

FCC TEST REPORT

for

Remote Control

Model No.: TXF-4311R

of

Applicant: AutoMicro Technology Inc.

Address: No.6, Alley 8, Lane 214, Pao-Ping Road, Young-Ho City, Taipei
Hsien, Taiwan, R.O.C

**Tested and Prepared
by**

ETS Product Service (Taiwan) Co., Ltd.

FCC Registration No.: 930600

Industry Canada filed test laboratory Reg. No. IC 5679

A2LA Accredited No.: 2300.01

PTCRB Accredited Type Certification Test House

FCC ID: IXVTXF-4311R

Report No.: W6M20707-8347-C-1

6F, NO. 58, LANE 188, RUEY-KUANG RD., NEIHU TAIPEI 114, TAIWAN, R.O.C.
TEL: 886-2-66068877 FAX: 886-2-66068879 E-mail: ets@ets-bzt.com.tw

Registration number: W6M20707-8347-C-1
FCC ID: IXVTF-4311R

TABLE OF CONTENTS

1 GENERAL INFORMATION	2
1.1 NOTES	2
1.2 TESTING LABORATORY	3
1.2.1 Location	3
1.2.2 Details of accreditation status	3
1.3 DETAILS OF APPROVAL HOLDER	3
1.4 APPLICATION DETAILS	4
1.5 TEST ITEM	4
1.6 TEST STANDARDS	5
2 TECHNICAL TEST	5
2.1 SUMMARY OF TEST RESULTS	5
2.2 TEST ENVIRONMENT	5
2.3 TEST MODE	5
2.4 TEST EQUIPMENT UTILIZED	6
2.5 GENERAL TEST PROCEDURE	8
3 TEST RESULTS (ENCLOSURE)	9
3.1 TRANSMISSION REQUIREMENTS	10
3.1.1 Limit of Transmission Time	10
3.1.2 Active Time	10
3.2 OUTPUT POWER (FIELD STRENGTH)	11
3.3 OUT OF BAND RADIATED EMISSIONS	12
3.4 TRANSMITTER RADIATED EMISSIONS IN RESTRICTED BANDS	13
3.5 SPURIOUS EMISSION RADIATED, TRANSMITTER	14
3.6 CHANNEL BANDWIDTH	16
3.7 ANTENNA REQUIREMENT	17
3.8 DUTY CYCLE	18
3.9 CONDUCTED MEASUREMENT AT (AC) POWER LINE	19

Registration number: W6M20707-8347-C-1

FCC ID: IXVTF-4311R

1 General Information

1.1 Notes

The purpose of conformity testing is to increase the probability of adherence to the essential requirements or conformity specifications, as appropriate.

The complexity of the technical specifications, however, means that full and thorough testing is impractical for both technical and economic reasons.

Furthermore, there is no guarantee that a test sample which has Passed all the relevant tests conforms to a specification.

Neither is there any guarantee that such a test sample will interwork with other genuinely open systems. The existence of the tests nevertheless provides the confidence that the test sample possesses the qualities as maintained and that its performance generally conforms to representative cases of communications equipment.

The test results of this test report relate exclusively to the item tested as specified in 1.5.

The test report may only be reproduced or published in full.

Reproduction or publication of extracts from the report requires the prior written approval of the ETS Product Service (Taiwan) Co., Ltd.

Tester:

July 30, 2007

Jay Chaing

Date

ETS-Lab.

Name

Signature

Technical responsibility for area of testing:

July 30, 2007

Steven Chuang

Date

ETS

Name

Signature

Registration number: W6M20707-8347-C-1

FCC ID: IXVTF-4311R

1.2 Testing laboratory

1.2.1 Location

OATS

No.5-1, Shuang Sing Village,
LiShuei Rd., Wanli Township,
Taipei County 207, Taiwan (R.O.C.)
Company

ETS Product Service (Taiwan) Co., Ltd.
6F, NO. 58, LANE 188, RUEY-KUANG RD.
NEIHU, TAIPEI 114, TAIWAN R.O.C.
Tel : 886-2-66068877
Fax : 886-2-66068879

1.2.2 Details of accreditation status

Accredited testing laboratory

A2LA accredited number: 2300.01

FCC filed test laboratory Reg. No. 930600

Industry Canada filed test laboratory Reg. No. IC 5679

PTCRB Accredited Type Certification Test House

Town: ./.
Country: ./.
Telephone: ./.
Fax: ./.

1.3 Details of approval holder

Name	:	AutoMicro Technology Inc.
Street	:	No.6, Alley 8, Lane 214 Pao-Ping Road Young-Ho City
Town	:	Taipei Hsien
Country	:	Taiwan, R.O.C
Telephone	:	+886-2-2926-2034
Fax	:	+886-2-2928-7310

Registration number: W6M20707-8347-C-1

FCC ID: IXVTF-4311R

1.4 Application details

Date of receipt of test item : July 23, 2007
Date of test : from July 24, 2007 to July 27, 2007

1.5 Test item

Description of test item : Remote Control
Type identification : TXF-4311R
Brand name : ./
Multi-listing model number : Test sample without serial number
Transmitting frequency : 433.92 MHz
Operation mode : simplex
Voltage supply : 12 VDC (battery)

(If the device is using battery, please check if the device is tested under fresh battery condition.)

Highest clock frequency : 433.9 MHz
Antenna type : loop antenna

Photos : see Annex

Manufacturer (if applicable)

Name : ./
Street : ./
Town : ./
Country : ./

Additional information : ./

Registration number: W6M20707-8347-C-1

FCC ID: IXVTF-4311R

1.6 Test standards

Technical standard : FCC RULES PART 15 SUBPART B / SUBPART C § 15.231 (a) (2007-05)

2 Technical test

2.1 Summary of test results

No deviations from the technical specification(s) were ascertained in the course of the tests performed.

or

The deviations as specified in 3 were ascertained in the course of the tests performed.

2.2 Test environment

Temperature : 23 °C

Relative humidity content : 20 ... 75 %

Air pressure : 86 ... 103 kPa

Details of power supply : 12 VDC (battery)

2.3 Test Mode

This EUT is the portable device. So the EUT was tested on three different axes. Please see assessment test results as section 3 of this test report.

Registration number: W6M20707-8347-C-1
FCC ID: IXVTF-4311R

2.4 Test equipment utilized

No.	Test equipment	Type	Serial No.	Manufacturer	Cal. Date	Next Cal. Date
ETSTW-CE 001	EMI TEST RECEIVER	ESHS10	842121/013	R&S	2006/10/16	2007/10/15
ETSTW-CE 002	PREREULATOR MODE DC POWER SUPPLY	None	None		Function Test	
ETSTW-CE 003	AC POWER SOURCE	APS-9102	D161137	GW	Function Test	
ETSTW-CE 004	ZWEILEITER-V- NETZNACHBILDUNG TWO-LINE V-NETWORK	ESH3-Z5	840731/011	R&S	2006/10/16	2007/10/15
ETSTW-CE 005	Line-Impedance Stabilisation Network	NNBM 8126D	137	Schwarzbeck	2006/10/16	2007/10/15
ETSTW-CE 006	IMPULSBEGRENZER PULSE LIMITER	ESH3-Z2	100226	R&S	In House Certificate	
ETSTW-CE 008	ABSORBING CLAMP	MDS 21	3469	Schwarzbeck	2005/10/24	2007/10/23
ETSTW-CE 009	TEMP.&HUMIDITY CHAMBER	GTH-225-40-1P-U	MAA0305-009	GIANT FORCE	2006/8/17	2007/8/16
ETSTW-CE 013	CISPR 22 TWO BALANCED TELECOM PAIRS IMPEDANCE STABILIZATION NETWORK	FCC-TLISN-T4-02	20242	FCC	2005/12/8	2007/12/7
ETSTW-CE 014	CISPR 22 TWO BALANCED TELECOM PAIRS IMPEDANCE STABILIZATION NETWORK	FCC-TLISN-T2-02	20241	FCC	2005/12/7	2007/12/6
ETSTW-CE 015	CISPR 22 TWO BALANCED TELECOM PAIRS IMPEDANCE STABILIZATION NETWORK	FCC-TLISN-T8-02	20307	FCC	2006/11/7	2008/11/6
ETSTW-CE 016	TWO-LINE V-NETWORK	ENV216	100050	R&S	2006/11/21	2007/11/20
ETSTW-RE 002	Function Generator	33220A	MY43004982	Agilent	2005/10/14	2007/10/13
ETSTW-RE 003	EMI TEST RECEIVER	ESI 26	831438/001	R&S	2006/10/20	2007/10/19
ETSTW-RE 004	EMI TEST RECEIVER	ESI 40	832427/004	R&S	2006/10/30	2007/10/29
ETSTW-RE 005	EMI TEST RECEIVER	ESVS10	843207/020	R&S	2006/10/12	2007/10/11
ETSTW-RE 010	PROGRAMMABLE LINEAR POWER SUPPLY	LPS-305	30503070181	MOTECH	Function Test	
ETSTW-RE 011	PROGRAMMABLE LINEAR POWER SUPPLY	LPS-305	30503070165	MOTECH	Function Test	
ETSTW-RE 017	Log-Periodic Antenna	HL025	352886/001	R&S	2006/5/4	2008/5/3
ETSTW-RE 018	MICROWAVE HORN ANTENNA	AT4560	27212	AR	2004/11/8	2007/11/7
ETSTW-RE 020	MICROWAVE HORN ANTENNA	AT4002A	306915	AR	Function Test	
ETSTW-RE 021	SWEEP GENERATOR	SWM05	835130/010	R&S	2006/10/11	2007/10/10
ETSTW-RE 027	Passive Loop Antenna	6512	00034563	EMCO	In House Certificate	
ETSTW-RE 028	Log-Periodic DipoleArray Antenna	3148	34429	EMCO	2006/5/26	2008/5/25
ETSTW-RE 029	Biconical Antenna	3109	33524	EMCO	2006/5/26	2008/5/25
ETSTW-RE 030	Double-Ridged Guide Horn Antenna	3117	00035224	EMCO	2006/5/3	2008/5/2
ETSTW-RE 032	Millivoltmeter	URV 55	849086/013	R&S	2006/10/11	2007/10/10
ETSTW-RE 034	Power Sensor	URV5-Z4	839313/006	R&S	2005/10/17	2007/10/16
ETSTW-RE 042	Biconical Antenna	HK116	100172	R&S	2007/1/11	2009/1/10
ETSTW-RE 043	Log-Periodic Dipole Antenna	HL223	100166	R&S	2006/5/8	2008/5/7

Registration number: W6M20707-8347-C-1

FCC ID: IXVTFX-4311R

ETSTW-RE 044	Log-Periodic Antenna	HL050	100094	R&S	2006/5/29	2008/5/28
ETSTW-RE 048	Triple Loop Antenna	HXYZ 9170	HXYZ 9170-134	Schwarzbeck	2005/3/22	2008/3/21
ETSTW-RE 049	TRILOG Super Broadband test Antenna	VULB 9160	9160-3185	Schwarzbeck	2007/5/02	2009/5/01
ETSTW-RE 055	SPECTRUM ANALYZER	FSU-26	200074	R&S	2007/7/16	2008/7/15
ETSTW-RE 064	Bluetooth Test Set	MT8852B-042	6K00005709	Anritsu	Function Test	

Registration number: W6M20707-8347-C-1

FCC ID: IXVTF-4311R

2.5 General Test Procedure

POWER LINE CONDUCTED INTERFERENCE: The procedure used was ANSI STANDARD C63.4-2003 5.2 using a 50 μ H LISN (if necessary). Both lines were observed. The bandwidth of the spectrum analyzer was 10 kHz with an appropriate sweep speed.

RADIATION INTERFERENCE: The test procedure used was according to ANSI STANDARD C63.4-2003 6.4 using a spectrum analyzer. The bandwidth of the spectrum analyzer was 100 kHz with an appropriate sweep speed. The analyzer was calibrated in dB above a microvolt at the output of the antenna. The resolution bandwidth was the 100 kHz and the video bandwidth was 300 kHz.

FORMULA OF CONVERSION FACTORS: The Field Strength at 3m was established by adding the meter reading of the spectrum analyzer (which is set to read in units of dB μ V) to the antenna correction factor supplied by the antenna manufacturer. The antenna correction factors are stated in terms of dB.

Example:

Freq (MHz)	METER READING + ACF + CABLE LOSS (to the receiver) = FS
33	20 dB μ V + 10.36 dB/m + 6 dB = 36.36 dB μ V/m @3m

ANSI STANDARD C63.4-2003 6.2.1 MEASUREMENT PROCEDURES: The UUT was placed on a table 80 cm high and with dimensions of 1m by 1.5m (non metallic table). The UUT was placed in the center of the table. The table used for radiated measurements is capable of continuous rotation. The spectrum was scanned from 30 MHz to 10th harmonic of the fundamental.

Peak readings were taken in three (3) orthogonal planes and the highest readings.

Measurements were made by ETS Product Service (Taiwan) Co., Ltd. at the registered open field test site located at. The Registration Number: **930600**

When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical planes.

Registration number: W6M20707-8347-C-1

FCC ID: IXVTF-4311R

3 Test results (enclosure)

 1st test test after modification production test

TEST CASE	Para. Number	Required	Test passed	Test failed
Transmission Requirements	FCC 15.231(a)	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
Radiated Emission	FCC 15.231(b)	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
Bandwidth of Emission	FCC 15.231(c)	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
Frequency Tolerance	FCC 15.231(d)	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
Period Alternate Field Strength Requirements	FCC 15.231(e)	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
Antenna Requirement	FCC 15.203	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
Conducted Measurement at (AC) Power Line	FCC 15.207	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>

The follows is intended to leave blank.

Registration number: W6M20707-8347-C-1

FCC ID: IXVTF-4311R

3.1 Transmission Requirements

FCC 15.231(a)

3.1.1 Limit of Transmission Time

- According to 15.231(a)(1), a manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.
- According to 15.231(a)(2), a transmitter activated automatically shall cease transmission within 5 seconds after activation.

3.1.2 Active Time

- This manually operated transmitter employs a switch that automatically deactivate the transmitter within 905.448 ms of being released.
- This transmitter is operated by automatic activation and active will cease transmission in ms after activation..

Explanation: See attached appendix

Test equipment used : ETSTW-RE 003 ETSTW-RE 004 ETSTW-RE 028 ETSTW-RE 029
ETSTW-RE 042 ETSTW-RE 043

Registration number: W6M20707-8347-C-1

FCC ID: IXVTXF-4311R

3.2 Output Power (Field Strength)

Model: TXF-4311R Date: 2007/7/26
 Mode: Temperture: 26 °C Engineer: Derek
 Polarization: Vertical Humidity: 60 %

Frequency (MHz)	Reading Peak	Factor (dB)		Result @3m Peak Ave.		Limit @3m Peak Ave.		Margin (dB)	Table Degree (Deg.)	Ant. High (m)	Note
		Corr.	Duty	Peak	Ave.	Peak	Ave.				
433.871	45.9255	18.57	4.12	64.5	68.62	84.92	80.8	-12.18	30	140	

Polarization: Horizontal

Frequency (MHz)	Reading Peak	Factor (dB)		Result @3m Peak Ave.		Limit @3m Peak Ave.		Margin (dB)	Table Degree (Deg.)	Ant. High (m)	Note
		Corr.	Duty	Peak	Ave.	Peak	Ave.				
433.867	64.6856	18.57	0.00	83.26	83.26	84.92	80.8	2.46	30	126	
433.867	60.5656	18.57	0.00	79.14	79.14	80.8	80.8	-1.66	30	126	

Limit 15.231(b)

Fundamental Frequency (MHz)	Field strength of fundamental, limit µV/m
40.66 – 40.70	2,250
70 – 130	1,250
130 – 174	1,250 to 3,750
174 – 260	3,750
260 – 470	3,750 to 12,500** (433.92 MHz: 80.8 dBµV/m = 10,965 µV/m)
Above 470	12,500

** linear interpolation

Explanation: see attached diagrams

Test equipment used: ETSTW-RE 003 ETSTW-RE 004 ETSTW-RE 028 ETSTW-RE 029
 ETSTW-RE 042 ETSTW-RE 043

Registration number: W6M20707-8347-C-1

FCC ID: IXVTF-4311R

3.3 Out of Band Radiated Emissions

FCC Rule: 15.231(b) , 15.35

For out of band emissions that are close to or that exceed the 20 dB attenuation requirement described in the specification, radiated measurements were performed at a 3 m separation distance to determine whether these emissions complied with the general radiated emission requirement.

Limits:

For frequencies below 1GHz :

Max permitted average Limits = Max. reading – 20 dB

80.80 dB μ V/m- 20 dB= 60.80 dB μ V/m

Guidance on Measurement of pulsed emission: 815.231 (b), §15.35(c)

“If the emission is pulsed, modify the unit for continues operation , use the settings shown above, then correct the reading by subtracting the peak-average correction factor, derived from the appropriate duty cycle calculation.” Here the correction was added to the limit instead subtracted from the reading.

Duty Cycle correction = $20 \log (\text{dwell time}/100\text{ms})$

For frequencies above 1GHz (Peak measurements).

Modified Limits for peak conform 15.35 (b) = Max Permitted average Limits + 20dB (because Peak detector is used)

80.80 dB μ V/m

For frequencies above 1GHz (Average measurements).

Correction factor conform 15.35 (c) (Average measurements)

Duty cycle correction :

Max. reading – 20 dB – duty cycle correction

No duty cycle correction was added to the reading:

80.80 dB μ V/m- 20 dB= 60.80 dB μ V/m

Explanation: See attached diagrams.

Test equipment used: ETSTW-RE 003 ETSTW-RE 004 ETSTW-RE 017 ETSTW-RE 028

ETSTW-RE 029 ETSTW-RE 030 ETSTW-RE 042 ETSTW-RE 043

ETSTW-RE 044

Registration number: W6M20707-8347-C-1

FCC ID: IXVTF-4311R

3.4 Transmitter Radiated Emissions in restricted Bands

FCC Rules: 15.231 (b), 15.205, 15.209, 15.35

Radiated emission measurements were performed from 30 MHz to 8000 MHz.

For radiated emission tests, the analyzer setting was as follows:

RES BW VID BW

Frequency <1 GHz 100 kHz 100 kHz (Peak measurements)

Frequency >1 GHz 1 MHz 1 MHz (Peak measurements)

1 MHz 1 MHz (Average measurements)

Limits:

For frequencies below 1GHz :

Frequency of Emission (MHz)	Field strength (microvolts/meter)	Field Strength (dB microvolts/meter)
30 – 88	100	40.0
88 – 216	150	43.5
216 – 960	200	46.0
Above 960	500	54.0

For frequencies above 1GHz (Average measurements).

Guidance on Measurement of pulsed emission:

“If the emission is pulsed, modify the unit for continues operation , use the settings shown above, then correct the reading by subtracting the peak-average correction factor, derived from the appropriate duty cycle calculation.

For frequencies above 1GHz (Average measurements).

The correction factor, based on the channel dwell time in a 100 ms period, may be mathematically applied to a measurement made with an average detector, to further reduce the value.

Duty cycle correction = $20 \log (\text{dwell time}/100\text{ms})$

No duty cycle correction was added to the reading

Modified Limits for peak conform 15.35 (b) = Max Permitted average Limits + 20dB (because Peak detector is used)

Above 960 MHz

For mode DSSS CW: $54 \text{ dB}\mu\text{V/m} + 20 \text{ dB} = 74 \text{ dB}\mu\text{V/m}$

Explanation: See attached diagrams.

Registration number: W6M20707-8347-C-1

FCC ID: IXVTF-4311R

3.5 Spurious Emission radiated, Transmitter

Spurious emission was measured with modulation (declared by manufacturer).

The limits on the field strength of the spurious emission in the table § 15.231(b) are based on the fundamental frequency of the intentional radiator. Spurious emission shall be attenuated to the average (or alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in § 15.209, whichever limit permits a higher field strength.

In addition, radiated emission which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

SAMPLE CALCULATION OF LIMIT. All results will be updated by an automatic measuring system in accordance to point 2.3.

Calculation of test results:

Such factors like antenna correction, cable loss, external attenuation etc. are already included in the provided measurement results. This is done by using validated test software and calibrated test system according the accreditation requirements.

The peak and average spurious emission plots was measured with the average limits.

In the Table being listed the critical peak and average value an exhibit the compliance with the above calculated Limits.

Summary table with radiated data of the test plots

Model:	TXF-4311R	Date:	2007/7/26					
Mode:		Temperture:	26 °C					
Polarization:	Vertical	Humidity:	60 %					
Frequency (MHz)	Reading (dBuV) Peak	Factor (dB) Corr. Duty	Result @3m (dBuV/m) Peak Ave.	Limit @3m (dBuV/m) Peak Ave.	Margin (dB)	Table Degree (Deg.)	Ant. High (m)	Note
868.1363	12.2984	25.70 -4.12	38 33.88	74 54	20.12	30	322	

Polarization: Horizontal

Frequency (MHz)	Reading (dBuV) Peak	Factor (dB) Corr. Duty	Result @3m (dBuV/m) Peak Ave.	Limit @3m (dBuV/m) Peak Ave.	Margin (dB)	Table Degree (Deg.)	Ant. High (m)	Note
419.2385	14.1556	18.18 -4.12	32.34 28.22	74 54	25.78	85	105	
447.2946	17.145	18.87 -4.12	36.02 31.9	74 54	22.1	160	125	
868.1363	17.7884	25.70 -4.12	43.49 39.37	74 54	14.63	30	117	

Registration number: W6M20707-8347-C-1

FCC ID: IXVTXF-4311R

Polarization: Vertical

Frequency (MHz)	Reading (dBuV) Peak	Factor (dB) Corr. Duty		Result @3m (dBuV/m) Peak Ave.		Limit @3m (dBuV/m) Peak Ave.		Margin (dB)	Table Degree (Deg.)	Ant. High (m)	Note
1300.601	55.6	-11.86	-4.12	43.74	39.62	74	54	14.38	30	136	
1735.471	52.78	-10.30	-4.12	42.48	38.36	74	54	15.64	30	141	
2601.202	51.46	-7.06	-4.12	44.4	40.28	74	54	13.72	30	140	
3038.076	53.75	-6.04	-4.12	47.71	43.59	74	54	10.41	30	135	
3470.942	52.3	-5.35	-4.12	46.95	42.83	74	54	11.17	30	138	
4769.539	44.8	-2.66	-4.12	42.14	38.02	74	54	15.98	30	142	

Polarization: Horizontal

Frequency (MHz)	Reading (dBuV) Peak	Factor (dB) Corr. Duty		Result @3m (dBuV/m) Peak Ave.		Limit @3m (dBuV/m) Peak Ave.		Margin (dB)	Table Degree (Deg.)	Ant. High (m)	Note
4336.673	47.2	-4.06	-4.12	43.14	39.02	74	54	14.98	30	129	
4769.539	53.32	-2.66	-4.12	50.66	46.54	74	54	7.46	30	130	
5202.405	48.05	-1.40	-4.12	46.65	42.53	74	54	11.47	30	127	

Note

- 1. Correction Factor = Antenna factor + Cable loss - Preamplifier**
- 2. The formula of measured value as: Test Result = Reading + Correction Factor**
- 3. Detector function in the form : PK = Peak, QP = Quasi Peak, AV = Average**
- 4. All not in the table noted test results are more than 20 dB below the relevant limits.**

All other not noted test plots do not contain significant test results in relation to the limits
 Test results: The unit meet the FCC requirements.

Explanation: See attached diagrams.

Test equipment used: ETSTW-RE 003 ETSTW-RE 004 ETSTW-RE 017 ETSTW-RE 028

ETSTW-RE 029 ETSTW-RE 030 ETSTW-RE 042 ETSTW-RE 043

ETSTW-RE 044

Registration number: W6M20707-8347-C-1

FCC ID: IXVTF-4311R

3.6 Channel Bandwidth

Measurement of Necessary Bandwidth (BN)

Used frequency	Bandwidth	Limit
433.927 MHz	120.993 kHz	1.0828 MHz

Explanation: The bandwidth fulfills the requirements of FCC § 15.231,
see attached diagrams

Limits:

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

Test equipment used: ETSTW-RE 003, ETSTW-RE 004, ETSTW-RE 028, ETSTW-RE 029
ETSTW-RE 042 ETSTW-RE 043

Registration number: W6M20707-8347-C-1

FCC ID: IXVTF-4311R

3.7 Antenna requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

Explanation: This loop antenna is integral antenna which passes antenna requirement.

The equipment meets the requirements	yes <input checked="" type="checkbox"/>	no <input type="checkbox"/>
--------------------------------------	--	--------------------------------

Registration number: W6M20707-8347-C-1

FCC ID: IXVTF-4311R

3.8 Duty Cycle

The correction factor, based on the channel dwell time in a 100ms period, may be mathematically applied to a measurement made with an average detector, to further reduce the measured value.

Average Reading = Peak Reading (dBuV/m) + Duty Cycle Correction

Duty Cycle Correction = $20 \log (\text{Cycle})$

In order to determine the Duty Cycle, the EUT is measured as:

Testing Mode	T period (ms)	T on (ms)	Duty Cycle	Duty Cycle Correction $20 * \log(\text{Duty Cycle})$
Mode	100	62.203	0.62203	-4.124

Explanation: see attached diagram.

Test equipment used: ETSTW-RE 003 ETSTW-RE 004 ETSTW-RE 028 ETSTW-RE 029
ETSTW-RE 042 ETSTW-RE 043

Registration number: W6M20707-8347-C-1

FCC ID: IXVTF-4311R

3.9 Conducted Measurement at (AC) Power Line

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the table below with this provision shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminals.

This measurement was transacted first with instrumentation using an average and peak detector and a 10 kHz bandwidth. If the peak detector achieves a calculated level, the measurement is repeated by an instrumentation using a quasi-peak detector.

Frequency	Level	
	quasi-peak (dB μ V/m)	average (dB μ V/m)
-- kHz	--	--

Limits:

Frequency of Emission (MHz)	Conducted Limit (dB μ V)	
	Quasi Peak	Average
0.15-0.5	66 to 56	56 to 46
0.5-5	56	46
5-30	60	50

Explanation: Test is not required because the sample is using a battery.

Test equipment used: ETSTW-CE 001 ETSTW-CE 003 ETSTW-CE 004 ETSTW-CE 006

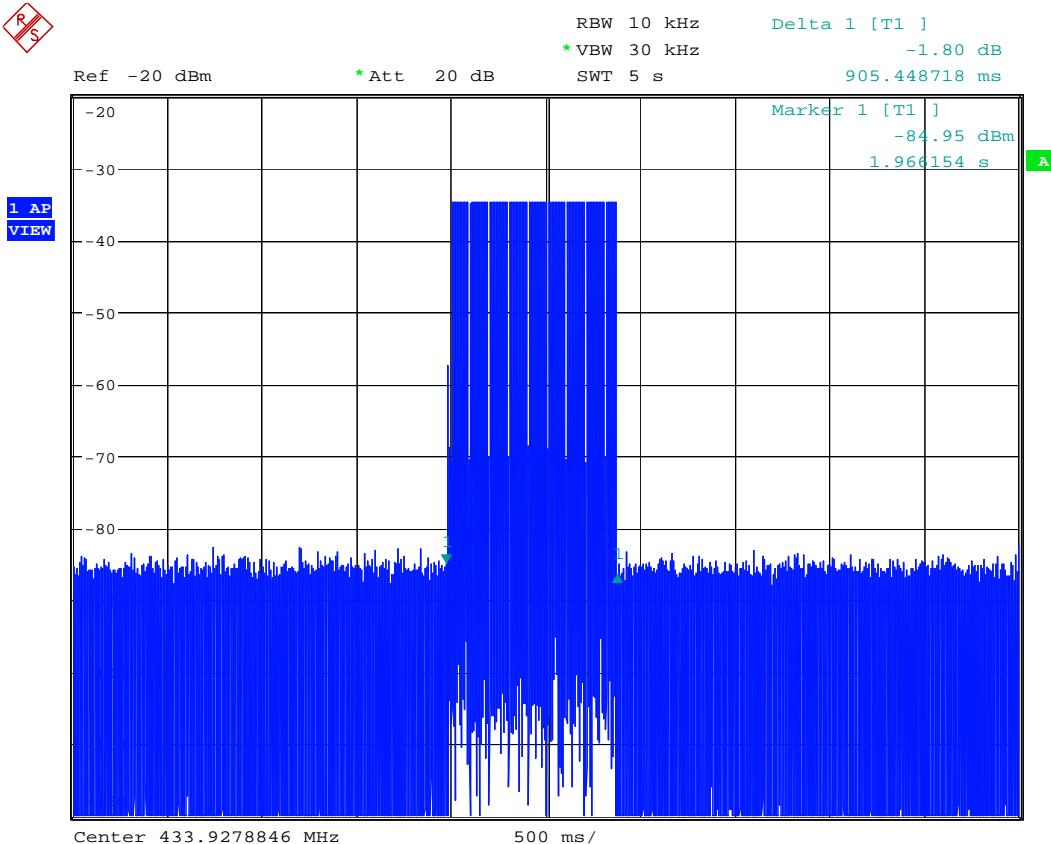
Registration number: W6M20707-8347-C-1
FCC ID: IXVTF-4311R

Appendix

A Measurement diagrams

1. Active Time
2. Output Power
3. Spurious Emissions radiated
(The measurement diagrams plots attached below are preliminary wideband scan with a peak detector for reference only. The final test results are listed on section 3.5)
4. Bandwidth

6. Duty Cycle


B Photos

1. External Photos
2. Internal Photos
3. Set Up Photos

Registration number: W6M20707-8347-C-1

FCC ID: IXVTXF-4311R

R/S

DURATION TIME

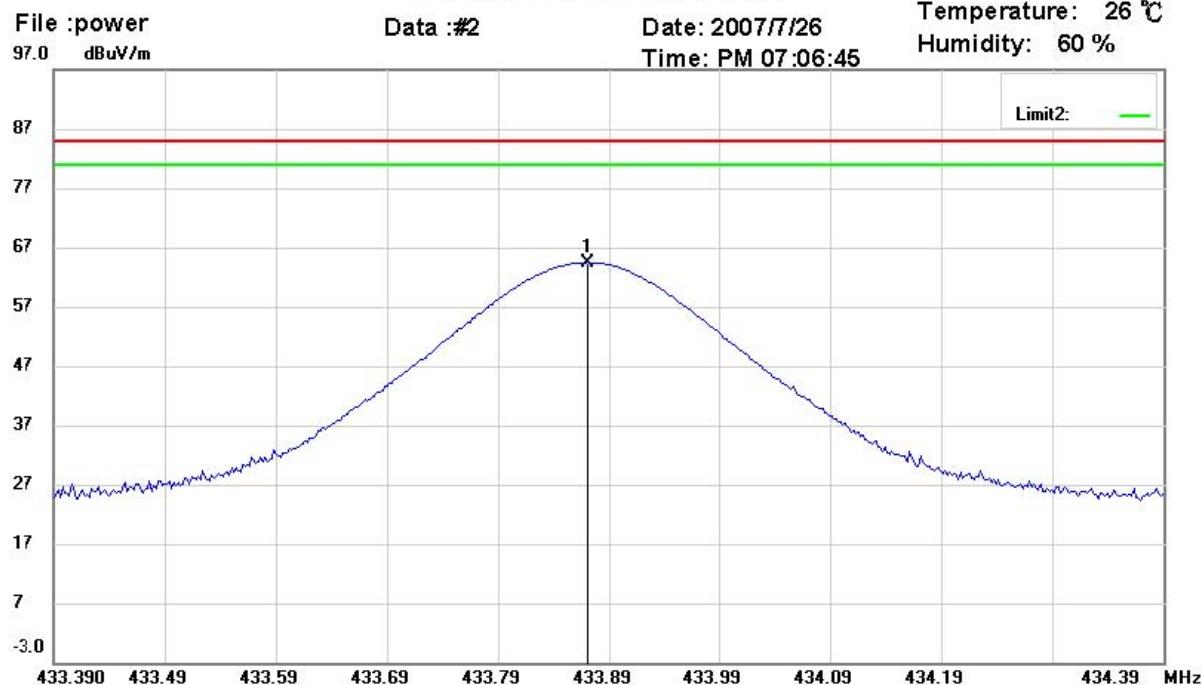
Date: 26.JUL.2007 15:53:45

Registration number: W6M20707-8347-C-1

FCC ID: IXVTXF-4311R

Radiated Emission Measurement

Data :#2


Date: 2007/7/26

Time: PM 07:06:45

Operator: Derek

Temperature: 26 °C

Humidity: 60 %

File :power
97.0 dBuV/m

Site : Chamber_01

Condition : FCC -15.231(433MHz)Power(PK)

Polarization: *Vertical*

Company : W6M20707-8347

Power : 0

EUT Model: TXF-4311R

Distance: 3m

Execute Program :

Note :

Registration number: W6M20707-8347-C-1

FCC ID: IXVTXF-4311R

Radiated Emission Measurement

Data :#1

Date: 2007/7/26

Time: PM 07:05:11

Operator: Derek

Temperature: 26 °C

Humidity: 60 %

File :power
97.0 dBuV/m

Site : Chamber_01

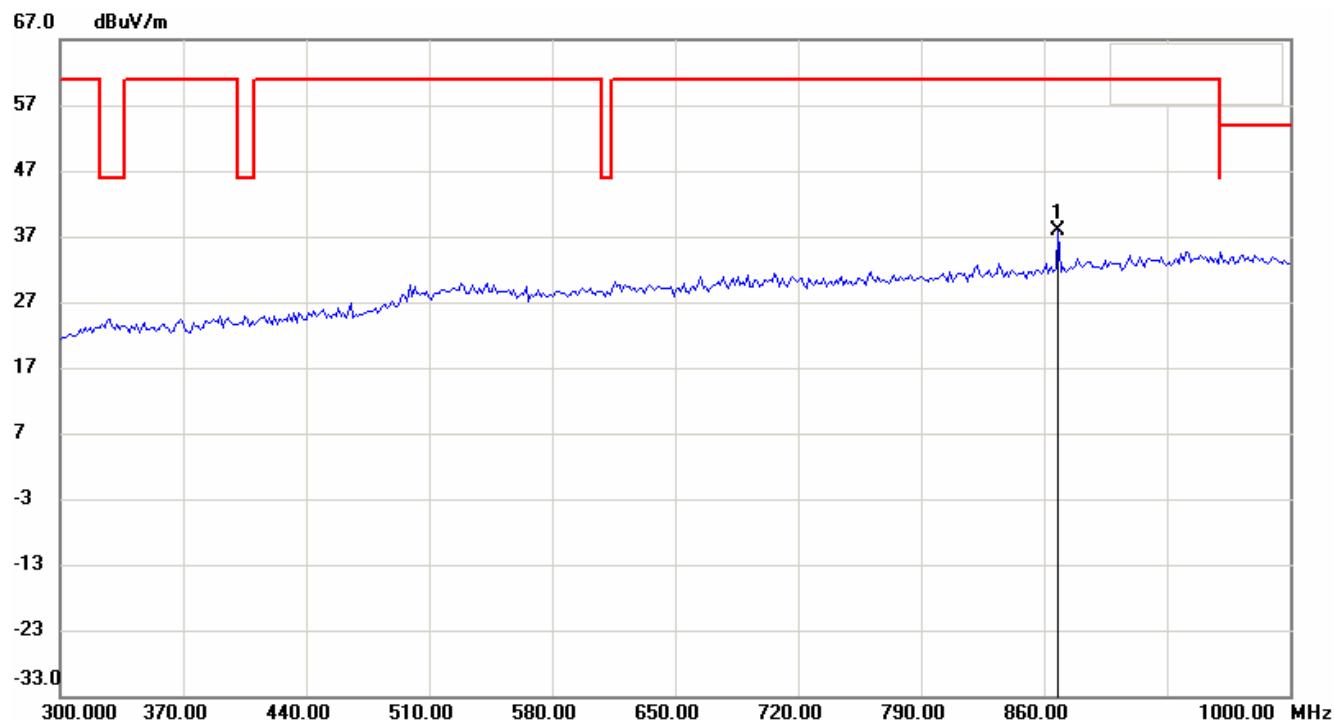
Condition : FCC -15.231(433MHz)Power(PK)

Polarization: *Horizontal*

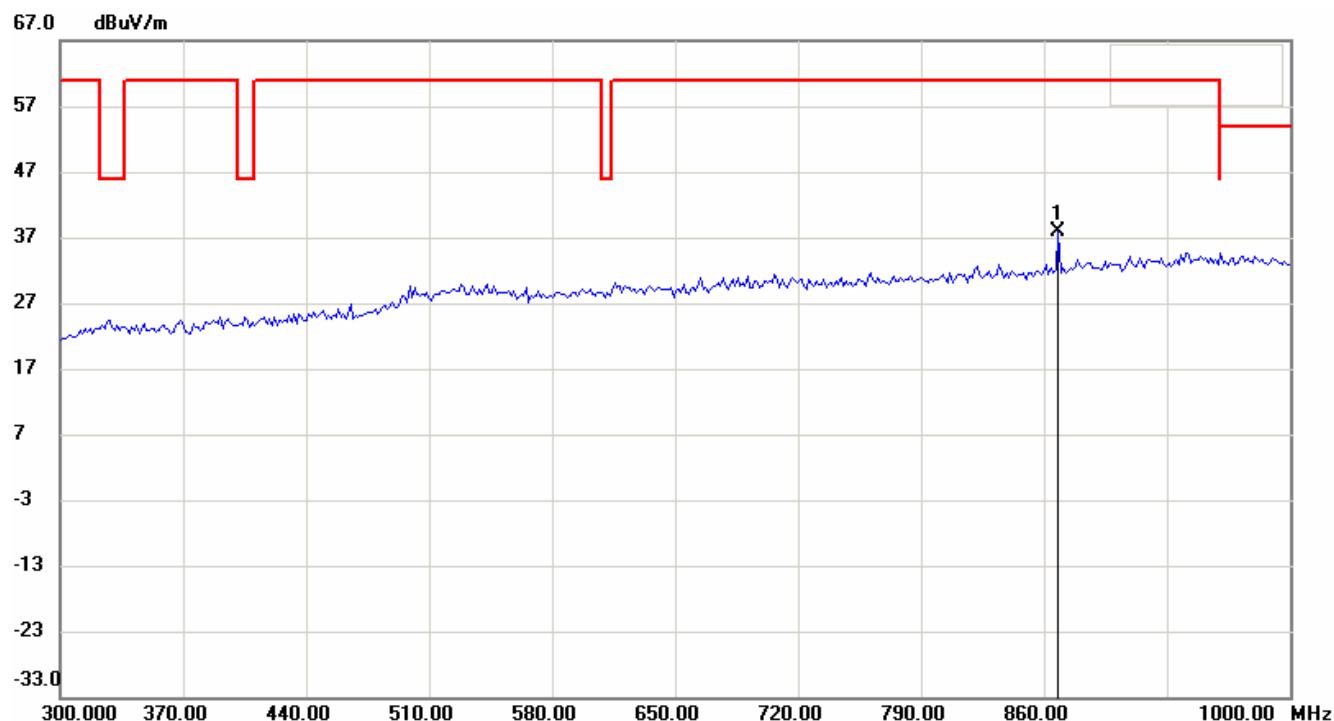
Company : W6M20707-8347

Power : 0

EUT Model: TXF-4311R

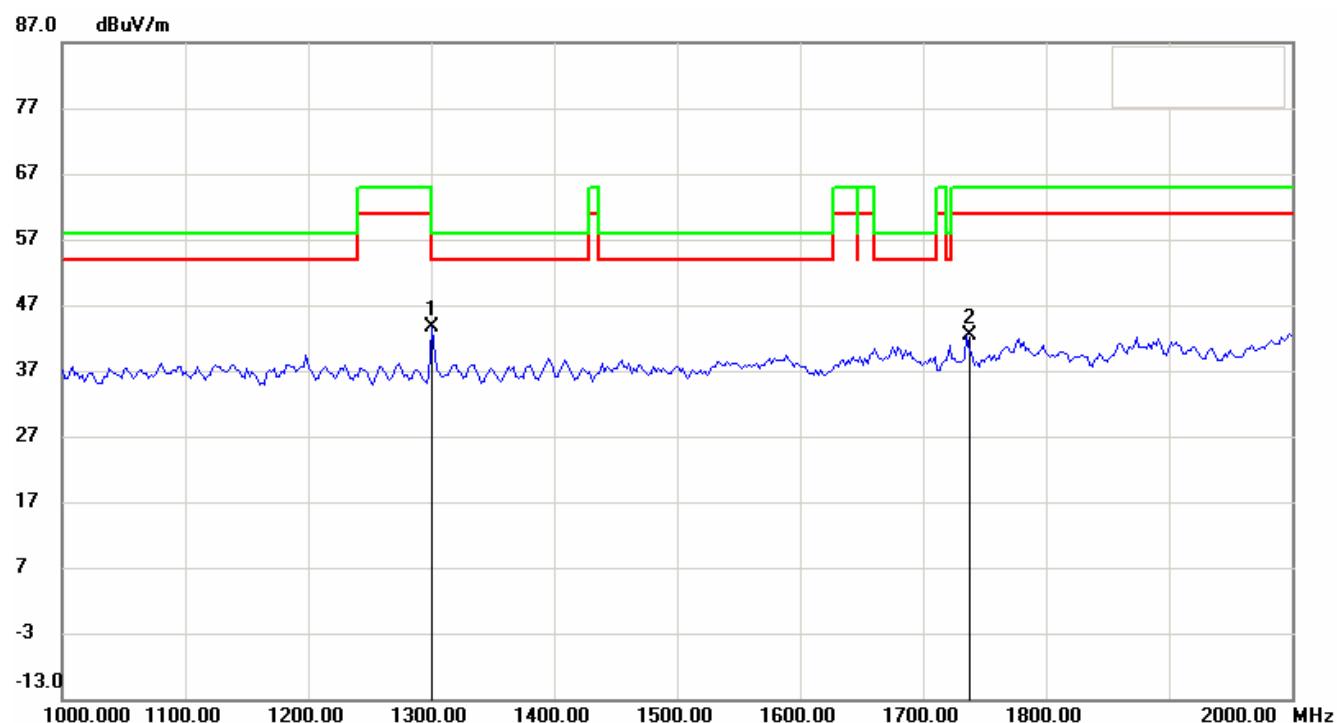

Distance: 3m

Execute Program :

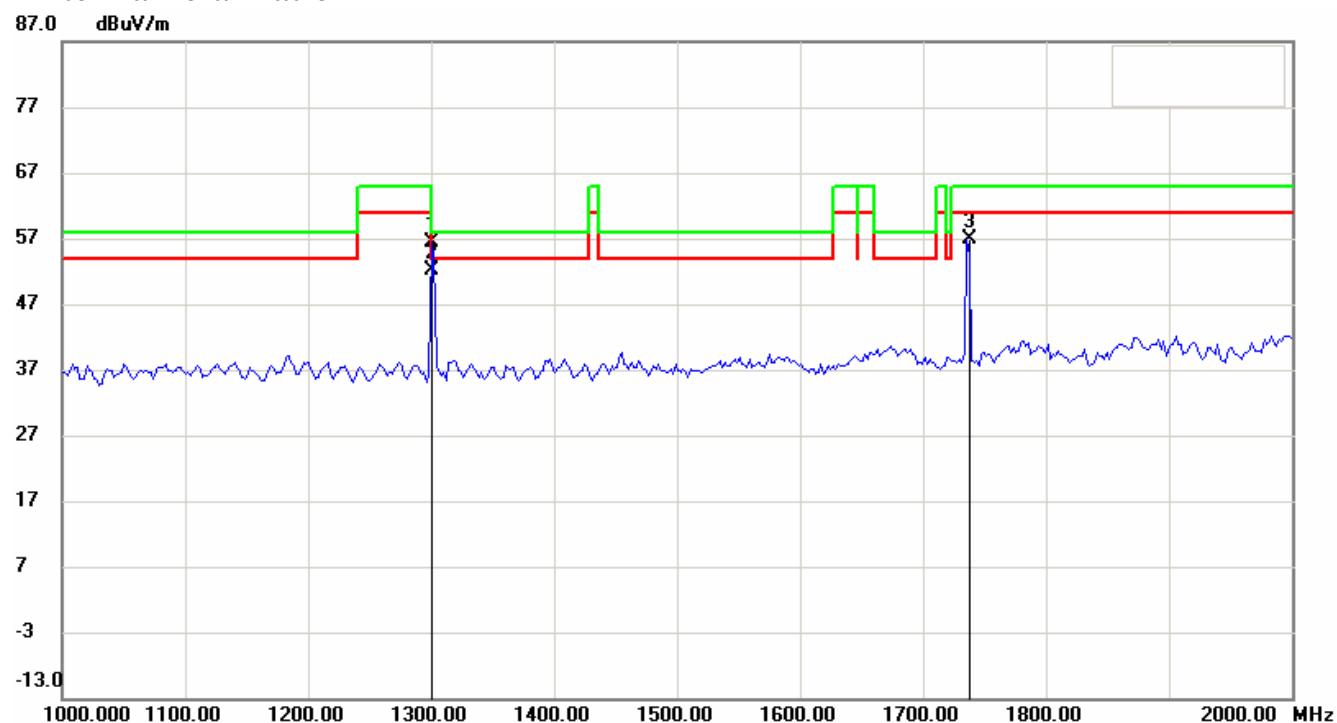

Note :

Registration number: W6M20707-8347-C-1
FCC ID: IXVTXF-4311R

Antenna Polarization V

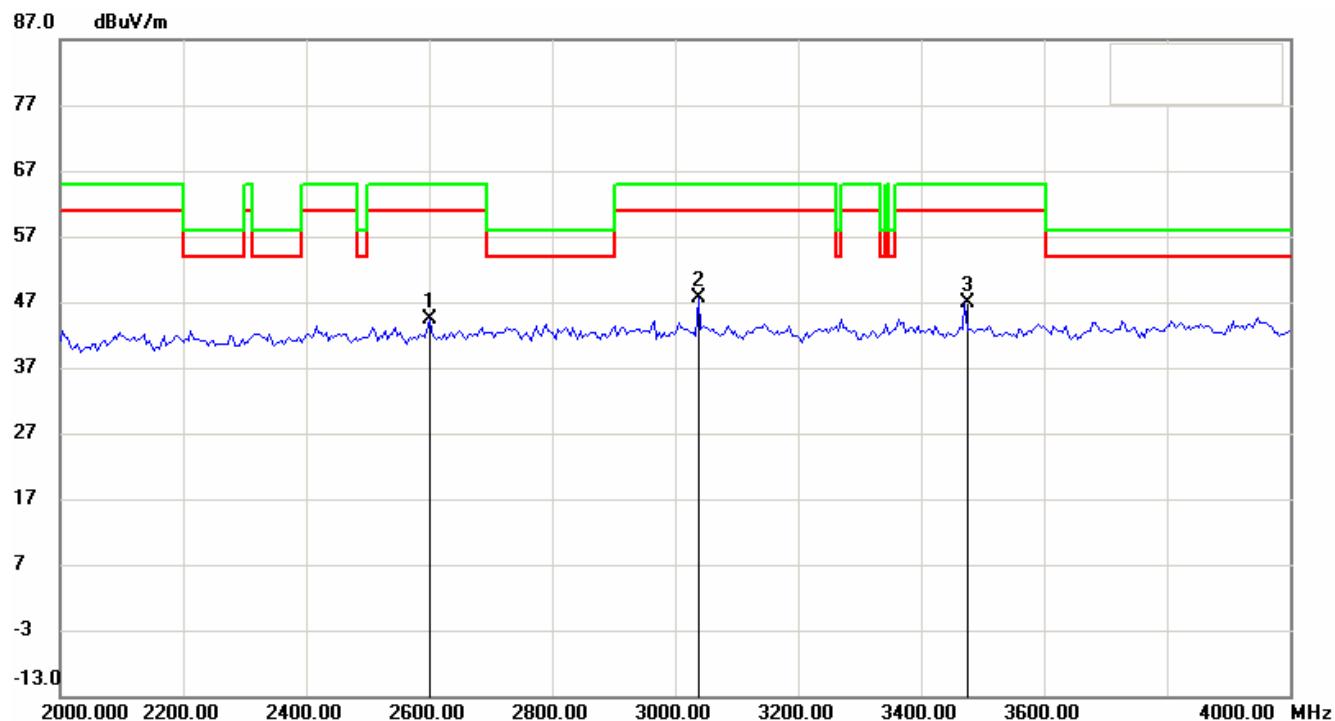


Antenna Polarization H

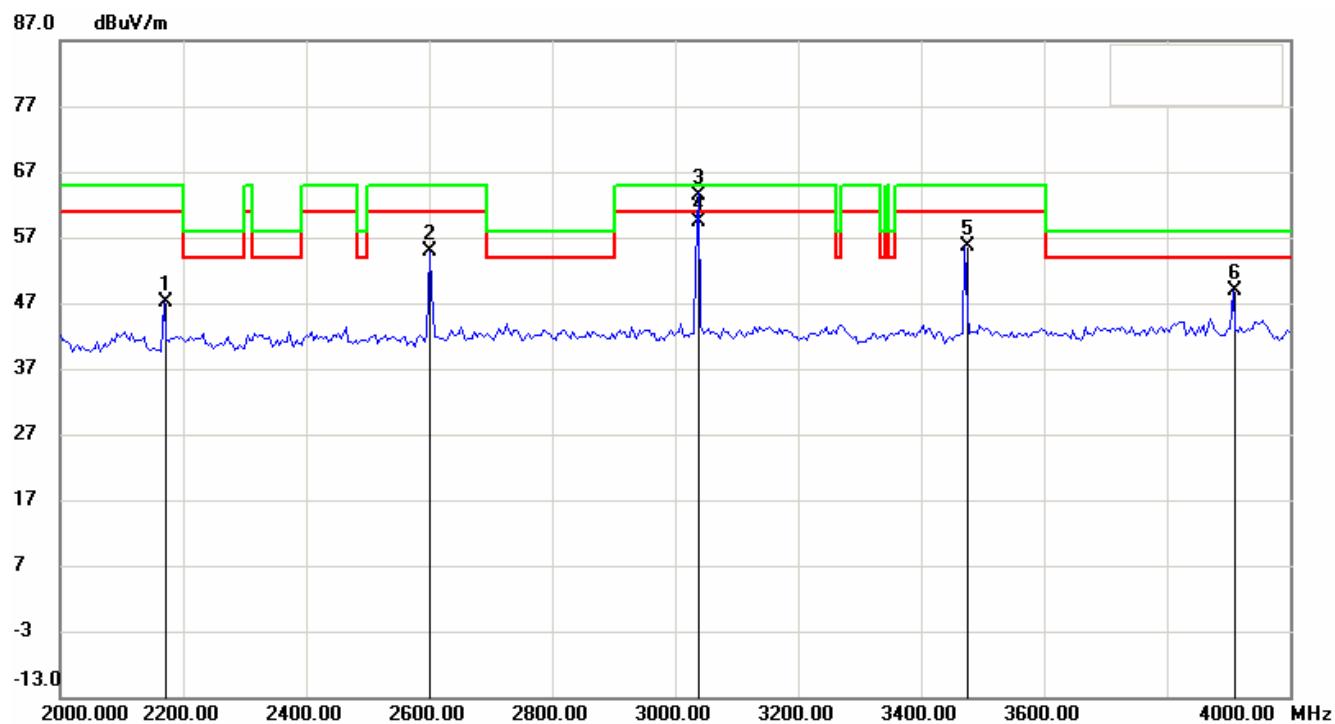


Registration number: W6M20707-8347-C-1
FCC ID: IXVTF-4311R

Antenna Polarization V

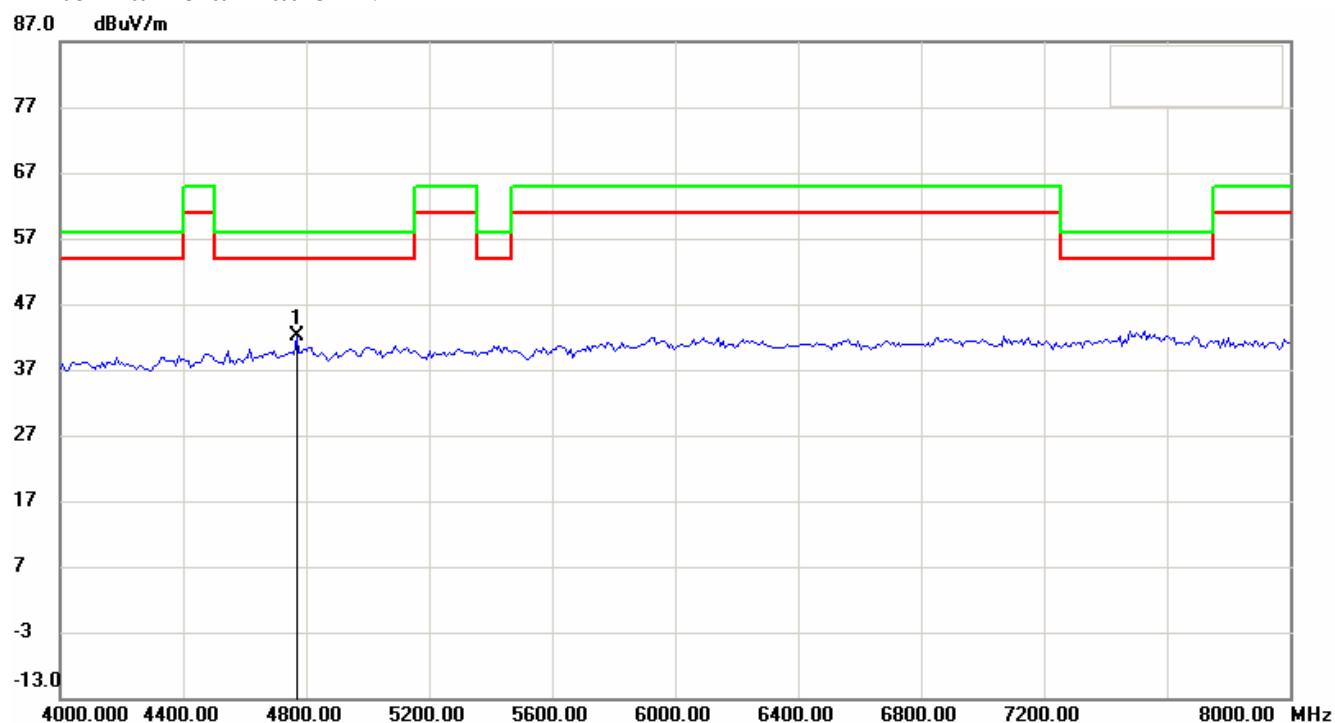


Antenna Polarization H

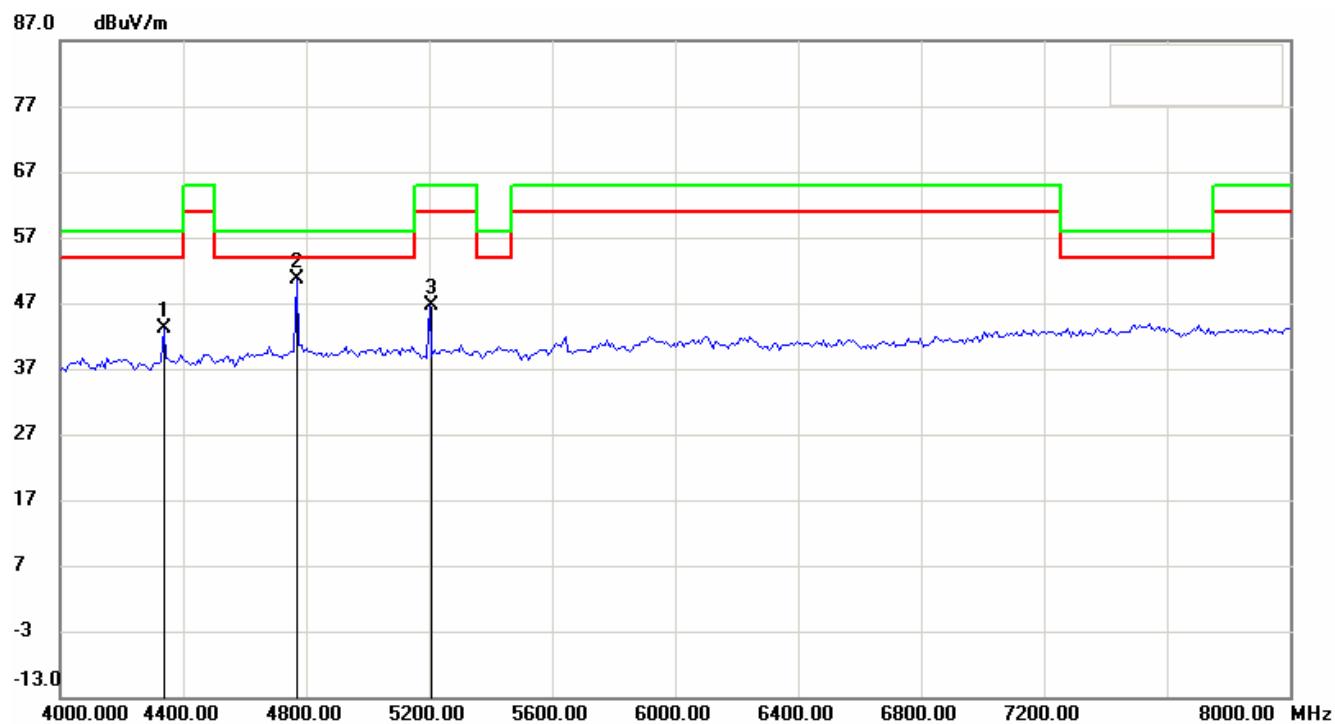


Registration number: W6M20707-8347-C-1
FCC ID: IXVTF-4311R

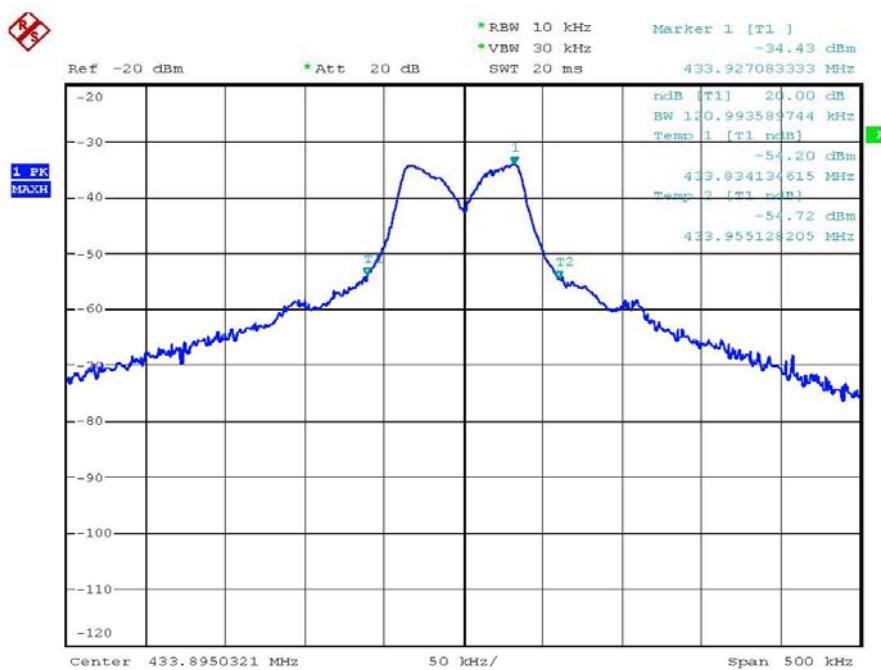
Antenna Polarization V



Antenna Polarization H

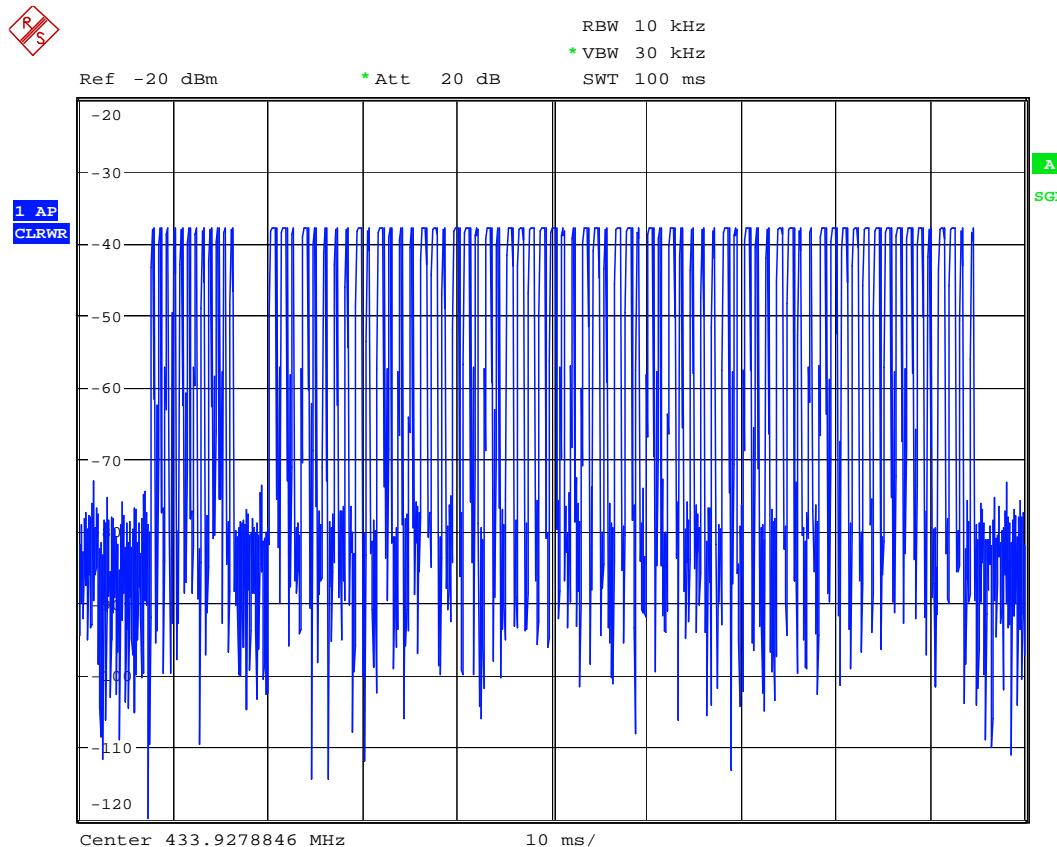


Registration number: W6M20707-8347-C-1
FCC ID: IXVTF-4311R


Antenna Polarization V

Antenna Polarization H

Registration number: W6M20707-8347-C-1
FCC ID: IXVTXF-4311R

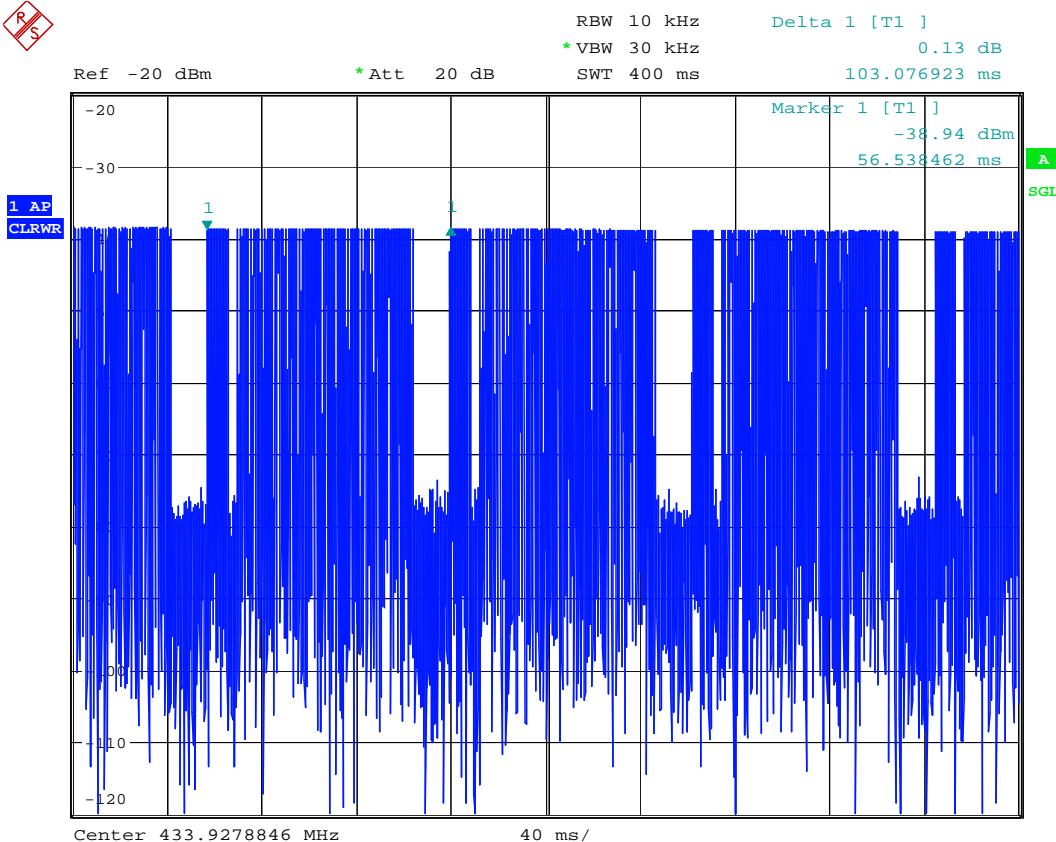


20dB BANDWIDTH
Date: 26.JUL.2007 15:56:47

Registration number: W6M20707-8347-C-1

FCC ID: IXVTXF-4311R

RS

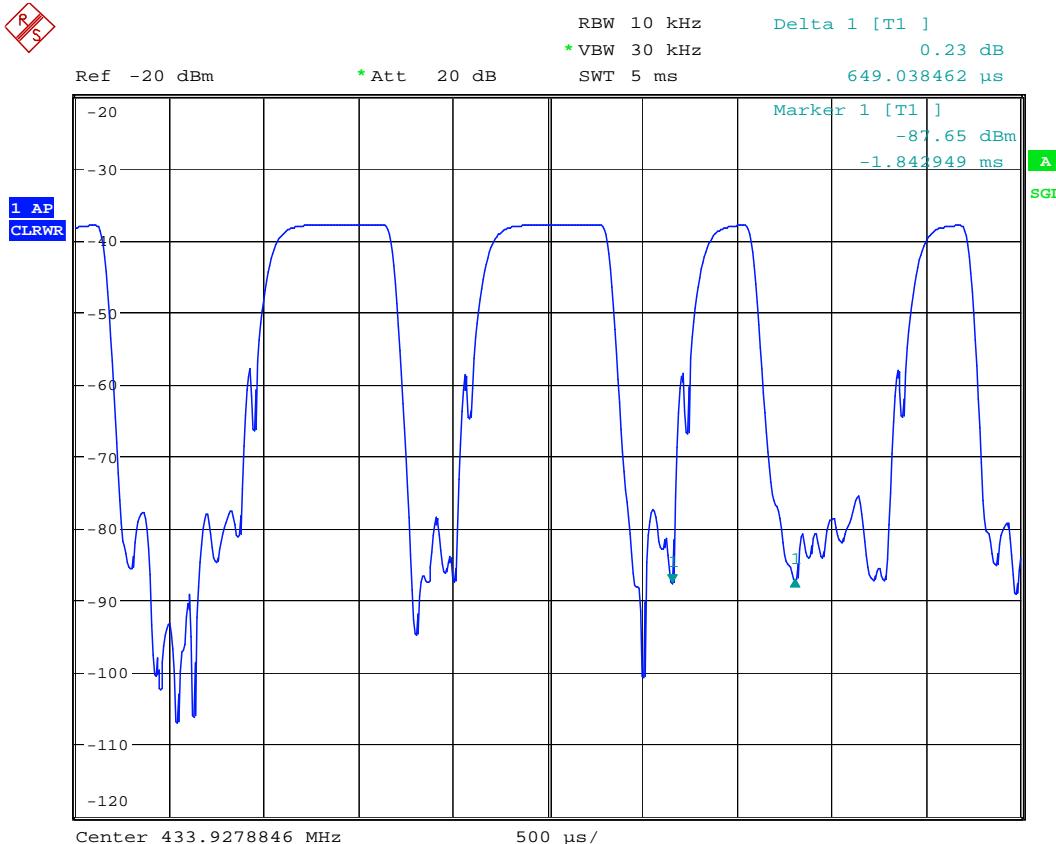

DUTY FACTOR

Date: 26.JUL.2007 15:46:22

Registration number: W6M20707-8347-C-1

FCC ID: IXVTXF-4311R

R/S

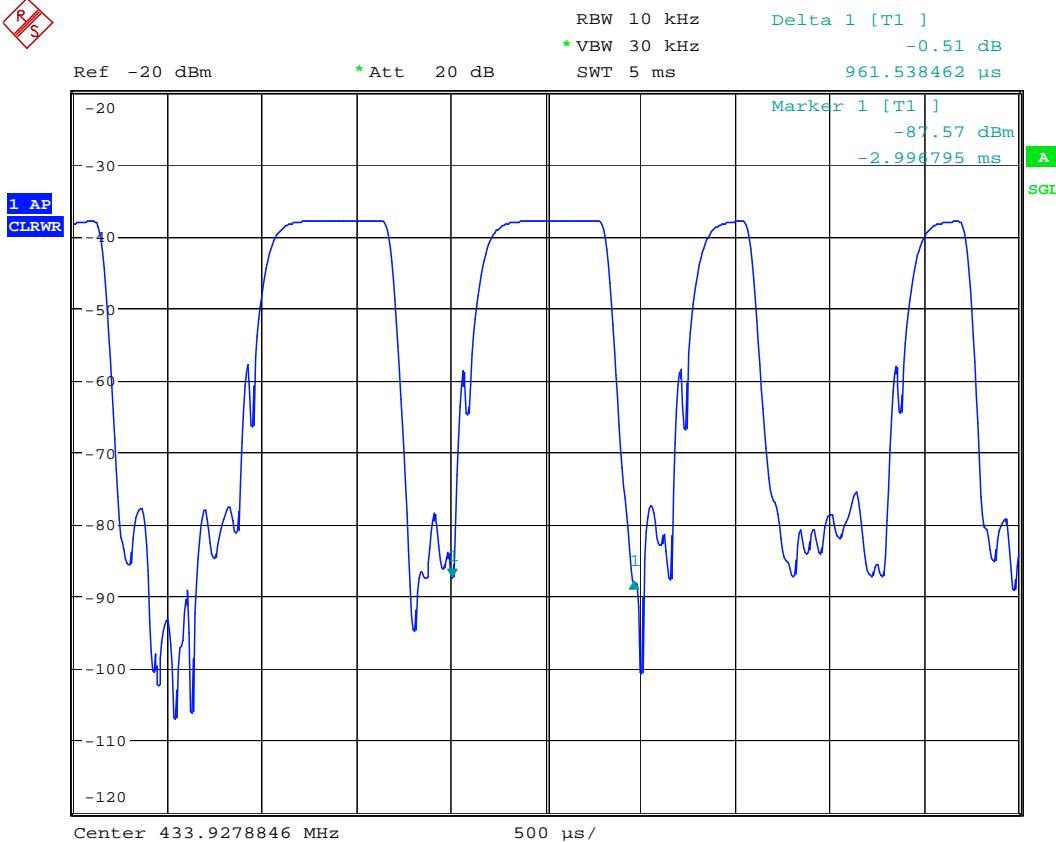


DUTY FACTOR

Date: 26.JUL.2007 15:29:51

Registration number: W6M20707-8347-C-1
FCC ID: IXVTXF-4311R

R S


DUTY FACTOR

Date: 26.JUL.2007 15:36:45

Registration number: W6M20707-8347-C-1

FCC ID: IXVTXF-4311R

R/S

DUTY FACTOR

Date: 26.JUL.2007 15:36:05