

NVLAP Lab Code 200087-0

SUBMITTAL APPLICATION REPORT FOR FCC GRANT OF CERTIFICATION

FOR

Model: DRU-III
24,125 MHz Transmitter
Field Disturbance Monitor

FCC ID: IVQDRU-III

FOR
KUSTOM SIGNALS, INC.
9325 Pflumm
Lenexa, KS 66215-3347

Test Report Number: 080408

Authorized Signatory: *Scot D Rogers*
Scot D. Rogers

Rogers Labs, Inc.
4405 W. 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3214
Revision 1

Kustom Signals, Inc.
Model: DRU-III
Test #: 080408
Test to: FCC 15c (15.245), IC RSS-210
File: Kustom DRUIII TstRpt

FCC ID#: IVQDRU-III
SN: RE01001
Page 1 of 34
Date: April 19, 2008

ROGERS LABS, INC.

4405 West 259th Terrace
Louisburg, KS 66053
Phone / Fax (913) 837-3214

**ENGINEERING TEST REPORT
FOR
APPLICATION of
GRANT of CERTIFICATION
FOR
CFR47, PART 15C - INTENTIONAL RADIATORS
Paragraph 15.245
Field Disturbance Transmitter
For
KUSTOM SIGNALS, INC.
9325 Pflumm
Lenexa, KS 66215-3347**

**Model: DRU-III
Frequency 24,125 MHz
FCC ID# IVQDRU-III**

Test Date: April 8, 2008

Certifying Engineer:

Scot D. Rogers
ROGERS LABS, INC.
4405 West 259th Terrace
Louisburg, KS 66053
Phone: (913) 837-3214
FAX: (913) 837-3214

This report shall not be reproduced except in full, without the written approval of the laboratory.
This report must not be used by the client to claim product endorsement by NVLAP, NIST, or
any agency of the U.S. Government.

Rogers Labs, Inc.
4405 W. 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3214
Revision 1

Kustom Signals, Inc.
Model: DRU-III
Test #: 080408
Test to: FCC 15c (15.245), IC RSS-210
File: Kustom DRUIII TstRpt

FCC ID#: IVQDRU-III
SN: RE01001
Page 2 of 34
Date: April 19, 2008

Table of Contents

TABLE OF CONTENTS.....	3
FORWARD	5
OPINION / INTERPRETATION OF RESULTS	5
ENVIRONMENTAL CONDITIONS.....	5
2.1033(B) APPLICATION FOR CERTIFICATION	6
APPLICABLE STANDARDS & TEST PROCEDURES	7
EQUIPMENT TESTED.....	7
EQUIPMENT FUNCTION AND TESTING PROCEDURES	7
EQUIPMENT AND CABLE CONFIGURATIONS	8
Conducted Emission Test Procedure.....	8
Radiated Emission Test Procedure.....	8
UNITS OF MEASUREMENTS	8
TEST SITE LOCATIONS	8
LIST OF TEST EQUIPMENT	9
SUBPART B – UNINTENTIONAL RADIATORS	10
AC Line Conducted Emissions	10
Radiated EMI	10
Figure one Plot of General Radiated Emissions	11
Figure two Plot of General Radiated Emissions	11
Figure three Plot of General Radiated Emissions	12
Figure four Plot of General Radiated Emissions	12
Figure five Plot of General Radiated Emissions.....	13
Figure six Plot of General Radiated Emissions	13
Figure seven Plot of General Radiated Emissions	14
Figure eight Plot of General Radiated Emissions	14
Figure nine Plot of General Radiated Emissions	15
Figure ten Plot of General Radiated Emissions	15
Figure eleven Plot of General Radiated Emissions	16
Figure twelve Plot of General Radiated Emissions	16
Figure thirteen Plot of General Radiated Emissions.....	17
General Radiated Emissions Data from EUT	17
Summary of Results for Radiated Emissions	17
Statement of Modifications and Deviations	18
SUBPART C - INTENTIONAL RADIATORS	18
15.203 Antenna Requirements	18
15.205 Restricted Bands of Operation.....	18
Radiated Emissions Data in Restricted Bands (15.205)	19

Summary of Results for Radiated Emissions in Restricted Bands	19
15.209 Radiated Emissions Limits; General Requirements	20
Radiated EMI.....	20
General Radiated Emissions Data from EUT (15.209)	20
Summary of Results for Radiated Emissions	21
15.245 Operation in the Band 24,075 – 24,175 MHz.....	21
Figure fourteen Plot of Radiated Emissions taken in Screen Room.....	22
Figure fifteen Plot of Radiated Emissions taken in Screen Room.....	22
Figure sixteen Plot of Radiated Emissions taken in Screen Room.....	23
Figure seventeen Plot of Radiated Emissions taken in Screen Room	23
Figure eighteen Plot of Radiated Emissions taken in Screen Room.....	24
Figure nineteen Plot of Radiated Emissions taken in Screen Room.....	24
Figure twenty Plot of Radiated Emissions taken in Screen Room	25
Figure twenty-one Plot of Radiated Emissions taken in Screen Room	25
Figure twenty-two Plot of Radiated Emissions taken in Screen Room	26
Figure twenty-three Plot of Radiated Emissions taken in Screen Room	26
Radiated Emissions Data per 15.245	27
Summary of Results for Radiated Emissions of Intentional Radiator	27
Statement of Modifications and Deviations	27
ANNEX.....	28
Annex A Measurement Uncertainty Calculations.....	29
Annex B Test Equipment List For Rogers Labs, Inc.....	31
Annex C Qualifications.....	32
Annex D FCC Site Approval Letter	33
Annex E Industry Canada Site Approval Letter	34

NVLAP Lab Code 200087-0

Forward

The following information is submitted for consideration in obtaining a Grant of Certification for a Field Disturbance Monitor intentional radiator operating under CFR47 Paragraph 15.245.

Name of Applicant:

KUSTOM SIGNALS, INC.

9325 Pflumm

Lenexa, KS 66215-3347

Model: DRU-III Field Disturbance Monitor

FCC I.D.: IVQDRU-III

Frequency Range: 24,125 MHz.

Operating Power: 113.0 dB μ V/m @ 3-meters (3 meter radiated measurement)

Opinion / Interpretation of Results

Tests Performed	Results
Emissions Tests	
Emissions as per CFR47 paragraphs 2 and 15.205	Complies
Emissions as per CFR47 paragraphs 2 and 15.209	Complies
Emissions as per CFR47 paragraphs 2 and 15.245	Complies

Environmental Conditions

Ambient Temperature 20.7° C

Relative Humidity 28%

Atmospheric Pressure 29.97 in Hg

2.1033(b) Application for Certification

(1) Manufacturer: KUSTOM SIGNALS, INC.
9325 Pflumm
Lenexa, KS 66215-3347

(2) Identification: Model: DRU-III Field Disturbance Monitor
FCC I.D.: IVQDRU-III

(3) Instruction Book:
Refer to Exhibit for Instruction Manual.

(4) Description of Circuit Functions:
Refer to Exhibit of Operational Description.

(5) Block Diagram with Frequencies:
Refer to Exhibit of Operational Description.

(6) Report of Measurements:
Report of measurements follows in this Report.

(7) Photographs: Construction, Component Placement, etc.:
Refer to Exhibit for photographs of equipment.

(8) No Peripheral Equipment was Necessary.

(9) Transition Provisions of 15.37 are not being requested.

(10) Equipment is not a scanning receiver and this section is not applicable.

(11) The equipment does not operate in the 59 – 64 GHz frequency band and this section is not applicable.

(12) The equipment is not software defined and this section is not applicable.

Applicable Standards & Test Procedures

In accordance with the Federal Communications Code of Federal Regulations, dated October 1, 2007, Part 2, Subpart J, Paragraphs 2.907, 2.911, 2.913, 2.925, 2.926, 2.1031 through 2.1057, and applicable parts of paragraph 15, Part 15C Paragraph 15.245 following information is submitted.

Test procedures used are the established Methods of Measurement of Radio-Noise Emissions as described in the ANSI 63.4-2003 document.

Equipment Tested

<u>Equipment</u>	<u>Model</u>	<u>FCC I.D.</u>
EUT	DRU-III	IVQDRU-III

Equipment Function and Testing Procedures

The EUT is a 24.125 GHz field disturbance sensor, radio frequency transmitter used to monitor, measure, and display the speed of a moving object. The product was designed to monitor traffic situations and measure the speed of moving objects. The unit may be used in many situations. The unit uses the 24.125 GHz radio frequency field in its vicinity to detect and measure changes in that field resulting from the movement of objects within its range. Changes to the field are used to measure object speed and display the information on an external display receiving the information via the RS-232 interface. The EUT operates from 12-volt battery or external direct current power only and has no provision for connection to the utility AC power system. Since the EUT is battery operated, no AC line-conducted emissions testing was performed.

Equipment and Cable Configurations

Conducted Emission Test Procedure

The unit operates from DC power only and offers no provision to connect to utility AC power systems. Therefore, no AC line conducted emissions testing was performed. The equipment complies with requirements of CFR47 15.207.

Radiated Emission Test Procedure

Testing for the unintentional radiated emissions was performed as defined in section 13.1.4 of ANSI C63.4. The EUT was placed on a rotating 1 x 1.5-meter wooden platform, 0.8 meters above the ground plane at a distance of 3 meters from the FSM antenna. EMI energy was maximized by equipment placement, raising and lowering the FSM antenna, changing the antenna polarization, and by rotating the turntable. Each emission was maximized before data was taken using a spectrum analyzer. Refer to photographs in the exhibits for EUT placement.

Units of Measurements

Conducted EMI Data is in dB μ V; dB referenced to one microvolt.

Radiated EMI Data is in dB μ V/m; dB/m referenced to one microvolt per meter.

Test Site Locations

Conducted EMI The AC power line conducted emissions testing performed in a shielded screen room located at Rogers Labs, Inc., 4405 W. 259th Terrace, Louisburg, KS.

Radiated EMI The radiated emissions tests were performed at the 3 meters, Open Area Test Site (OATS) located at Rogers Labs, Inc., 4405 W. 259th Terrace, Louisburg, KS.

Site Approval Refer to Annex for FCC Site Registration Letter, # 90910, and Industry Canada Site Registration Letter, IC3041-1.

NVLAP Lab Code 200087-0

List of Test Equipment

A Hewlett Packard 8591EM Spectrum Analyzer was used as the measuring device for the emissions testing of frequencies below 1 GHz. A Hewlett Packard 8562A Spectrum Analyzer was used as the measuring device for testing the emissions at frequencies above 1 GHz. The analyzer settings used are described in the following table. Refer to the appendix for a complete list of test equipment.

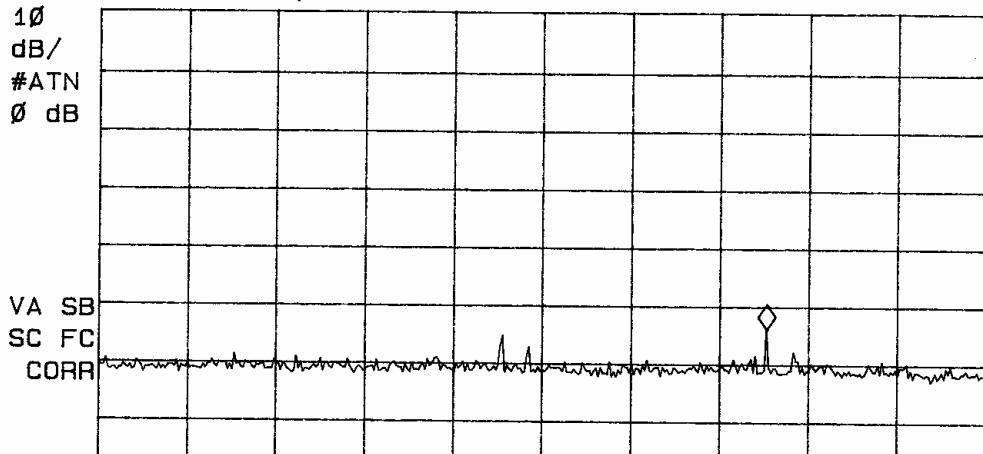
HP 8591 EM ANALYZER SETTINGS		
CONDUCTED EMISSIONS		
RBW	AVG. BW	DETECTOR FUNCTION
9 kHz	30 kHz	Peak / Quasi Peak
RADIATED EMISSIONS		
RBW	AVG. BW	DETECTOR FUNCTION
120 kHz	300 kHz	Peak / Quasi Peak
HP 8562A ANALYZER SETTINGS		
RBW	VIDEO BW	DETECTOR FUNCTION
100 kHz	100 kHz	PEAK
1 MHz	1 MHz	Peak / Average

EQUIPMENT	MFG.	MODEL	CAL. DATE	DUE.
LISN	Comp. Design	FCC-LISN-2-MOD.CD	10/07	10/08
LISN	Comp. Design	1762	2/08	2/09
Antenna	ARA	BCD-235-B	10/07	10/08
Antenna	EMCO	3147	10/07	10/08
Antenna	EMCO	3143	5/07	5/08
Analyzer	HP	8591EM	5/07	5/08
Analyzer	HP	8562A	2/08	2/09

Subpart B – Unintentional Radiators

AC Line Conducted Emissions

The EUT is battery operated only and has no provision to connect to utility power. Therefore no AC power line-conducted emissions testing were performed.


Radiated EMI

The EUT was arranged in a typical equipment configuration and operated through all of its various modes. Preliminary testing was performed in a screen room with the EUT positioned 1 meter from the FSM. Radiated emissions measurements were performed to identify the frequencies, which produced the highest emissions. Plots were made of the frequency spectrum from 30 MHz to 100,000 MHz for the preliminary testing. Refer to figures one through thirteen showing plots of the radiated emissions spectrum taken in a screen room. The highest radiated emission was then re-maximized at the OATS location before final radiated emissions measurements were performed. Final data was taken with the EUT located at the OATS at a distance of 3 meters between the EUT and the receiving antenna. The frequency spectrum from 30 MHz to 100,000 MHz was searched for radiated emissions. Measured emission levels were maximized by EUT placement on the table, rotating the turntable through 360 degrees, varying the antenna height between 1 and 4 meters above the ground plane and changing antenna position between horizontal and vertical polarization. Antennas used were Broadband Biconical from 30 to 200 MHz, Biconilog from 30 to 1000 MHz, Log Periodic from 200 MHz to 5 GHz and or, pyramidal horns and mixers from 4 GHz to 110 GHz.

MARKER
180.5 MHz
25.87 dB μ V

ACTV DET: PEAK
MEAS DET: PEAK QP
MKR 180.5 MHz
25.87 dB μ V

LOG REF 80.0 dB μ V

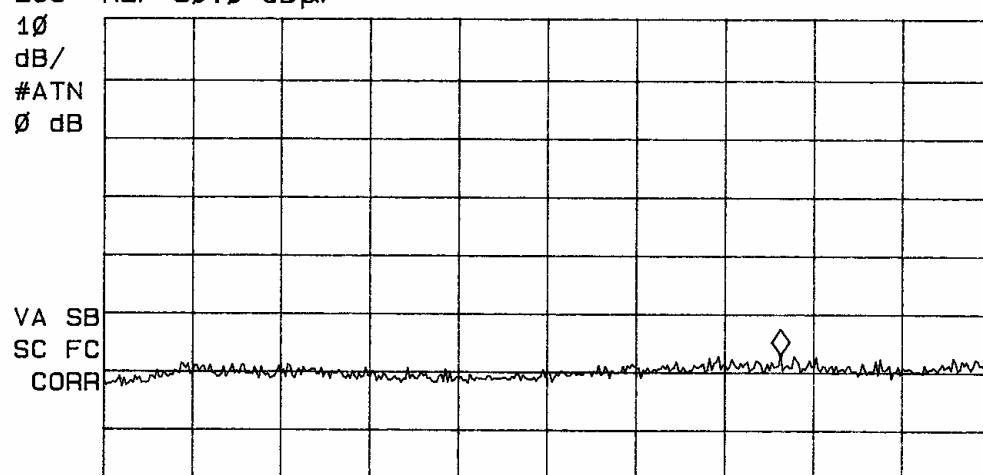

START 30.0 MHz STOP 230.0 MHz
#IF BW 120 kHz AVG BW 300 kHz SWP 41.7 msec

Figure one Plot of General Radiated Emissions

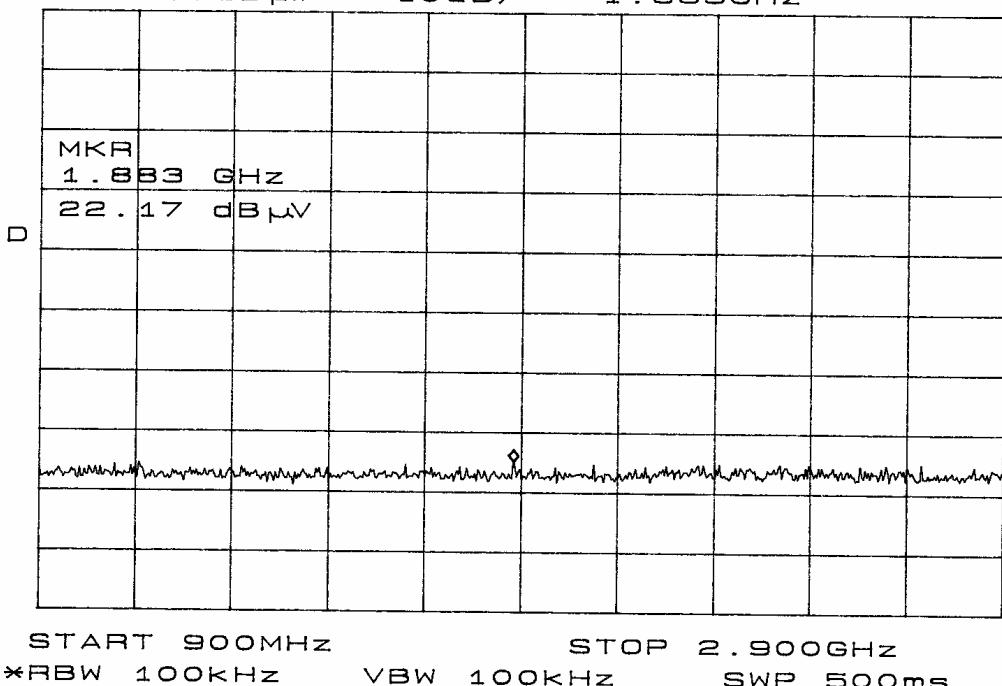
MARKER
963 MHz
22.86 dB μ V

ACTV DET: PEAK
MEAS DET: PEAK QP
MKR 963 MHz
22.86 dB μ V

LOG BEE 80 0 dBW

START 200 MHz STOP 1.200 GHz
#IF BW 120 kHz AVG BW 300 kHz SWP 208 msec

Figure two Plot of General Radiated Emissions


Rogers Labs, Inc.
4405 W. 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3111
Revision 1

Kustom Signals, Inc.
Model: DRU-III
Test #: 080408
Test to: FCC 15c (15.245), IC RSS-210
File: Kustom DRUIII TstRpt

FCC ID#: IVQDRU-III
SN: RE01001
Page 11 of 34

*ATTEN 0dB
RL 97.0dB

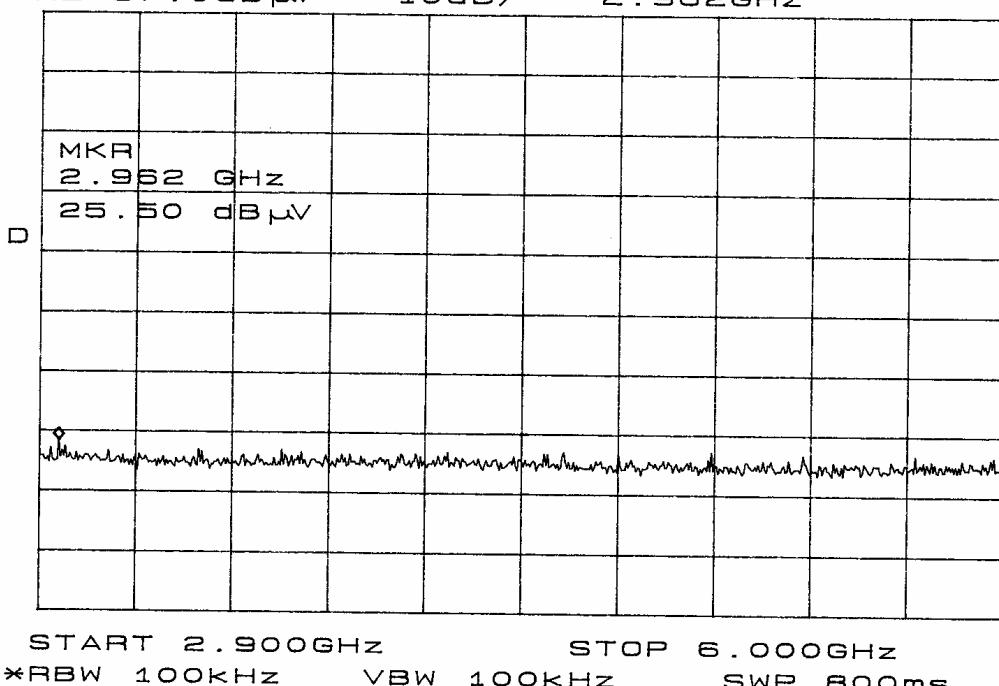

MKR 22.17dB μ V
1.883GHz

Figure three Plot of General Radiated Emissions

*ATTEN ODB
RL 97.0 DBW

MKR 25.50dB μ V
2 962GHz

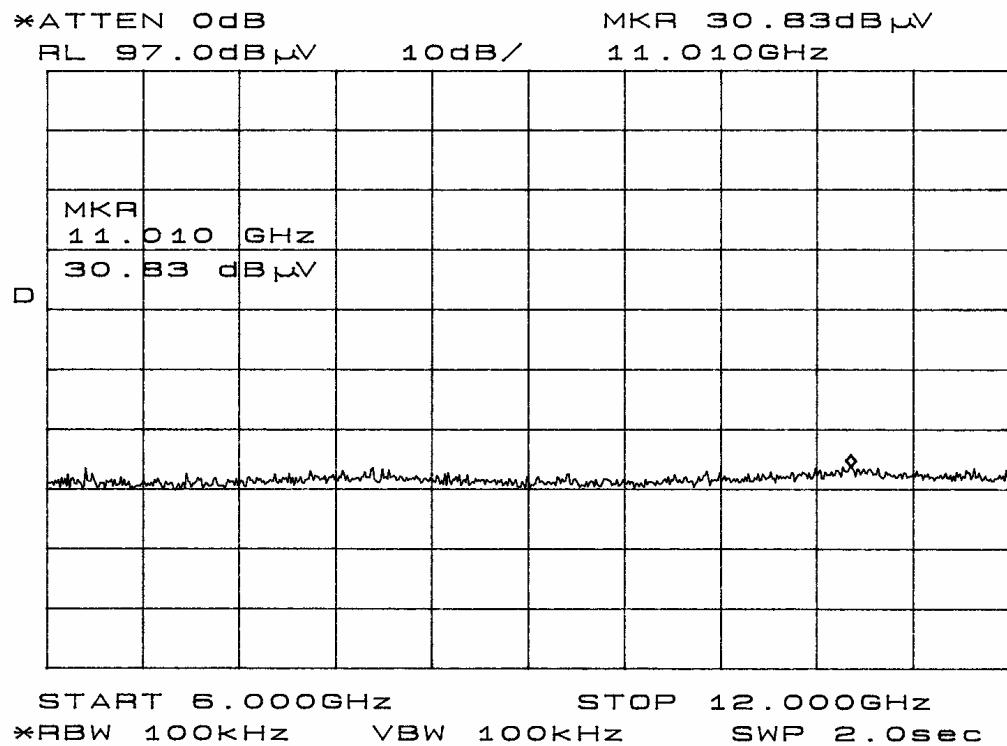
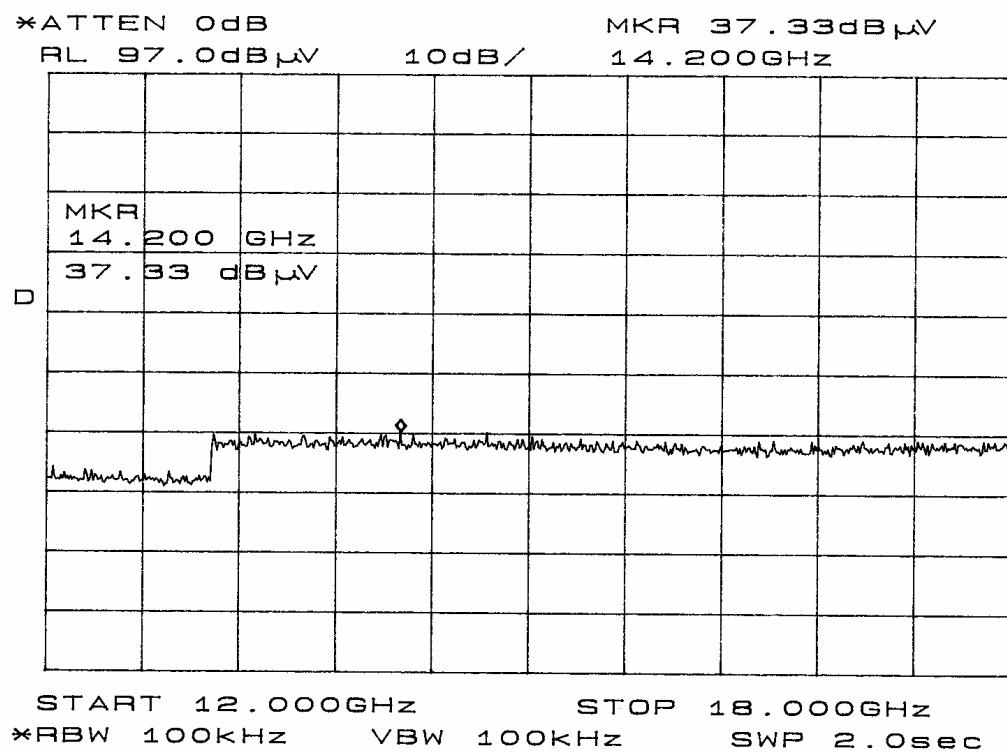


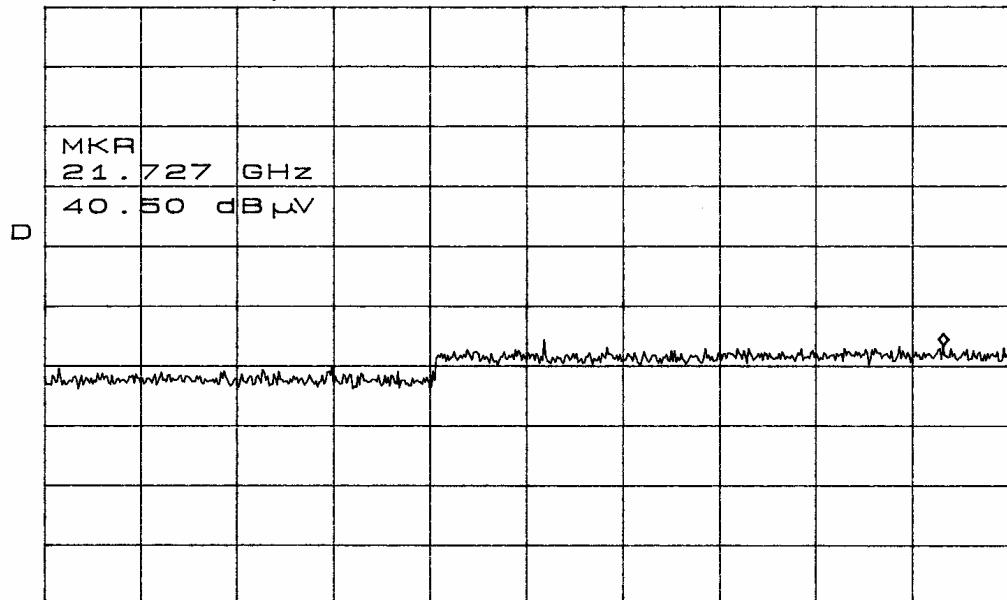
Figure four Plot of General Radiated Emissions


Rogers Labs, Inc.
4405 W. 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3

Kustom Signals, Inc.
Model: DRU-III
Test #: 080408
Test to: FCC 15c (15.245), IC RSS-210
File: Kustom DRUIII TstRpt

FCC ID#: IVQDRU-III
SN: RE01001
Page 12 of 34

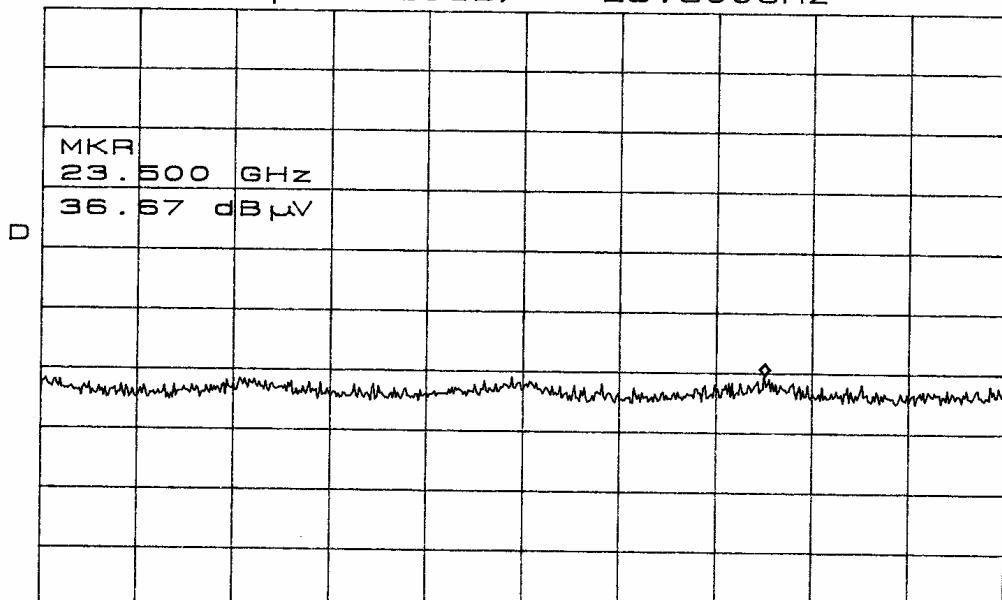
Figure five Plot of General Radiated Emissions


Figure six Plot of General Radiated Emissions

Rogers Labs, Inc.
4405 W. 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3111
Revision 1

Kustom Signals, Inc.
Model: DRU-III
Test #: 080408
Test to: FCC 15c (15.245), IC RSS-210
File: Kustom DRUIII TstRpt

FCC ID#: IVQDRU-III
SN: RE01001
Page 13 of 34


*ATTEN 0dB MKR 40.50dBµV
RL 97.0dBµV 10dB/ 21.727GHz

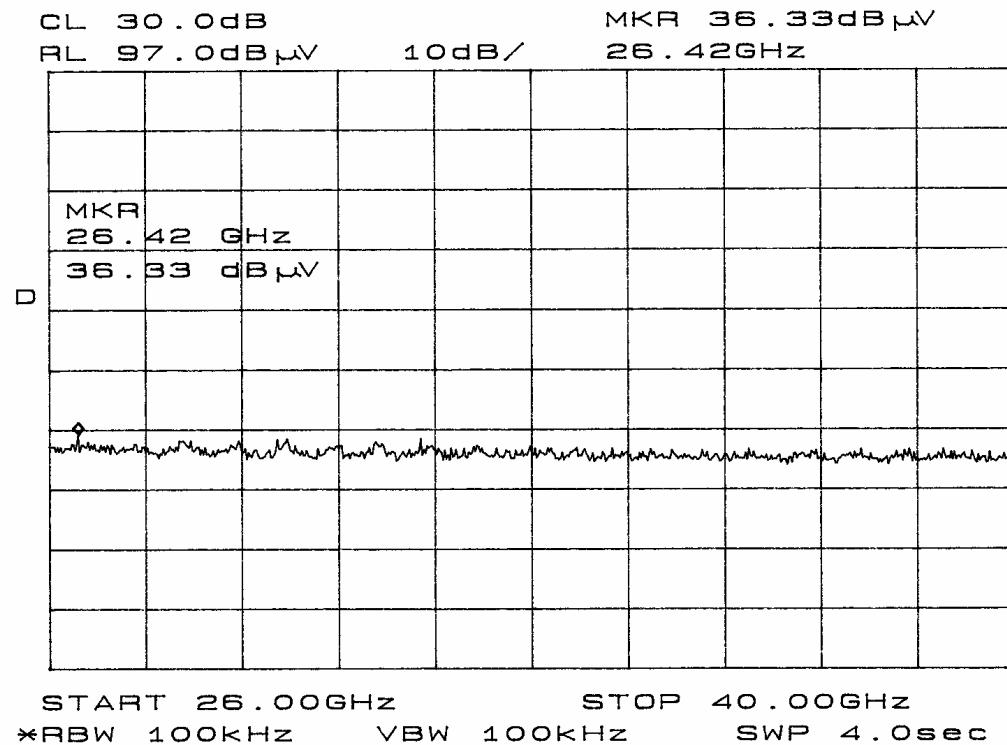
START 18.000GHz STOP 22.000GHz
*RBW 100kHz VBW 100kHz SWP 1.0sec

Figure seven Plot of General Radiated Emissions

CL 30.0dB MKR 36.67dB μ V
 RL 97.0dB μ V 10dB/23.500GHz

START 22.000GHz STOP 24.000GHz
*RBW 100kHz VBW 100kHz SWP 500ms

Figure eight Plot of General Radiated Emissions


Rogers Labs, Inc.
4405 W. 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3

Kustom Signals, Inc.
Model: DRU-III
Test #: 080408
Test to: FCC 15c (15.245), IC RSS-210
File: Kustom DRUIII TstRpt

FCC ID#: IVQDRU-III
SN: RE01001
Page 14 of 34

Figure nine Plot of General Radiated Emissions

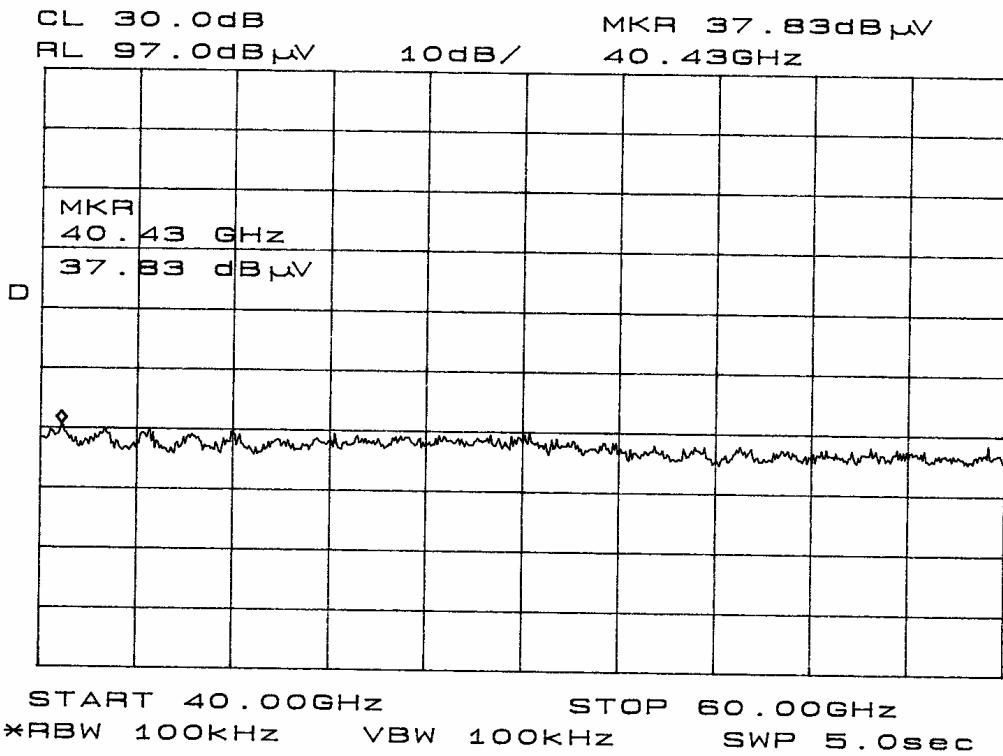


Figure ten Plot of General Radiated Emissions

Rogers Labs, Inc.
4405 W. 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3

Kustom Signals, Inc.
Model: DRU-III
Test #: 080408
Test to: FCC 15c (15.245), IC RSS-210
File: Kustom DRUIII TstRpt

FCC ID#: IVQDRU-III
SN: RE01001
Page 15 of 34

Figure eleven Plot of General Radiated Emissions

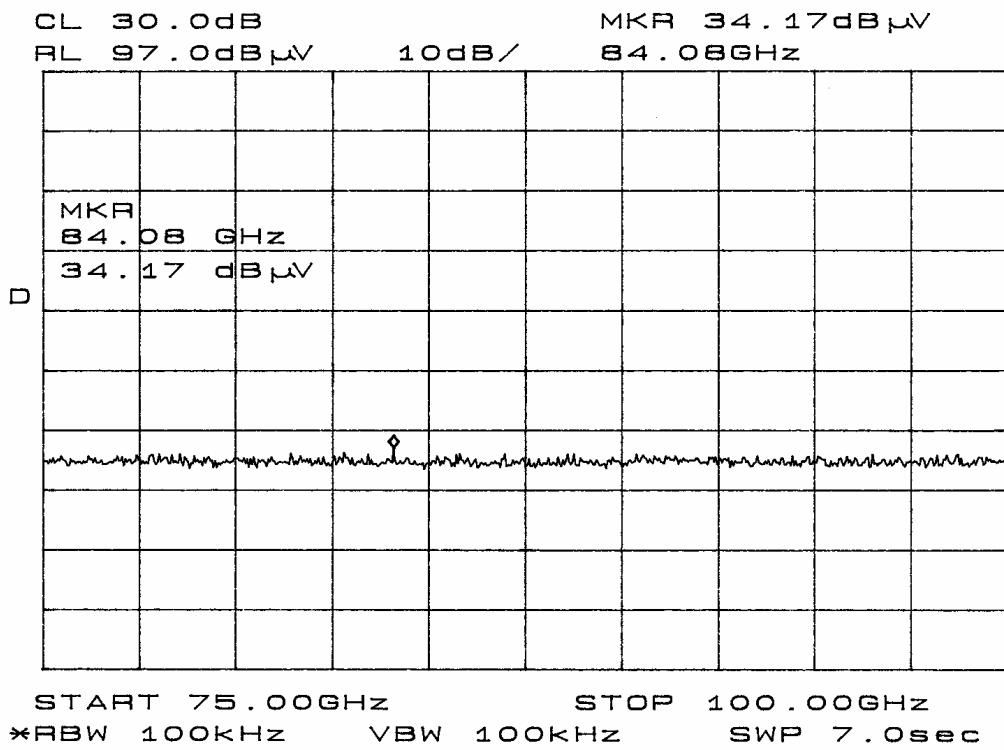


Figure twelve Plot of General Radiated Emissions

Rogers Labs, Inc.
4405 W. 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3

Kustom Signals, Inc.
Model: DRU-III
Test #: 080408
Test to: FCC 15c (15.245), IC RSS-210
File: Kustom DRUIII TstRpt

FCC ID#: IVQDRU-III
SN: RE01001
Page 16 of 34

Figure thirteen Plot of General Radiated Emissions

General Radiated Emissions Data from EUT

Frequency in MHz	FSM Horz. (dB μ V)	FSM Vert. (dB μ V)	A.F. (dB/m)	Amp. Gain (dB)	RFS Horz. @ 3m (dB μ V/m)	RFS Vert. @ 3m (dB μ V/m)	FCC Class B Limit @ 3m (dB μ V/m)
120.0	39.0	40.1	7.1	30	16.1	17.2	43.5
126.0	35.2	38.0	7.6	30	12.8	15.6	43.5
177.0	37.6	35.9	9.1	30	16.7	15.0	43.5
180.0	39.6	36.1	9.2	30	18.8	15.3	43.5
185.5	27.8	29.1	9.8	30	7.6	8.9	43.5

Other emissions present had amplitudes at least 20 dB below the limit.

Summary of Results for Radiated Emissions

The radiated emissions for the EUT meet the requirements for CISPR 22, CFR47, and Industry Canada requirements. The EUT had at least a 24.7 dB minimum margin below the limit. Other emissions were present with amplitudes at least 20 dB below the limit.

NVLAP Lab Code 200087-0

Statement of Modifications and Deviations

No modifications to the EUT were required for the unit to meet the CISPR 22, CFR47, and Industry Canada requirements. There were no deviations or exceptions to the specifications.

Subpart C - Intentional Radiators

As per CFR47 Part 15, Subpart C, paragraphs 15.203, 15.205, 15.209, and 15.245 the following information is submitted.

15.203 Antenna Requirements

The unit is produced with a permanently attached antenna and has no provision for user service, replacement, or antenna modification. The requirements of 15.203 are fulfilled and there are no deviations or exceptions to the specification.

15.205 Restricted Bands of Operation

Spurious emissions falling in the restricted frequency bands of operation were measured at a distance of three meters at the OATS. The EUT utilizes frequency determining circuitry, which generates harmonics falling in the restricted bands. Emissions were checked at the OATS, using appropriate antennas or pyramidal horns, amplification stages, and a spectrum analyzer. No other significant emission was observed which fell into the restricted bands of operation.

Sample Calculation:

$$\begin{aligned} \text{RFS (dB}\mu\text{V/m @ 3m)} &= \text{FSM(dB}\mu\text{V)} + \text{A.F.(dB)} - \text{Gain(dB)} \\ &= 39.0 + 7.1 - 30 \\ &= 16.1 \end{aligned}$$

Radiated Emissions Data in Restricted Bands (15.205)

Frequency in MHz	FSM Horz. (dB μ V)	FSM Vert. (dB μ V)	A.F. (dB/m)	Amp. Gain (dB)	RFS Horz. @ 3m (dB μ V/m)	RFS Vert. @ 3m (dB μ V/m)	FCC Class B Limit @ 3m (dB μ V/m)
120.0	39.0	40.1	7.1	30	16.1	17.2	43.5
126.0	35.2	38.0	7.6	30	12.8	15.6	43.5
48,2500	19.8	19.3	23.0	0	42.8	42.3	77.5
72,6000	16.3	15.8	35.0	0	51.3	50.8	77.5
96,8000	16.3	15.8	39.7	0	56.0	55.5	77.5

Other emissions present had amplitudes at least 20 dB below the margin.

Summary of Results for Radiated Emissions in Restricted Bands

The radiated emissions for the EUT meet the requirements for FCC Part 15C Intentional Radiators. The EUT had a 21.5 dB minimum margin below the limits. Both average and peak amplitudes above 1000 MHz were checked for compliance with the regulations. No other emissions were found in the restricted frequency bands. Other emissions were present with amplitudes at least 20 dB below the FCC Limits.

15.209 Radiated Emissions Limits; General Requirements

Radiated EMI

The EUT was arranged in a typical equipment configuration and operated through all of its various modes. Preliminary testing was performed in a screen room with the EUT positioned 1 meter from the FSM. Radiated emissions measurements were performed to identify the frequencies, which produced the highest emissions. Emissions were checked in the screen room from 30 to 100,000 MHz and plots were made of the frequency spectrum from 30 MHz to 100,000 MHz for the preliminary testing. The highest radiated emission was then re-maximized at this location before final radiated emissions measurements were performed. Final data was taken with the EUT located at the open area test site at a distance of 3 meters between the EUT and the receiving antenna. The frequency spectrum from 30 MHz to 100,000 MHz was searched for radiated emissions. Measured emission levels were maximized by EUT placement on the table, rotating the turntable through 360 degrees, varying the antenna height between 1 and 4 meters above the ground plane and changing antenna polarization between horizontal and vertical. Antennas used were Broadband Biconical from 30 MHz to 200 MHz, Biconilog from 30 MHz to 1000 MHz, Log Periodic from 200 MHz to 5 GHz, and/or Pyramidal Horns and mixers from 4 GHz to 110 GHz.

General Radiated Emissions Data from EUT (15.209)

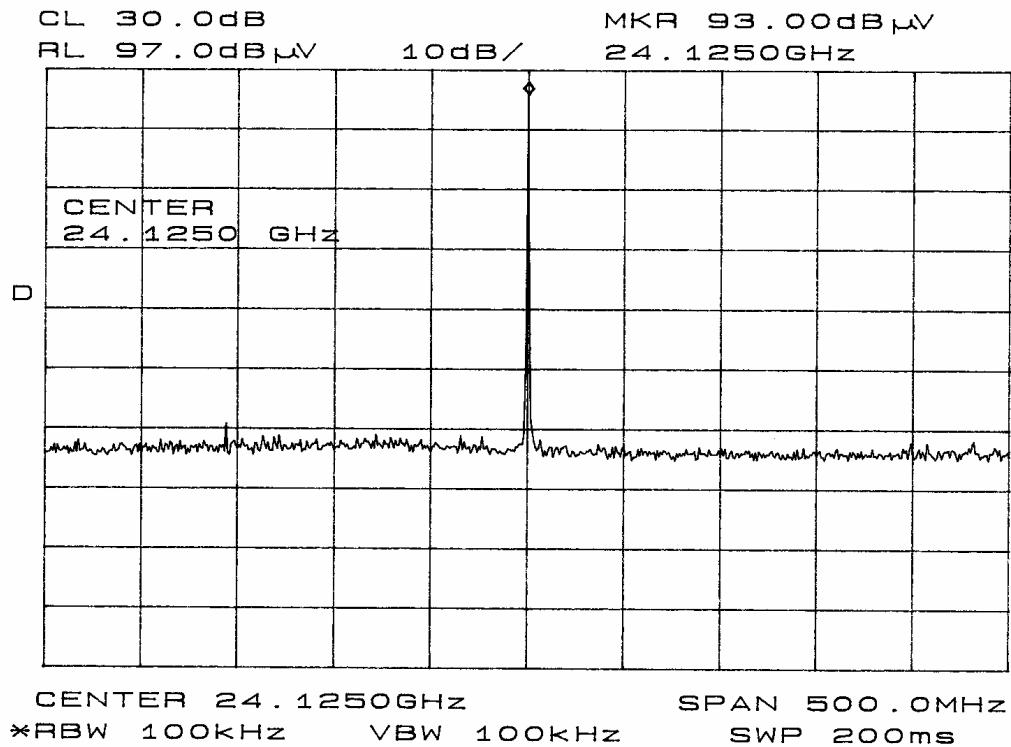
Frequency in MHz	FSM Horz. (dB μ V)	FSM Vert. (dB μ V)	A.F. (dB/m)	Amp. Gain (dB)	RFS Horz. @ 3m (dB μ V/m)	RFS Vert. @ 3m (dB μ V/m)	FCC Class B Limit @ 3m (dB μ V/m)
120.0	39.0	40.1	7.1	30	16.1	17.2	43.5
126.0	35.2	38.0	7.6	30	12.8	15.6	43.5
177.0	37.6	35.9	9.1	30	16.7	15.0	43.5
180.0	39.6	36.1	9.2	30	18.8	15.3	43.5
185.5	27.8	29.1	9.8	30	7.6	8.9	43.5

Other emissions present had amplitudes at least 20 dB below the limit.

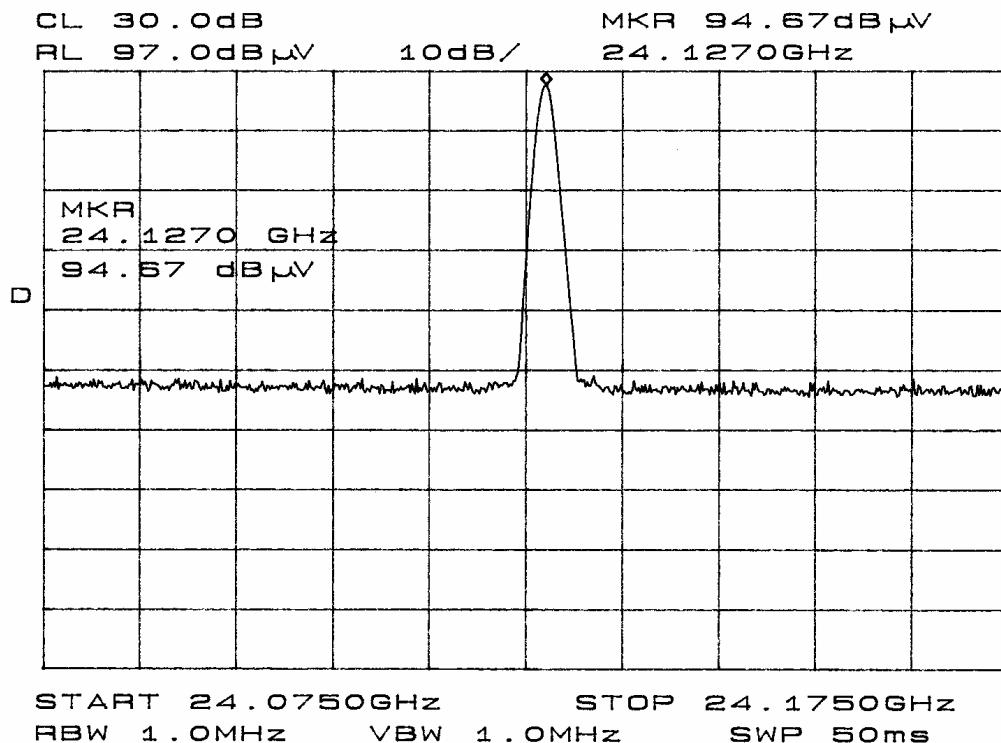
Summary of Results for Radiated Emissions

The radiated emissions for the EUT meet the requirements for CFR47 Part 15C, and Industry Canada requirements. The EUT had at least a 24.7 dB minimum margin below the limit. Other emissions were present with amplitudes at least 20 dB below the limit.

15.245 Operation in the Band 24,075 – 24,175 MHz


The power output was measured on an open field test site @ 3 meters. Data was taken per Paragraph 2.1046(a) and 15.245.

(a) The EUT was placed on a wooden turntable 0.8 meters above the ground plane and at a distance of 3 meters from the FSM antenna. The amplitude of the carrier frequency was measured using a spectrum analyzer. The amplitude of the emission was then recorded from the analyzer display.


(b) Emissions radiated outside of the specified bands below 17.7 GHz, as specified in 15.205, shall not exceed the field strength limits shown in 15.209. Harmonic emissions above 17.7 GHz shall not exceed the following field strength limits: For field disturbance sensors, 7.5 mV/m. The amplitude of each spurious emission was measured at a distance of 3 meters from the FSM antenna at the OATS. The amplitude of each spurious emission was maximized by varying the FSM antenna height, polarization, and by rotating the turntable. A Biconilog Antenna was used for measuring emissions from 30 to 1000 MHz, a Log Periodic Antenna for 200 to 5000 MHz; and/or Pyramidal Horn Antennas from 4 to 18 GHz, and appropriate mixers from 18 GHz to 110 GHz.

Refer to Figures fourteen through twenty-three showing plots taken in the screen room from the spectrum analyzer at a distance of 3 meter. The band edges are protected due to the frequency of operation. Emissions were measured in dB μ V/m and converted to dB μ V/m @ 3 meters using the following equation.

$$\begin{aligned} \text{dB}\mu\text{v/m}@ 3\text{m} &= \text{FSM} + \text{A.F.} - \text{Amp. Gain} \\ &= 91.0 + 22.0 \\ &= 113.0 \end{aligned}$$

Figure fourteen Plot of Radiated Emissions taken in Screen Room

Figure fifteen Plot of Radiated Emissions taken in Screen Room

Rogers Labs, Inc.
4405 W. 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3

Kustom Signals, Inc.
Model: DRU-III
Test #: 080408
Test to: FCC 15c (15.245), IC RSS-210
File: Kustom DRUIII TstRpt

FCC ID#: IVQDRU-III
SN: RE01001
Page 22 of 34

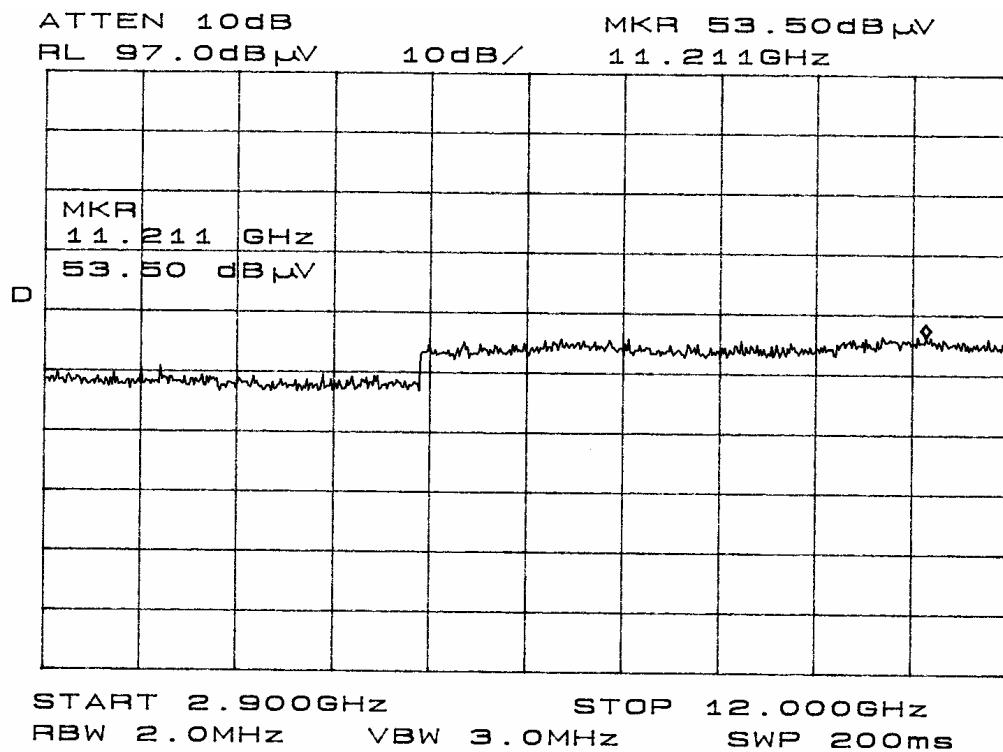


Figure sixteen Plot of Radiated Emissions taken in Screen Room

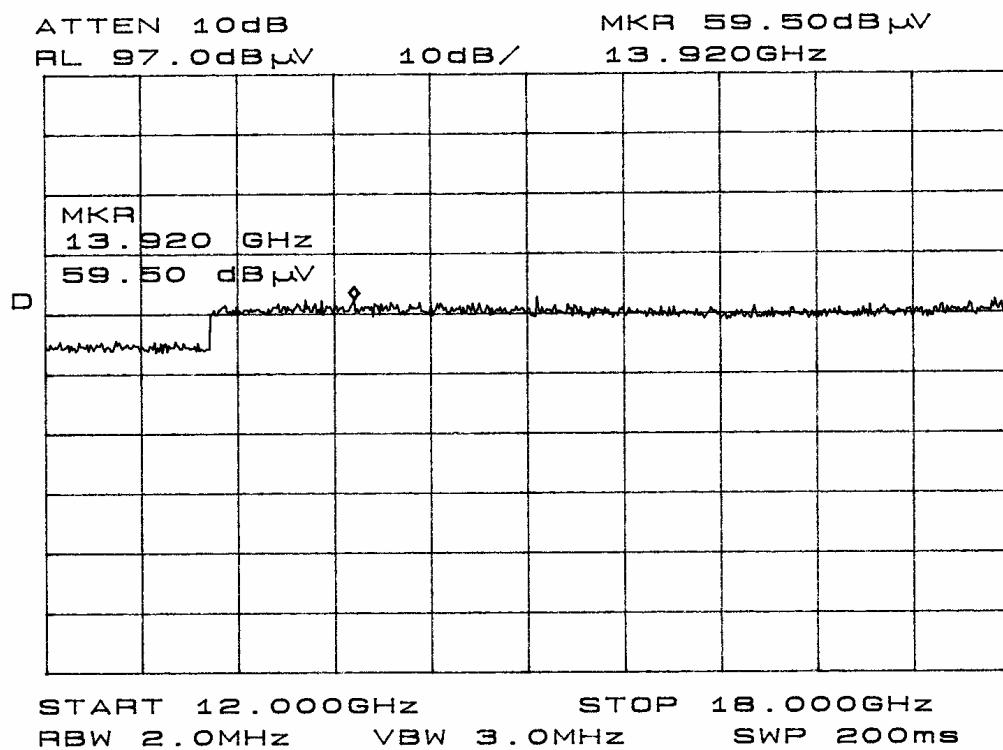
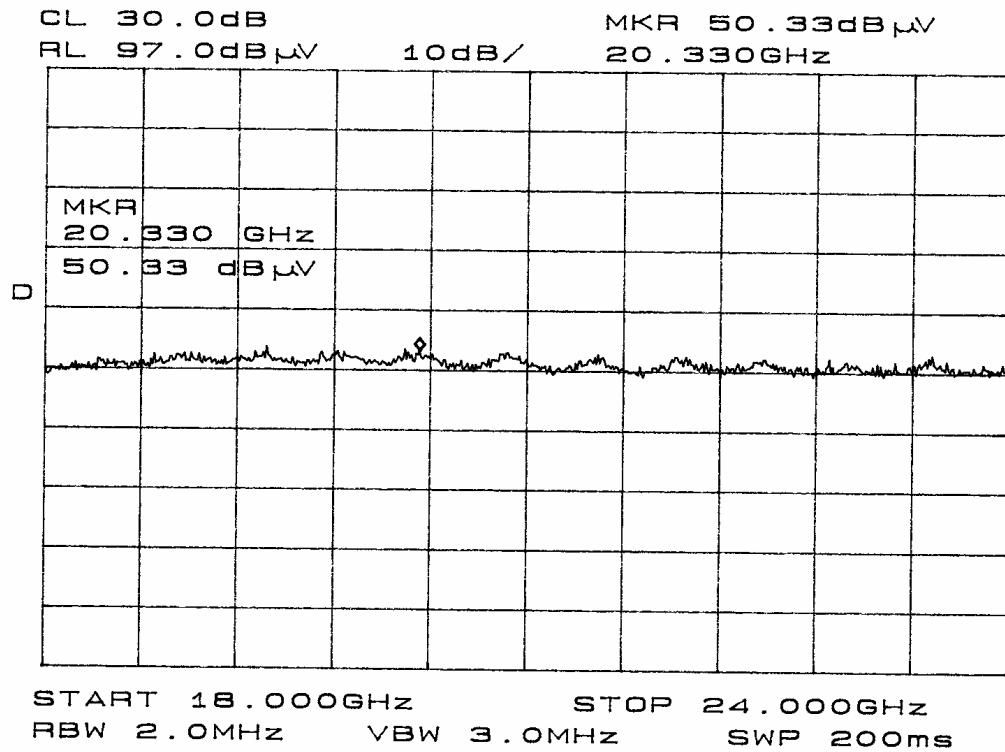
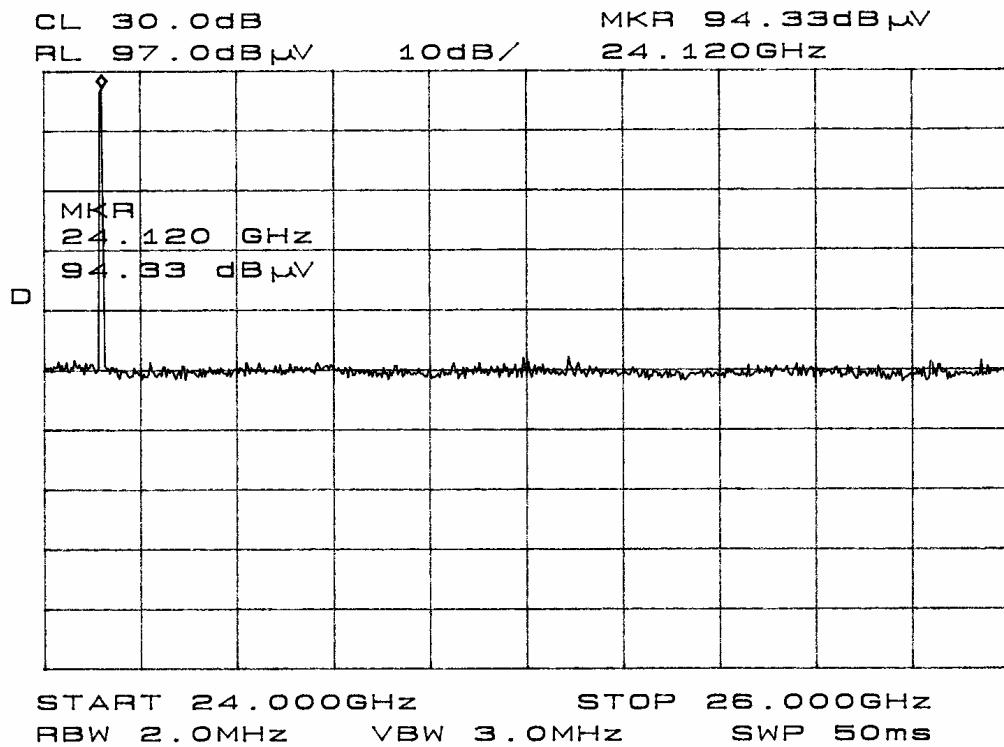




Figure seventeen Plot of Radiated Emissions taken in Screen Room

Figure eighteen Plot of Radiated Emissions taken in Screen Room

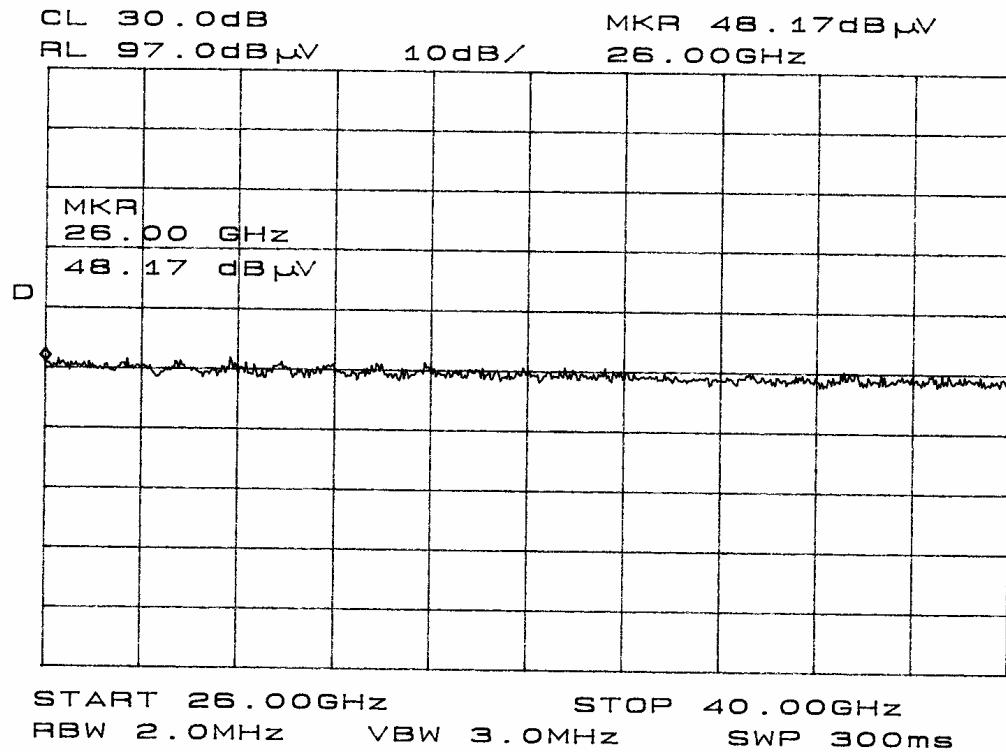
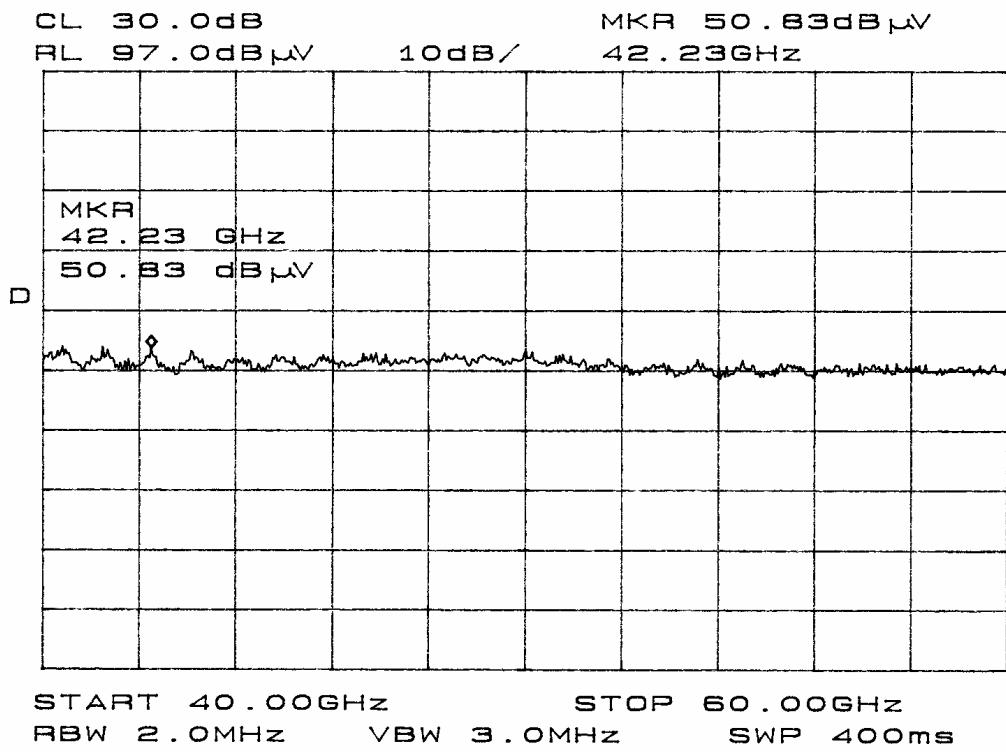


Figure nineteen Plot of Radiated Emissions taken in Screen Room


Rogers Labs, Inc.
4405 W. 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3

Kustom Signals, Inc.
Model: DRU-III
Test #: 080408
Test to: FCC 15c (15.245), IC RSS-210
File: Kustom DRUIII TstRpt

FCC ID#: IVQDRU-III
SN: RE01001
Page 24 of 34

Figure twenty Plot of Radiated Emissions taken in Screen Room

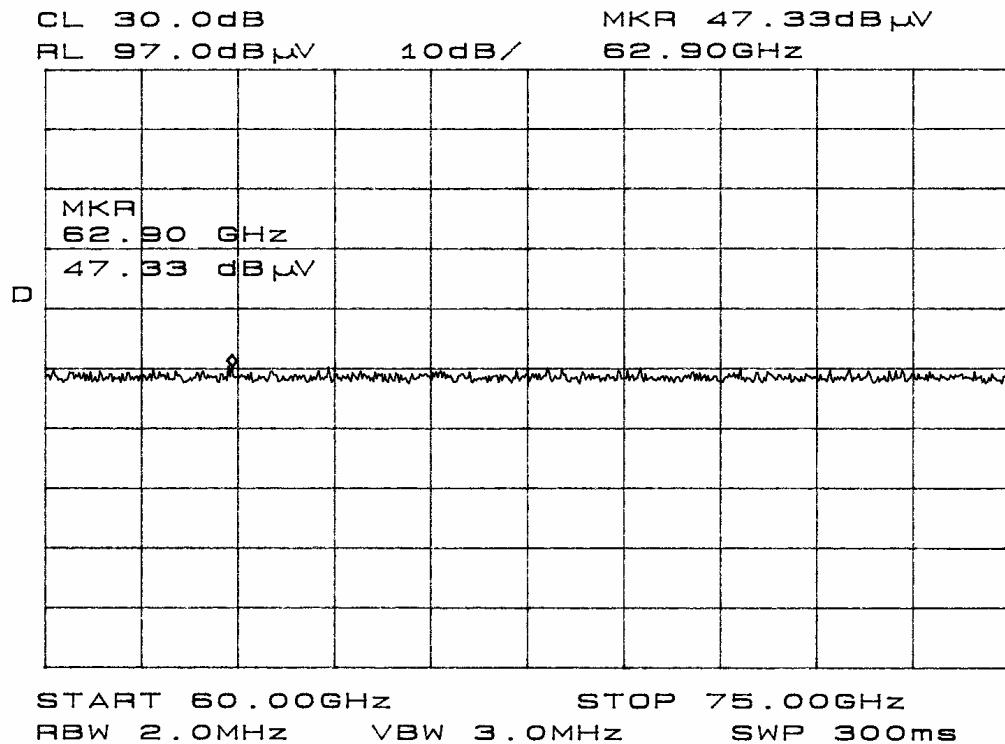
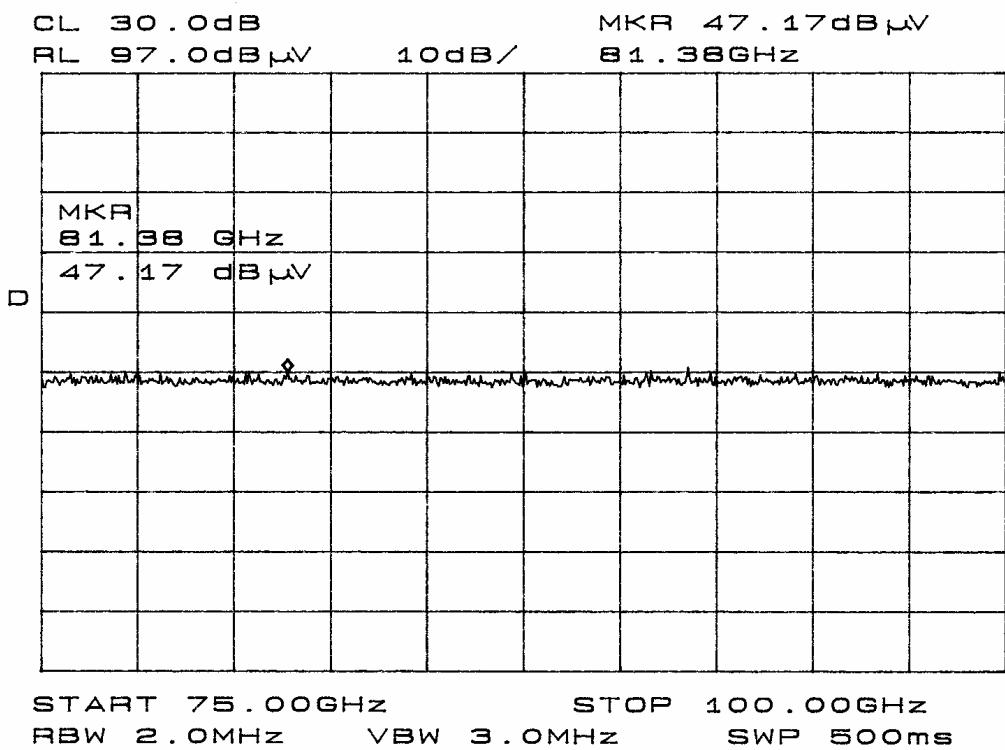


Figure twenty-one Plot of Radiated Emissions taken in Screen Room


Rogers Labs, Inc.
4405 W. 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3
Revision 1

Kustom Signals, Inc.
Model: DRU-III
Test #: 080408
Test to: FCC 15c (15.245), IC RSS-210
File: Kustom DRUIII TstRpt

FCC ID#: IVQDRU-III
SN: RE01001
Page 25 of 34

Figure twenty-two Plot of Radiated Emissions taken in Screen Room

Figure twenty-three Plot of Radiated Emissions taken in Screen Room

Rogers Labs, Inc.
4405 W. 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3

Kustom Signals, Inc.
Model: DRU-III
Test #: 080408
Test to: FCC 15c (15.245), IC RSS-210
File: Kustom DRUIII TstRpt

FCC ID#: IVQDRU-III
SN: RE01001
Page 26 of 34

Radiated Emissions Data per 15.245

Emission Frequency (GHz)	FSM Horz. (dB μ V)	FSM Vert. (dB μ V)	Ant. Factor (dB)	Amp Gain (dB)	RFS Horz. @ 3m (dB μ V/m)	RFS Vert. @ 3m (dB μ V/m)	Limit @ 3m (dB μ V/m)
24.1250	91.0	73.7	22.0	0	113.0	95.7	128.0
48.2500	19.8	19.3	23.0	0	42.8	42.3	77.5
72.6000	16.3	15.8	35.0	0	51.3	50.8	77.5
96.8000	16.3	15.8	39.7	0	56.0	55.5	77.5

Other emissions present had amplitudes at least 20 dB below the margin.

Summary of Results for Radiated Emissions of Intentional Radiator

The EUT had the highest emission of 113.0 dB μ V/m at 3 meters at the fundamental frequency of operation. The EUT had a worst-case of 21.5 dB margin below the limit for the harmonic emissions. The radiated emissions for the EUT meet the requirements for CFR47 Part 15.245 Intentional Radiators and RSS-210. There are no measurable emissions in the restricted bands other than those recorded in this report. Other emissions were present with amplitudes at least 20 dB below the limits. The specifications of 15.245 and RSS-210 were met; there are no deviations or exceptions to the requirements.

Statement of Modifications and Deviations

No modifications to the EUT were required for the unit to meet the CFR47 Part 15C emissions standards. There were no deviations to the specifications.

NVLAP Lab Code 200087-0

Annex

- Annex A, Measurement Uncertainty Calculations
- Annex B, Test Equipment List.
- Annex C, Rogers Qualifications.
- Annex D, FCC Site Approval Letter.
- Annex E, Industry Canada Approval Letter.

Rogers Labs, Inc.
4405 W. 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3214
Revision 1

Kustom Signals, Inc.
Model: DRU-III
Test #: 080408
Test to: FCC 15c (15.245), IC RSS-210
File: Kustom DRUIII TstRpt

FCC ID#: IVQDRU-III
SN: RE01001
Page 28 of 34
Date: April 19, 2008

Annex A Measurement Uncertainty Calculations

Radiated Emissions Measurement Uncertainty Calculation

Measurement of vertically polarized radiated field strength over the frequency range 30 MHz to 1 GHz on an open area test site at 3m and 10m includes following uncertainty:

Contribution	Probability	Uncertainty
	Distribution	(dB)
Antenna factor calibration	normal (k = 2)	±0.58
Cable loss calibration	normal (k = 2)	±0.2
Receiver specification	rectangular	±1.0
Antenna directivity	rectangular	±0.1
Antenna factor variation with height	rectangular	±2.0
Antenna factor frequency interpolation	rectangular	±0.1
Measurement distance variation	rectangular	±0.2
Site Imperfections	rectangular	±1.5

Combined standard uncertainty $u_c(y)$ is

$$U_c(y) = \pm \sqrt{\left[\frac{1.0}{2}\right]^2 + \left[\frac{0.2}{2}\right]^2 + \left[\frac{1.0^2 + 0.1^2 + 2.0^2 + 0.1^2 + 0.2^2 + 1.5^2}{3}\right]}$$

$$U_c(y) = \pm 1.6 \text{ dB}$$

It is probable that $u_c(y) / s(q_k) > 3$, where $s(q_k)$ is estimated standard deviation from a sample of n readings unless the repeatability of the EUT is particularly poor, and a coverage factor of $k = 2$ will ensure that the level of confidence will be approximately 95%, therefore:

$$s(q_k) = \sqrt{\frac{1}{(n-1)} \sum_{k=1}^n (q_k - \bar{q})^2}$$

$$U = 2 U_c(y) = 2 \times \pm 1.6 \text{ dB} = \pm 3.2 \text{ dB}$$

Notes:

- 1.1 Uncertainties for the antenna and cable were estimated, based on a normal probability distribution with $k = 2$.
- 1.2 The receiver uncertainty was obtained from the manufacturer's specification for which a rectangular distribution was assumed.
- 1.3 The antenna factor uncertainty does not take account of antenna directivity.
- 1.4 The antenna factor varies with height and since the height was not always the same in use as when the antenna was calibrated an additional uncertainty is added.
- 1.5 The uncertainty in the measurement distance is relatively small but has some effect on the received signal strength. The increase in measurement distance as the antenna height is increased is an inevitable consequence of the test method and is therefore not considered a contribution to uncertainty.
- 1.6 Site imperfections are difficult to quantify but may include the following contributions:
 - Unwanted reflections from adjacent objects.
 - Ground plane imperfections: reflection coefficient, flatness, and edge effects.
 - Losses or reflections from "transparent" cabins for the EUT or site coverings.
 - Earth currents in antenna cable (mainly effect biconical antennas).

The specified limits for the difference between measured site attenuation and the theoretical value (± 4 dB) were not included in total since the measurement of site attenuation includes uncertainty contributions already allowed for in this budget, such as antenna factor.

Rogers Labs, Inc.

4405 W. 259th Terrace

Louisburg, KS 66053

Phone/Fax: (913) 837-3214

Revision 1

Kustom Signals, Inc.

Model: DRU-III

Test #: 080408

Test to: FCC 15c (15.245), IC RSS-210

File: Kustom DRUIII TstRpt

FCC ID#: IVQDRU-III

SN: RE01001

Page 29 of 34

Date: April 19, 2008

NVLAP Lab Code 200087-0

Conducted Measurements Uncertainty Calculation

Measurement of conducted emissions over the frequency range 9 kHz to 30 MHz includes following uncertainty:

Contribution	Probability	Uncertainty
Receiver specification	Distribution	(dB)
LISN coupling specification	rectangular	±1.5
Cable and input attenuator calibration	rectangular	±1.5
	normal (k=2)	±0.5

Combined standard uncertainty $u_c(y)$ is

$$U_c(y) = \pm \sqrt{\left[\frac{0.5}{2}\right]^2 + \frac{1.5^2 + 1.5^2}{3}}$$

$$U_c(y) = \pm 1.2 \text{ dB}$$

As with radiated field strength uncertainty, it is probable that $u_c(y) / s(qk) > 3$ and a coverage factor of $k = 2$ will suffice, therefore:

$$U = 2 U_c(y) = 2 \times \pm 1.2 \text{ dB} = \pm 2.4 \text{ dB}$$

Annex B Test Equipment List For Rogers Labs, Inc.

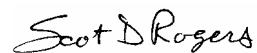
The test equipment used is maintained in calibration and good operating condition. Use of this calibrated equipment ensures measurements are traceable to national standards.

List of Test Equipment	Calibration Date
Oscilloscope Scope: Tektronix 2230	2/08
Wattmeter: Bird 43 with Load Bird 8085	2/08
Power Supplies: Sorensen SRL 20-25, SRL 40-25, DCR 150, DCR 140	2/08
H/V Power Supply: Fluke Model: 408B (SN: 573)	2/08
R.F. Generator: HP 606A	2/08
R.F. Generator: HP 8614A	2/08
R.F. Generator: HP 8640B	2/08
Spectrum Analyzer: HP 8562A,	2/08
Mixers: 11517A, 11970A, 11970K, 11970U, 11970V, 11970W	
HP Adapters: 11518, 11519, 11520	
Spectrum Analyzer: HP 8591EM	5/07
Frequency Counter: Leader LDC825	2/08
Antenna: EMCO Biconilog Model: 3143	5/07
Antenna: EMCO Log Periodic Model: 3147	10/07
Antenna: Antenna Research Biconical Model: BCD 235	10/07
Antenna: EMCO Dipole Set 3121C	2/08
Antenna: C.D. B-101	2/08
Antenna: Solar 9229-1 & 9230-1	2/08
Antenna: EMCO 6509	2/08
Audio Oscillator: H.P. 201CD	2/08
R.F. Power Amp 65W Model: 470-A-1010	2/08
R.F. Power Amp 50W M185- 10-501	2/08
R.F. PreAmp CPPA-102	2/08
LISN 50 μ Hy/50 ohm/0.1 μ f	10/07
LISN Compliance Eng. 240/20	2/08
LISN Fischer Custom Communications FCC-LISN-50-16-2-08	2/08
Peavey Power Amp Model: IPS 801	2/08
Power Amp A.R. Model: 10W 1010M7	2/08
Power Amp EIN Model: A301	2/08
ELGAR Model: 1751	2/08
ELGAR Model: TG 704A-3D	2/08
ESD Test Set 2010i	2/08
Fast Transient Burst Generator Model: EFT/B-101	2/08
Current Probe: Singer CP-105	2/08
Current Probe: Solar 9108-1N	2/08
Field Intensity Meter: EFM-018	2/08
KEYTEK Ecat Surge Generator	2/08

Annex C Qualifications**SCOT D. ROGERS, ENGINEER****ROGERS LABS, INC.**

Mr. Rogers has approximately 17 years experience in the field of electronics. Six years working in the automated controls industry and 6 years working with the design, development and testing of radio communications and electronic equipment.

POSITIONS HELD:


Systems Engineer: A/C Controls Mfg. Co., Inc. 6 Years

Electrical Engineer: Rogers Consulting Labs, Inc. 5 Years

Electrical Engineer: Rogers Labs, Inc. Current

EDUCATIONAL BACKGROUND:

- 1) Bachelor of Science Degree in Electrical Engineering from Kansas State University.
- 2) Bachelor of Science Degree in Business Administration Kansas State University.
- 3) Several Specialized Training courses and seminars pertaining to Microprocessors and Software programming.

Scot D. Rogers

Annex D FCC Site Approval Letter

FEDERAL COMMUNICATIONS COMMISSION

**Laboratory Division
7435 Oakland Mills Road
Columbia, MD 21046**

May 16, 2006

Registration Number: 90910

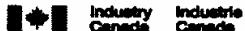
Rogers Labs, Inc.
4405 West 259th Terrace
Louisburg, KS 66053

Attention: Scot Rogers

Re: Measurement facility located at Louisburg
3 & 10 meter site
Date of Renewal: May 16, 2006

Dear Sir or Madam:

Your request for renewal of the registration of the subject measurement facility has been received. The information submitted has been placed in your file and the registration has been renewed. The name of your organization will remain on the list of facilities whose measurement data will be accepted in conjunction with applications for Certification under Parts 15 or 18 of the Commission's Rules. Please note that the file must be updated for any changes made to the facility and the registration must be renewed at least every three years.


Measurement facilities that have indicated that they are available to the public to perform measurement services on a fee basis may be found on the FCC website www.fcc.gov under E-Filing, OET Equipment Authorization Electronic Filing, Test Firms.

Sincerely,
W.S. Phillips Jr.
W.S. Phillips Jr.
Phyllis Parrish
Information Technician

Rogers Labs, Inc.
4405 W. 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3100
Revision 1

Kustom Signals, Inc.
Model: DRU-III
Test #: 080408
Test to: FCC 15c (15.245), IC RSS-210
File: Kustom DRUIII TstRpt

FCC ID#: IVQDRU-III
SN: RE01001
Page 33 of 34
Date: April 19, 2008

Annex E Industry Canada Site Approval LetterMay 23rd, 2006OUR FILE: 46405-3041
Submission No: 115252

Rogers Labs Inc.
4405 West 259th Terrace
Louisburg, KY
USA 66053

Dear Sir/Madame:

The Bureau has received your application for the Alternate Test Site or OATS and the filing is satisfactory to Industry Canada.

Please reference to the file number (3041-1) in the body of all test reports containing measurements performed on the site.

In the future, to obtain or renew a unique registration number, you may demonstrate that the site has been accredited to ANSI C63.4-2003 or later.

If the site is not accredited to ANSI C63.4-2003 or later, the test facility shall submit test data demonstrating conformance with the ANSI standard. The Department will evaluate the filing to determine if recognition shall be granted.

The frequency for re-validation of the test site and the information that is required to be filed or retained by the testing party shall comply with the requirements established by the accrediting organization. However, in all cases, test site re-validation shall occur on an interval not to exceed two years.

If you have any questions, you may contact the Bureau by e-mail at certification.bureau@ic.gc.ca
Please reference our file number above for all correspondence.

Yours sincerely,

Robert Corey
Manager Certification
Certification and Engineering Bureau
3701 Carling Ave., Building 94
Ottawa, Ontario K2H 8S2

Canada