

Test Report

Prepared for: Noraxon USA, Inc

Model: NAS8001-G

Description: 800 Radio

Serial Number: N/A

FCC ID: IWC-800

To

FCC Part 1.1310

Date of Issue: April 17, 2017

On the behalf of the applicant:

Noraxon USA
15770 N Greenway Hayden Loop
100
Scottsdale, AZ 85260

Attention of:

Dave Byman, Director of Technology
Ph: (480)443-3413
E-Mail: dave.bymann@noraxon.com

Prepared By
Compliance Testing, LLC
1724 S. Nevada Way
Mesa, AZ 85204
(480) 926-3100 phone / (480) 926-3598 fax
www.compliancetesting.com
Project No: p1720003

Alex Macon
Project Test Engineer

This report may not be reproduced, except in full, without written permission from Compliance Testing
All results contained herein relate only to the sample tested

Test Report Revision History

Revision	Date	Revised By	Reason for Revision
1.0	March 28, 2017	Alex Macon	Original Document

ILAC / A2LA

Compliance Testing, LLC, has been accredited in accordance with the recognized International Standard ISO/IEC 17025:2005. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer joint ISO-ILAC-IAF Communiqué dated January 2009)

The tests results contained within this test report all fall within our scope of accreditation, unless below

Please refer to <http://www.compliantesting.com/labscope.html> for current scope of accreditation.

Testing Certificate Number: **2152.01**

FCC Site Reg. #349717

IC Site Reg. #2044A-2

Non-accredited tests contained in this report:

N/A

EUT Description

Model: NAS8001-G

Description: 800 Radio

Firmware: N/A

Software: N/A

Serial Number: N/A

Additional Information:

The EUT is intended to be incorporated into body wearable devices.

The EUT was measured by radiated means in order to gather the EIRP

Source Based Time Averaged Power Calculation

Average Power =

Tuned Frequency (MHz)	Average Power (mW)
2480	0.003mW

MPE Evaluation

This is a portable device used in Uncontrolled Exposure environment.

Test Data

Test Frequency, MHz	2480
Power, Conducted, mW (P)	0.003
Antenna Gain Isotropic	0dBi
Antenna Gain Numeric (G)	1.00
Antenna Type	F-type
Distance (R)	5 mm

This is for calculating a SAR exclusion per KDB 447498.

1) The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances* \leq 50 mm are determined by:

$[(\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm})] \cdot [\sqrt{f(\text{GHz})}] \leq 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR,²⁵ where

- $f(\text{GHz})$ is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison
- 3.0 and 7.5 are referred to as the numeric thresholds in the step 2 below

$$[(0.003 \text{ mW}) / (5 \text{ mm})] \cdot [\sqrt{2.480}]$$

$$0.0006 \cdot 1.575 = .000945$$

END OF TEST REPORT