

849 NW STATE ROAD 45
NEWBERRY, FL 32669 USA
PH: 888.472.2424 OR 352.472.5500
FAX: 352.472.2030
EMAIL: INFO@TIMCOENGR.COM
[HTTP://WWW.TIMCOENGR.COM](http://WWW.TIMCOENGR.COM)

FCC PART 90 & IC RSS-119

TEST REPORT

APPLICANT	KANEMATSU USA INC.
	543 WEST ALGONQUIN ROAD
	ARLINGTON HEIGHTS, ILLINOIS 60005 USA
FCC ID	IV9BSH16UM
IC Cert No.	IC: 5327A-BSH16UM
MODEL NUMBER	BSH16UM
PRODUCT DESCRIPTION	420 - 470 MHz 2-way radio
DATE SAMPLE RECEIVED	12/23/2009
DATE TESTED	1/16/2009
TESTED BY	Richard Block
APPROVED BY	Mario de Aranzeta
TIMCO REPORT NO.	28AUT9TestReport.pdf
TEST RESULTS	<input checked="" type="checkbox"/> PASS <input type="checkbox"/> FAIL

THE ATTACHED REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL
WITHOUT THE WRITTEN APPROVAL OF TIMCO ENGINEERING, INC.

TABLE OF CONTENTS

ATTESTATIONS	3
REPORT SUMMARY.....	4
TEST ENVIRONMENT AND TEST SETUP	4
DUT SPECIFICATION.....	5
TEST PROCEDURE	6
RF POWER OUTPUT	8
MODULATION CHARACTERISTICS.....	9
VOICE MODULATED COMMUNICATION EQUIPMENT	11
OTHER MODULATION CHARACTERISTICS	13
OCCUPIED BANDWIDTH.....	14
SPURIOUS EMISSIONS AT ANTENNA TERMINALS (CONDUCTED).....	17
FIELD STRENGTH OF SPURIOUS EMISSIONS.....	19
FREQUENCY STABILITY.....	21
TRANSIENT FREQUENCY BEHAVIOR.....	22

ATTESTATIONS

This equipment has been tested in accordance with the standards identified in this test report. To the best of my knowledge and belief, these tests were performed using the measurement procedures described in this report.

All instrumentation and accessories used to test products for compliance to the indicated standards are calibrated regularly in accordance with ISO 17025 requirements.

Testing Certificate # 0955-01

I attest that the necessary measurements were made, under my supervision, at:

Timco Engineering Inc.
849 NW State Road 45
Newberry, FL 32669

Authorized Signatory Name: *Mario de Aranzeta*

Mario de Aranzeta C.E.T.
Compliance Engineer/ Lab. Supervisor

Date: February 2, 2009

REPORT SUMMARY

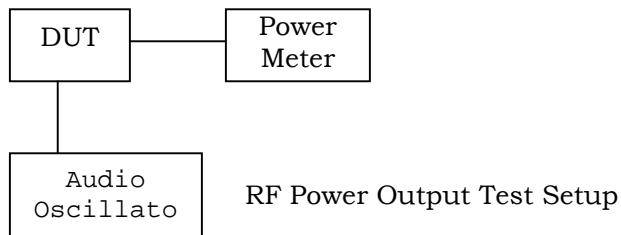
Disclaimer	The test results relate only to the items tested.
Purpose of Test	To demonstrate the DUT in compliance with FCC CFR 47, Part 90 requirements for two-way VHF/UHF radios. To demonstrate the DUT in compliance with IC RSS-119 requirements for two-way VHF/UHF radios.
Test Standards	ANSI/TIA 603-C: 2004, FCC CFR 47 Part 90 ANSI C63.4: 2003, RSS-119, FCC Pt 15.109
Related Approval	Receiver verified.

TEST ENVIRONMENT AND TEST SETUP

Test Facility	Timco Engineering Inc. located at 849 NW State Road 45, Newberry, FL 32669 USA
Laboratory Test Condition	The temperature was 26°C with a relative humidity of 50%.
Deviation from the standards	No deviation
Modification to the DUT	No modification was made.
Test Exercise (software etc.)	The DUT was placed in continuous transmitting mode of operation.
System Setup	Stand alone device.

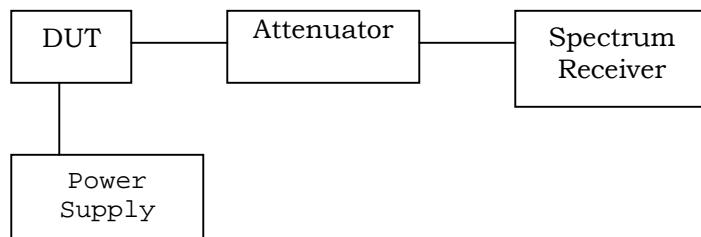
DUT SPECIFICATION

DUT Description	420 – 470 MHz UHF RADIO
FCC ID	IV9BSH16UM
IC Cert. No.	IC: 5327A-BSH16UM
Model Number	BSH16UM
Operating Frequency	420 – 470 MHz
RF PowerOutput	4 Watts (conducted)
Type of Emission	16K0F3E/11K0F3E
Modulation	FM
DUT Power Source	<input type="checkbox"/> 110–120Vac/50– 60Hz <input type="checkbox"/> DC Power 12V <input checked="" type="checkbox"/> Battery Operated Exclusively (7.4 Vdc)
Test Item	<input type="checkbox"/> Prototype <input checked="" type="checkbox"/> Pre-Production <input type="checkbox"/> Production
Type of Equipment	<input type="checkbox"/> Fixed <input type="checkbox"/> Mobile <input checked="" type="checkbox"/> Portable


TEST PROCEDURE

Power Line Conducted Interference

The procedure used was ANSI 63.4-2003 using a 50uH LISN. Both lines were observed with the DUT transmitting. The bandwidth of the spectrum analyzer was 10 kHz with an appropriate sweep speed.


RF Power Output

The RF power output was measured at the antenna feed point using a peak power meter. A 50-ohm, resistive wattmeter was connected to the RF output connector. With a nominal battery voltage, and the transmitter properly adjusted the RF output measures:

Spurious Emissions At Antenna Terminals (Conducted)

The carrier was modulated 100%. The spectrum was scanned from 0.4 to at least the 10th harmonic of the fundamental. Above 1 GHz the resolution bandwidth was 1 MHz and the VBW = 3 MHz and the span to 50 MHz. The measurements were made in accordance with standard ANSI/TIA-603-C: 2004

Radiation Interference

The test procedure used was ANSI/TIA-603-C: 2004 and ANSI C63.4-2003 using an Agilent spectrum receiver with pre-selector. The bandwidth (RBW) of the spectrum receiver was 100 kHz up to 1 GHz and 1 MHz above 1 GHz with an appropriate sweep speed. The VBW above 1 GHz was 3 MHz. The analyzer was calibrated in dB above a microvolt at the output of the antenna.

Modulation Characteristic

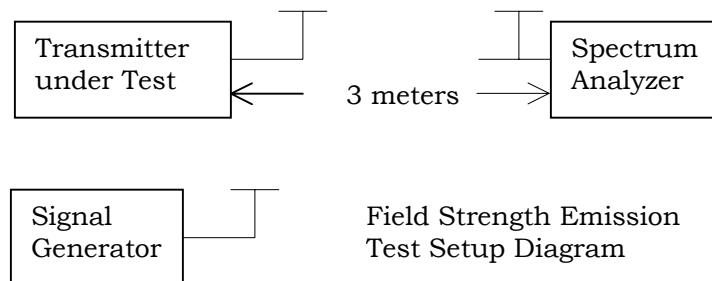
Audio frequency response

The audio frequency response was measured in accordance with ANSI/TIA 603-C: 2004.

Audio Low Pass Filter

The audio low pass filter for voice-modulated equipment was measured in accordance with ANSI/TIA 603-C: 2004.

Audio Input versus modulation


The audio input level needed for a particular percentage of modulation was measured in accordance with ANSI/TIA 603-C: 2004. Curves are provided for audio input frequencies of 300, 1000, and 3000 Hz.

Frequency Stability

The frequency stability was measured per ANSI/TIA 603-C: 2004.

Field Strength of Spurious Emissions

The spectrum was scanned from 30 MHz to at least the tenth harmonic of the fundamental. This test was conducted per ANSI/TIA 603-C: 2004 using the substitution method.

RF POWER OUTPUT

Rule Part No.: Part 2.1046(a), Part 90, RSS-119

Test Requirements: Part 2.1046(a), Part 90

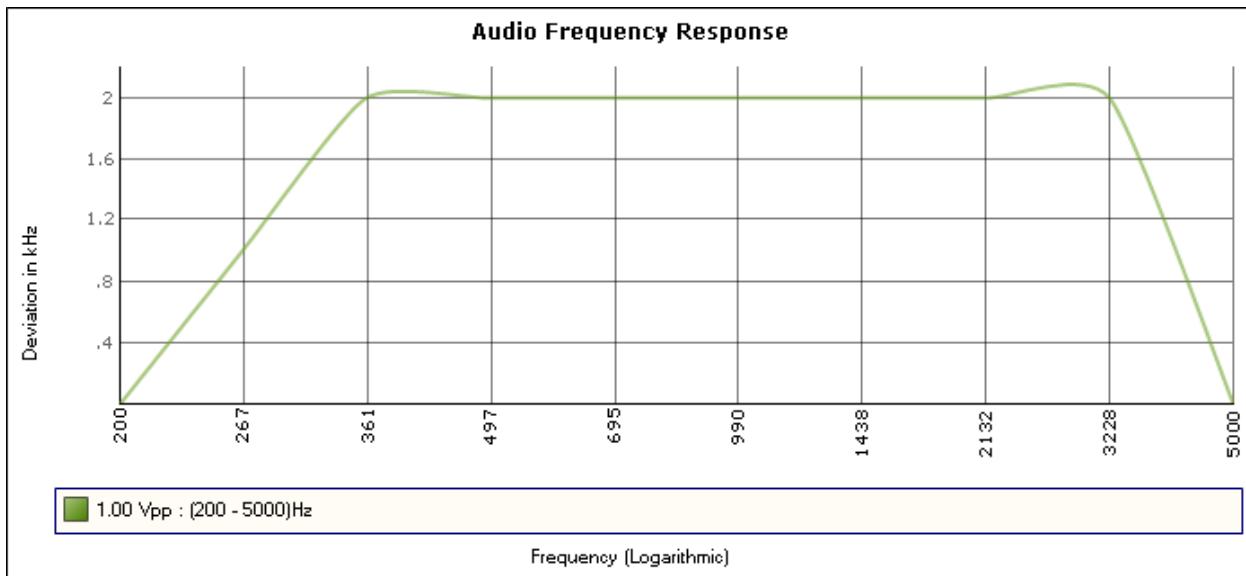
Test Data:

OUTPUT POWER: HIGH – 4.00 Watts
LOW - 1.00 Watts

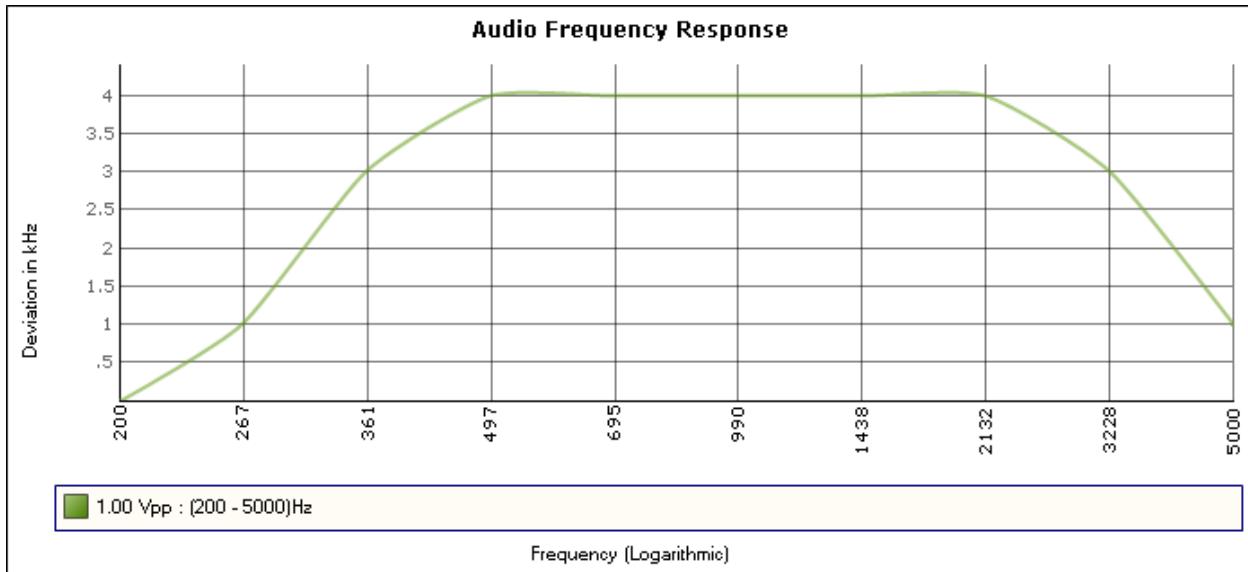
Part 2.1033 (C)(8) DC Input into the final amplifier

FOR LOW POWER SETTING INPUT POWER: $(7.4V)(.89A) = 6.6$ Watts

FOR HIGH POWER SETTING INPUT POWER: $(7.4V)(1.65A) = 12.2$ Watts

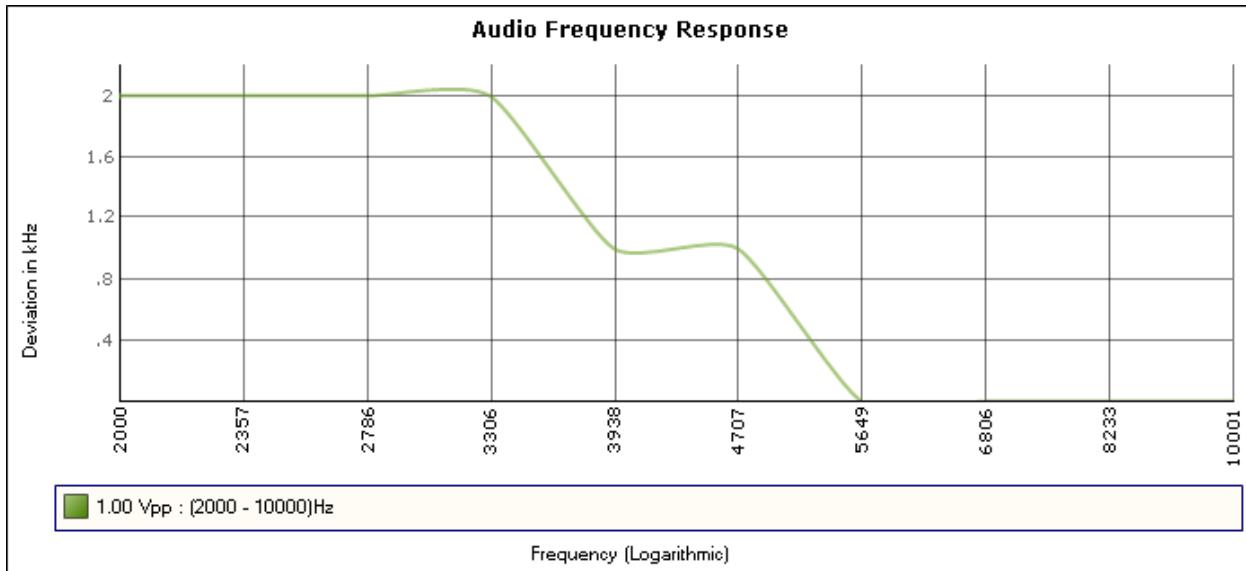

MODULATION CHARACTERISTICS

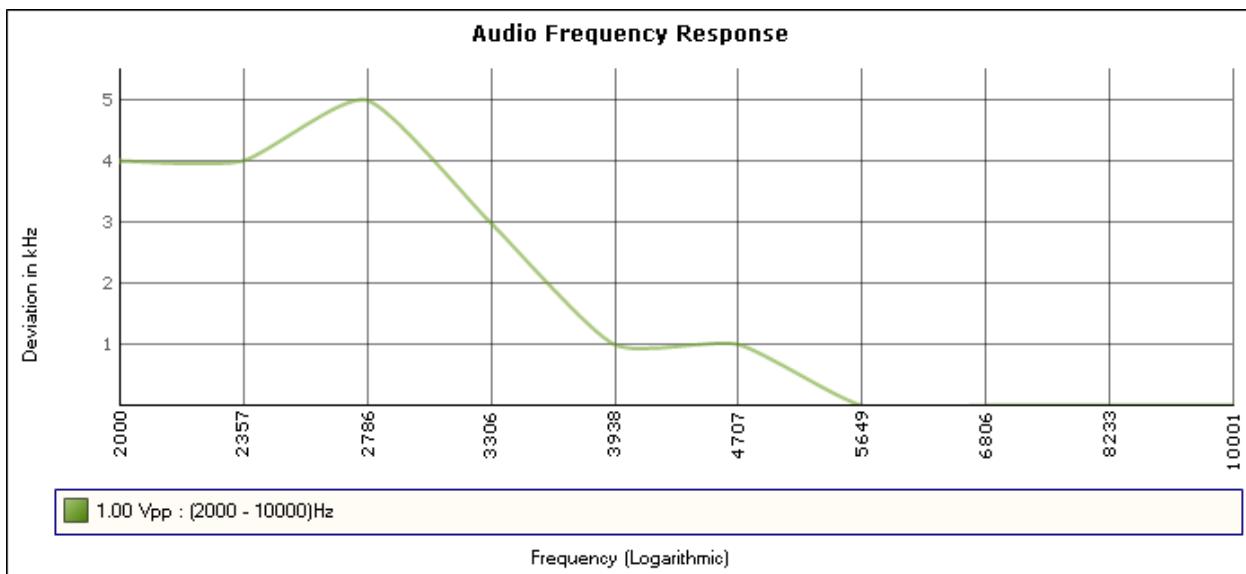
Rule Part No.: Part 2.1047(a)(b), RSS-119


Test Requirements: Part 2.1047(a)(b), RSS-119

Test Data:

AUDIO FREQUENCY RESPONSE PLOT
NARROW

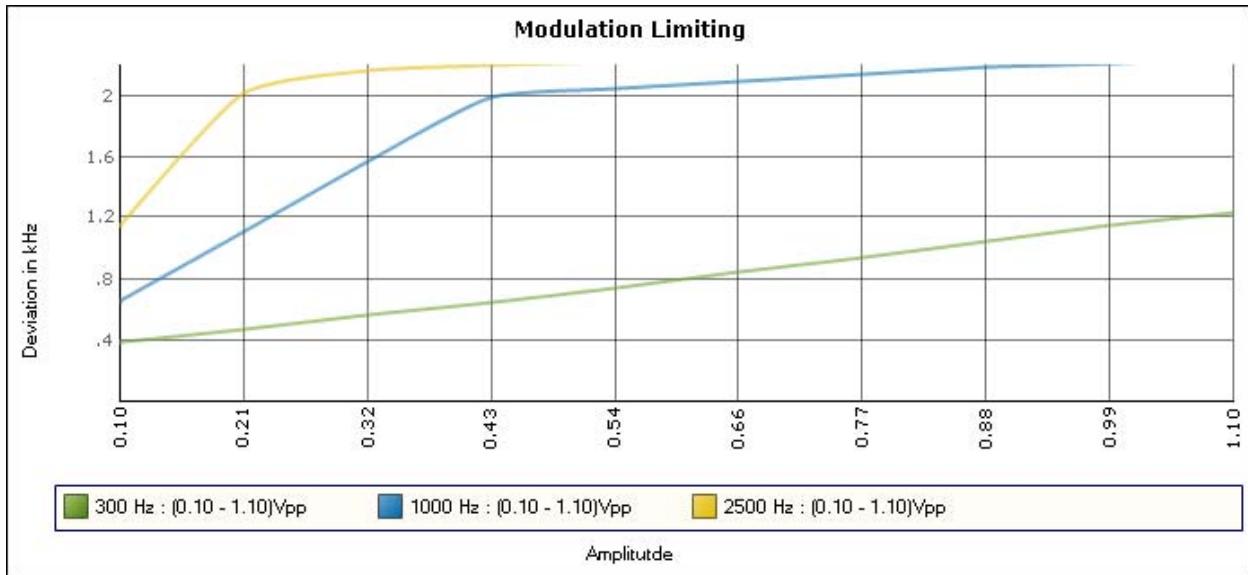

AUDIO FREQUENCY RESPONSE PLOT
WIDE


VOICE MODULATED COMMUNICATION EQUIPMENT

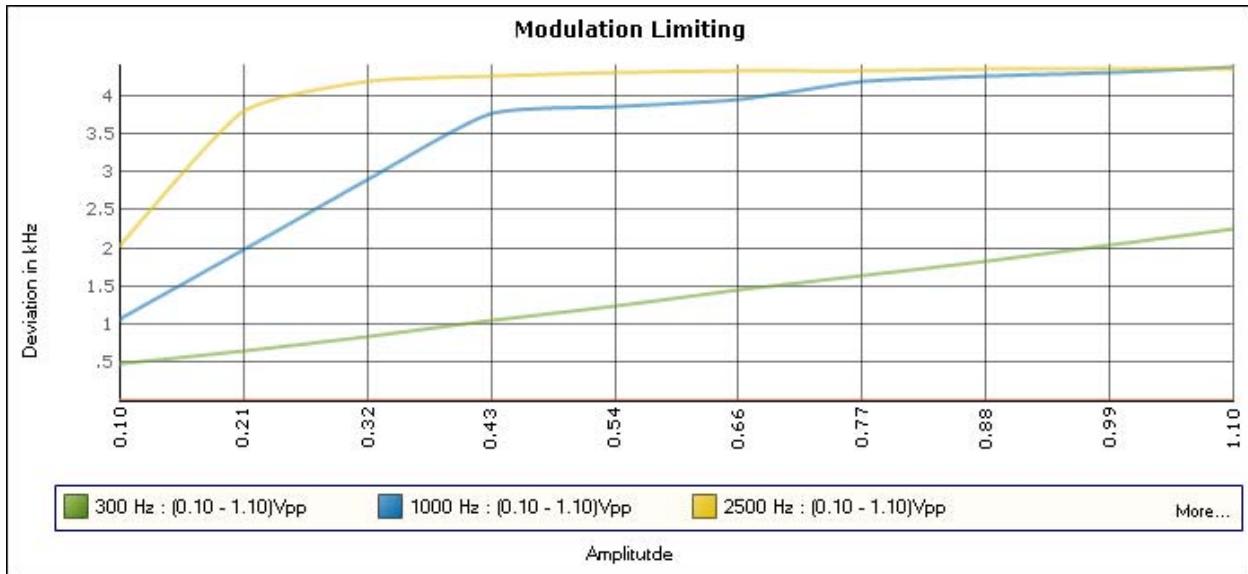
Part 2.1047(a): For equipment required to have an audio low-pass filter, a curve showing the frequency response of the filter, or of all the circuitry installed between the modulation limiter and the modulated stage shall be submitted.

AUDIO LOW PASS NARROW

AUDIO LOW PASS WIDE


AUDIO INPUT VERSUS MODULATION

Rule Part No.: Part 2.1047(b) & 90, RSS-119


Test Requirements: Part 2.1047(b) & 90, RSS-119

Test data:

Narrow

Wide

OTHER MODULATION CHARACTERISTICS

Part 2.1033(c) (4) Type of Emission: 11K2F3E

Part 90.209

Part 90.207 $B_n = 2M + 2DK$

$M = 3000$

$D = 2200$

$K=1$

$$B_n = 2(3000) + 2(2200) = 10.4k$$

Part 2.1033(c) (4) Type of Emission: 16K0F3E

Part 90.209

Part 90.207 $B_n = 2M + 2DK$

$M = 3000$

$D = 4500$

$K=1$

$$B_n = 2(3000) + 2(4500) = 15.0k$$

Applicant: KANEMATSU USA INC.

FCC ID: IV9BSHUM, IC: 5327A-BSH16UM

Report: K\KANEMATSU USA_\28AUT9\28AUT9TestReport.doc

Page 13 of 26

OCCUPIED BANDWIDTH

Rule Part No.: Part 2.1049(c)

Part 90.210(b) 25 kHz Channel Spacing

Data in the plots show that on any frequency removed from the assigned frequency by more than 50%, but not more than 100%: At least 25dB. On any frequency removed from the assigned frequency by more than 100%, but not more than 250%: At least 35 dB. On any frequency removed from the assigned frequency by more than 250%, of the authorized bandwidth: At least $43 + 10\log(P)$ dB.

Part 90.210(c) 12.5 kHz Channel Spacing Not Equipped with a Low Pass Filter

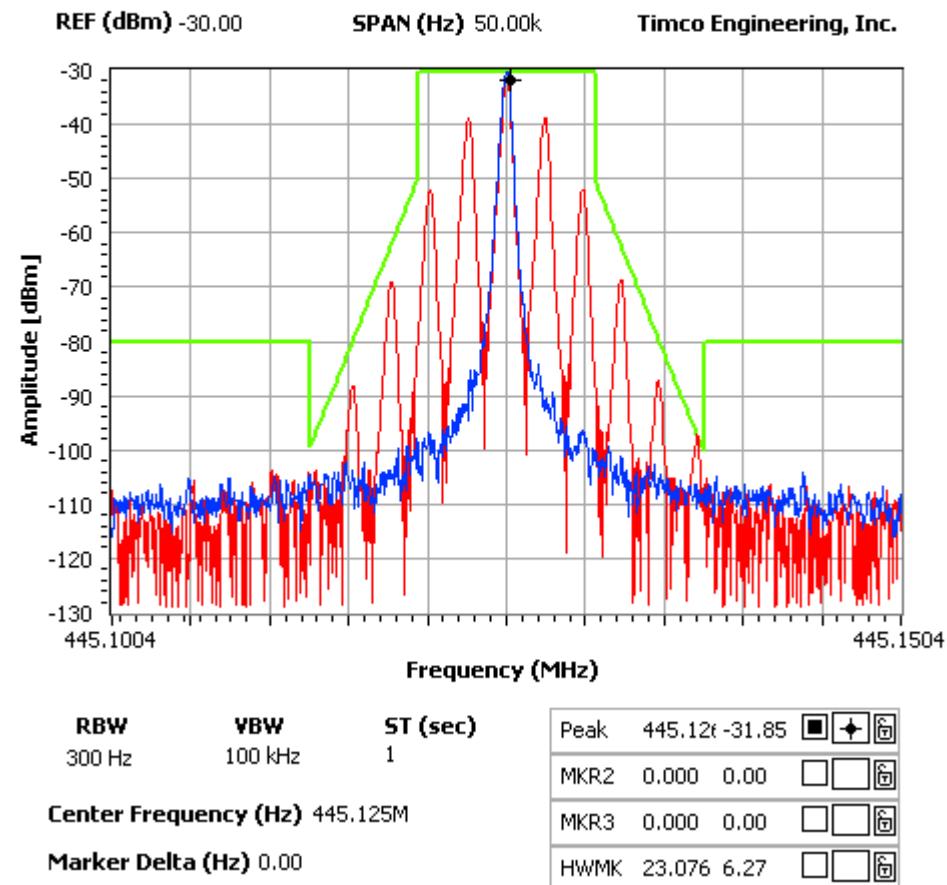
For transmitters that are not equipped with an audio low pass filter pursuant to S90.211 (b), the power of any emission must be attenuated below the un-modulated carrier output power as follows; (1) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 5 kHz but not more than 10 kHz: At least $83 \log(fd/5)$ dB; (2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 10 kHz, but not more than 250% of the authorized bandwidth: At least $29 \log(fd^2/11)$ dB or 50 dB, whichever is the lesser attenuation; (3) On any frequency removed from the center of the authorized bandwidth by more than 250% of the authorized bandwidth: At least $43 + 10 \log(Po)$ dB.

Part 90.210(d) Emission Mask D - 12.5 kHz channel BW equipment

For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

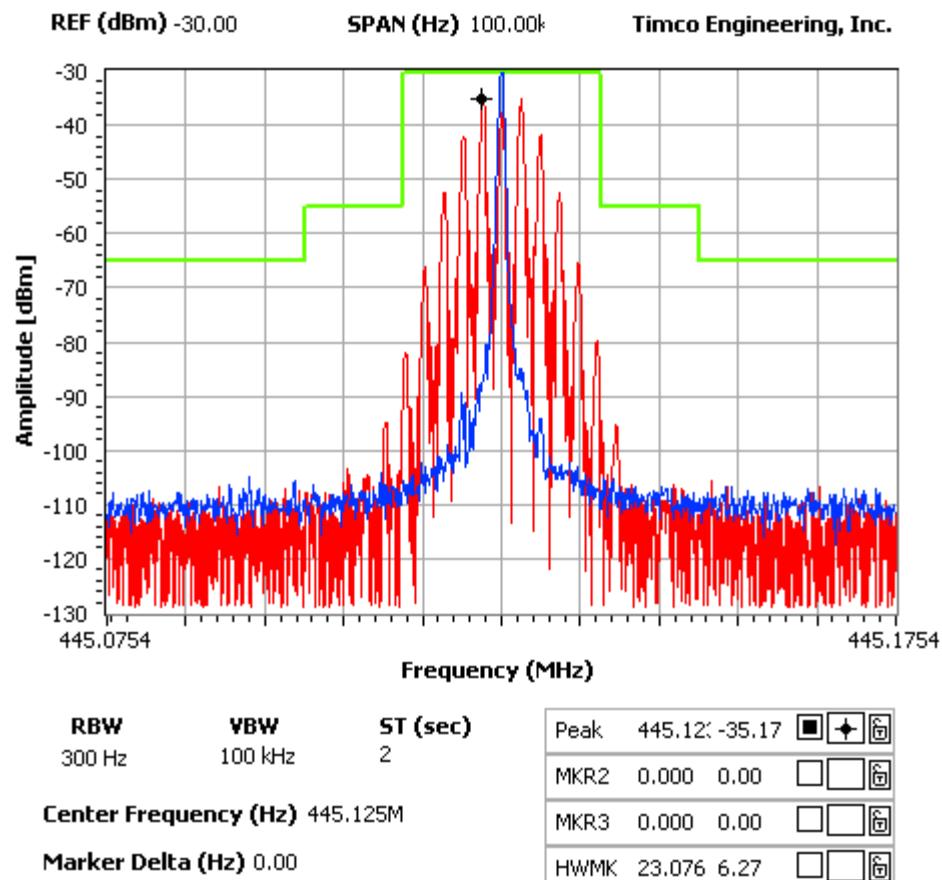
- (1) On any frequency from the center of the authorized bandwidth f0 to 5.625 kHz removed from f0: Zero dB.
- (2) On any frequency from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 5.625 kHz but no more than 12.5 kHz: At least $7.27(fd - 2.88)$ dB.
- (3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 12.5 kHz: At least $50 + 10\log(P)$ dB or 70 dB, whichever is the lesser attenuation.

Part 90.210(e) Emission Mask E – 6.25 kHz channel BW equipment


For transmitters designed to operate with a 6.25 kHz bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

- (1) On any frequency from the center of the authorized bandwidth f0 to 3.0 kHz removed from f0: Zero dB.
- (2) On any frequency from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 3.0 kHz but no more than 4.6 kHz: At least $30 + 16.67(fd - 3.0)$ or $55 + 10 \log(P)$ or 65, whichever is the lesser attenuation.
- (3) On any frequency removed from the center of the authorized bandwidth by more than 4.6 kHz: At least $55 + 10\log(P)$ dB or 65 dB, whichever is the lesser attenuation.

Test Data: See the plots below


NOTES:

Occupied Bandwidth Narrow

NOTES:

Occupied Bandwidth Wide

SPURIOUS EMISSIONS AT ANTENNA TERMINALS (CONDUCTED)

Rule Part No.: Part 2.1051(a), RSS-119

Requirements:

$$12.5 \text{ kHz Channel Spacing} = 50 + 10\log(\text{OP}) = 50 + \log(4) = 56 \text{ dBc}$$

$$25 \text{ kHz Channel Spacing} = 43 + 10\log(\text{OP}) = 43 + \log(4) = 49 \text{ dBc}$$

$$12.5\text{kHz Channel Spacing} = 50 + 10\log(\text{OP}) = 50 + \log(1) = 50 \text{ dBc}$$

$$25 \text{ kHz Channel Spacing} = 43 + 10\log(\text{OP}) = 43 + \log(1) = 43 \text{ dBc}$$

Test Data:

TF HIGH POWER	EF	dB below carrier		TF LOW POWER	EF	dB below carrier
420.125	420.125	0.0		420.125	420.125	0.0
	840.250	86.9			840.250	84.0
	1260.375	89.1			1260.375	83.8
	1680.500	85.5			1680.500	81.1
	2100.625	83.3			2100.625	81.8
	2520.750	91.1			2520.750	83.0
	2940.875	90.1			2940.875	84.3
	3361.000	90.5			3361.000	85.3
	3781.125	89.1			3781.125	81.1
	4201.250	84.6			4201.250	83.1

TF HIGH POWER	EF	dB below carrier		TF LOW POWER	EF	dB below carrier
445.125	445.125	0.0		445.125	445.125	0.0
	890.250	87.7			890.250	81.9
	1335.375	80.3			1335.375	80.5
	1780.500	80.5			1780.500	82.5
	2225.625	89.6			2225.625	82.5
	2670.750	91.0			2670.750	85.6
	3115.875	87.8			3115.875	84.6
	3561.000	89.2			3561.000	84.5
	4006.125	85.8			4006.125	84.1
	4451.250	89.5			4451.250	84.7

[Continued]

Applicant: KANEMATSU USA INC.

FCC ID: IV9BSHUM, IC: 5327A-BSH16UM

Report: K\KANEMATSU USA_\28AUT9\28AUT9TestReport.doc

Page 17 of 26

TF HIGH POWER	EF	dB below carrier		TF LOW POWER	EF	dB below carrier
469.875	469.875	0.0		469.875	469.875	0.0
	939.750	90.3			939.750	81.7
	1409.625	84.5			1409.625	78.1
	1879.500	89.4			1879.500	72.3
	2349.375	88.8			2349.375	81.0
	2819.250	92.5			2819.250	84.4
	3289.125	92.1			3289.125	85.5
	3759.000	91.9			3759.000	85.2
	4228.875	91.0			4228.875	84.9
	4698.750	90.7			4698.750	86.8

Applicant: KANEMATSU USA INC.

FCC ID: IV9BSHUM, IC: 5327A-BSH16UM

Report: K\KANEMATSU USA_\28AUT9\28AUT9TestReport.doc

Page 18 of 26

FIELD STRENGTH OF SPURIOUS EMISSIONS

Rule Parts. No.: Part 2.1053, RSS-119

Requirements:

12.5 kHz Channel Spacing = $50+10\log(OP) = 50 + \log (4) = 56$ dBc

25 kHz Channel Spacing = $43+10\log(OP) = 43 + \log (4) = 49$ dBc

12.5kHz Channel Spacing = $50+10\log(OP) = 50 + \log (1) = 50$ dBc

25 kHz Channel Spacing = $43+10\log(OP) = 43 + \log (1) = 43$ dBc

Test Data:

High Power

Low Power

Emission Frequency MHz	Ant. Polarity V/H	dB Below Carrier (dBc)
420.13	0	0.0
840.25	V	87.5
1260.38	V	84.4
1680.50	V	72.8
2100.63	V	67.2
2520.75	V	83.1
2940.88	H	82.8
3361.00	V	94.1
3781.13	H	88.8
4201.25	H	89.2

Emission Frequency MHz	Ant. Polarity V/H	dB Below Carrier (dBc)
420.13	0	0.0
840.25	H	81.4
1260.38	H	78.1
1680.50	V	71.2
2100.63	V	65.2
2520.75	V	78.5
2940.88	H	84.3
3361.00	V	87.4
3781.13	V	83.6
4201.25	V	85.1

High Power

Low Power

Emission Frequency MHz	Ant. Polarity V/H	dB Below Carrier (dBc)
445.13	0	0.0
890.25	V	93.6
1335.38	V	79.6
1780.50	V	69.8
2225.63	V	76.6
2670.75	H	87.3
3115.88	H	86.7
3561.00	V	82.1
4006.13	H	87.3
4451.25	V	86.9

Emission Frequency MHz	Ant. Polarity V/H	dB Below Carrier (dBc)
445.13	0	0.0
890.25	V	93.6
1335.38	V	79.6
1780.50	V	69.8
2225.63	V	76.6
2670.75	H	87.3
3115.88	H	86.7
3561.00	V	82.1
4006.13	H	87.3
4451.25	V	86.9

[Continued]

Applicant: KANEMATSU USA INC.

FCC ID: IV9BSHUM, IC: 5327A-BSH16UM

Report: K\KANEMATSU USA_\28AUT9\28AUT9TestReport.doc

High Power

Emission Frequency MHz	Ant. Polarity V/H	dB Below Carrier (dBc)
469.88	0	0.0
939.75	V	84.4
1409.63	V	77.5
1879.50	H	76.1
2349.38	V	74.1
2819.25	H	86.0
3289.13	H	85.6
3759.00	V	86.5
4228.88	H	86.7
4698.75	H	84.7

Low Power

Emission Frequency MHz	Ant. Polarity V/H	dB Below Carrier (dBc)
469.88	0	0.0
939.75	V	75.5
1409.63	V	75.4
1879.50	V	75.0
2349.38	V	77.9
2819.25	H	84.5
3289.13	V	83.5
3759.00	V	84.0
4228.88	H	83.8
4698.75	H	80.5

FREQUENCY STABILITY

Rule Parts. No.: Part 2.1055, Part 90.213, RSS-119

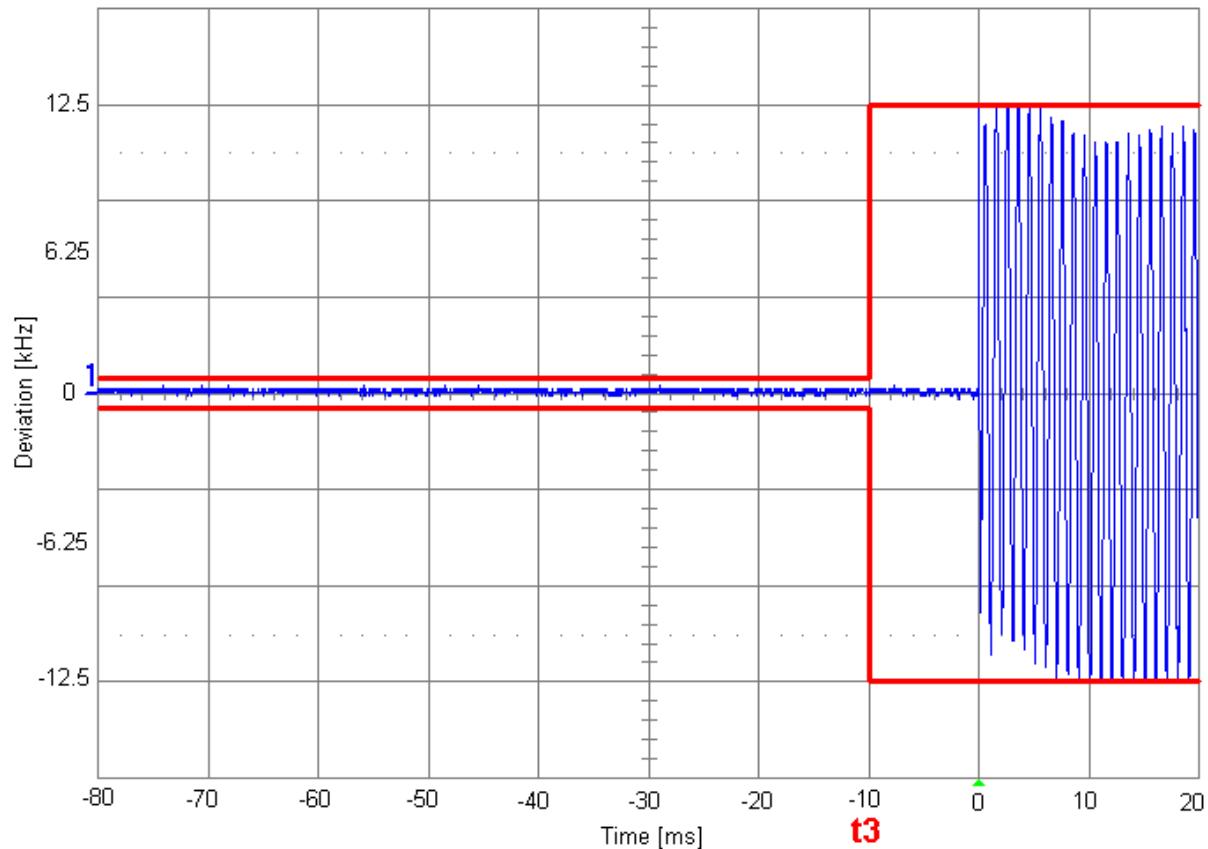
Requirements: Temperature range requirements: -30 to +50° C.
 Voltage Variation +, -15%
 ±2.5 PPM

Test Data:

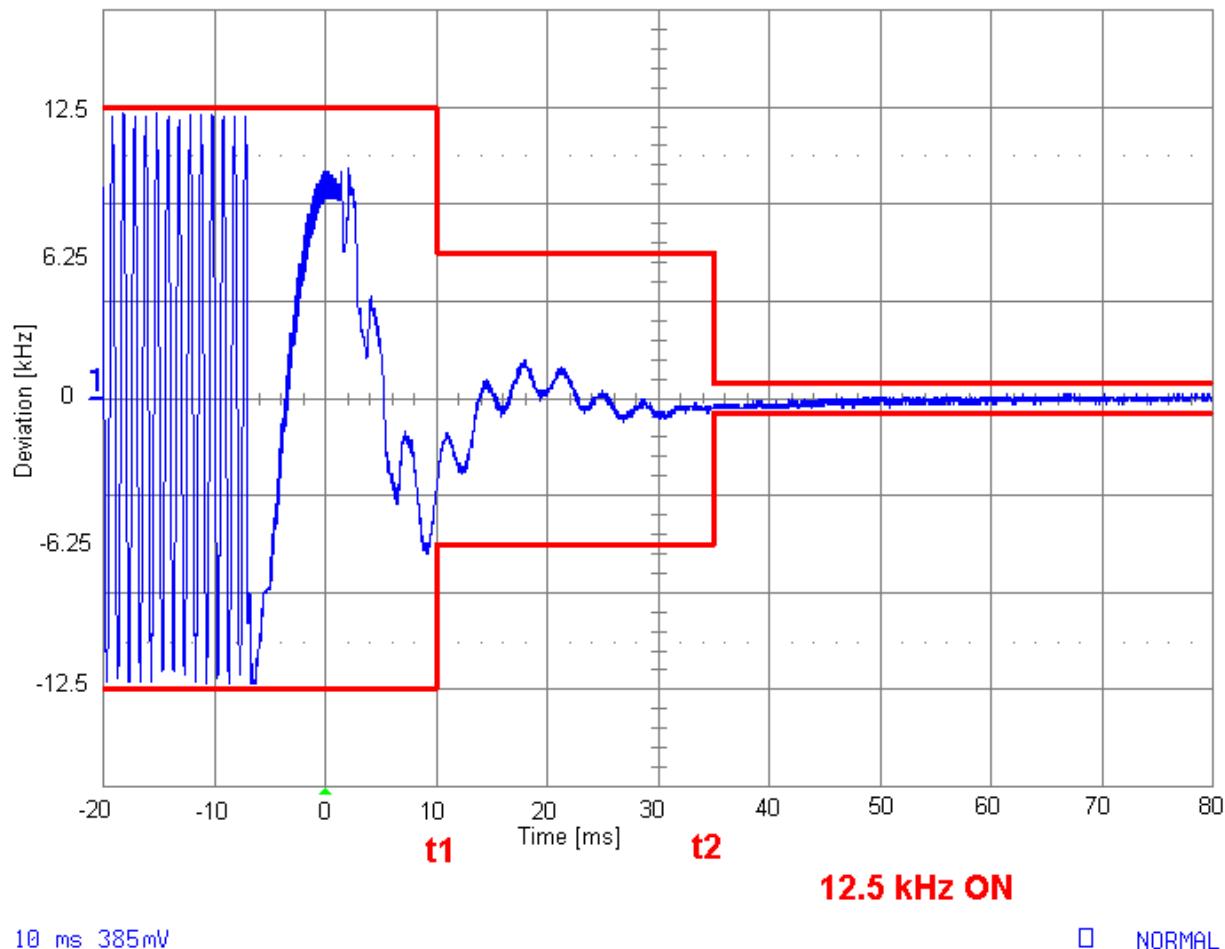
Assigned Frequency (Ref. Frequency) (MHz)		445.125239
Temperature (°C)	Frequency (MHz)	Frequency Stability (PPM)
-30	445.125170	-0.16
-20	445.124965	-0.62
-10	445.124922	-0.71
0	445.124957	-0.63
+10	445.125034	-0.46
+20	445.125162	-0.17
+30	445.125261	0.05
+40	445.125327	0.20
+50	445.125352	0.25

Assigned Frequency (Ref. Frequency) (MHz)		
% Battery	Frequency (MHz)	Frequency Stability (PPM)
-15%	445.125253	0.03
0	445.125239	0.00
+15%	445.125256	0.04

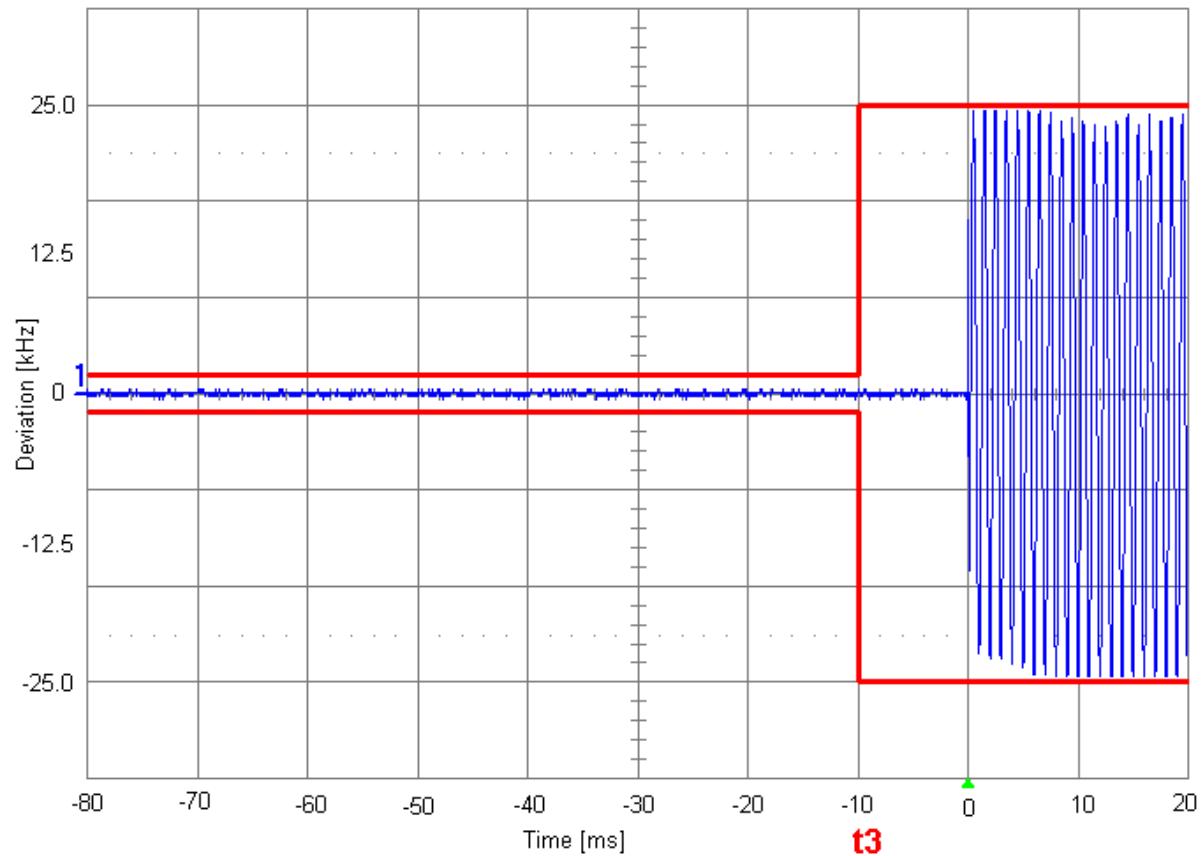
TRANSIENT FREQUENCY BEHAVIOR


Rule Part No.: Pt 90.214, RSS-119

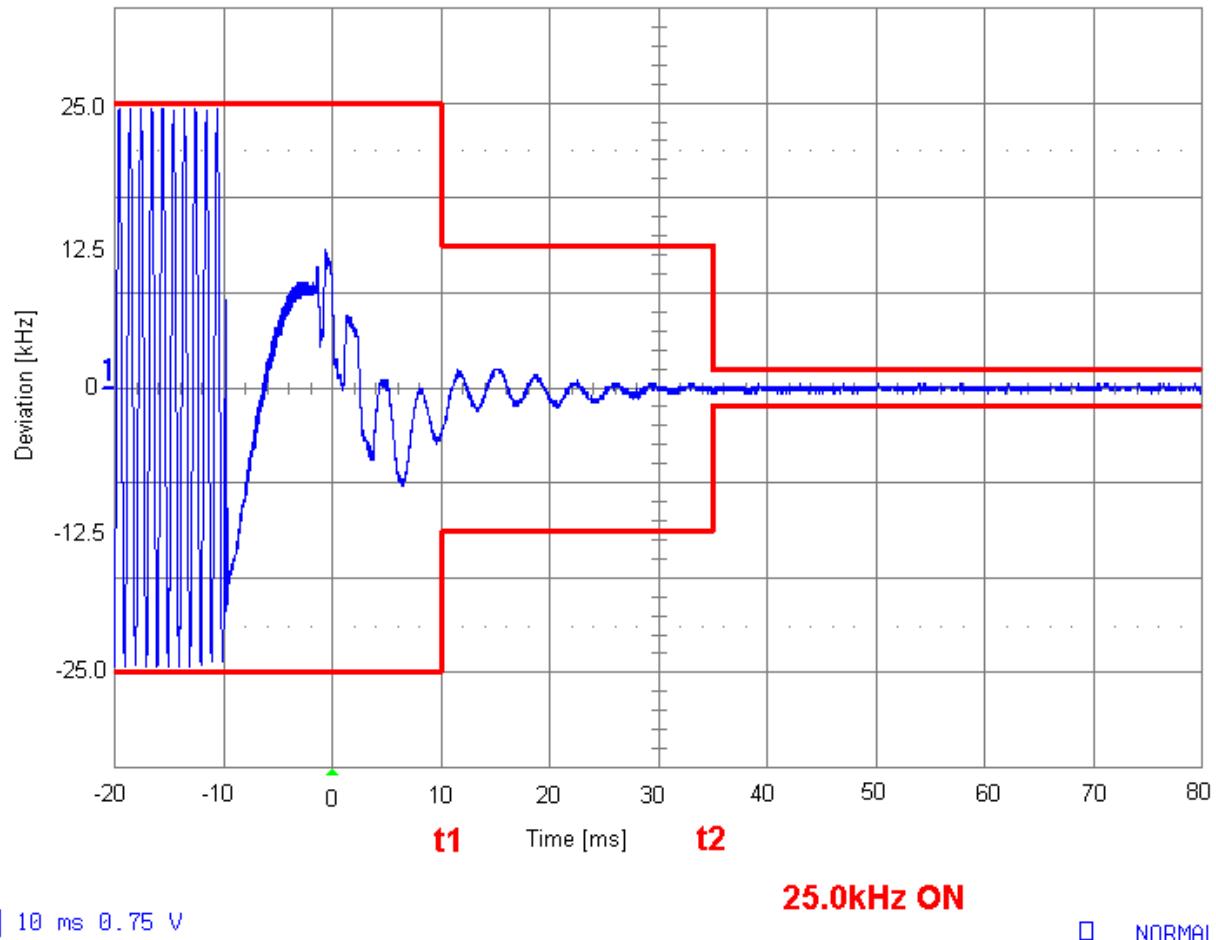
Test Requirements: Transmitters designed to operate in the 150-174 MHz and 421-512 MHz frequency bands must maintain transient frequencies within the maximum transient frequencies within the maximum frequency difference limits during the time intervals indicated:


Time Intervals	Maximum frequency difference	All Equipment	
		150-174 MHz	421-512 MHz
Transient Frequency Behavior for Equipment Designed to Operate on 25 kHz Channels			
t_1^4	± 25.0 kHz	5.0 ms	10.0 ms
t_2	± 12.5 kHz	20.0 ms	25.0 ms
t_3^4	± 25.0 kHz	5.0 ms	10.0 ms
Transient Frequency Behavior for Equipment Designed to Operate on 12.5 kHz Channels			
t_1^4	± 12.5 kHz	5.0 ms	10.0 ms
t_2	± 6.25 kHz	20.0 ms	25.0 ms
t_3^4	± 12.5 kHz	5.0 ms	10.0 ms
Transient Frequency Behavior for Equipment Designed to Operate on 6.25 kHz Channels			
t_1^4	± 6.25 kHz	5.0 ms	10.0 ms
t_2	± 3.125 kHz	20.0 ms	25.0 ms
t_3^4	± 6.25 kHz	5.0 ms	10.0 ms

Test Data: See plots below


Transient Freq Response Narrow OFF

Transient Freq Response Narrow ON


Transient Freq Response Wide OFF

█ 10 ms 0.75 V

□ NORMAL

Transient Freq Response Wide ON

