

Nemko Test Report: 10033RUS3

Applicant: The Charles Machine Works, Inc.
1959 W. Fir Ave
Perry, OK 73077
USA

Equipment Under Test: 752 Tracker
(E.U.T.)

In Accordance With: **FCC Part 90, Subpart I**
Private Land Mobile Transmitter

Tested By: Nemko USA Inc.
802 N. Kealy
Lewisville, TX
75057-3136

TESTED BY:

David Light, Senior Wireless Engineer

DATE: 07 April 2008

APPROVED
BY:

Mike Cantwell

Mike Cantwell, Frontline Manager

DATE: 9 April, 2008

Total Number of Pages: 29

Table of Contents

SECTION 1.	SUMMARY OF TEST RESULTS	3
SECTION 2.	GENERAL EQUIPMENT SPECIFICATION	5
SECTION 3.	RF POWER OUTPUT	7
SECTION 4.	MODULATION CHARACTERISTICS	8
SECTION 5.	OCCUPIED BANDWIDTH	9
SECTION 6.	SPURIOUS EMISSIONS AT ANTENNA TERMINALS	10
SECTION 7.	FIELD STRENGTH OF SPURIOUS EMISSIONS	13
SECTION 8.	FREQUENCY STABILITY	14
SECTION 9.	TRANSIENT FREQUENCY BEHAVIOR	16
SECTION 10.	TEST EQUIPMENT LIST	19
ANNEX A - TEST METHODOLOGIES		20
ANNEX B - TEST DIAGRAMS		25

Section 1. Summary of Test Results

Manufacturer: The Charles Machine Works, Inc.

Model No.: 752 Tracker

Serial No.: 8271534

General: **All measurements are traceable to national standards.**

These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with FCC Part 90, Subpart I.

New Submission

Production Unit

Class II Permissive Change

Pre-Production Unit

THIS TEST REPORT RELATES ONLY TO THE ITEM(S) TESTED.

THE FOLLOWING DEVIATIONS FROM, ADDITIONS TO, OR EXCLUSIONS FROM THE TEST SPECIFICATIONS HAVE BEEN MADE. See "Summary of Test Data".

Nemko USA, Inc. authorizes the above named company to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko USA, Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

Summary of Test Data

NAME OF TEST	PARA. NO.	RESULT
RF Power Output	90.205	Complies
Audio Frequency Response	TIA EIA-603.3.2.6	NA
Audio Low-Pass Filter Response	TIA EIA-603.3.2.6	NA
Modulation Limiting	TIA EIA-603.3.2.6	Complies
Occupied Bandwidth	90.210	Complies
Spurious Emissions at Antenna Terminals	90.210	Complies
Field Strength of Spurious Emissions	90.210	Complies
Frequency Stability	90.213	Complies
Transient Frequency Behavior	90.214	Complies

Footnotes:

The DUT has no audio components.

Section 2. General Equipment Specification**Transmitter**

Supply Voltage Input: 9 Vdc

Frequency Range: 460 to 470 MHz

Tunable Bands: 461.0375 to 469.550 MHz

Necessary Bandwidth: 7.8 kHz (calculated per Carson's Rule)
 $2(1500\text{Hz}) + 2(4800/2) = 7800 \text{ Hz}$

Type(s) of Modulation:

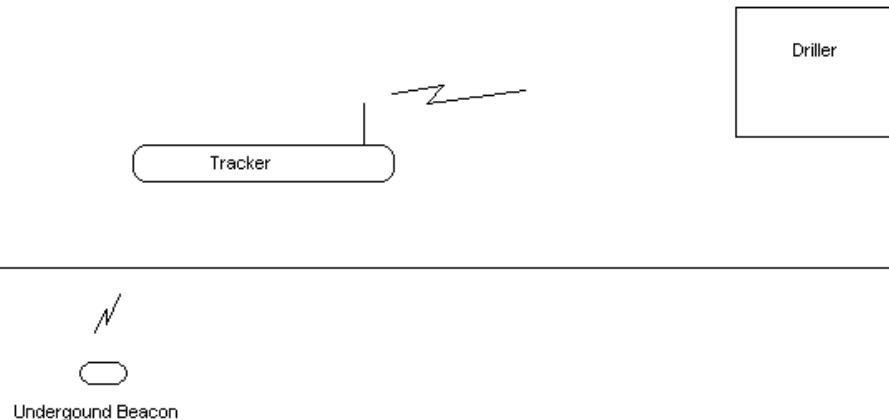
	F3E (Voice)	F1D	F2D	D7W (QAM)	Other
	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>

Emission Designator: 7K80F1D

Output Impedance: 50 ohms

RF Power Output (rated): 100 mW

Channel Spacing(s): 12.5 kHz


Operator Selection of Operating Frequency: Dependent on receiver

Power Output Adjustment Capability: None

System Description

The 752 Tracker is a hand held, 9 channel, dual-conversion, narrow-band FM tracking device used in horizontal directional drilling applications. The tracker provides comprehensive guidance data including pitch, roll angle, depth, location, beacon temperature, battery status, etc. The data is collected and transmitted to a receiver located on the operator's station of a directional drill. The unit operates in the 450MHz-470MHz band and is powered by 6 C-cell alkaline batteries.

System Diagram

EQUIPMENT: **752 Tracker****PROJECT NO.:** **10033RUS3****Section 3. RF Power Output**

NAME OF TEST: RF Power Output	PARA. NO.: 2.985
TESTED BY: David Light	DATE: 04 April 2008

Measurement Results: Complies.**Measurement Data:**

Frequency (MHz)	Measured Power (dBm)	Measured Power (Watts)	Rated Power (Watts)
461.0375	20.29	0.107	0.100
466.0875	20.58	0.114	0.100
469.55	20.08	0.102	0.100

Spectrum Analyzer Settings:

RBW: 1 MHz

VBW: 1 MHz

Detector: Max Peak

Measurement Conditions:Temperature: **22** °CHumidity: **31** %**Test Equipment Used:** 1036-1082-1469-1470**Measurement Uncertainty:** +/- 1.7 dB

Section 4. Modulation Characteristics

NAME OF TEST: Modulation Characteristics	PARA. NO.: 2.987
TESTED BY: David Light	DATE: 04 April 2008

Measurement Results: Complies.**Measurement Data:** Maximum deviation for non-voice modulation 2.774 kHz.

Limit: 12 kHz

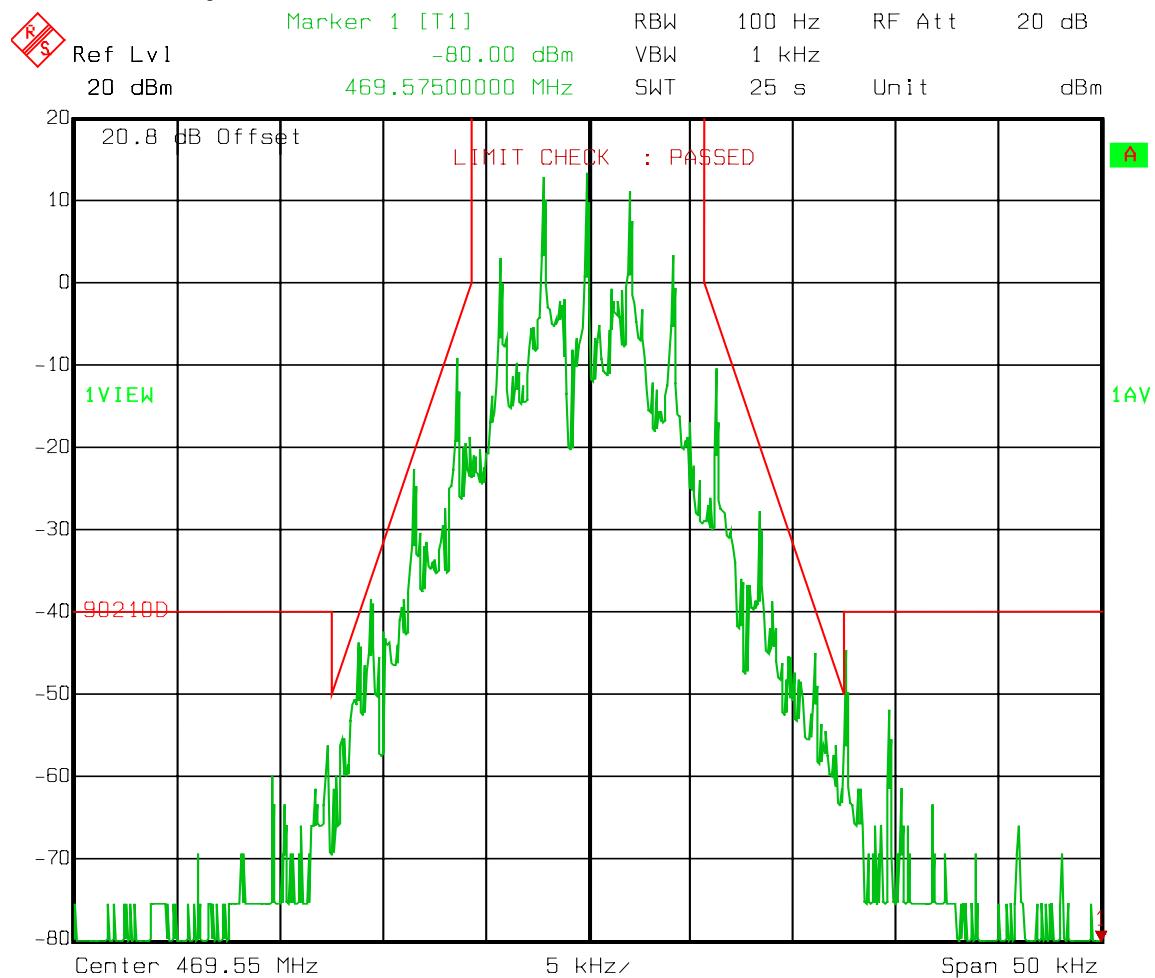
Measurement Conditions: Temperature: **22** °C
Humidity: **45** %**Measurement Uncertainty:** +/- 1.7 dB**Description of modulation:** **FM****Test Equipment Used:** 1036-1082-1469-1470**Measurement Uncertainty:** +/- 1.7 dB

EQUIPMENT: [752 Tracker](#)PROJECT NO.: [10033RUS3](#)**Section 5. Occupied Bandwidth**

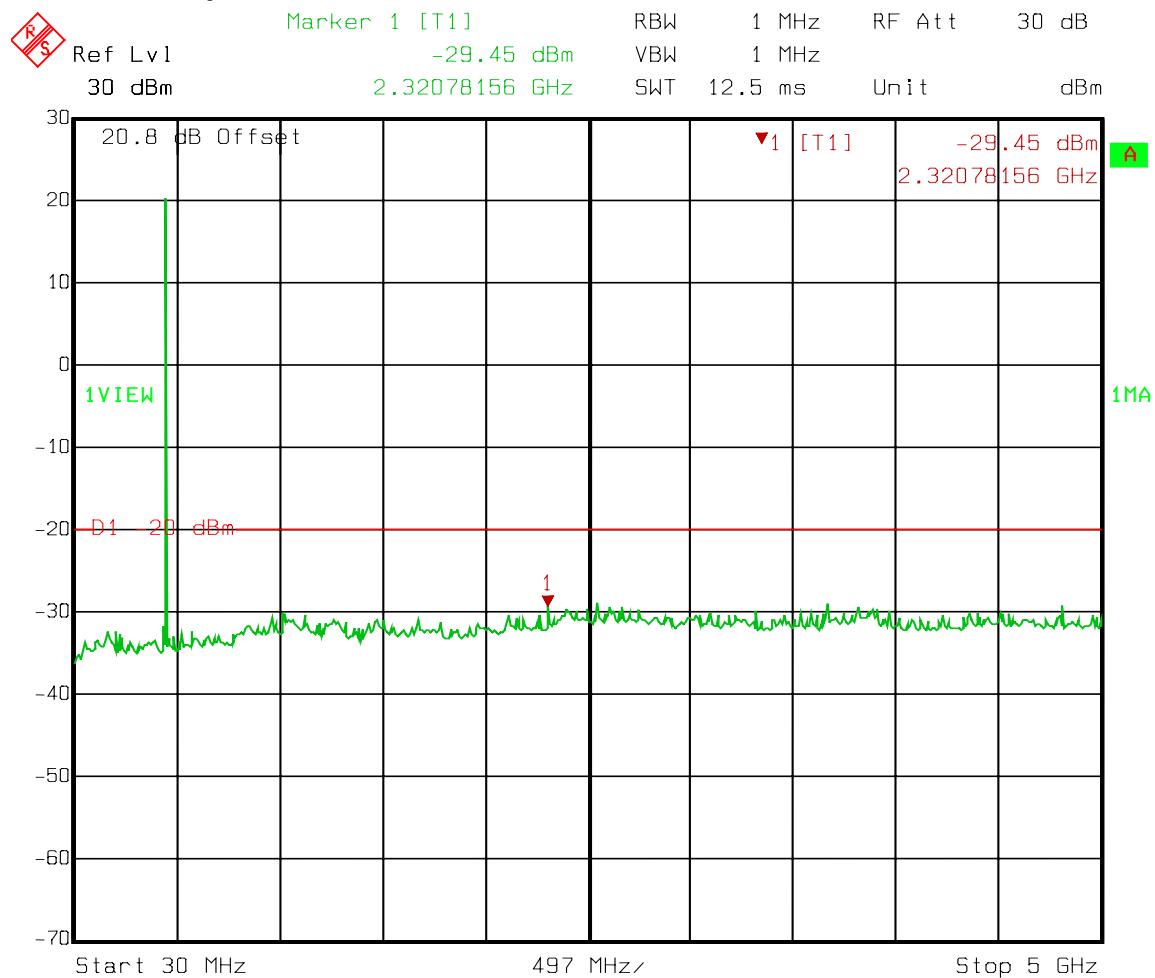
NAME OF TEST: Occupied Bandwidth	PARA. NO.: 2.989
TESTED BY: David Light	DATE: 04 April 2008

Measurement Results: Complies.**Measurement Data:** 7.8 kHz (calculated per Carson's Rule)

$$2(1500\text{Hz}) + 2(4800/2) = 7800 \text{ Hz}$$


Measurement Conditions: Temperature: [22](#) °C
Humidity: [31](#) %**Measurement Uncertainty:** +/- 1×10^{-7} ppm

EQUIPMENT: [752 Tracker](#)PROJECT NO.: [10033RUS3](#)**Section 6. Spurious Emissions at Antenna Terminals**


NAME OF TEST: Spurious Emissions @ Antenna Terminals PARA. NO.: 2.991

TESTED BY: David Light DATE: 04 April 2008

Measurement Results: Complies.**Measurement Data:** See attached data**Measurement Conditions:** Temperature: [22](#) °C
Humidity: [31](#) %**Measurement Uncertainty:** +/- 1.7 dB**Test Equipment Used:** 1036-1082-1469-1470

EQUIPMENT: **752 Tracker**PROJECT NO.: **10033RUS3****Test Data – Spurious Emissions at Antenna Terminals**

Date: 04.APR.2008 12:35:36

EQUIPMENT: **752 Tracker**PROJECT NO.: **10033RUS3****Test Data – Spurious Emissions at Antenna Terminals**

Date: 04.APR.2008 12:40:32

Section 7. Field Strength of Spurious Emissions

NAME OF TEST: Field Strength of Spurious Emissions PARA. NO.: 2.993

TESTED BY: David Light DATE: 04 April 2008

Measurement Results: Complies.**Measurement Data:** There were no emissions observed within 20 dB of the specification limit of -20 dBm.

The spectrum was searched from 30 to 5000 MHz.

Below 1000 MHz	RBW=VBW=100 kHz	Peak detector
Above 1000 MHz	RBW=VBW=1 MHz	Peak detector

Measurement Conditions: Temperature: [22](#) °C
Humidity: [31](#) %**Measurement Uncertainty:** +/- 1.7 dB**Test Equipment Used:** 1464-1484-1485-1016-993-1763-1025

EQUIPMENT: [752 Tracker](#)PROJECT NO.: [10033RUS3](#)**Section 8. Frequency Stability**

NAME OF TEST: Frequency Stability	PARA. NO.: 2.995
TESTED BY: David Light	DATE: 07 April 2008

Measurement Results: Complies.**Measurement Data:** See attached data**Measurement Conditions:** Temperature: [22](#) °C
Humidity: [31](#) %**Test Equipment Used:** 1036-1082-1469-1470-283**Measurement Uncertainty:** +/- 1×10^{-7} ppm

EQUIPMENT: **752 Tracker****PROJECT NO.:** **10033RUS3****Test Data – Frequency Stability**

Nominal Test Frequency = 461.0875 MHz

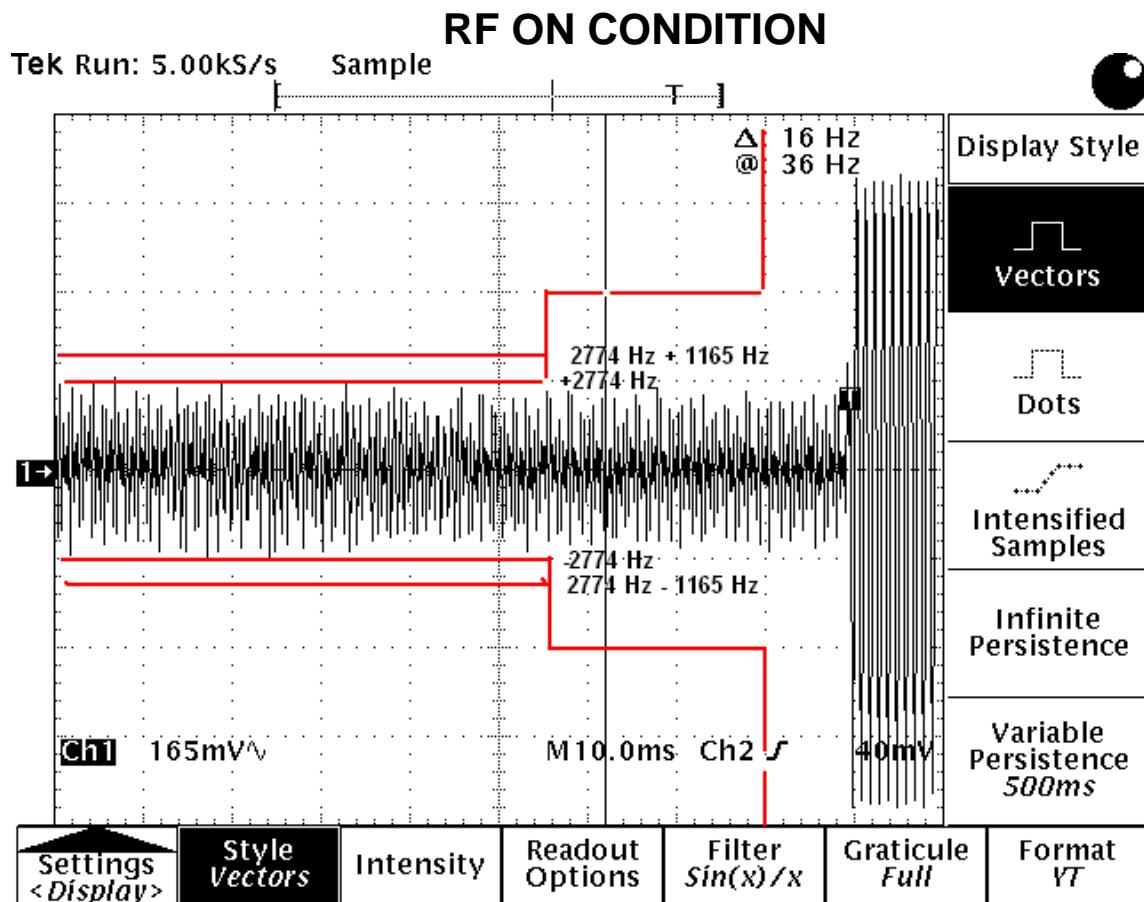
Temp (°C)	Measured Frequency (MHz)	Test Voltage	Frequency Error (Hz)	Limit (+/-Hz)	Error (ppm)	Comment
20	461.099980	9 Vdc	-20	1152.8	-0.04	Nominal
20	461.099980	5.2 Vdc	-20	1152.8	-0.04	Battery cutoff
20	461.099980	10.4 Vdc	-20	1152.8	-0.04	
50	461.099960	9 Vdc	-40	1152.8	-0.09	
40	461.099960	9 Vdc	-40	1152.8	-0.09	
30	461.099960	9 Vdc	-40	1152.8	-0.09	
		9 Vdc				
10	461.100020	9 Vdc	20	1152.8	0.04	
0	461.100020	9 Vdc	20	1152.8	0.04	
-10	461.100020	9 Vdc	20	1152.8	0.04	
-20	461.100020	9 Vdc	20	1152.8	0.04	
-30	461.100020	9 Vdc	20	1152.8	0.04	
Notes:						

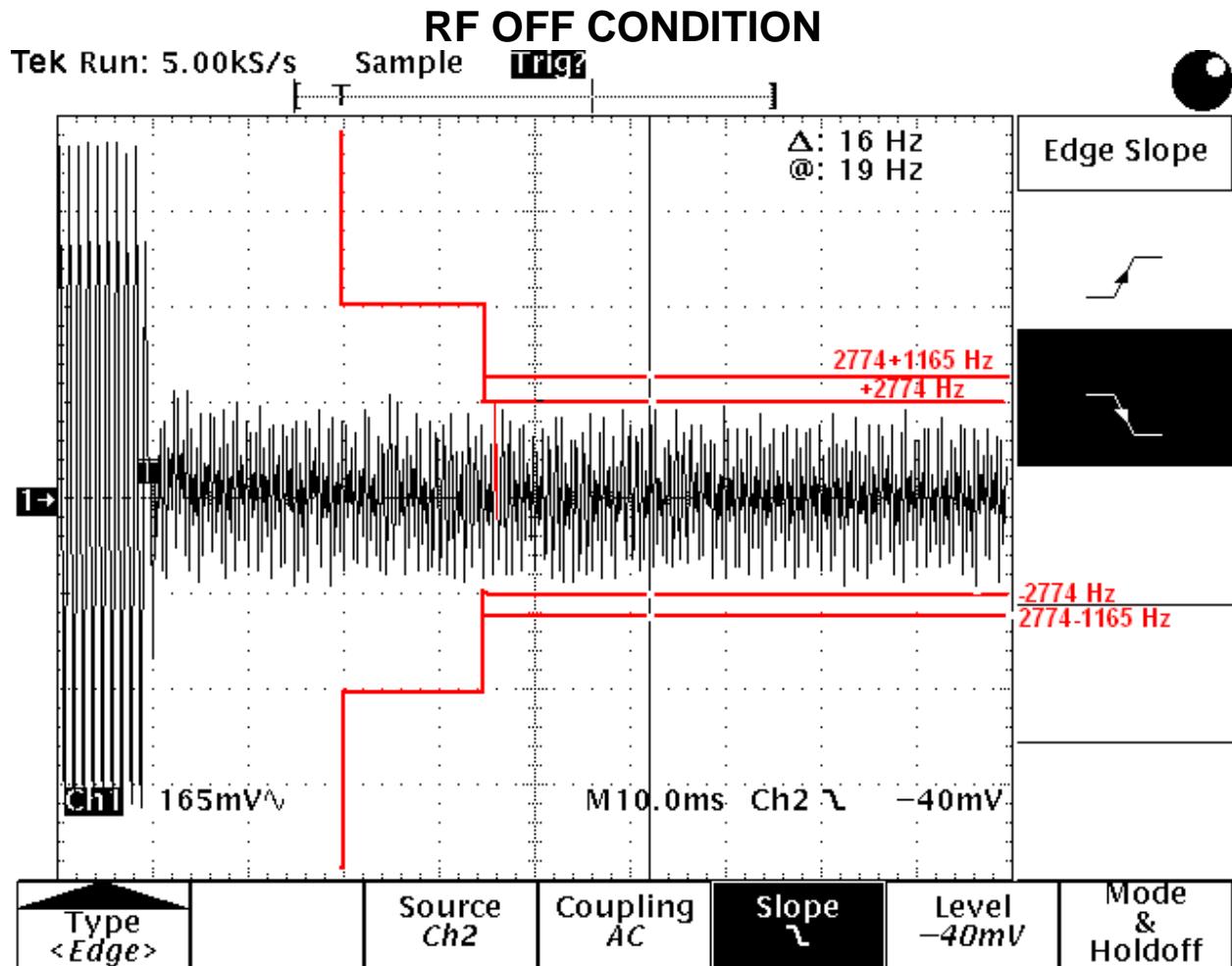
Limit +/- 2.5 ppm

EQUIPMENT: [752 Tracker](#)PROJECT NO.: [10033RUS3](#)**Section 9. Transient Frequency Behavior**

NAME OF TEST: Transient Frequency Behavior PARA. NO.: 90.214

TESTED BY: David Light DATE: 04 April 2008


Measurement Results: Complies.**Measurement Data:** See attached data


Frequency deviation: +/- 2774 Hz

Maximum frequency drift: +/- 1165 Hz

Measurement Conditions: Temperature: [22](#) °C
Humidity: [31](#) %**Test Equipment Used:** 1463-1082-1054-1093-1051**Measurement Uncertainty:** +/- 1×10^{-7} ppm

Test Data – Transient Frequency Behavior

EQUIPMENT: **752 Tracker**PROJECT NO.: **10033RUS3**

EQUIPMENT: **752 Tracker****PROJECT NO.:** **10033RUS3****Section 10. Test Equipment List**

Nemko ID	Description	Manufacturer Model Number	Serial Number	Calibration Date	Calibration Due
1036	SPECTRUM ANALYZER	ROHDE & SCHWARZ FSEK30	830844/006	05/26/06	05/26/08
1082	CABLE 2m	Astrolab 32027-2-29094-72TC	N/A	CBU	N/A
1472	20db Attenuator DC 18 Ghz	Omni Spectra 20600-20db	NONE	CBU	N/A
1469	10 db Attenuator DC 18 Ghz	MCL Inc. BW-S10W2 10db-2WDC	NONE	CBU	N/A
283	Environmental Chamber with controller # 1189006	ENVIROTRONICS SH27 & 2030-22844	129010083	06/19/07	06/19/08
1464	Spectrum analyzer	Hewlett Packard 8563E	3551A04428	01/24/07	01/24/09
1484	Cable	Storm PR90-010-072	N/A	05/02/07	05/01/08
1485	Cable	Storm PR90-010-216	N/A	05/02/07	05/01/08
1016	Pre-Amp	HEWLETT PACKARD 8449A	2749A00159	05/01/07	04/30/08
993	Horn antenna	A.H. Systems SAS-200/571	XXX	08/31/07	08/30/08
1763	Bilog Antenna	Schaffner CBL 6111D	22926	09/21/07	09/20/08
1025	PREAMP, 25dB	Nemko USA, Inc. LNA25	399	12/07/07	12/06/08

Nemko USA, Inc.

FCC PART 90, SUBPART I
PRIVATE LAND MOBILE TRANSMITTER

EQUIPMENT: [**752 Tracker**](#)

PROJECT NO.: [**10033RUS3**](#)

ANNEX A - TEST METHODOLOGIES

NAME OF TEST: RF Power Output**PARA. NO.: 2.985**

Minimum Standard: Para. No. 90.205(a). The maximum allowable station ERP is dependent upon the stations HAAT and required service area and will be authorized in accordance with Table 1 of 90.205(d).

Method Of Measurement:**Detachable Antenna:**

The peak power at antenna terminals is measured using a spectrum analyzer with the IF bandwidth filter set to a level greater than the 20 dB bandwidth of the measured rf waveform. Power output is measured with the maximum rated input level.

Integral Antenna:

If the antenna is not detachable from the circuit then the Peak Power Output is derived from the peak radiated field strength of the fundamental emission by using the plane wave relation $GP/4\pi R^2 = E^2/120\pi$ and proceeding as follows:

$$P = \frac{E^2 R^2}{30G} = \frac{E^2 3^2}{30G}$$

where,

P = the equivalent isotropic radiated power in watts

E = the maximum measured field strength in V/m

R = the measurement range (3 meters)

G = the numeric gain of the transmit antenna in relation to an isotropic radiator

NAME OF TEST: Occupied Bandwidth**PARA. NO.: 2.989****Minimum Standard:** Para. No. 90.210, see table 1 below for applicable mask.**Table 1**

Frequency Band (MHz)	Mask for equipment with Low Pass Filter	Mask for equipment without Low Pass Filter
Below 25	A or B	A or C
25 - 50	B	C
72 - 76	B	C
150 - 174	B, D or E	C, D or E
150 Paging only	B	C
220 - 222	F	F
421 - 512	B, D or E	C, D or E
450 paging only	B	H
806 - 821/ 851 - 866	B	G
821 - 824/ 866 - 869	B	H
896 - 901/ 935 - 940	I	J
902 - 928	K	K
929 - 930	B	G
Above 940	B	C
All other bands	B	C

Test Method:

RBW: 1% of emission bandwidth in 0 - 1 GHz range. 1 MHz at frequencies above 1 GHz.

VBW: \Rightarrow RBW

The spectrum is search up to 10 times the fundamental frequency.

NAME OF TEST: Field Strength of Spurious	PARA. NO.: 2.993
--	--------------------------------

Minimum Standard: Para. No. 90.210, see table 1 for applicable mask.

Calculation of Field Strength Limit

An example of attenuation requirement of $50 + 10 \log P$ is equivalent to -20 dBm (1×10^{-5} Watts) at the antenna terminal. We determine the field strength limit by using the plane wave relation.

$$GP/4\pi R^2 = E^2/120\pi$$

For emissions $\leq 1 \text{ GHz}$:

$G = 1.64$ (Dipole Gain)

$P = 10^{-5}$ Watts (Maximum spurious output power)

$R = 3\text{m}$ (Measurement Distance)

$$E = \frac{\sqrt{30GP}}{R} = E = \frac{\sqrt{30 \times 1.64 \times 10^{-5}}}{3} = 0.00739 \text{ V/m} = 77.4 \text{ dB}\mu\text{V/m}$$

For emissions $> 1 \text{ GHz}$:

$G = 1$ (Isotropic Gain)

$P = 1 \times 10^{-5}$ Watts (Maximum spurious output power)

$R = 3\text{m}$ (Measurement Distance)

$$E = 77.4 - 20 \log \sqrt{1.64} = 75.2 \text{ dB}\mu\text{V/m} @ 3\text{m}$$

MASK	Spurious Limit	FS Limit Below 1 GHz	FS Limit Above 1 GHz
A,B,C,G,H,I	-13dBm	84.4 dB μ V/m @ 3m	82.2 dB μ V/m @ 3m
D,J	-20dBm	77.4 dB μ V/m @ 3m	75.2 dB μ V/m @ 3m
E,F,K	-25dBm	72.4 dB μ V/m @ 3m	70.2 dB μ V/m @ 3m

NAME OF TEST: Frequency Stability**PARA. NO.: 2.995**

Minimum Standard: Para. No. 990.213. The transmitter carrier frequency shall remain within the assigned frequency below in ppm.

Table 2

Frequency Band (MHz)	Fixed And Base Stations	Mobile Stations	
		> 2 Watts o/p pwr	< 2 Watts o/p pwr
Below 25	100	100	200
25 - 50	20	20	50
72 - 76	5	-	50
150 - 174	5	5	5
220 - 222	0.1	1.5	1.5
421 - 512	2.5	5	5
806 - 821	1.5	2.5	2.5
821 - 824	1.0	1.5	15
851 - 866	1.5	2.5	2.5
866 - 869	1.0	1.5	1.5
869 - 901	0.1	1.5	1.5
902 - 928	2.5	2.5	2.5
929 - 930	1.5	-	-
935 - 940	0.1	1.5	1.5
1427 - 1435	300	300	300
Above 2450	-	-	-

NAME OF TEST: Transient Frequency Behavior**PARA. NO.: 2.214****Minimum Standard:****Transient Frequency Behavior for Equipment Designed to Operate on 25 kHz Channels**

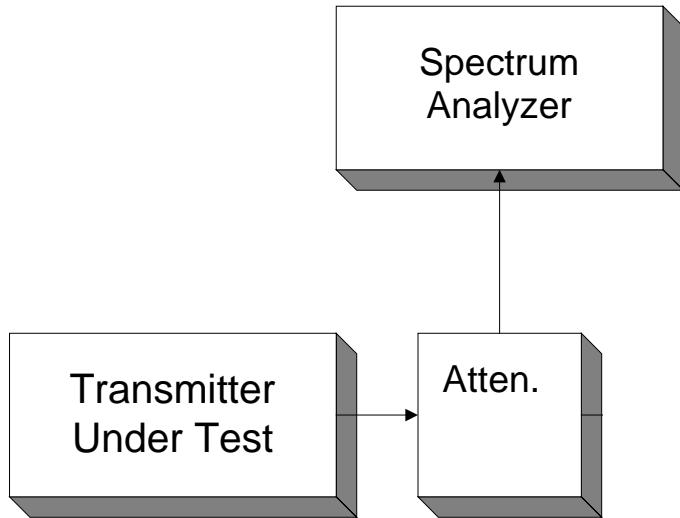
Time intervals ^{1,2}	Maximum Frequency difference ³ (kHz)	Frequency ranges (MHz) All equipment					
		Base station and portable radios			Mobile Radios		
		150 - 174 (ms)	450 - 500 (ms)	500 - 512 (ms)	150 - 174 (ms)	450 - 500 (ms)	500 - 512 (ms)
t_1^4	± 25	5.0	10.0	20.0	5.0	10.0	5.0
t_2	± 12	20.0	25.0	50.0	20.0	25.0	20.0
t_3^4	± 25	5.0	10.0	10.0	5.0	10.0	5.0

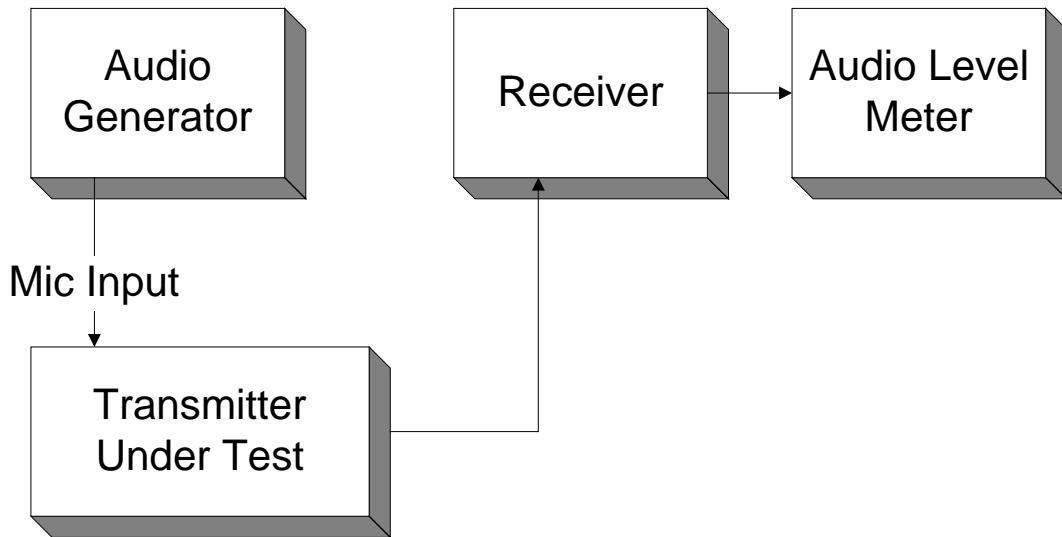
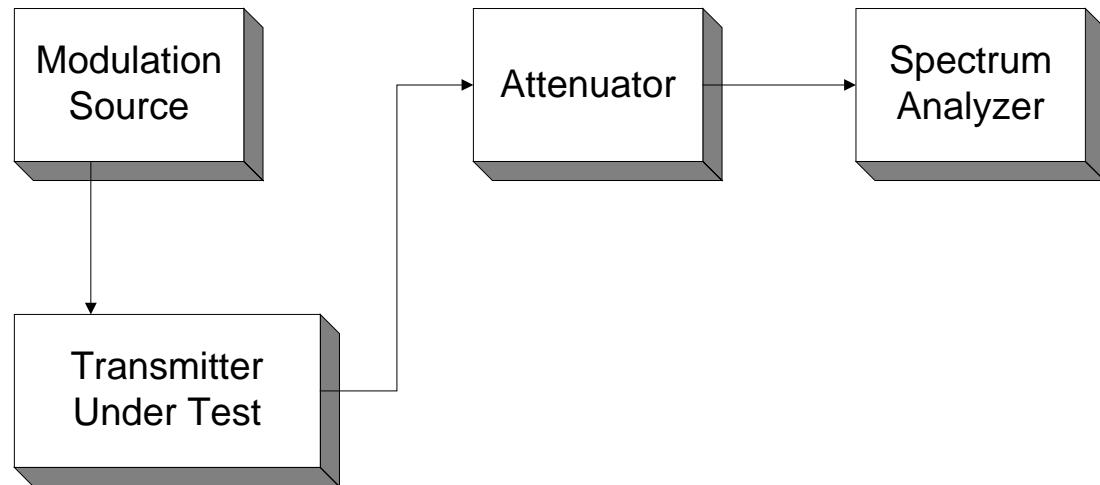
Transient Frequency Behavior for Equipment Designed to Operate on 12.5 kHz & 6.25 kHz Channels

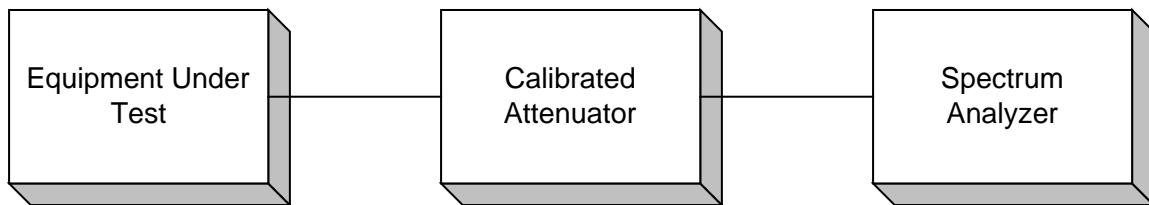
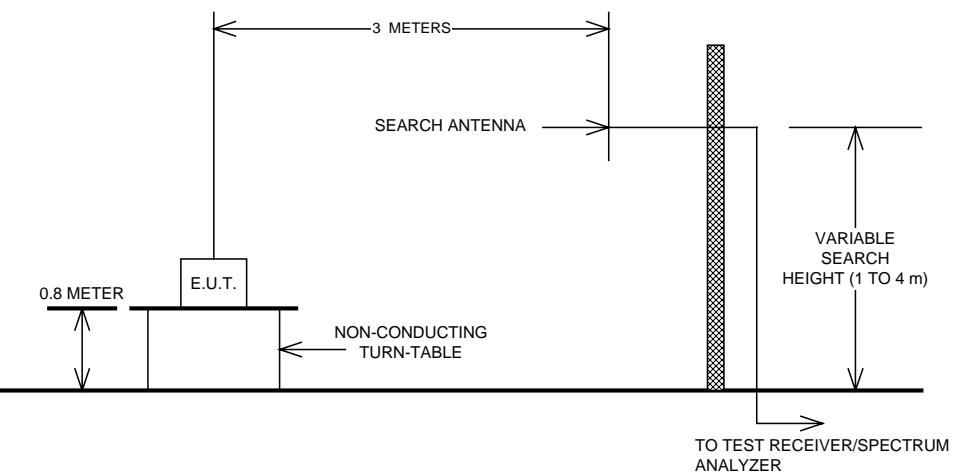
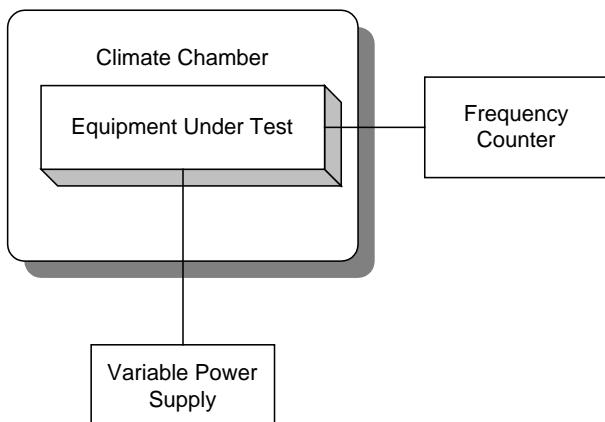
Time intervals ^{1,2}	Maximum Frequency difference ³ (kHz)	Frequency ranges (MHz) All equipment		
		150 - 174 (ms)	450 - 500 (ms)	500 - 512 (ms)
t_1^4	$\pm 12.5 / \pm 6.25$	5.0	10.0	20.0
t_2	$\pm 6.25 / \pm 3.125$	20.0	25.0	50.0
t_3^4	$\pm 12.5 / \pm 6.25$	5.0	10.0	10.0

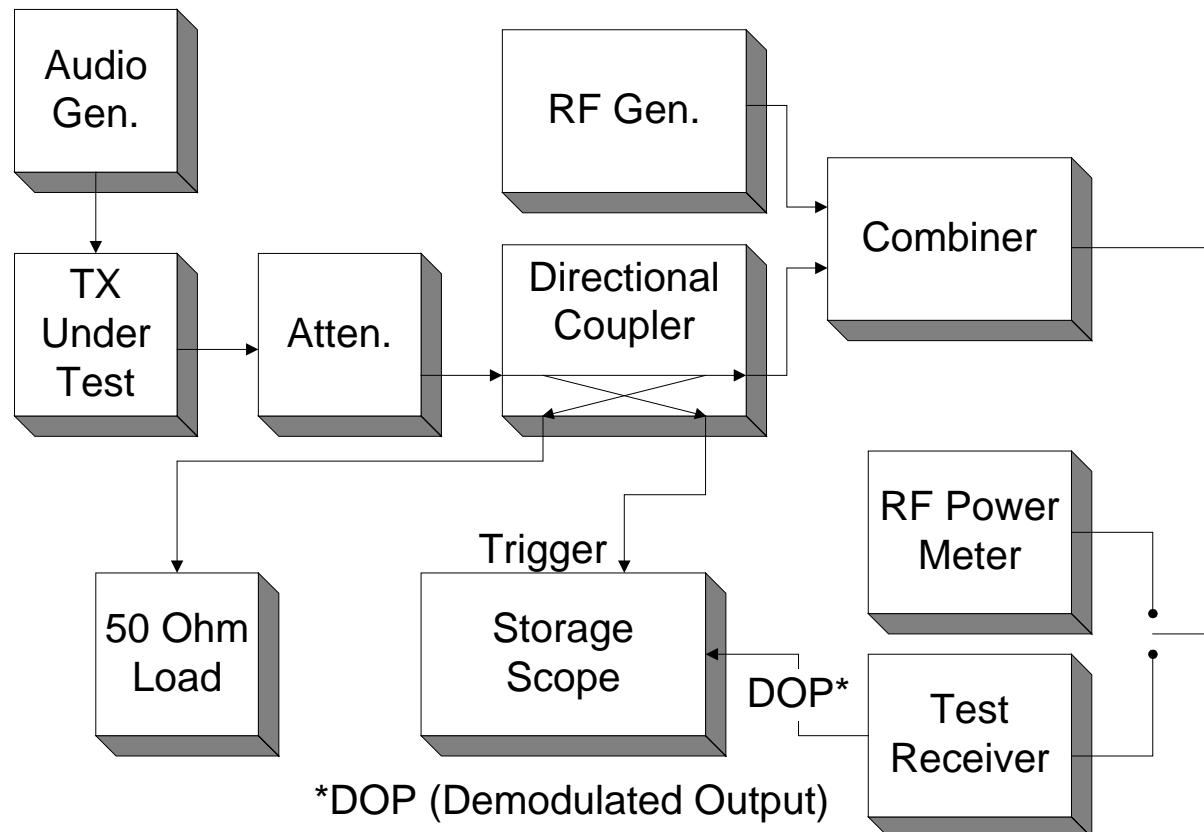
Nemko USA, Inc.

FCC PART 90, SUBPART I
PRIVATE LAND MOBILE TRANSMITTER


EQUIPMENT: **752 Tracker**



PROJECT NO.: **10033RUS3**


ANNEX B - TEST DIAGRAMS

Para. No. 2.985 - R.F. Power Output

Para. No. 2.987(b) - Modulation Limiting**Para. No. 2.989 - Occupied Bandwidth**

EQUIPMENT: [752 Tracker](#)**PROJECT NO.:** [10033RUS3](#)**Para. No. 2.991 - Spurious Emissions at Antenna Terminals****Para. No. 2.993 - Field Strength of Spurious Radiation****Para. No. 2.995 - Frequency Stability**

Para. No. 90.214 - Transient Frequency Behavior**Voice**

This measurement was made using measurement procedure TIA/EIA Land Mobile FM or PM Communications Equipment Measurement and Performance Standards TIA/EIA-603 February 1993 Telecommunications Industry Association (American National Standard ANSI/TIA/EIA-603-1992 Approved: October 27, 1992) Para. no. 2.2 Methods of Measurement for Transmitters

Para. no. 2.2.19 Transient Frequency Behavior (page no. 83).

Data

This measurement was made using measurement procedure TIA/EIA Digital C4FM/CQPSK Transceiver Measurement Methods TSB102.CAAA Para. no. 2.2.17 Transient Frequency Behavior