MPE Limit Calculation: EUT's operating frequencies @ 824.2 - 849.2 MHz; highest conducted power = ERP – Max Antenna Gain = 23.93 - 11.5 = 12.43dBm (peak) therefore, Limit for Uncontrolled exposure = Freq/1500 = 824.2/1500 = 0.549 mW/cm² or 5.49 W/m²

EUT maximum antenna gain = 8.5 dBi + 10log(# of antennas) = 8.5 + 3.0 = 11.5 dBi

Equation from page 18 of OET 65, Edition 97-01

$$S1 = PG / 4 \square R^2$$
 or $R = \sqrt{PG / 4 \square S}$

where, $S1 = Power Density (Limit = 0.549 \text{ mW/cm}^2)$

P = Power Input to antenna (17.498mW)

G = Antenna Gain (14.125 numeric)

R = Minimum Distance between User and Antenna (20 cm)

$$S1 = (17.498*14.125)/(4*3.14*20^2) = 247.172/5024 = 0.049 \text{ mW/cm}^2$$

 $S1 < 0.549 \text{ mW/cm}^2$,

MPE Limit Calculation: EUT's operating frequencies @ $\underline{1850-1910}$ MHz; highest conducted power = EIRP – Antenna Gain = 26.107 - 8.4 = 17.71dBm (peak) therefore, Limit for Uncontrolled exposure: 1 mW/cm^2 or 10 W/m^2

EUT maximum antenna gain = 5.4 dBi + 10log(# of antennas) = 5.4 + 3.0 = 8.4 dBi

Equation from page 18 of OET 65, Edition 97-01

$$S2 = PG / 4 \square R^2$$
 or $R = \sqrt{PG / 4 \square S}$

where, $S2 = Power Density (Limit = 1 mW/cm^2)$

P = Power Input to antenna (59.020mW)

G = Antenna Gain (6.918 numeric)

R = Minimum Distance between User and Antenna (20 cm)

$$S2 = (59.020*6.918)/(4*3.14*20^2) = 408.319/5024 = 0.082 \text{ mW/cm}^2$$

 $S2 < 1 \text{ mW/cm}^2$.

MPE Limit Calculation: EUT's operating frequencies @ $\underline{2400-2483.5}$ MHz; highest conducted power = 28.86dBm (peak) therefore, **Limit for Uncontrolled exposure: 1** mW/cm² or 10 W/m²

EUT maximum antenna gain = 4.3dBi + 10log(# of antennas) = 4.3 + 3.0 = 7.3dBi

Equation from page 18 of OET 65, Edition 97-01

$$S3 = PG / 4 \square R^2$$
 or $R = \sqrt{PG / 4 \square S}$

where, $S3 = Power Density (Limit = 1 mW/cm^2)$

P = Power Input to antenna (770.96mW)

G = Antenna Gain (5.383 numeric)

R = Minimum Distance between User and Antenna (20 cm)

$$S3 = (770.96*5.383)/(4*3.14*20^2) = 4130.08/5024 = 0.826 \text{ mW/cm}^2$$

 $S3 < 1 \text{ mW/cm}^2$

MPE Limit Calculation: EUT's operating frequencies @ 5745-5850 MHz; highest conducted power = 16.681dBm therefore, **Limit for Uncontrolled exposure: 1** mW/cm² or 10 W/m²

EUT maximum antenna gain = 4 dBi + 10log(# of antennas) = 4.0 + 3.0 = 7.0 dBi.

Equation from page 18 of OET 65, Edition 97-01

$$S4 = PG / 4 \square R^2$$
 or $R = \sqrt{PG / 4 \square S}$

where, $S4 = Power Density (Limit = 1 mW/cm^2)$

P = Power Input to antenna (46.57mW)

G = Antenna Gain (5.024 numeric)

R = Minimum Distance between User and Antenna (20 cm)

$$S4 = (46.57*5.024)/(4*3.14*20^2) = 233.4/5024 = 0.046 \text{ mW/cm}^2$$

 $S4 < 1 \text{ mW/cm}^2$

For Co-located Antennas:

$$S1 + S2 + S3 + S4 < 1mW/cm2$$

Since.

0.049 mW/cm2 + 0.082 mW/cm2 + 0.826 mW/cm2 + 0.046 mW/cm2 > 1 mW/cm2

The Minimum Distance between User and Antennas is

$$R = (\sqrt{P1G1} / (4*3.14*0.549)) + (\sqrt{(P2G2 + P3G3 + P4G4)} / (4*3.14*1))$$

= $(\sqrt{247.17/3.79}) + ((408.32 + 4130.48 + 233.4) / 12.56)$
= 21.1 cm