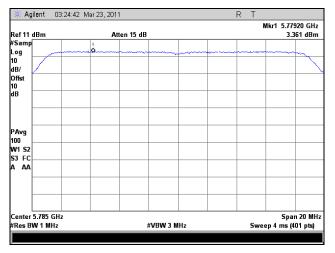

Plot 49. PPSD, 802.11a, Mid Channel

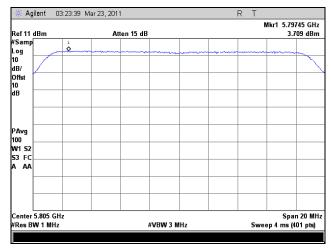

Plot 50. PPSD, 802.11a, High Channel


Peak Power Spectral Density, 802.11n 20 MHz, Port 0

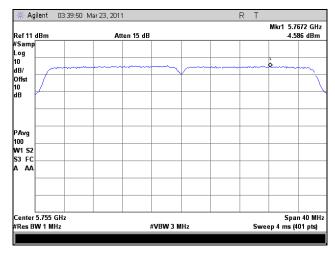
Plot 51. PPSD, 802.11n 20 MHz, Port 0, Low Channel

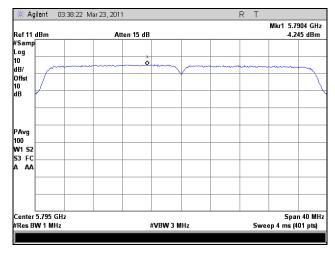

Plot 52. PPSD, 802.11n 20 MHz, Port 0, Mid Channel


Plot 53. PPSD, 802.11n 20 MHz, Port 0, High Channel

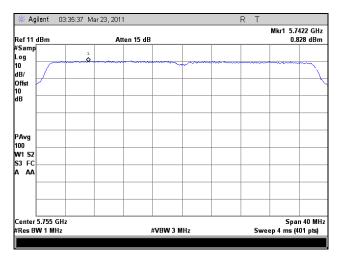

Peak Power Spectral Density, 802.11n 20 MHz, Port 1

Plot 54. PPSD, 802.11n 20 MHz, Port 1, Low Channel


Plot 55. PPSD, 802.11n 20 MHz, Port 1, Mid Channel


Plot 56. PPSD, 802.11n 20 MHz, Port 1, High Channel

Peak Power Spectral Density, 802.11n 40 MHz, Port 0


Plot 57. PPSD, 802.11n 40 MHz, Port 0, Low Channel

Plot 58. PPSD, 802.11n 40 MHz, Port 0, High Channel

Peak Power Spectral Density, 802.11n 40 MHz, Port 1

Plot 59. PPSD, 802.11n 40 MHz, Port 1, Low Channel

Plot 60. PPSD, 802.11n 40 MHz, Port 1, High Channel

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.407(a)(6) Peak Excursion Ratio

Test Requirements: § 15.407(a)(6): For digitally modulated systems, the peak excursion of the modulation envelope to

the peak transmit power shall not exceed 13dB across any 1MHz bandwidth of the emission

bandwidth whichever is less.

Test Procedure: The method of measurement #2 from the FCC Public Notice CA 02-2138 was used. The EUT was

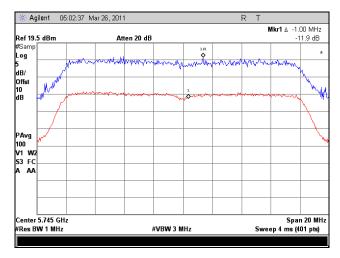
connected directly to the spectrum analyzer through cabling and attenuation. The 1st trace on the spectrum analyzer was set to RBW=1MHz, VBW=3MHz. The peak detector mode was used and the trace max held. The 2nd trace on the spectrum analyzer was set to a RBW=1MHz, VBW=30

KHz. The detector mode was set to sample detector.

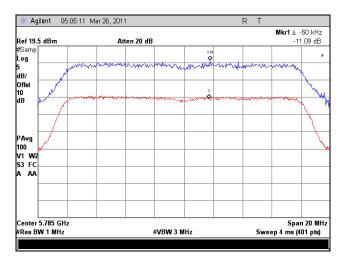
The Peak Excursion Ratio was determined from the difference between the maximum found in each

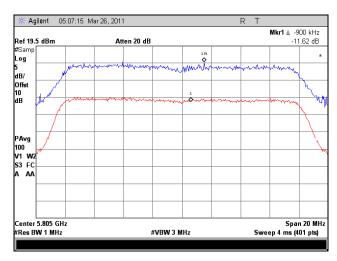
trace.

Test Results: Equipment complies with the peak excursion ratio limits of § 15.407(a)(6). The peak excursion ratio

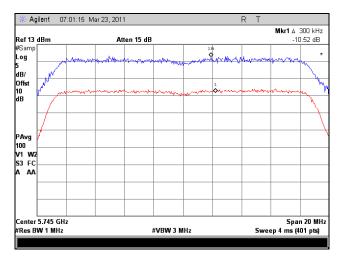

was determined from plots on the following page(s).

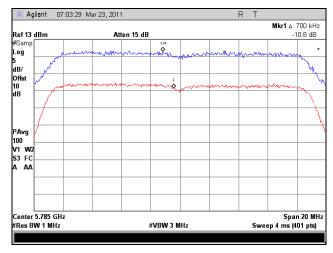
Test Engineer(s): Lionel Gabrillo

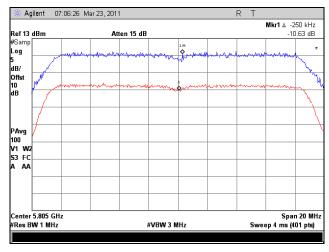

Test Date(s): 05/16/11


Peak Excursion Ratio, 802.11a

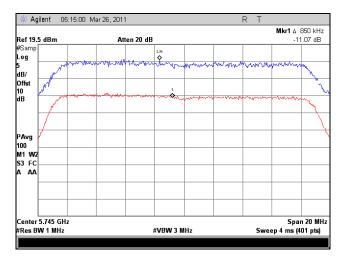
Plot 61. Peak Excursion, 802.11a, Low Channel

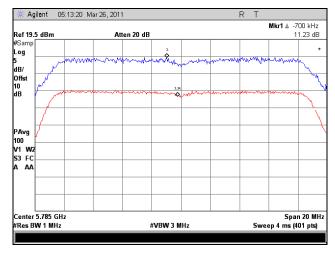

Plot 62. Peak Excursion, 802.11a, Mid Channel

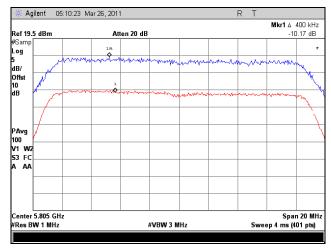

Plot 63. Peak Excursion, 802.11a, High Channel


Peak Excursion Ratio, 802.11n 20 MHz, Port 0

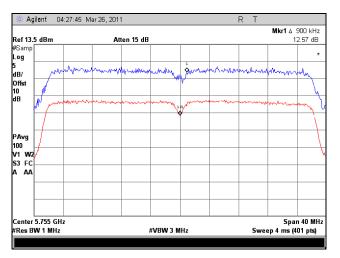
Plot 64. Peak Excursion, 802.11n 20 MHz, Port 0, Low Channel

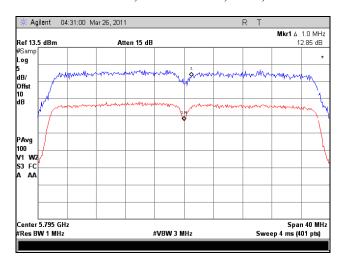

Plot 65. Peak Excursion, 802.11n 20 MHz, Port 0, Mid Channel


Plot 66. Peak Excursion, 802.11n 20 MHz, Port 0, High Channel

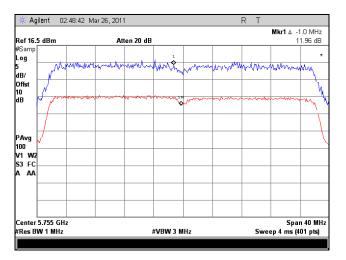

Peak Excursion Ratio, 802.11n 20 MHz, Port 1

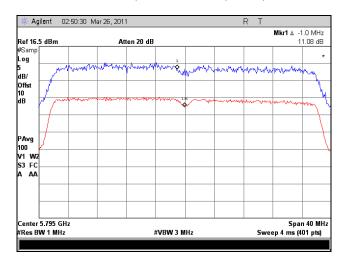
Plot 67. Peak Excursion, 802.11n 20 MHz, Port 1, Low Channel


Plot 68. Peak Excursion, 802.11n 20 MHz, Port 1, Mid Channel


Plot 69. Peak Excursion, 802.11n 20 MHz, Port 1, High Channel

Peak Excursion Ratio, 802.11n 40 MHz, Port 0


Plot 70. Peak Excursion, 802.11n 40 MHz, Port 0, Low Channel


Plot 71. Peak Excursion, 802.11n 40 MHz, Port 0, High Channel

Peak Excursion Ratio, 802.11n 40 MHz, Port 1

Plot 72. Peak Excursion, 802.11n 40 MHz, Port 1, Low Channel

Plot 73. Peak Excursion, 802.11n 40 MHz, Port 1, High Channel

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.407(b)(1),(2), (5), (6) Undesirable Emissions

Test Requirements: § **15.407(b)(1),(2), (5), (6)**; §**15.205:** Emissions outside the frequency band.

- § 15.407(b)(1): In any 1MHz bandwidth outside the frequency band 5.15-5.25GHz in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power shall not exceed -27dBm.
- § 15.407(b)(2): In any 1MHz bandwidth outside the frequency band 5.25-5.35GHz in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power shall not exceed -27dBm.
- § 15.407(b)(4): In any 1MHz bandwidth outside the frequency band 5.725-5.825GHz in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power shall not exceed -17dBm.
- § 15.407(b)(6): Radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a).

§15.205(a): Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42–16.423	399.9–410	4.5–5.15
1 0.495–0.505	16.69475–16.69525	608–614	5.35-5.46
2.1735–2.1905	16.80425-16.80475	960–1240	7.25–7.75
4.125–4.128	25.5–25.67	1300–1427	8.025-8.5
4.17725–4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725-4.20775	73–74.6	1645.5–1646.5	9.3–9.5
6.215–6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775–6.26825	108–121.94	1718.8–1722.2	13.25–13.4
6.31175–6.31225	123–138	2200–2300	14.47–14.5
8.291-8.294	149.9–150.05	2310–2390	15.35–16.2
8.362-8.366	156.52475–156.52525	2483.5–2500	17.7–21.4
8.37625-8.38675	156.7–156.9	2655–2900	22.01–23.12
8.41425–8.41475	162.0125–167.17	3260–3267	23.6–24.0
12.29–12.293	167.72–173.2	3332–3339	31.2–31.8
12.51975–12.52025	240–285	3345.8–3358 36.	43–36.5
12.57675–12.57725	322–335.4	3600–4400	(²)

Table 29. Restricted Bands of Operation

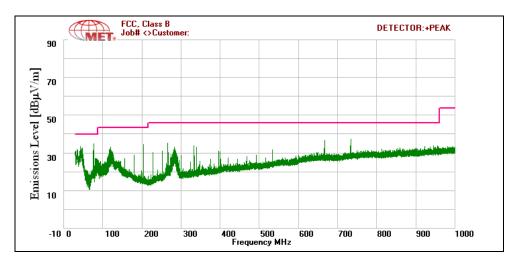
Test Procedure:

The EUT was installed placed on a 0.8m-high wooden table inside a semi-anechoic chamber. The harmonic frequencies the carriers were recorded for reference for final measurements. A receiving horn antenna was placed 3m away from the EUT. Unless otherwise specified, measurements were made using 1MHz RBW & 3MHz VBW with a Peak Detector for peak measurements and 1MHz RBW & 3MHz VBW with an Average Detector for average measurements on a spectrum analyzer.

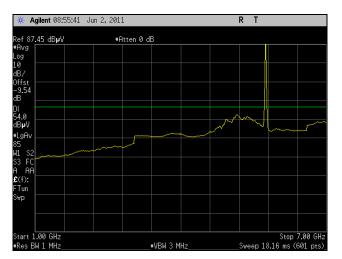
The turntable was rotated, the positions of the interface cables were varied, and the antenna height was varied between 1 m and 4 m, in order to find the maximum radiated emissions.

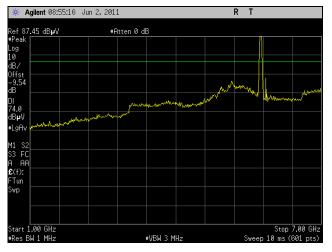
The equipment isotropic radiated power (EIRP) at -17dBm/MHz was converted to field strength at 78.24dBuV/m. At the band edge of each band, the EIRP energy measurement is integrated to show the total power over 1MHz.

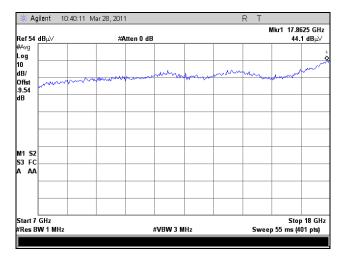
Test Results: The EUT was found compliant with the requirement(s) of this section. Measured emissions were

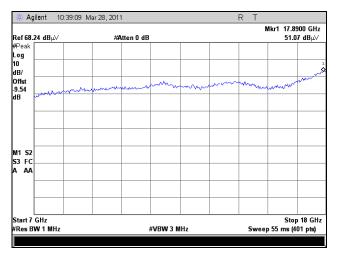

below applicable limits.

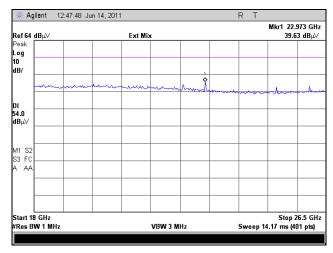
Test Engineer(s): Lionel Gabrillo

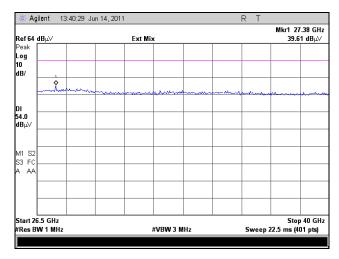

Test Date(s): 05/23/11

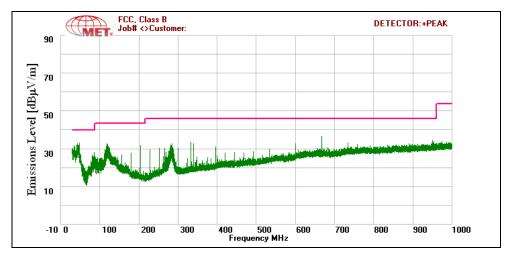

Radiated Spurious Emissions, 802.11a

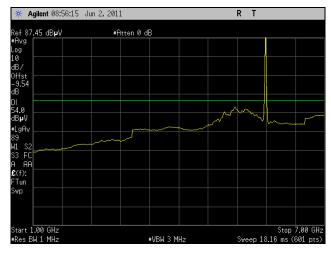

Plot 74. Radiated Spurious Emissions, 802.11a, Low Channel, 30 MHz - 1 GHz

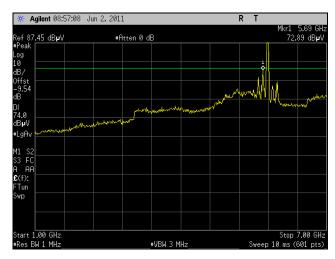

Plot 75. Radiated Spurious Emissions, 802.11a, Low Channel, 1 GHz – 7 GHz, Average

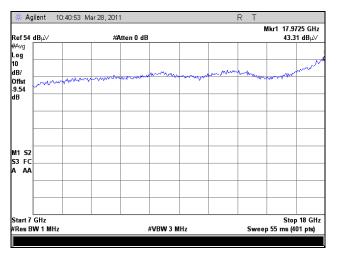

Plot 76. Radiated Spurious Emissions, 802.11a, Low Channel, 1 GHz - 7 GHz, Peak

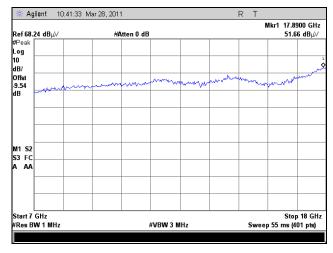

Plot 77. Radiated Spurious Emissions, 802.11a, Low Channel, 7 GHz – 18 GHz, Average

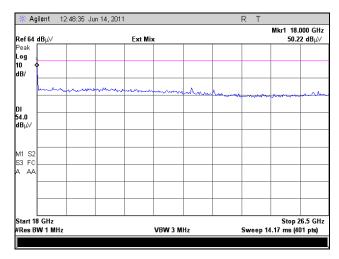

Plot 78. Radiated Spurious Emissions, 802.11a, Low Channel, 7 GHz - 18 GHz, Peak

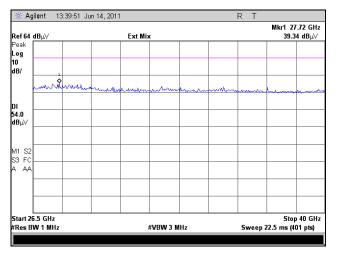

Plot 79. Radiated Spurious Emissions, 802.11a, Low Channel, 18 GHz - 26.5 GHz

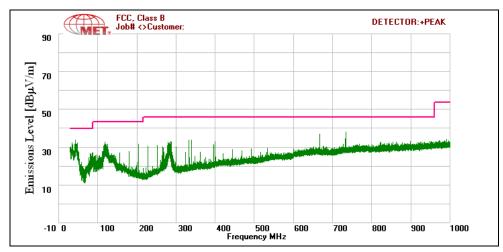

Plot 80. Radiated Spurious Emissions, 802.11a, Low Channel, 26.5 GHz – 40 GHz

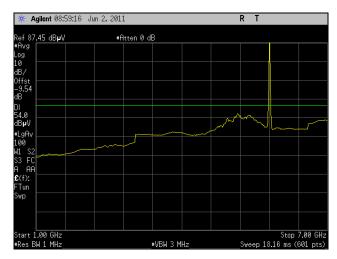

Plot 81. Radiated Spurious Emissions, 802.11a, Mid Channel, 30 MHz - 1 GHz

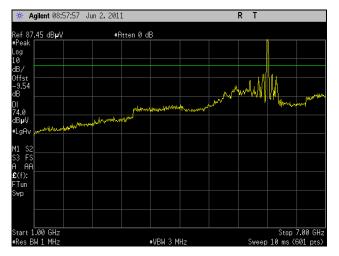

Plot 82. Radiated Spurious Emissions, 802.11a, Mid Channel, 1 GHz - 7 GHz, Average

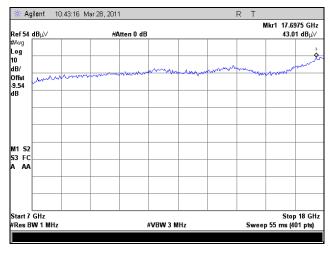

Plot 83. Radiated Spurious Emissions, 802.11a, Mid Channel, 1 GHz – 7 GHz, Peak

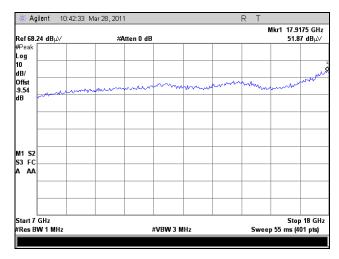

Plot 84. Radiated Spurious Emissions, 802.11a, Mid Channel, 7 GHz – 18 GHz, Average

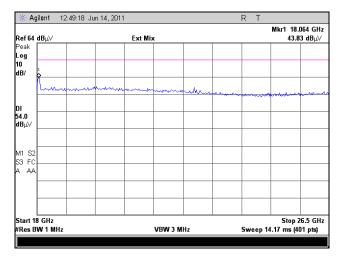

Plot 85. Radiated Spurious Emissions, 802.11a, Mid Channel, 7 GHz - 18 GHz, Peak

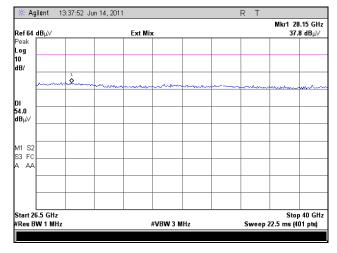

Plot 86. Radiated Spurious Emissions, 802.11a, Mid Channel, 18 GHz - 26.5 GHz


Plot 87. Radiated Spurious Emissions, 802.11a, Mid Channel, 26.5 GHz - 40 GHz


Plot 88. Radiated Spurious Emissions, 802.11a, High Channel, 30 MHz – 1 GHz

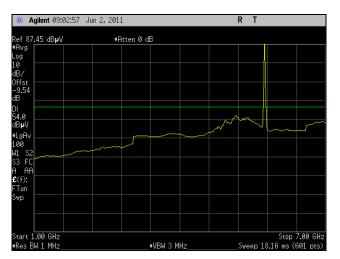

Plot 89. Radiated Spurious Emissions, 802.11a, High Channel, 1 GHz - 7 GHz, Average

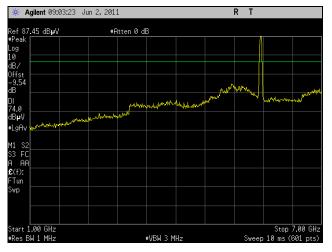

Plot 90. Radiated Spurious Emissions, 802.11a, High Channel, 1 GHz – 7 GHz, Peak

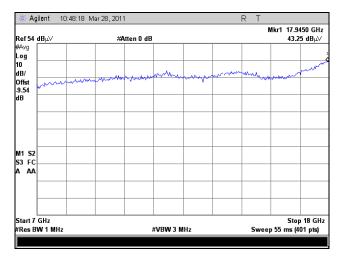

Plot 91. Radiated Spurious Emissions, 802.11a, High Channel, 7 GHz – 18 GHz, Average

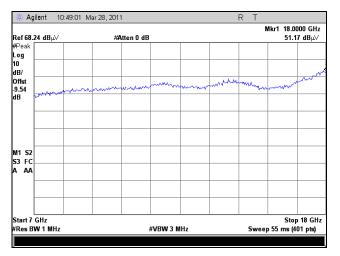
Plot 92. Radiated Spurious Emissions, 802.11a, High Channel, 7 GHz – 18 GHz, Peak

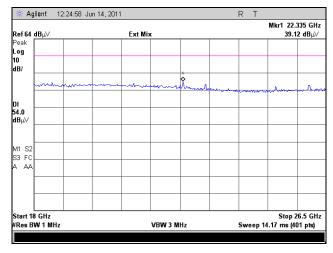
Plot 93. Radiated Spurious Emissions, 802.11a, High Channel, 18 GHz – 26.5 GHz

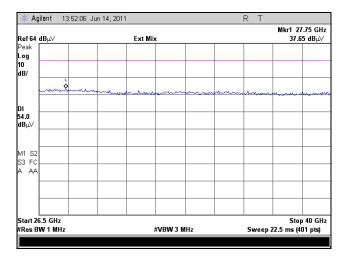

Plot 94. Radiated Spurious Emissions, 802.11a, High Channel, 26.5 GHz - 40 GHz

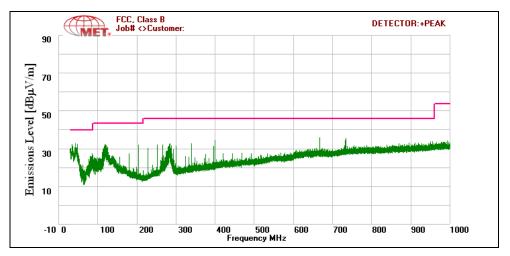

Radiated Spurious Emissions, 802.11n 20 MHz

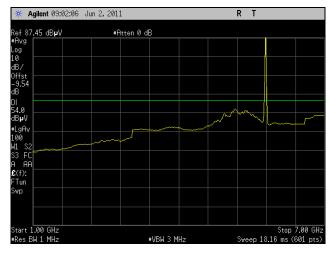

Plot 95. Radiated Spurious Emissions, 802.11n 20 MHz, Low Channel, 30 MHz - 1 GHz

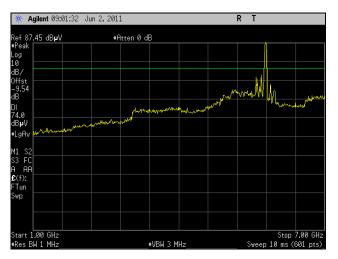

Plot 96. Radiated Spurious Emissions, 802.11n 20 MHz, Low Channel, 1 GHz - 7 GHz, Average

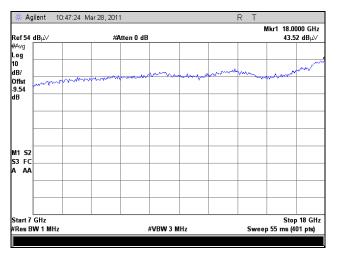

Plot 97. Radiated Spurious Emissions, 802.11n 20 MHz, Low Channel, 1 GHz - 7 GHz, Peak

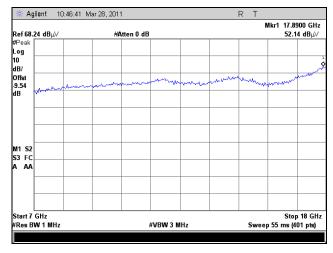

Plot 98. Radiated Spurious Emissions, 802.11n 20 MHz, Low Channel, 7 GHz – 8 GHz, Average

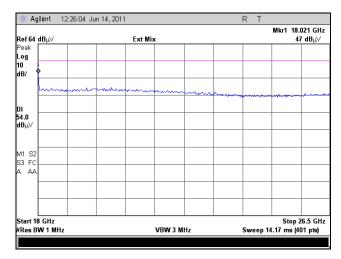

Plot 99. Radiated Spurious Emissions, 802.11n 20 MHz, Low Channel, 7 GHz - 18 GHz, Peak

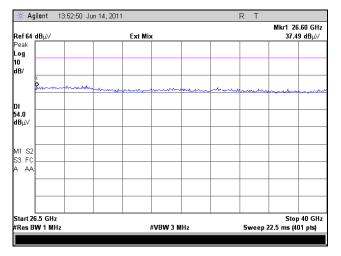

Plot 100. Radiated Spurious Emissions, 802.11n 20 MHz, Low Channel, 18 GHz - 26.5 GHz

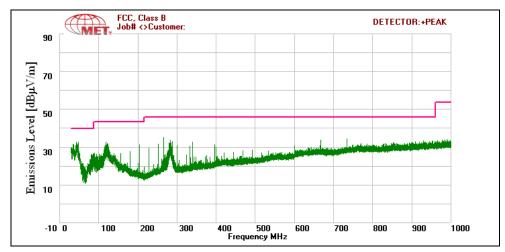

Plot 101. Radiated Spurious Emissions, 802.11n 20 MHz, Low Channel, 26.5 GHz – 40 GHz

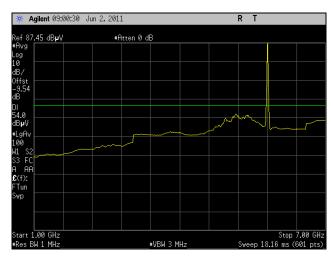

Plot 102. Radiated Spurious Emissions, 802.11n 20 MHz, Mid Channel, 30 MHz - 1 GHz

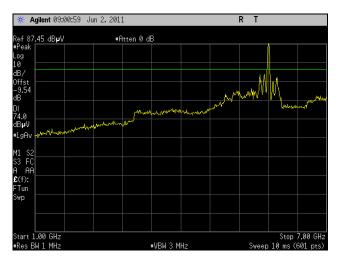

Plot 103. Radiated Spurious Emissions, 802.11n 20 MHz, Mid Channel, 1 GHz – 7 GHz, Average

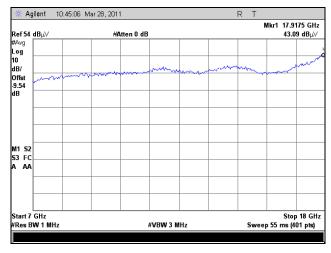

Plot 104. Radiated Spurious Emissions, 802.11n 20 MHz, Mid Channel, 1 GHz - 7 GHz, Peak

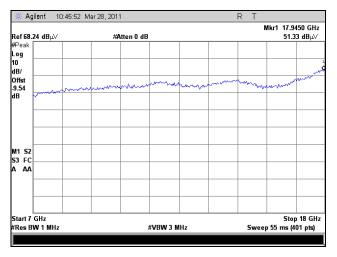

Plot 105. Radiated Spurious Emissions, 802.11n 20 MHz, Mid Channel, 7 GHz - 18 GHz, Average

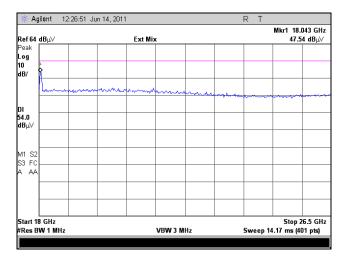

Plot 106. Radiated Spurious Emissions, 802.11n 20 MHz, Mid Channel, 7 GHz - 18 GHz, Peak

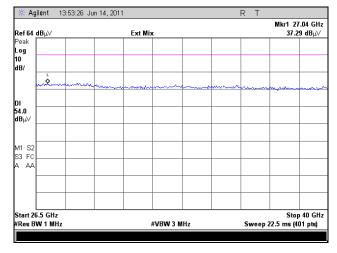

Plot 107. Radiated Spurious Emissions, 802.11n 20 MHz, Mid Channel, 18 GHz - 26.5 GHz


Plot 108. Radiated Spurious Emissions, 802.11n 20 MHz, Mid Channel, 26.5 GHz - 40 GHz

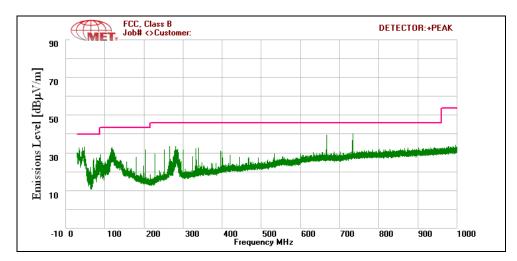

Plot 109. Radiated Spurious Emissions, 802.11n 20 MHz, High Channel, 30 MHz - 1 GHz

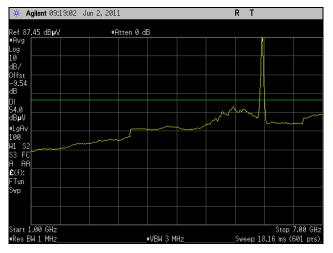

Plot 110. Radiated Spurious Emissions, 802.11n 20 MHz, High Channel, 1 GHz - 7 GHz, Average

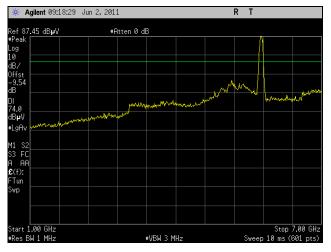

Plot 111. Radiated Spurious Emissions, 802.11n 20 MHz, High Channel, 1 GHz - 7 GHz, Peak

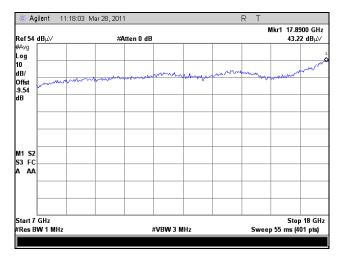

Plot 112. Radiated Spurious Emissions, 802.11n 20 MHz, High Channel, 7 GHz - 18 GHz, Average

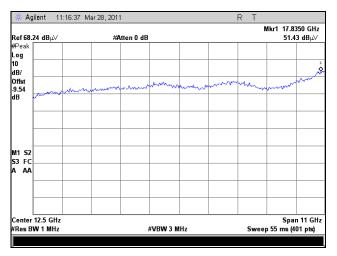
Plot 113. Radiated Spurious Emissions, 802.11n 20 MHz, High Channel, 7 GHz – 18 GHz, Peak

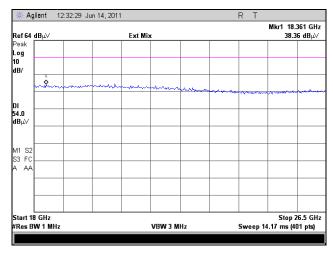

Plot 114. Radiated Spurious Emissions, 802.11n 20 MHz, High Channel, 18 GHz – 26.5 GHz

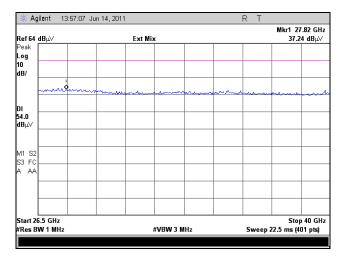

Plot 115. Radiated Spurious Emissions, 802.11n 20 MHz, High Channel, 26.5 GHz - 40 GHz

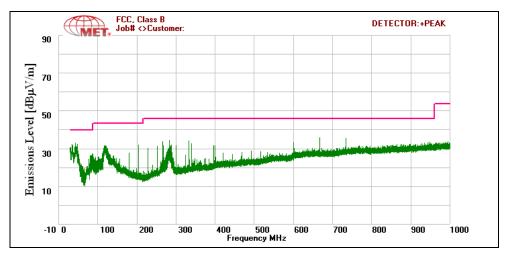

Radiated Spurious Emissions, 802.11n 40 MHz

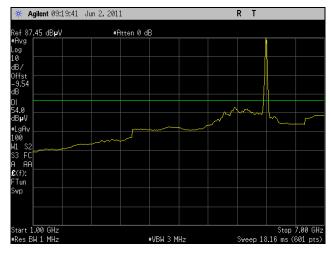

Plot 116. Radiated Spurious Emissions, 802.11n 40 MHz, Low Channel, 30 MHz - 1 GHz

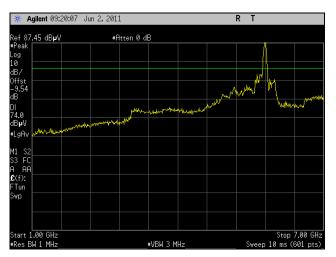

Plot 117. Radiated Spurious Emissions, 802.11n 40 MHz, Low Channel, 1 GHz - 7 GHz, Average

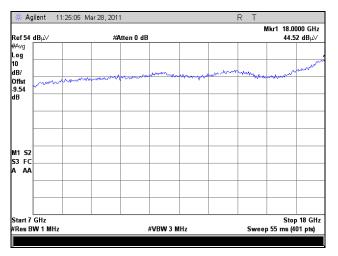

Plot 118. Radiated Spurious Emissions, 802.11n 40 MHz, Low Channel, 1 GHz - 7 GHz, Peak

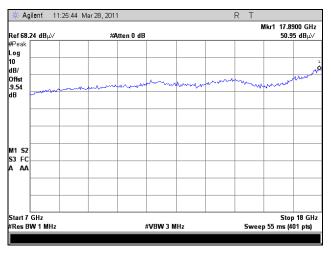

Plot 119. Radiated Spurious Emissions, 802.11n 40 MHz, Low Channel, 7 GHz – 18 GHz, Average

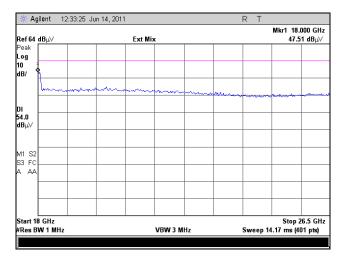

Plot 120. Radiated Spurious Emissions, 802.11n 40 MHz, Low Channel, 7 GHz - 18 GHz, Peak

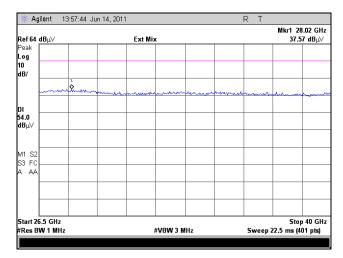

Plot 121. Radiated Spurious Emissions, 802.11n 40 MHz, Low Channel, 18 GHz - 26.5 GHz


Plot 122. Radiated Spurious Emissions, 802.11n 40 MHz, Low Channel, 26.5 GHz – 40 GHz


Plot 123. Radiated Spurious Emissions, 802.11n 40 MHz, High Channel, 30 MHz - 1 GHz, Average


Plot 124. Radiated Spurious Emissions, 802.11n 40 MHz, High Channel, 1 GHz - 7 GHz, Average

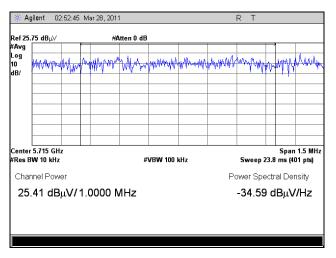

Plot 125. Radiated Spurious Emissions, 802.11n 40 MHz, High Channel, 1 GHz - 7 GHz, Peak


Plot 126. Radiated Spurious Emissions, 802.11n 40 MHz, High Channel, 7 GHz - 18 GHz, Average

Plot 127. Radiated Spurious Emissions, 802.11n 40 MHz, High Channel, 7 GHz – 18 GHz, Peak

Plot 128. Radiated Spurious Emissions, 802.11n 40 MHz, High Channel, 18 GHz - 26.5 GHz

Plot 129. Radiated Spurious Emissions, 802.11n 40 MHz, High Channel, $26.5~\mathrm{GHz} - 40~\mathrm{GHz}$



EIRP

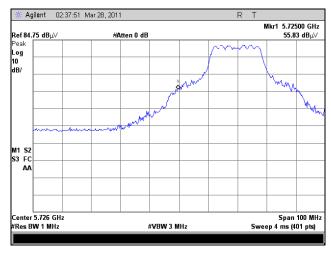
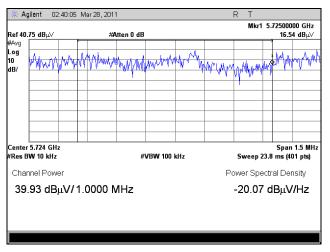
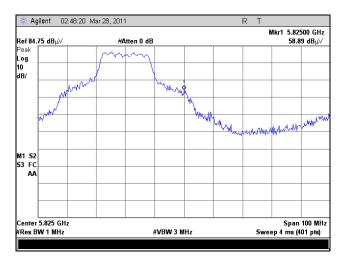
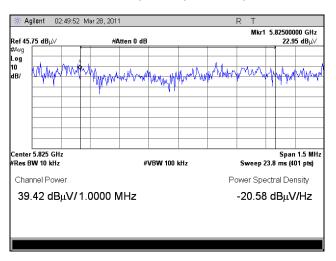
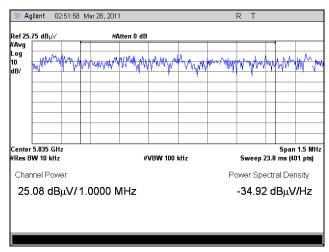

	Band Edge Freq.	Uncorrected (dBuV)	Cable Loss	ACF	Corrected	Limit (dBm)	Limit (dBuV/m)	Margin
802.11a	5725	39.93	4.16	34.032	78.122	-17	78.24	-0.118
	5715	25.41	4.15	34.013	63.573	-27	68.24	-4.667
	5825	39.42	4.2	33.887	77.507	-17	78.23	-0.723
	5835	25.08	4.21	33.861	63.151	-27	68.24	-5.089
	5725	39.76	4.16	34.032	77.952	-17	78.24	-0.288
802.11n 20MHz	5715	25.24	4.15	34.013	63.403	-27	68.24	-4.837
	5825	40.03	4.2	33.887	78.117	-17	78.23	-0.113
	5835	24.98	4.21	33.861	63.051	-27	68.24	-5.189
	5725	33.63	4.16	34.032	71.822	-17	78.24	-6.418
802.11n 40MHz	5715	29.15	4.15	34.013	67.313	-27	68.24	-0.927
	5825	35.1	4.2	33.887	73.187	-17	78.23	-5.043
	5835	29.87	4.21	33.861	67.941	-27	68.24	-0.299

Table 30. EIRP Calculation

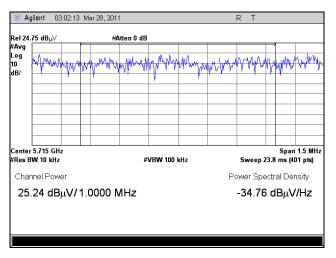

EIRP, 802.11a

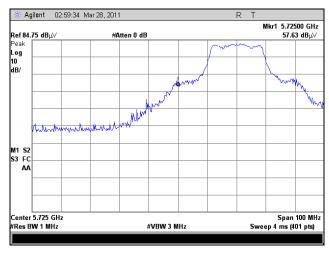

Plot 130. EIRP, 802.11a, 5715 MHz

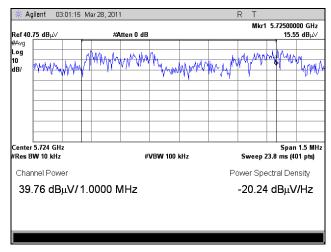

Plot 131. EIRP, 802.11a, 5725 MHz, Peak

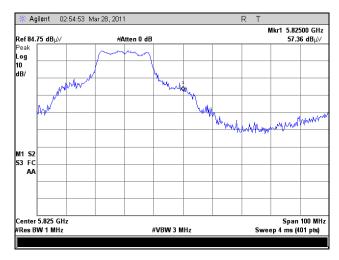

Plot 132. EIRP, 802.11a, 5725 MHz

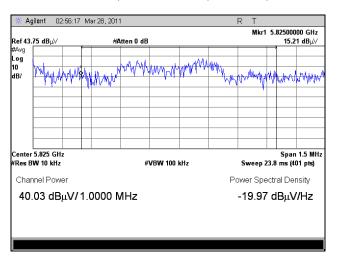
Plot 133. EIRP, 802.11a, 5825 MHz, Peak

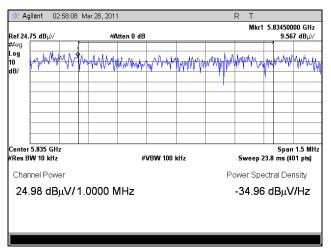

Plot 134. EIRP, 802.11a, 5825 MHz


Plot 135. EIRP, 802.11a, 5835 MHz

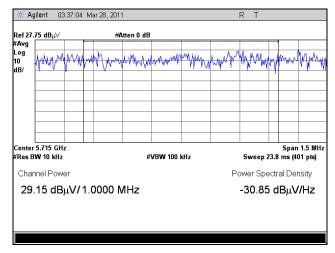

EIRP, 802.11n 20 MHz

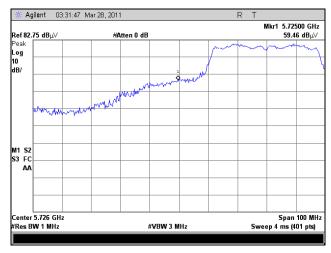

Plot 136. EIRP, 802.11n 20 MHz, 5715 MHz

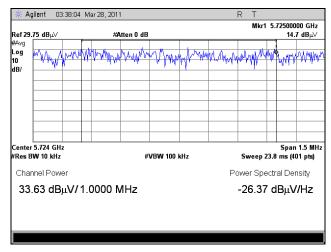

Plot 137. EIRP, 802.11n 20 MHz, 5725 MHz, Peak

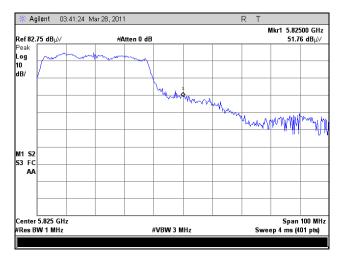

Plot 138. EIRP, 802.11n 20 MHz, 5725 MHz

Plot 139. EIRP, 802.11n 20 MHz, 5825 MHz, Peak

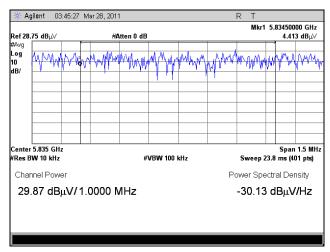

Plot 140. EIRP, 802.11n 20 MHz, 5825 MHz


Plot 141. EIRP, 802.11n 20 MHz, 5835 MHz

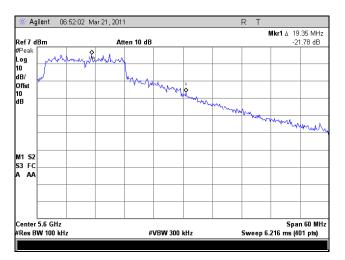

EIRP, 802.11n 40 MHz

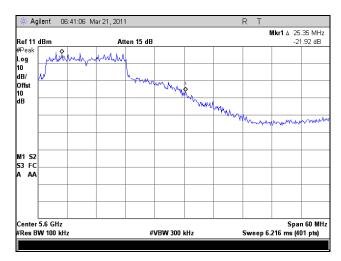

Plot 142. EIRP, 802.11n 40 MHz, 5715 MHz

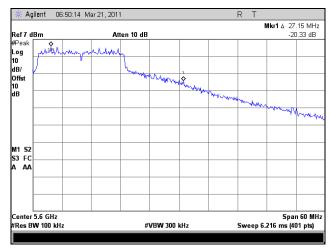

Plot 143. EIRP, 802.11n 40 MHz, 5725 MHz, Peak


Plot 144. EIRP, 802.11n 40 MHz, 5725 MHz

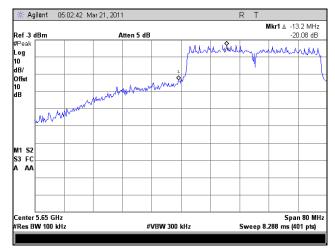
Plot 145. EIRP, 802.11n 40 MHz, 5825 MHz, Peak

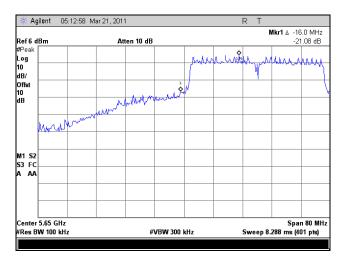

Plot 146. EIRP, 802.11n 40 MHz, 5825 MHz


Plot 147. EIRP, 802.11n 40 MHz, 5835 MHz


Conducted Band Edge


Plot 148. Conducted Band Edge, 802.11a, 5580 MHz, Port 0


Plot 149. Conducted Band Edge, 802.11a, 5580 MHz, Port 1


Plot 150. Conducted Band Edge, 802.11n 20 MHz, 5580 MHz, Port 0

Plot 151. Conducted Band Edge, 802.11n 20 MHz, 5580 MHz, Port 1

Plot 152. Conducted Band Edge, 802.11n 40 MHz, 5670 MHz, Port 0

Plot 153. Conducted Band Edge, 802.11n 40 MHz, 5670 MHz, Port 1

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.407(f) RF Exposure

RF Exposure Requirements: \$1.1307(b)(1) and \$1.1307(b)(2): Systems operating under the provisions of this section

shall be operated in a manner that ensures that the public is not exposed to radio frequency

energy levels in excess of the Commission's guidelines.

RF Radiation Exposure Limit: §1.1310: As specified in this section, the Maximum Permissible Exposure (MPE) Limit

shall be used to evaluate the environmental impact of human exposure to radiofrequency (RF) radiation as specified in Sec. 1.1307(b), except in the case of portable devices which

shall be evaluated according to the provisions of Sec. 2.1093 of this chapter.

Since EUT has co-located antennas:

MPE Limit Calculation: EUT's operating frequencies @ 824.2 - 849.2 MHz; highest conducted power = ERP – Max Antenna Gain = 23.93 - 11.5 = 12.43dBm (peak) therefore, **Limit for Uncontrolled exposure** = **Freq/1500** = 824.2/1500 = 0.549 mW/cm² or 5.49 W/m²

EUT maximum antenna gain = 8.5 dBi + 10log(# of antennas) = 8.5 + 3.0 = 11.5 dBi

Equation from page 18 of OET 65, Edition 97-01

$$S1 = PG / 4 \square R^2$$
 or $R = \sqrt{PG / 4 \square S}$

where, $S1 = Power Density (Limit = 0.549 \text{ mW/cm}^2)$

P = Power Input to antenna (17.498mW)

G = Antenna Gain (14.125 numeric)

R = Minimum Distance between User and Antenna (20 cm)

$$S1 = (17.498*14.125)/(4*3.14*20^2) = 247.172/5024 = 0.049 \text{ mW/cm}^2$$

 $S1 < 0.549 \text{ mW/cm}^2$,

MPE Limit Calculation: EUT's operating frequencies @ $\underline{1850-1910}$ MHz; highest conducted power = EIRP – Antenna Gain = 26.107 - 8.4 = 17.71 dBm (peak) therefore, **Limit for Uncontrolled exposure:** 1 mW/cm^2 or 10 W/m^2

EUT maximum antenna gain = $5.4 \, dBi + 10 \log(\# \text{ of antennas}) = 5.4 + 3.0 = 8.4 dBi$

Equation from page 18 of OET 65, Edition 97-01

$$S2 = PG / 4 \square R^2$$
 or $R = \sqrt{PG / 4 \square S}$

where, $S2 = Power Density (Limit = 1 mW/cm^2)$

P = Power Input to antenna (59.020mW)

G = Antenna Gain (6.918 numeric)

R = Minimum Distance between User and Antenna (20 cm)

$$S2 = (59.020*6.918)/(4*3.14*20^2) = 408.319/5024 = 0.082 \text{ mW/cm}^2$$

 $S2 < 1 \text{ mW/cm}^2$.

MPE Limit Calculation: EUT's operating frequencies @ $\underline{2400-2483.5 \text{ MHz}}$; highest conducted power = 28.86dBm (peak) therefore, **Limit for Uncontrolled exposure: 1 mW/cm² or 10 W/m²**

EUT maximum antenna gain = 4.3dBi + 10log(# of antennas) = 4.3 + 3.0 = 7.3dBi

Equation from page 18 of OET 65, Edition 97-01

$$S3 = PG / 4 \square R^2$$
 or $R = \sqrt{PG / 4 \square S}$

where, $S3 = Power Density (Limit = 1 mW/cm^2)$

P = Power Input to antenna (770.96mW)

G = Antenna Gain (5.383 numeric)

R = Minimum Distance between User and Antenna (20 cm)

$$S3 = (770.96*5.383)/(4*3.14*20^2) = 4130.08/5024 = 0.826 \text{ mW/cm}^2$$

 $S3 < 1 \text{ mW/cm}^2$

MPE Limit Calculation: EUT's operating frequencies @ 5745-5850 MHz; highest conducted power = 16.681dBm therefore, **Limit for Uncontrolled exposure:** 1 mW/cm² or 10 W/m²

EUT maximum antenna gain = 4 dBi + 10log(# of antennas) = 4.0 + 3.0 = 7.0 dBi.

Equation from page 18 of OET 65, Edition 97-01

$$S4 = PG / 4 \square R^2$$
 or $R = \sqrt{PG / 4 \square S}$

where, $S4 = Power Density (Limit = 1 \text{ mW/cm}^2)$

P = Power Input to antenna (46.57mW)

G = Antenna Gain (5.024 numeric)

R = Minimum Distance between User and Antenna (20 cm)

$$S4 = (46.57*5.024)/(4*3.14*20^2) = 233.4/5024 = 0.046 \text{ mW/cm}^2$$

 $S4 < 1 \text{ mW/cm}^2$

For Co-located Antennas:

$$S1 + S2 + S3 + S4 < 1mW/cm2$$

Since,

0.049 mW/cm2 + 0.082 mW/cm2 + 0.826 mW/cm2 + 0.046 mW/cm2 > 1 mW/cm2

The Minimum Distance between User and Antennas is

$$R = (\sqrt{P1G1} / (4*3.14*0.549)) + (\sqrt{(P2G2 + P3G3 + P4G4)} / (4*3.14*1))$$

= $(\sqrt{247.17/3.79}) + ((408.32 + 4130.48 + 233.4) / 12.56)$
= 21.1 cm

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.407(g) Frequency Stability

Test Requirements: § 15.407(g): Manufacturers of U-NII devices are responsible for ensuring frequency stability such

that an emission is maintained within the band of operation under all conditions of normal operation

as specified in the user's manual.

Test Procedure: The EUT was placed in an environmental chamber and the RF port was connected directly to a

spectrum analyzer through an attenuator. Depending on which band was being investigated, the EUT was set to transmit at the low, mid, and high with the appropriate power level. If the EUT was capable of transmitting a CW carrier then the spectrum analyzer's frequency counting function was used to measure the actual frequency. If only a modulated carrier was available then the frequency relative to $-10 \, \text{dBc}$ above and below the carrier was measured and the carrier frequency was determined using (f1+f2)/2. The frequency of the carrier was measured at normal and extreme

conditions with the temperature range of -40° C to $+60^{\circ}$ C.

Test Results: The EUT was found compliant with the requirements of §15.407(g)

Test Engineer(s): Lionel Gabrillo

Test Date(s): 05/32/11

Frequency (MHz)	Temperature (deg. C)	Drift (MHz)	Delta (MHz)	Delta (kHz)
	-30	5745.01194	-0.03046	30.46
	-20	5745.01304	-0.03156	31.56
	-10	5745.00949	-0.02801	28.01
	0	5744.99596	-0.01448	14.48
5745	10	5744.99494	-0.01346	13.46
	20	5744.98148	0.00000	0
	30	5744.97910	0.00238	2.38
	40	5744.97694	0.00454	4.54
	50	5744.97793	0.00355	3.55
	-30	5755.01164	-0.03070	30.7
	-20	5755.01287	-0.03193	31.93
	-10	5755.00953	-0.02859	28.59
	0	5754.99584	-0.01490	14.9
5755	10	5754.99452	-0.01358	13.58
	20	5754.98094	0.00000	0
	30	5754.97916	0.00178	1.78
	40	5754.97674	0.00420	4.2
	50	5754.97756	0.00338	3.38
	-30	5785.01169	-0.03075	30.75
	-20	5785.01292	-0.03198	31.98
	-10	5785.00972	-0.02878	28.78
	0	5784.99599	-0.01505	15.05
5785	10	5784.99535	-0.01441	14.41
	20	5784.98094	0.00000	0
	30	5784.97918	0.00176	1.76
	40	5784.97664	0.00430	4.3
	50	5784.97731	0.00363	3.63
	-30	5795.01189	-0.03086	30.86
	-20	5795.01319	-0.03216	32.16
	-10	5795.01020	-0.02917	29.17
	0	5794.99634	97694 0.00454 97793 0.00355 01164 -0.03070 01287 -0.03193 00953 -0.02859 99584 -0.01490 99452 -0.01358 98094 0.00000 97916 0.00178 97674 0.00420 97756 0.00338 01169 -0.03075 01292 -0.03198 00972 -0.02878 99599 -0.01505 99535 -0.01441 98094 0.00000 97918 0.00176 97664 0.00430 97731 0.00363 01189 -0.03216 01020 -0.02917 99634 -0.01531 99578 -0.01475 98103 0.00000 97958 0.00145 97692 0.00411 97746 0.00357 01166 -0.03090 01304 -0.03228 <	15.31
5795	10	5794.99578		14.75
	20	5794.98103		0
	30	5794.97958		1.45
	40	5794.97692		4.11
	50	5794.97746		3.57
	-30	5805.01166		30.9
	-20	5805.01304		32.28
	-10	5805.01019		29.43
	0	5804.99625		15.49
5805	10	5804.99574		14.98
	20	5804.98076		0
	30	5804.97978	0.00098	0.98
	40	5804.97676	0.00400	4
	50	5804.97717	0.00359	3.59

Table 31. Frequency Stability, Test Results

Electromagnetic Compatibility Criteria for Intentional Radiators

RSS-GEN Receiver Spurious Emissions

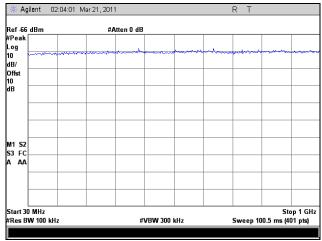
Test Requirement: The following receiver spurious emission limits shall be complied with:

a) If a radiated measurement is made, all spurious emissions shall comply with the limits of Table 32

Spurious Frequency (MHz)	Field Strength (microvolt/m at 3 metres)		
30-88	100		
88-216	150		
216-960	200		
Above 960	500		

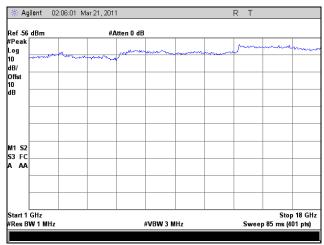
Table 32. Spurious Emission Limits for Receivers

b) If a conducted measurement is made, no spurious output signals appearing at the antenna terminals shall exceed 2 nanowatts per any 4 kHz spurious frequency in the band 30-1000 MHz, or 5 nanowatts above 1 GHz.

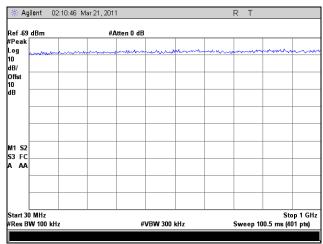

Test Procedure: The receiver spurious emissions were tested in compliance with the limits of Table 12. The testing

was performed conducted.

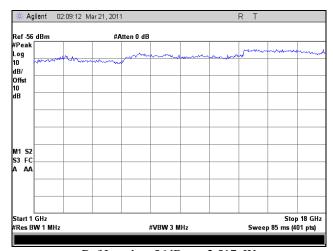
Test Results: The EUT was compliant with the Receiver Spurious Emission limits of this requirement.


Test Engineer(s): Lionel Gabrillo

Test Date(s): 05/23/11


Ref Level = -66dBm = 0.251pW

Plot 154. Receiver Spurious Emissions, Port 0, 30 MHz - 1 GHz


Ref Level = -56dBm = 2.517pW

Plot 155. Receiver Spurious Emissions, Port 0, 1 GHz – 18 GHz

Ref Level = -69dBm = 0.126pW

Plot 156. Receiver Spurious Emissions, Port 1, 30 MHz - 1 GHz

Ref Level = -56dBm = 2.517pW

Plot 157. Receiver Spurious Emissions, Port 1, 1 GHz – 18 GHz

IV. Test Equipment

Test Equipment

Calibrated test equipment utilized during testing was maintained in a current state of calibration per the requirements of ANSI/NCSL Z540-1-1994 and ANSI/ISO/IEC 17025:2000.

MET Asset #	Equipment	Manufacturer	Model	Last Cal Date	Cal Due Date
1S2607	SPECTRUM ANALYZER	AGILENT	E4407B	7/30/10	7/30/11
1S2270	LISN	SCHWARZBECK	NNLK8121	2/15/2011	2/15/2012
1S2399	TURNTABLE CONTROLLER	SUNOL SCIENCE	SC99V	NO CALIBRATION REQUIRED	
1S2481	10M CHAMBER	ETS-LINDGREN	DKE 8X8 DBL	11/6/2010	11/6/2011
1S2482	5 METER CHAMBER	PANASHIELD	641431	11/13/2010	11/13/2011
1S2600	BILOG ANTENNA	TESEQ	CBL6112D	4/14/2010	4/14/2013
1S2499	MULTI DEVICE CONTROLLER	ETS	2090	NO CALIBRATION REQUIRED	
1S2421	EMI TEST RECEIVER	ROHDE & SCHWARZ	ESIB7	7/6/2010	7/6/2011
1S2460	SPECTRUM ANALYZER	AGILENT	E4407B	7/13/2010	7/13/2011
1S2198	HORN ANTENNA	EMCO	3115	9/22/2010	9/22/2011
N/A	HIGH PASS FILTER	MICRO-TRONICS	HPM13147	SEE NOTE	
1S2521	THERMO-HYGROMETER	FISHER SCIENTIFIC	11-661-7D	12/2/2009	12/2/2011
1S2523	PREAMP (1-26.5GHZ)	AGILENT	8449B	SEE NOTE	
1S2670	HIGHPASS FILTER	TTE, INC.	H613-150K-50- 21378	CAL NOT REQUIRED	
1S2587	PRE AMPLIFIER	AML COMM	AML0126L3801	SEE NOTE	
1S2229	TEMPERATURE CHAMBER	TENNY ENGINEERING	T63C	2/18/2011	2/18/2012

Table 33. Test Equipment List

Note: Functionally tested equipment is verified using calibrated instrumentation at the time of testing.

A. Certification Information

The following is extracted from Title 47 of the Code of Federal Regulations, Part 2, Subpart I — Marketing of Radio frequency devices:

§ 2.801 Radio-frequency device defined.

As used in this part, a radio-frequency device is any device which in its operation is capable of Emitting radio-frequency energy by radiation, conduction, or other means. Radio-frequency devices include, but are not limited to:

- (a) The various types of radio communication transmitting devices described throughout this chapter.
- (b) The incidental, unintentional and intentional radiators defined in Part 15 of this chapter.
- (c) The industrial, scientific, and medical equipment described in Part 18 of this chapter.
- (d) Any part or component thereof which in use emits radio-frequency energy by radiation, conduction, or other means.

§ 2.803 Marketing of radio frequency devices prior to equipment authorization.

- (a) Except as provided elsewhere in this chapter, no person shall sell or lease, or offer for sale or lease (including advertising for sale or lease), or import, ship or distribute for the purpose of selling or leasing or offering for sale or lease, any radio frequency device unless:
 - (1) In the case of a device subject to certification, such device has been authorized by the Commission in accordance with the rules in this chapter and is properly identified and labeled as required by §2.925 and other relevant sections in this chapter; or
 - (2) In the case of a device that is not required to have a grant of equipment authorization issued by the Commission, but which must comply with the specified technical standards prior to use, such device also complies with all applicable administrative (including verification of the equipment or authorization under a Declaration of Conformity, where required), technical, labeling and identification requirements specified in this chapter.
- (d) Notwithstanding the provisions of paragraph (a) of this section, the offer for sale solely to business, commercial, industrial, scientific or medical users (but not an offer for sale to other parties or to end users located in a residential environment) of a radio frequency device that is in the conceptual, developmental, design or preproduction stage is permitted prior to equipment authorization or, for devices not subject to the equipment authorization requirements, prior to a determination of compliance with the applicable technical requirements provided that the prospective buyer is advised in writing at the time of the offer for sale that the equipment is subject to the FCC rules and that the equipment will comply with the appropriate rules before delivery to the buyer or to centers of distribution.

- (e)(1) Notwithstanding the provisions of paragraph (a) of this section, prior to equipment authorization or determination of compliance with the applicable technical requirements any radio frequency device may be operated, but not marketed, for the following purposes and under the following conditions:
 - (i) Compliance testing;
 - (ii) Demonstrations at a trade show provided the notice contained in paragraph (c) of this section is displayed in a conspicuous location on, or immediately adjacent to, the device;
 - (iii) Demonstrations at an exhibition conducted at a business, commercial, industrial, scientific or medical location, but excluding locations in a residential environment, provided the notice contained in paragraphs (c) or (d) of this section, as appropriate, is displayed in a conspicuous location on, or immediately adjacent to, the device:
 - (iv) Evaluation of product performance and determination of customer acceptability, provided such operation takes place at the manufacturer's facilities during developmental, design or pre-production states; or
 - (v) Evaluation of product performance and determination of customer acceptability where customer acceptability of a radio frequency device cannot be determined at the manufacturer's facilities because of size or unique capability of the device, provided the device is operated at a business, commercial, industrial, scientific or medical user's site, but not at a residential site, during the development, design or pre-production stages.
- (e)(2) For the purpose of paragraphs (e)(1)(iv) and (e)(1)(v) of this section, the term *manufacturer's facilities* includes the facilities of the party responsible for compliance with the regulations and the manufacturer's premises, as well as the facilities of other entities working under the authorization of the responsible party in connection with the development and manufacture, but not the marketing, of the equipment.
- (f) For radio frequency devices subject to verification and sold solely to business, commercial, industrial, scientific and medical users (excluding products sold to other parties or for operation in a residential environment), parties responsible for verification of the devices shall have the option of ensuring compliance with the applicable technical specifications of this chapter at each end user's location after installation, provided that the purchase or lease agreement includes a proviso that such a determination of compliance be made and is the responsibility of the party responsible for verification of the equipment.

The following is extracted from Title 47 of the Code of Federal Regulations, Part 2, Subpart J — Equipment Authorization Procedures:

§ 2.901 Basis and Purpose

- (a) In order to carry out its responsibilities under the Communications Act and the various treaties and international regulations, and in order to promote efficient use of the radio spectrum, the Commission has developed technical standards for radio frequency equipment and parts or components thereof. The technical standards applicable to individual types of equipment are found in that part of the rules governing the service wherein the equipment is to be operated. In addition to the technical standards provided, the rules governing the service may require that such equipment be verified by the manufacturer or importer, be authorized under a Declaration of Conformity, or receive an equipment authorization from the Commission by one of the following procedures: certification or registration.
- (b) The following sections describe the verification procedure, the procedure for a Declaration of Conformity, and the procedures to be followed in obtaining certification from the Commission and the conditions attendant to such a grant.

§ 2.907 Certification.

(a) Certification is an equipment authorization issued by the Commission, based on representation and test data submitted by the applicant.

(b) Certification attaches to all units subsequently marketed by the grantee which are identical (see Section 2.908) to the sample tested except for permissive changes or other variations authorized by the Commission pursuant to Section 2.1043.

¹ In this case, the equipment is subject to the rules of Part 15. More specifically, the equipment falls under Subpart B (of Part 15), which deals with unintentional radiators.

§ 2.948 Description of measurement facilities.

- (a) Each party making measurements of equipment that is subject to an equipment authorization under Part 15 or Part 18 of this chapter, regardless of whether the measurements are filed with the Commission or kept on file by the party responsible for compliance of equipment marketed within the U.S. or its possessions, shall compile a description of the measurement facilities employed.
 - (1) If the measured equipment is subject to the verification procedure, the description of the measurement facilities shall be retained by the party responsible for verification of the equipment.
 - (i) If the equipment is verified through measurements performed by an independent laboratory, it is acceptable for the party responsible for verification of the equipment to rely upon the description of the measurement facilities retained by or placed on file with the Commission by that laboratory. In this situation, the party responsible for the verification of the equipment is not required to retain a duplicate copy of the description of the measurement facilities.
 - (ii) If the equipment is verified based on measurements performed at the installation site of the equipment, no specific site calibration data is required. It is acceptable to retain the description of the measurement facilities at the site at which the measurements were performed.
 - (2) If the equipment is to be authorized by the Commission under the certification procedure, the description of the measurement facilities shall be filed with the Commission's Laboratory in Columbia, Maryland. The data describing the measurement facilities need only be filed once but must be updated as changes are made to the measurement facilities or as otherwise described in this section. At least every three years, the organization responsible for filing the data with the Commission shall certify that the data on file is current.

Label and User's Manual Information

The following is extracted from Title 47 of the Code of Federal Regulations, Part 15, Subpart A — General:

§ 15.19 Labeling requirements.

- (a) In addition to the requirements in Part 2 of this chapter, a device subject to certification or verification shall be labeled as follows:
 - (1) Receivers associated with the operation of a licensed radio service, e.g., FM broadcast under Part 73 of this chapter, land mobile operation under Part 90, etc., shall bear the following statement in a conspicuous location on the device:

This device complies with Part 15 of the FCC Rules. Operation is subject to the condition that this device does not cause harmful interference.

(2) A stand-alone cable input selector switch, shall bear the following statement in a conspicuous location on the device:

This device is verified to comply with Part 15 of the FCC Rules for use with cable television service.

(3) All other devices shall bear the following statement in a conspicuous location on the device:

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

- (4) Where a device is constructed in two or more sections connected by wires and marketed together, the statement specified under paragraph (a) of this section is required to be affixed only to the main control unit.
- (5) When the device is so small or for such use that it is not practicable to place the statement specified under paragraph (a) of this section on it, the information required by this paragraph shall be placed in a prominent location in the instruction manual or pamphlet supplied to the user or, alternatively, shall be placed on the container in which the device is marketed. However, the FCC identifier or the unique identifier, as appropriate, must be displayed on the device.

§ 15.21 Information to user.

The users manual or instruction manual for an intentional or unintentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

The following is extracted from Title 47 of the Code of Federal Regulations, Part 15, Subpart B — Unintentional Radiators:

§ 15.105 Information to the user.

(a) For a Class A digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual:

Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at own expense.

(b) For a Class B digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual:

Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a residential environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

ICES-003 Procedural & Labeling Requirements

From the Industry Canada Electromagnetic Compatibility Advisory Bulletin entitled, "Implementation and Interpretation of the Interference-Causing Equipment Standard for Digital Apparatus, ICES-003" (EMCAB-3, Issue 2, July 1995):

"At present, CISPR 22: 2002 and ICES technical requirements are essentially equivalent. Therefore, if you have CISPR 22: 2002 approval by meeting CISPR Publication 22, the only additional requirements are: to attach a note to the report of the test results for compliance, indicating that these results are deemed satisfactory evidence of compliance with ICES-003 of the Canadian Interference-Causing Equipment Regulations; to maintain these records on file for the requisite five year period; and to provide the device with a notice of compliance in accordance with ICES-003."

Procedural Requirements:

According to Industry Canada's Interference Causing Equipment Standard for Digital Apparatus ICES-003 Issue 4, February 2004:

Section 6.1: A record of the measurements and results, showing the date that the measurements

were completed, shall be retained by the manufacturer or importer for a period of at least five years from the date shown in the record and made available for examination

on the request of the Minister.

Section 6.2: A written notice indicating compliance must accompany each unit of digital apparatus

to the end user. The notice shall be in the form of a label that is affixed to the apparatus. Where because of insufficient space or other constraints it is not feasible to affix a label to the apparatus, the notice may be in the form of a statement in the user's

manual.

Labeling Requirements:

The suggested text for the notice, in English and in French, is provided below, from the Annex of ICES-003:

This Class [²] digital apparatus complies with Canadian ICES-003.

Cet appareil numérique de la classe [¹] est conforme à la norme NMB-003 du Canada.

_

² Insert either A or B but not both as appropriate for the equipment requirements.

End of Report