Test Report 2025-035

Version B Issued 22 July 2025

Project GCL-0799
Model Identifier: A04916
Primary Test Standard(s):
CFR 47, FCC Part 15.225
RSS-210 Issue 11

Garmin Compliance Lab

Garmin International
1200 E 151st Street
Olathe Kansas 66062 USA

Client-supplied Information

FCC ID: IPH- 04916 IC ID: 1792A- 04916

See section 6 of this report regarding the presence or absence of accreditation logos or marks on this cover page.

1. Summary

The equipment or product described in section 5 of this report was tested at the Garmin Compliance Lab according to standards listed in section 6. This report focuses on the NFC transceiver. The results are as follows.

Parameter	Description	Key Performance Values	Result	Data starts at page
Radio Modulation	Summary of the kinds of communication this radio can achieve, as stated by the client. [RSS-GEN at Annex A item 10b]	Digitally modulated OOK and BPSK signaling at rates as high as 106 kbps.	Reported	N/A
Transmitter intentional emissions	Emissions while transmitting must be limited according to a mask that varies across the frequency range 13.110 to 14.010 MHz.[15.225(a) through (c), RSS-210 B.6]	19 dB of margin to the intentional emission limit.	PASS	15
Transmitter spurious emissions	Emissions beyond the intended radio band while transmitting must be suppressed a general limit. [FCC 15.225 (d) and RSS 210 B.6]	0.9 dB of margin to the Class B limit.	PASS	24
Conducted Emissions AC Power Port	Radio emissions that this device may generate via its ac power network connections that are not necessary for its operation and that may affect radio communication. [FCC Part 15.205 and RSS-GEN 8.8]	25 dB of margin to the appropriate limit. Tested 150 kHz to 30 MHz applying combined Class B limits.	PASS	28
Frequency stability under extreme Conditions	The ability for the radio to accurately maintain carrier frequency stable with changes in temperature and supply voltage. [FCC 15.225 (e) and RSS 210 B.6]	The Carrier frequency was stable within 0.01% of the target frequency.	PASS	31
Other Bandwidths	Bandwidth values are presented for 99% Occupied Bandwidth	There are requirements to report these numbers, but they do not have performance limits.	Reported	33

NT (Not Tested) means the requirement may or may not be applicable, but the relevant measurement or test was not performed as part of this test project.

N/A (Not Applicable) means the lab judged that the test sample is exempt from the requirement.

Table 1: Summary of results

Page 2 of 35	Version B				
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin					

Report Organization

For convenience of the reader, this report is organized as follows:

- 1. Summary
- 2. Test Background
- 3. Report History and Approval
- 4. Test Sample Modifications and Special Conditions
- 5. Description of Equipment Tested
- 6. Test Standards Applied
- 7. Measurement Instrumentation Uncertainty
- 8. Selected Examples of Calculations
- 9. Environmental Conditions During Test
- 10. 3m RF Chamber Block Diagrams

Annex: Test records are provided for each type of test, following the order and page numbering stated in the summary table. Concluding notes appear on the final page of this report.

Due to confidentiality, certain material (such as test setup photographs) has been removed from this report and placed in GCL Test Report 2025-037. That report is treated as a part of this document by way of this reference.

2. Test Background

2.1 The Test Lab

The testing reported here was performed at the Garmin Compliance Lab, an organization within Garmin International, located at 1200 E 151st St, Olathe Kansas, USA. The contact telephone number is +1.913.397.8200.

2.2 The Client

The testing was performed on behalf of the Garmin design group, a separate organization located at 1200 E 151st St, Olathe Kansas, USA. Witnesses from the business group included: None.

2.3 Other Information

Test Sample received: 15 Apr 2025 Test Start Date: 10 Jun 2025 Test End Date: 17 Jun 2025

The data in this test report apply only to the specific samples tested.

Upon receipt all test samples were believed to be properly assembled and ready for testing.

3. Report History and Approval

This report was written by Andy Heier and initially issued on 15 July 2025 as Version A. Version B, issued on 22 July 2025, removed "caveat" from page 2 summary table and removed "Immunity Performance Criteria" from page 4. Not applicable to this project. Corrected Occupied Bandwidth measurement RBW, replacing test ID TR54 with TR56 starting on page 33.

Report Technical Review:

Andy Heier Senior EMC Engineer

Report Approval:

Shruti Kohli Senior Manager Operations

Page 4 of 35	GCL Test Report 2025-035	Version B			
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin					

4. Test Sample Modifications and Special Conditions

The following special conditions or usage attributes were judged during test to be necessary to achieve compliance with one or more of the standards listed in section 6 of this report:

None.

The following modifications to the test sample(s) were made, and are judged necessary to achieve compliance with one or more of the standards listed in section 6 of this report:

None

Page 5 of 35	Version B				
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin					

5. Description of the Equipment Tested

5.1 Unique Identification

Product Model A04916

Serial Numbers Tested 600129687, 600129685

The product tested is a mobile device for collecting and sharing data with the user and nearby electronic devices.

The client affirmed that the test samples will be representative of production in all relevant aspects.

5.2 Key Parameters

EUT Input Power: 5 Vdc I/O Ports: USB

Radio Transceivers: IEEE 802.11 b/g/n, Bluetooth, Bluetooth Low Energy, ANT, NFC Radio Receivers: GPS L1, GPS L5, Galileo E1, Galileo E5a/b, BeiDou, GLONASS

Primary Functions: Data collection and communication

Typical use: Portable Transceiver

Highest internal frequency: 2.484 GHz
Highest digital frequency: 250 MHz
Firmware Revision 9.41

5.3 Operating modes

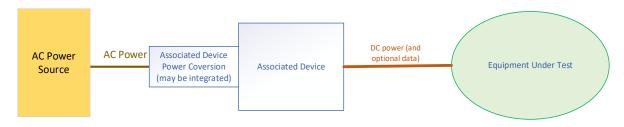
During test, the EUT was operated in one or more of the following modes.

- Mode 1: M1 (BtTx). Bluetooth, sometimes called Bluetooth Classic, radio is transmitting consistently on a selected channel sending data using the BR (Basic Rate of 1 Mbps), EDR2 (Extended Data Rate of 2 Mbps) or EDR3 (Extended Data Rate of 3 Mbps) modulation types.
- Mode 2: M2 (BtLnk). Bluetooth Classic radio is paired to a companion device, transmitting and receiving data on various channels in accordance with the protocol, and maintaining the paired relationship.
- Mode 3: M3 (BleTx). Bluetooth Low Energy radio transmitting consistently on a selected channel at 1 Mbps or 2 Mbps
- Mode 4: M4 (BleLnk). Bluetooth Low Energy radio is paired to a companion device, transmitting and receiving data on various channels in accordance with the protocol, and maintaining the paired relationship.
- Mode 5: M5 (AntTx). ANT radio transmitting consistently on a selected channel.
- Mode 6: M6 (AntLnk). ANT radio is paired to a companion device, transmitting and receiving data in accordance with the protocol, and maintaining the paired relationship.
- Mode 7: M7 (WiFiTx). The IEEE 802.11 b/g/n radio was transmitting consistently on a selected channel, with a specified modulation type, and data rate.
- Mode 8: M8 (WiFiLnk). The IEEE 802.11 b/g/n radio is paired to a companion device, transmitting and receiving data on a selected channel in accordance with the protocol, and maintaining the paired relationship.
- Mode 9: M9 (RxBtBlA). The specified Bluetooth Classic, Bluetooth Low Energy, or ANT radio was set to receive, but not transmit, on a selected channel, with a specified modulation type, and data rate.
- Mode 10: M10 (RxWiFi). The IEEE 802.11 b/g/n radio was set to receive, but not transmit, on a selected channel, with a specified modulation type, and data rate.
- Mode 12: M12 (NfcLnk). The NFC 13.56 MHz transceiver is in Card Emulation mode, and is actively linked to a companion NFC Reader.

Page 6 of 35	Page 6 of 35 GCL Test Report 2025-035				
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin					

- Mode 13: M13 (GNSS). The Global Navigation Satellite System receiver is monitoring the GNSS bands, attempting to detect a constellation and determine location. Unless otherwise noted, the EUT was provided simulated GNSS signals representing one of more constellation types. In addition, the EUT was reporting signal levels and satellite data to an attached computer to monitor link health.
- Mode 14: M14 (NfcIdle). The NFC 13.56 MHz transceiver is powered, but not actively linked to a companion device.
- Mode 15: M15 (GNSS). The Global Navigation Satellite System receiver is monitoring the GNSS bands, attempting to detect a constellation and determine location. Unless otherwise noted, the EUT was provided simulated GNSS signals representing one of more constellation types.
- Mode 16: M16 (NfcTag). The NFC 13.56 MHz transceiver is in Card Reader mode, and is actively linked to a companion NFC Tag.
- Mode 17: M17 (Display). The display test mode page is selected and actively running.
- Mode 18: M18 (Accelerometer). The accelerometer test mode page is selected and actively running.
- Mode 19: M19 (ML1). Multiple link, combining modes M2, M4, & M6. The EUT is actively paired to BT Classic, BLE and ANT companion devices, used for Immunity tests.
- Mode 20: M20 (ML2). Multiple link, combining modes M4 & M6. The EUT is actively paired to BLE and ANT companion devices, used for Immunity tests.

5.4 EUT Arrangement


During test, the EUT components and associated support equipment were selected including the following arrangement sets.

Arrangement 1: A1 (Solo). The test sample operates from its battery and no external physical connections. No block diagram is needed for this arrangement.

Arrangement 2: A2 (Upwr). The test sample is attached to a Mains-powered device connected that provides dc power to the sample over a cable but no user data. See the block diagram in Figure 1.

Arrangement 3: A3 (Udata). The test sample is attached to a Mains-powered device connected that provides dc power to the sample and user data over a cable. See the block diagram in Figure 1.

Arrangement 4: A4 (Udc). The test sample is attached to a Mains-powered device connected that provides dc power to the sample and may or may not provide user data. This arrangement is specified in the test plan to provide staff flexibility when the presence or absence of data on the cable is not pertinent. See the block diagram in Figure 1.

This interconnect drawing is not to scale. It does not indicate the placement of devices.

Figure 1: Block diagram of equipment arrangements A2, A3, A4

Page 7 of 35	Version B				
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin					

Arrangement 6: A6 (NFCu). The test sample is powered via internal battery and actively linked to a NFC card reader powered by a laptop PC.

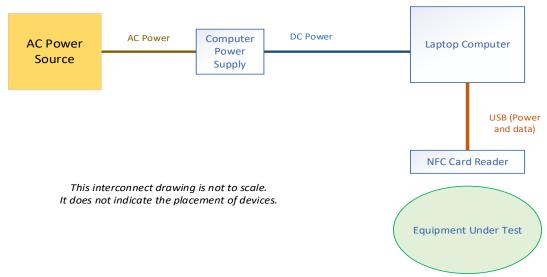


Figure 2: Block diagram of equipment arrangement A6

Arrangement 7: A7 (NFCu). The test sample is powered via internal battery and actively linked to a passive NFC tag.

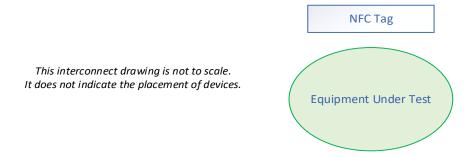


Figure 2: Block diagram of equipment arrangement A7

Page 8 of 35 GCL Test Report 2025-035		Version B			
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin					

5.5 Associated Equipment (AE) used

Description	Manufacturer	Model	Serial/Part Number
USB C power adaptor	Phihong (Garmin)	AQ27A-59CFA	362-00118-00
Laptop	Dell	Latitude 5410	5VSPFB3
AC/DC Power Adapter	Dell	HA65NM191	0BD-7TC0-A02
Laptop	Dell	Latitude 5420	38SS2F3
AC/DC Power Adapter	bti	A12-TYPE-C	65WUSB-C-BTI
Laptop	Dell	Precision 5540	3JYG33
AC/DC Power Adapter	Dell	HA130PM130	0V363H-CH200-78G-0DC1-A01
NFC Card Reader	ACS	ACR1252U-M1	RR554-118449
NFC Tag	NXP	NTAG210µ	04:11:CC:AA:8F:51:81
Laptop	Dell	Inspiron	7DCR5R3
AC/DC Power Adapter	Dell	DA65NM191	0KPVMF-DES00-233-EE1V-A00
Wi-Fi Adaptor	Alpha network	AWUS036ACS	21BP036ACS2718
Phone	Samsung	SM-G973U (S10)	RF8MC0W9XVR
BT Headphones	Garmin	DEZI Headset 200	16869214
Watch	Garmin	Instinct 2X	3423419439

Table 2: List of associated equipment that may have been used during test

5.6 Cables used

Description	From	То	Length	EMC Treatment
USB C to custom cable	Power and/or Data source	EUT	0.5 m	None

Table 3: List of cables that may have been used during test

Page 9 of 35	Version B				
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin					

6. Test Standards Applied

6.1. Accredited Standards

The following test or measurement standards were applied and are within the scope of the lab's accreditation. All results in this report that cite these standards are presented as Accredited results consistent with ISO/IEC 17025.

CFR 47, FCC Part 15, Subpart C

ANSI C63.10: 2020 and ANSI C63.10: 2020 +Cor 1: 2023

RSS-210 Issue 11

6.2 Non-accredited Standards

The following test or measurement standards were applied and are either outside the scope of the lab's accreditation, or were performed in such a way that results are not presented as being fully accredited.

None.

6.3 Variances

The following variances were applied to standards cited in this section.

Where different test standards cover the same test parameter or phenomenon, and the standards have compatible differences, the stricter of the requirements is typically applied. For example, a consolidated limit may be applied to emission tests selecting the strictest of the limits at each frequency. Likewise, if one standard requires a vertical antenna sweep with boresighting and another does not, swept motion with boresighting will typically be used as it is the more stringent requirement.

Some standards that apply an Average detector provide a variety of methods to handle time-averaging, especially where the transmission is not continuous and the Duty Cycle (DC) is below a value such as 98%. The basic GCL process is to begin by applying an Average detector to the emission with the receiver in Max-Hold data mode. This Max Average method is worst-case compared to any of the methods of time-averaging provided. If the Max Average result complies with the limit, that result is provided in the test record and the emission judged to be compliant without additional detail. If the Max Average result is near or above the limit at one or more emission frequencies, then one of the appropriate time-averaging methods is applied to determine final compliance. When time-averaging is used, the test record will indicate which method of time-averaging was used.

Some standards ask for measurements made with a 'Time Domain Power' function, but that function is not defined in the standards. GCL addresses this gap as follows. Staff capture a zero-span Average detector data record of emission power, with a timespan covering a transmission burst. When the maximum power in the data record is clearly below the limit, this value will be reported. When the maximum power in the data record is near or above the limit, then the average of the power (in linear units) during a transmission burst is calculated and reported.

DISCLAIMER: In some test activities, the operation of a test or the result of a test depends on data provided by the client. The Garmin Compliance Lab disclaims responsibility for any error in the processes, results, or judgments in this report arising from incorrect client-provided data.

6.4 Laboratory Accreditation

The Garmin Compliance Lab, an organization within Garmin International, is registered with the US Federal Communication Commission as US1311. The lab is recognized by the Canada Department of Innovation, Science, and Economic Development (ISED) under CAB identifier US0233.

The Garmin Compliance Lab, an organization within Garmin International, is accredited by A2LA, Certificate No. 6162.01. The presence of the A2LA logo on the cover of this report indicates this is an accredited ISO/IEC 17025 test report. If the logo is absent, this report is not issued as an accredited report. Other marks and symbols adjacent to the A2LA logo are accreditation co-operations of which A2LA is a member under a mutual recognition agreement, and to which the Garmin Compliance Lab has been sublicensed.

Page 10 of 35	Version B				
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin					

7. Measurement Instrumentation Uncertainty

The lab has analyzed the sources of measurement instrumentation uncertainty. The analysis concludes that the actual measurement values cited in this report are accurate within the U_{LAB} intervals shown below with approximately 95% statistical confidence. Where the report shows a judgment that a test sample passes a test against a published limit based on these measured values, that judgment has a statistical confidence of 97.5% or greater. Measurement Instrumentation Uncertainty is one component of over-all measurement uncertainty, and other uncertainty components are not considered as part of this analysis.

The primary benchmark for measurement instrumentation uncertainty (MIU) in an electromagnetic compatibility (EMC) test lab is the set of U_{CISPR} values published in CISPR 16-4-2. In all cases where a U_{CISPR} value is published by CISPR, the analysis shows that U_{LAB} – this lab's estimated MIU – is better than the U_{CISPR} benchmark.

The secondary benchmark for MIU in an EMC lab performing radio transceiver tests is a set of uncertainty limit values published in various ETSI standards. In this report, U_{ETSI} is the most restrictive of the values found in the ETSI EN standards listed in section 5 of this report. The analysis principles are described in the ETSI TR documents listed there. In most cases U_{LAB} is better than the U_{ETSI} benchmark. Where U_{LAB} exceeds the U_{ETSI} benchmark cited here, that entry is preceded by an asterisk. When required by the ETSI EN standards, excess uncertainty will be added to the measurand before comparison to a limit. In an individual test report, staff may reevaluate that excess uncertainty based on the uncertainty of the method used and the uncertainty limits of the actual ETSI EN standard being applied, and the revised uncertainty values will be shown in the test report.

Some measurement uncertainties analyzed and reported here are not addressed in CISPR 16-4-2 or the ETSI standards, as indicated by the entry 'None.'

Test Type		U_LAB	Ucispr	U _{ETSI}
Conducted DC voltage		0.09% + 2 x LSDPV	None	1%
Conducted AC voltage be	low 500 Hz	1.0% + 3 x LSDPV	None	2%
Conducted Emissions, Ma	ins Voltage	0.10% + 10 mV	None	None
Conducted Emissions, Ma	nins Current	0.10% + 3 mA	None	None
Conducted Emissions, Ma	ins Power	0.15% + 100 mW	None	None
Conducted Emissions, Po	wer Mains, 9 kHz to 150 kHz	1.70 dB	3.8 dB	None
Conducted Emissions, Po	wer Mains, 150 kHz to 30 MHz	1.48 dB	3.4 dB	None
Conducted Emissions, Ca	t 6 LCL, 150 kHz to 30 MHz	1.57 dB	5 dB	None
Conducted Emissions, Ca	t 5 LCL, 150 kHz to 30 MHz	3.06 dB	5 dB	None
Conducted Emissions, Ca	t 3 LCL, 150 kHz to 30 MHz	4.27 dB	5 dB	None
Radiated Emissions, below	w 30 MHz	0.88 dB	None	6 dB
Radiated Emissions, 30 M	IHz to 1000 MHz	2.79 dB	6.3 dB	6 dB
Radiated Emissions, 1 GF	Iz to 18 GHz	2.54 dB	5.2 & 5.5 dB	6 dB
Radiated Emissions, 18 G	Hz to 26.5 GHz	2.68 dB	None	6 dB
Radiated Emissions, 26.5	GHz to 40 GHz	3.17 dB	None	6 dB
*Radio Signal Frequency	Accuracy	*1.55 x 10^-7	None	1.0 x 10^-7
Radio Signal Occupied Ba	andwidth	0.95%	None	5%
Radio Power or Power Sp	ectral Density	0.98 dB	None	1 dB
Temperature		0.38 °C	None	1 °C
Barometric Pressure		0.38 kPA	None	None
Relative Humidity		2.85% RH	None	±5% RH
Signal Timing	The greater of these three	0.63 µsec	None	None
		0.01% of value		
		0.5 x LSDPV		

Note: LSDPV stands for the Least Significant Digit Place Value reported. In the value 1470 msec, the least significant digit is the 7. It has a 10 msec place value. The LSDPV is thus 10 msec and the maximum error due to roundoff would be 5 msec. If the time value were reported as $147\underline{0}$ msec, the underscore indicates that the 0 is a significant figure and the error due to roundoff would be 0.5 msec. All digits provided to the right of a decimal point radix are significant.

Page 11 of 35	Version B				
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin					

8. Selected Example Calculations

Certain regulators require samples of the calculations that lead from the raw measurement to the final result for AC Mains conducted and unintended radiated emissions. The assumption is that the lab performs raw measurements, then adds, subtracts, multiplies, or divides based on transducer factors, amplifier gains, and losses in the signal transmission path. In this lab, our CISPR 16 Receiver does not work that way. The calibration factors and losses and gains are provided to the receiver as detailed data files. These factors are applied in the RF measurement path prior to the detector. But as a step in the lab measurement process, staff frequently verify that these factors are applied correctly. They make a measurement with the factors applied inside the receiver, then they disable the factors and remeasure the result manually adding in the various relevant factors.

The transmission loss is measured including the combined losses and gains of preamplifiers, cables, and any band-selective filters. In many cases above 1 GHz it is a negative value, indicating that the preamplifier gain is greater than these other losses.

Here are examples of these calculations. The data in these examples was not taken as part of this project:

8.1 AC Mains conducted emissions at 22 MHz

(Raw measurement) + (AMN factor) + (transmission loss) = Result

 $(7.145 \text{ dB}\mu\text{V}) + (9.812 \text{ dB}) + (0.216 \text{ dB}) = 17.173 \text{ dB}\mu\text{V}$

8.2 Radiated Emissions at 630 MHz

(Raw measurement) + (Antenna factor) + (transmission loss) = Result

 $(2.25 \text{ dB}\mu\text{V}) + (27.80 \text{ dB/m}) + (2.89 \text{ dB}) = 32.94 \text{ dB}\mu\text{V/m}$

8.3 Radiated Emissions at 2.7 GHz

(Raw measurement) + (Antenna factor) + (transmission loss) = Result

 $(43.72 \text{ dB}\mu\text{V}) + (32.22 \text{ dB/m}) + (-36.09 \text{ dB}) = 39.85 \text{ dB}\mu\text{V/m}$

9. Environmental Conditions During Test

Environmental conditions in the test lab were monitored during the test period. Temperature and humidity are controlled by an air handling system. As information to the reader, the conditions were observed at the values or within the ranges noted below. For any tests where environmental conditions are critical to test results and require further constraints or details, the test records in the annex may provide more specific information.

Temperature: 22 to 23 °C

Relative Humidity: 46% to 60% (non-condensing)

Barometric Pressure 96.8 to 97.9 kPa

Description	Make	Model #	Serial #	Last Cal/Ver	Next Due
Barometer	Traceable	6453	240300703	9-Apr-2024	9-Apr-2027

Table 4: Environmental monitoring device

Page 12 of 35	Version B					
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin						

10. 3m RF Chamber Block Diagrams

The 3m chamber has three basic configurations which are shown in the figures below. These figures are not to scale.

Figure 1 shows a semi anechoic setup which is typically used for frequencies below 1 GHz. In this example, the antenna is mounted on a mast capable of 1-4 m elevation changes. If a preamplifier or RF filter is used, they are located at or just below floor level. The receiver is outside the chamber, typically in an adjacent separate shielded room.

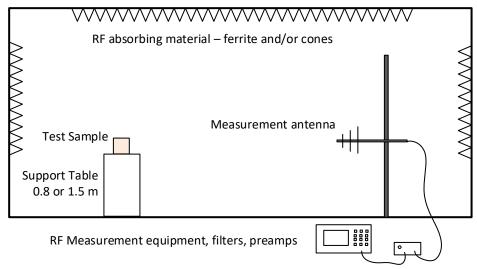


Figure 1: Typical configuration for measurements below 1 GHz

Figure 2 shows an FSOATS setup which is typically used for frequencies above 1 GHz but below an upper limit such as 14 or 18 GHz. In this example, the antenna is mounted on a mast capable of 1-4 m elevation changes and bore sighting. If a preamplifier or RF filter is used, they are located at or just below floor level. The receiver is outside the chamber, typically in an adjacent separate shielded room.

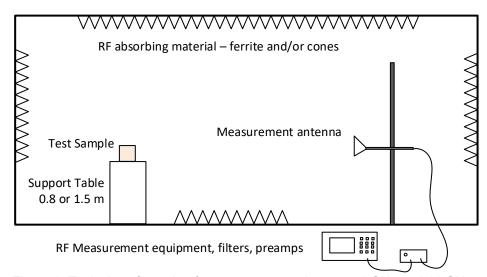


Figure 2: Typical configuration for measurements between 1 GHz and 14 GHz

Page 13 of 35	Version B				
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin					

Figure 3 shows an alternate FSOATS setup which is typically used for frequencies above 14 GHz. In this example, the antenna is mounted on a mast capable of 1-4 m elevation changes and bore sighting. A preamplifier is located on the mast just behind the antenna. The receiver is located in the chamber near floor level but outside the antenna beam. The receiver may be operated manually by an operator in the chamber and or remotely via an Ethernet connection.

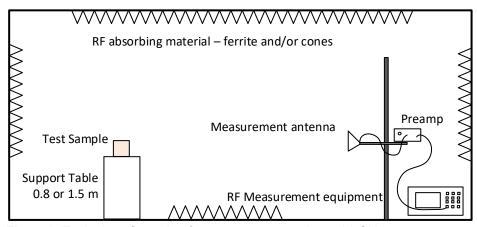


Figure 3: Typical configuration for measurements above 14 GHz

ANNEX

The remainder of this report is an Annex containing individual test data records. These records are the basis for the judgments summarized in section 1 of this report. The Annex ends with a set of concluding notes regarding use of the report.

Page 14 of 35	Version B					
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin						

Test Record Radiated Emission Test RE22 Project GCL0799

Test Date(s) 13 Jun 2025 Test Personnel David Kerr

Product Model A04916 Serial Number tested 600129687

Operating Mode M12 (NfcLnk)
Arrangement A6 (NFCu)
Input Power Battery

Test Standards: FCC Part 15.225; RSS-210; RSS-GEN; ANSI-C63.10 (as noted in Section 6 of the

report).

Frequency Range: 9 kHz to 30 MHz

Pass/Fail Judgment: PASS

Test record created by: David A Kerr Date of this record: David A Kerr 17 Jun 2025

Original record, Version A.

Test Equipment

Description	Make	Model #	Serial #	Last Cal/Ver	Next Due
PXE Receiver 26 GHz	Keysight	N9048B	MY59290135	24-Oct-2024	24-Oct-2025
Loop antenna, amplified	Schwarzbeck	FMZB 1519B	174	18-Jul-2024	18-Jul-2026
SAC 3m, below 1 GHz	Frankonia	SAC3	F199004	11-Dec-2024	11-Dec-2027
Tape Measure, 1-3/16 in x 33 ft	Crecent Lufkin	L1135CME-02	GMN0013783	26-Jun-2024	26-Jun-2027

Table RE22.1: Test Equipment Used

Software Used: Keysight PXE software A.32.06, RE 150k to 30M XYZ_orientations_ TemplateV6.xlsm, RE 150k to 30M Data Analysis V2 2021Apr12.xlsx

Test Data

For test standards that require reorienting the test sample, preliminary scans were taken in those alternate orientations to find the orientation that produced that largest field at the receive antenna. With intentional radiators, that highest field is usually found at the carrier frequency. The alternate orientations are typically described as X, Y, and Z and explained with a photograph. Subsequent testing was done using on the orientation identified in this way.

The radiated emission test process continued with a preliminary scan at multiple turntable angles, and in the three loop antenna polarizations. The loop antenna was positioned at a 1.5 m height. Where the test standard requires cable manipulation, this was done at one of more likely worst case frequencies selected by the test personnel while observing the receiver display. At each of the frequencies selected for final measurements, the loop was set to the worst case orientation for that frequency and the turntable angle was explored to find the worst-case settings. Final field strength measurements were taken in that set of positions. Full maximization was not performed at frequencies that are noise floor measurements included per the test standard requirements.

Page 15 of 35	Version B					
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin						

At azimuth angle 0° the 'front' reference mark of the turntable is pointed Southward. At 90° the reference mark points West. At -90° it points East. At -7° the turntable reference mark is pointed directly at the antenna mast for tests that involve changes in antenna elevation. At 0° the turntable reference mark is pointed directly at the loop antenna location. The designation of the X, Y, and Z orientations of the test sample are sample dependent, so these are reported by use of photographs.

The table shows the selected final measurement data between 9 kHz and 30 MHz. It includes at least the six strongest emissions observed relative to the test limit, along with other data points of interest. Where a data point is highlighted is yellow, this is an aid to indicate the data point(s) with the least margin to the test limit. A positive margin value indicates that the emission was below the test limit. The test limit is the FCC Class B Limit at 3m. Any unintentional radio emission limits are not applied to intentional radio signals.

For FCC and ISED testing, the 3 m data is adjusted to an equivalent value at the 30 m or 300 m reference distance. Extrapolation of each data result uses the conservative method of ANSI C63.10 clause 6.4.4.1: 40 dB per decade for the part of the distance within the boundary (wavelength / 2 Pi), and 20 dB per decade for any part of the distance beyond that boundary.

Freq.	3 m Level	Detector	Distance	Dist Adj	Final Level	Limit	Margin	Peak 3 m	Peak Final	Pk Limit	Pk Margin	Antenna	Table
MHz	dBuV/m	Туре	m	dB	dBuV/m	dBuV/m	dB	dBuV/m	dBuV/m	dBuV/m	dB	Orientation	Azimuth, deg
0.04895	52.46	Avg	300	80.00	-27.54	33.81	61.35	60.55	-19.45	53.81	73.26	Х	28
0.789	50.24	QP	30	40.00	10.24	29.66	19.42	52.80	12.80	None	None	Х	-143
1.5113	43.03	QP	30	40.00	3.03	24.02	20.99	50.37	10.37	None	None	Х	-148
2.2628	25.31	QP	30	36.95	-11.64	29.54	41.18	32.12	-4.83	None	None	Z	180
3.0165	35.72	QP	30	34.45	1.27	29.54	28.27	42.41	7.96	None	None	Х	-159
13.56	62.02	QP	30	21.40	40.62	84.00	43.38	62.25	40.85	None	None	Х	-9

Table RE22.2: Emission summary

The graph below shows the background spectrum observed during pre-scan, as well as the final data points from the table above.

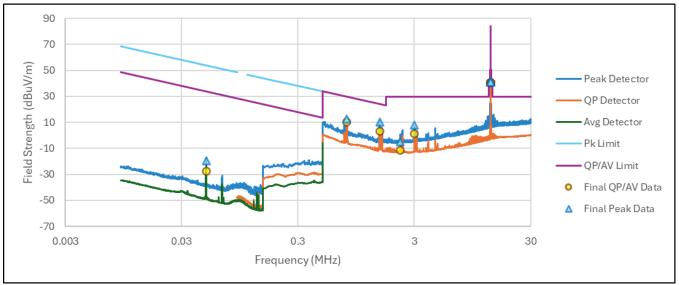


Figure RE22.1: Spectral data

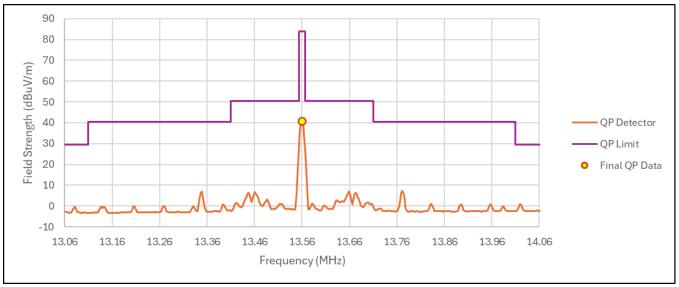


Figure RE22.2: Spectral data, focused on transmission limit mask

Setup Photographs

The following photographs show the EUT configured and arranged in the manner in which it was measured.

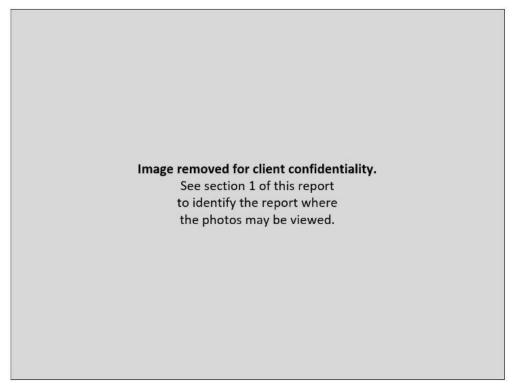


Figure RE22.3: EUT test setup, first view

Page 17 of 35	Version B				
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin					

Image removed for client confidentiality. See section 1 of this report to identify the report where the photos may be viewed.

Figure RE22.4: EUT test setup, X antenna orientation

Image removed for client confidentiality. See section 1 of this report to identify the report where the photos may be viewed.

Figure RE22.5: EUT test setup, Z antenna orientation

This line is the end of the test record.

Page 18 of 35	Version B					
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin						

Test Record Radiated Emission Test RE23 Project GCL0799

Test Date(s) 13 Jun 2025 Test Personnel David Kerr

Product Model A04916 Serial Number tested 600129687

Operating Mode M16 (NFCTag) (Mode A)

Arrangement A7 (NFCu) Input Power Battery

Test Standards: FCC Part 15.225; RSS-210; RSS-GEN; ANSI-C63.10 (as noted in Section 6 of the

report).

Frequency Range: 9 kHz to 30 MHz

Pass/Fail Judgment: PASS

Test record created by: David A Kerr Date of this record: David A Kerr 18 Jun 2025

Original record, Version A.

Test Equipment

Description	Make	Model #	Serial #	Last Cal/Ver	Next Due
PXE Receiver 26 GHz	Keysight	N9048B	MY59290135	24-Oct-2024	24-Oct-2025
Loop antenna, amplified	Schwarzbeck	FMZB 1519B	174	18-Jul-2024	18-Jul-2026
SAC 3m, below 1 GHz	Frankonia	SAC3	F199004	11-Dec-2024	11-Dec-2027
Tape Measure, 1-3/16 in x 33 ft	Crecent Lufkin	L1135CME-02	GMN0013783	26-Jun-2024	26-Jun-2027

Table RE23.1: Test Equipment Used

Software Used: Keysight PXE software A.32.06, RE 150k to 30M Signal Maximization Tool V1 2021Mar17.xlsx, RE 9k to 30M XYZ_orientations_TemplateV7.xlsm

Test Data

For test standards that require reorienting the test sample, preliminary scans were taken in those alternate orientations to find the orientation that produced that largest field at the receive antenna. With intentional radiators, that highest field is usually found at the carrier frequency. The alternate orientations are typically described as X, Y, and Z and explained with a photograph. Subsequent testing was done using on the orientation identified in this way.

The radiated emission test process continued with a preliminary scan at multiple turntable angles, and in the three loop antenna polarizations. The loop antenna was positioned at a 1.5 m height. Where the test standard requires cable manipulation, this was done at one of more likely worst case frequencies selected by the test personnel while observing the receiver display. At each of the frequencies selected for final measurements, the loop was set to the worst case orientation for that frequency and the turntable angle was explored to find the worst-case settings. Final field strength measurements were taken in that set of positions. Full maximization was not performed at frequencies that are noise floor measurements included per the test standard requirements.

Page 19 of 35	Version B					
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin						

At azimuth angle 0° the 'front' reference mark of the turntable is pointed Southward. At 90° the reference mark points West. At -90° it points East. At -7° the turntable reference mark is pointed directly at the antenna mast for tests that involve changes in antenna elevation. At 0° the turntable reference mark is pointed directly at the loop antenna location. The designation of the X, Y, and Z orientations of the test sample are sample dependent, so these are reported by use of photographs.

The table shows the selected final measurement data between 30 MHz and 1 GHz. It includes at least the six strongest emissions observed relative to the test limit, along with other data points of interest. Where a data point is highlighted is yellow, this is an aid to indicate the data point(s) with the least margin to the test limit. A positive margin value indicates that the emission was below the test limit. The test limit is the FCC Class B Limit at 3m. Any unintentional radio emission limits are not applied to intentional radio signals.

For FCC and ISED testing, the 3 m data is adjusted to an equivalent value at the 30 m or 300 m reference distance. Extrapolation of each data result uses the conservative method of ANSI C63.10 clause 6.4.4.1: 40 dB per decade for the part of the distance within the boundary (wavelength / 2 Pi), and 20 dB per decade for any part of the distance beyond that boundary.

Freq.	3 m Level	Detector	Distance	Dist Adj	Final Level	Limit	Margin	Peak 3 m	Peak Final	Pk Limit	Pk Margin	Antenna	Table
MHz	dBuV/m	Туре	m	dB	dBuV/m	dBuV/m	dB	dBuV/m	dBuV/m	dBuV/m	dB	Orientation	Azimuth, deg
0.04895	50.95	Avg	300	80.00	-29.05	33.81	62.86	57.37	-22.63	53.81	76.44	Υ	180
0.067	38.69	Avg	300	80.00	-41.31	31.08	72.39	46.54	-33.46	51.08	84.54	Υ	-115
0.13325	31.20	Avg	300	80.00	-48.80	25.11	73.92	36.95	-43.05	45.11	88.16	Z	57
0.1379	29.76	Avg	300	80.00	-50.24	24.81	75.05	36.26	-43.74	44.81	88.55	Z	33
0.41325	31.48	Avg	300	71.72	-40.24	15.28	55.52	42.80	-28.92	35.28	64.20	Υ	-86
13.56	35.37	QP	30	21.40	13.97	84.00	70.03	46.37	24.97	None	None	Χ	-59

Table RE23.2: Emission summary

The graph below shows the background spectrum observed during pre-scan, as well as the final data points from the table above.

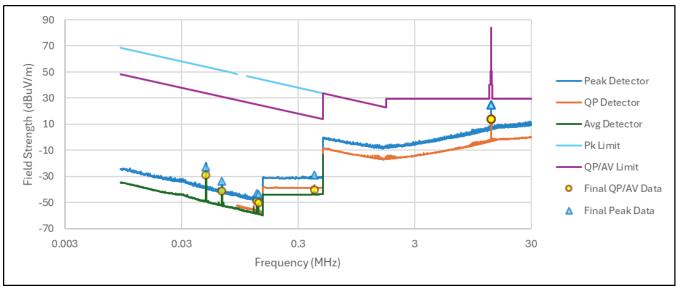


Figure RE23.1: Spectral data

Page 20 of 35	GCL Test Report 2025-035	Version B				
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.						
Garmin						

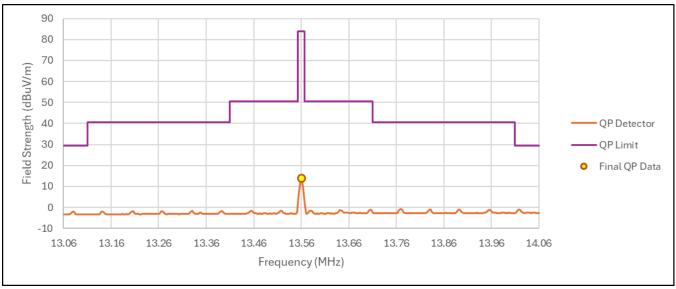


Figure RE23.2: Spectral data, focused on transmission limit mask

Setup Photographs

The following photographs show the EUT configured and arranged in the manner in which it was measured.

Figure RE23.3: EUT test setup, first view

Page 21 of 35	GCL Test Report 2025-035	Version B				
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin						

Image removed for client confidentiality. See section 1 of this report to identify the report where the photos may be viewed. Figure RE23.4: EUT test setup, antenna in X orientation

Image removed for client confidentiality.

See section 1 of this report to identify the report where the photos may be viewed.

Figure RE23.5: EUT test setup, antenna in Y orientation

Page 22 of 35	Page 22 of 35 GCL Test Report 2025-035				
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin					

Image removed for client confidentiality. See section 1 of this report to identify the report where the photos may be viewed.

Figure RE23.6: EUT test setup, antenna in Z orientation

This line is the end of the test record.

Test Record Radiated Emission Test RE24 Project GCL0799

Test Date(s) 10, 11 Jun 2025 Test Personnel Vladimir Tolstik

Product Model A04916 Serial Number tested 600129685

Operating Mode M12 (NfcLnk)
Arrangement A6 (NFCu)
Input Power Battery

Test Standards: FCC Part 15.225; RSS-210; RSS-GEN; ANSI-C63.10 (as noted in Section 6 of the

report).

Frequency Range: 30 MHz to 1000 MHz

Pass/Fail Judgment: PASS

Test record created by: Vladimir Tolstik
Date of this record: 12 Jun 2025

Original record, Version A.

Test Equipment

Description	Make	Model #	Serial #	Last Cal/Ver	Next Due
PXE Receiver 26 GHz	Keysight	N9048B	MY59290135	24-Oct-2024	24-Oct-2025
Antenna, Biconilog, 30M-6 GHz	ETS Lindgren	3142E	00233201	18-Jul-2024	18-Jul-2026
SAC 3m, below 1 GHz	Frankonia	SAC3	F199004	11-Dec-2024	11-Dec-2027
Tape Measure, 1-3/16 in x 33 ft	Crecent Lufkin	L1135CME-02	GMN0013784	26-Jun-2024	26-Jun-2027

Table RE24.1: Test Equipment Used

Software Used: Keysight PXE software A.32.06, EPX test software Version 2025.01.000

Test Data

For test standards that require reorienting the test sample, preliminary scans were taken in those alternate orientations to find the orientation that produced that largest field at the receive antenna. With intentional radiators, that highest field is usually found at the carrier frequency. The alternate orientations are typically described as X, Y, and Z and explained with a photograph. Subsequent testing was done using on the orientation identified in this way.

The radiated emission test process continued with a preliminary scan at multiple turntable angles, antenna heights, and both antenna polarizations. Where the test standard requires cable manipulation, this was done at one of more likely worst case frequencies selected by the test personnel while observing the receiver display. At each of the frequencies selected for final measurements, the turntable angle, antenna height, and antenna polarization were explored to find the worst-case settings. Final field strength measurements were taken in that set of positions. Full maximization was not performed at frequencies that are noise floor measurements included per the test standard requirements.

Page 24 of 35	GCL Test Report 2025-035	Version B				
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.						
Garmin						

At azimuth angle 180° the 'front' reference mark of the turntable is pointed Southward. At 270° the reference mark points West. At 90° it points East. At 173° the turntable reference mark is pointed directly at the antenna. The designation of the X, Y, and Z orientations of the test sample are sample dependent, so these are reported by use of photographs.

The table shows the selected final measurement data between 30 MHz and 1 GHz. It includes at least the six strongest emissions observed relative to the test limit, along with other data points of interest. Where a data point is highlighted is yellow, this is an aid to indicate the data point(s) with the least margin to the test limit. A positive margin value indicates that the emission was below the test limit. The test limit is the FCC Class B Limit at 3m. Any unintentional radio emission limits are not applied to intentional radio signals.

Test limits for electric fields above 30 MHz that are stated for a distance other than 3 m are adjusted to 3 m with a factor of 20 dB per decade of distance. Test limits for electric or magnetic fields below 30 MHz that are stated for a distance other than 3 m are adjusted to 3 m by one of two methods. For ETSI testing, the extrapolation uses the curve of ETSI EN 300 330 Annex H figure H.2. For FCC and ISED testing, the conservative method of ANSI C63.10 clause 6.4.4.1 is applied: 40 dB per decade for distances within the boundary (wavelength / 2 Pi), 20 dB per decade beyond that distance boundary.

Frequency		Reading	Factor	Level	Limit	Margin	Height	Angle
N411	Pol.	dB(μ V)	ID(1/_)	dB(μ V/m)	dB(μ V/m)	dB		1
MHz		QP	dB(1/m)	QP	QP	QP	cm	deg
40.680	V	6.8	16.5	23.3	40.0	16.7	104.6	80.0
81.360	Н	7.4	13.6	21.0	40.0	19.0	227.4	134.0
104.700	Н	6.5	15.6	22.1	43.5	21.4	214.6	154.0
203.400	Н	6.2	17.9	24.1	43.5	19.4	157.8	243.0
271.200	Н	6.6	20.8	27.4	46.0	18.6	104.6	297.0
542.400	V	9.0	28.9	37.9	46.0	8.1	104.6	269.0
569.520	Н	12.5	27.8	40.3	46.0	5.7	141.4	184.0
678.000	Н	7.4	30.7	38.1	46.0	7.9	120.1	319.0
813.600	٧	10.8	32.5	43.3	46.0	2.7	121.9	307.0
840.720	V	10.3	32.0	42.3	46.0	3.7	110.4	314.0
867.840	V	11.5	31.8	43.3	46.0	2.7	112.4	315.0
894.960	V	12.2	32.4	44.6	46.0	1.4	112.3	317.0
922.080	V	11.7	33.4	45.1	46.0	<mark>0.9</mark>	108.4	354.0
949.200	V	10.8	33.9	44.7	46.0	1.3	104.6	320.0

Table RE24.2: Emission summary

The graph below shows the background spectrum observed during pre-scan, as well as the final data points from the table above.

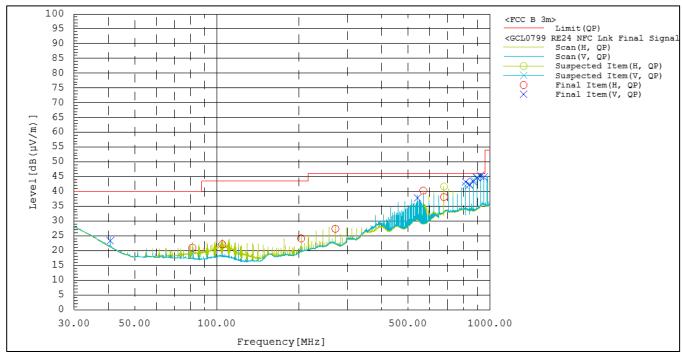


Figure RE24.1: Spectral data

Setup Photographs

The following photographs show the EUT configured and arranged in the manner in which it was measured.

Figure RE24.2: EUT test setup, first view

Page 26 of 35	GCL Test Report 2025-035	Version B				
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.						
Garmin						

Image removed for client confidentiality. See section 1 of this report to identify the report where the photos may be viewed.

Figure RE24.3: EUT test setup, second view

This line is the end of the test record.

Test Record

Conducted Emissions Mains Test CE08 Project GCL0799

Test Date(s) 17 Jun 2025 Test Personnel Jim Solum

Product Model A04916 Serial Number tested 600129685

Operating Mode M16 (NFCTag)
Arrangement A2 (Upwr)
Input Power 115 Vac 60 Hz

Test Standards: FCC Part 15, ANSI C63.10, RSS-GEN, RSS-210 (as noted in Section 6 of the

report).

Frequency Range: 150 kHz to 30 MHz

Pass/Fail Judgment: PASS

Test record created by: Jim Solum
Date of this record: 18 Jun 2025

Original record, Version A.

Test Equipment

Description	Make	Model #	Serial #	Last Cal/Ver	Next Due
PXE Receiver 44 GHz	Keysight	N9048B	MY62220139	21-Oct-2024	21-Oct-2025
Tape measure, 1 in x 33 ft	Lufkin	PHV1410CMEN	10720	16-Jan-2023	15-Jan-2026
DMM Multimeter	Fluke	87V	63490051	2-Jan-2025	2-Jan-2028
LISN multiline; 20A 50uH	Com-Power	LIN-120C	20160005	3-Apr-2024	1-Apr-2027
Coaxial Power Cable	Com-Power	RG214/U	20230124-01	3-Apr-2024	1-Apr-2027

Table CE08.1: Test Equipment Used

Software Used

Keysight PXE software A.33.03; CE Mains 150k to 30M Data Analysis V3a 2025Jan08.xlsx

Test Data

The conducted emission test process began with a set of preliminary scans on both power conductors using both Quasi-Peak and Average detectors across the frequency range. Where the test standard requires cable manipulation, one or more likely worst case frequencies selected by the test personnel. Cables were manipulated to find the maximal signal strength while observing the receiver levels at those selected frequencies. At each of the frequencies selected for final measurements, Quasi-peak and Average detector readings were taken on each conductor.

The table shows the selected final measurement data. It includes at least the six strongest emissions observed relative to the limit lines, along with other data points of interest. The yellow highlight indicate the data points with the least margin to the quasi-peak detector limit and the average detector limit. A positive margin value indicates that the emission was below the test limit. The test limit is the Composite FCC/CISPR Class B Limit.

Unintentional emission limits are not applied to intentional transmission signals. In this data set, no limit is applied to the signal observed at 13.56 MHz.

Page 28 of 35	Page 28 of 35 GCL Test Report 2025-035				
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin					

Frequency	QP Limit	AV Limit	L1 QP	L2 QP	L1 AV	L2 AV	QP Margin	AV Margin
(kHz)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)
150	66.00	56.00	27.20	26.32	21.76	20.32	38.80	34.24
164	65.28	55.28	23.48	22.68	19.48	18.42	41.80	35.80
485	56.25	46.25	25.60	21.41	20.98	16.59	30.65	25.27
715	56.00	46.00	23.49	21.20	18.52	16.29	32.51	27.48
1676	56.00	46.00	23.76	21.81	18.98	17.25	32.24	27.02
10001	60.00	50.00	24.35	22.85	19.65	18.25	35.65	30.35
13560	N/A	N/A	32.45	30.42	23.57	21.49	N/A	N/A

Table CE08.1: Emission summary

The graph below shows preliminary scan data as continuous curves. Superimposed are the final measurement data points reported in the table above.

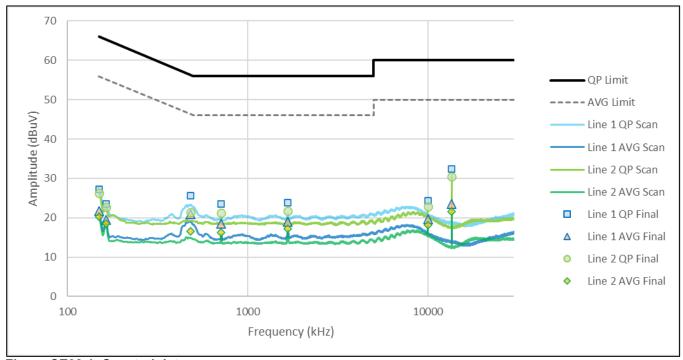


Figure CE08.1: Spectral data

Page 29 of 35	GCL Test Report 2025-035	Version B				
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.						
Garmin						

Setup Photographs

The following photographs show the EUT configured and arranged in the manner in which it was measured. Image removed for client confidentiality. See section 1 of this report to identify the report where the photos may be viewed. Figure CE08.2: Test setup, first view Image removed for client confidentiality. See section 1 of this report to identify the report where

the photos may be viewed.

Figure CE08.3: Test setup, second view

This line is the end of the test record.

Page 30 of 35	Version B				
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin					

Test Record Transmitter Stability in Extreme Conditions Test IDs TR55 Project GCL0799

Test Date(s) 13 Jun 2025

Test Personnel Majid Farah, Jim Solum

Product Model A04916 Serial Number tested 600129685

Operating Mode M16 (NFCTag)
Arrangement A4 (Udc)
Nominal Input Power USB 5Vdc

Test Standards: FCC Part 15.225; RSS-210; RSS-GEN; ANSI-C63.10 (as noted in Section 6 of the

report)

Radio Protocol NFC

Pass/Fail Judgment: PASS

Test record created by: Jim Solum
Date this record: 16 Jun 2025

Original record, Version A.

Test Equipment Used

Description	Make	Model #	Serial #	Last Cal/Ver	Next Due
MXE Receiver 8.4 GHz	Keysight	N9038B	MY63460112	17-Mar-2025	17-Mar-2026
DMM Multimeter	Fluke	87V	63490051	2-Jan-2025	2-Jan-2028
Regulated DC power supply	Triplett	PS305	C233005744	Calibration	Not Required
Thermometer	Thermco	ACCD370P	210607316	21-Sep-2023	15-Sep-2025
Thermal Chamber	Tenney	T2RC	31244	Calibration	Not Required
Near Field Probe Set	Com-Power	PS-400	151723	Calibration	Not Required

Table TR55.1: List of test equipment used

Test Method

The standards cited require observation of the stability for transmission frequency and/or power at certain environmental extremes. The reference is performance on nominal input voltage and a temperature of 20 °C. Where the standards cited here impose different limits or conditions, the most stringent limits and conditions have been applied.

The Standard indicated carrier frequency stability shall not exceed 0.01% of operation frequency. The frequency was required to remain between the limits of 13.558644 and 13.561356 MHz.

Page 31 of 35	Version B				
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin					

Test Data

The test sample(s) were subjected to extreme conditions and performed as shown below. During NFC test mode, each measurement was made conducted from a near field probe located at a close distance to the sample and NFC reader. The sample needs to be attached to an NFC reader for continuous transmission.

Yellow highlights indicate the maximum and minimum measured carrier frequency. The maximum frequency measured was 13,560,144 Hz and the minimum was 13,560,062 Hz. The margin to high side of limit is 1212 Hz and margin for low side of the limit is 1418 Hz.

			NFC carrier frequency (Hz)			
Tx Mode	Temp	Volts	Time interval (minutes)			
	°C	Vdc	0	2	5	10
NFC	50	5	13,560,068	13,560,065	13,560,063	13,560,062
NFC	40	5	13,560,068	13,560,070	13,560,073	13,560,074
NFC	30	5	13,560,089	13,560,091	13,560,093	13,560,095
NFC	20	5	13,560,113	13,560,114	13,560,116	13,560,119
NFC	20	4.25	13,560,124	N/A	N/A	N/A
NFC	20	5.75	13,560,120	N/A	N/A	N/A
NFC	10	5	13,560,134	13,560,135	13,560,137	13,560,138
NFC	0	5	13,560,144	13,560,144	13,560,144	13,560,144
NFC	-10	5	13,560,133	13,560,131	13,560,129	13,560,128
NFC	-20	5	13,560,088	13,560,083	13,560,079	13,560,074

Table TR55.2: Frequency stability data for NFC transmission with temperature and voltage variations

Setup Block Diagram

The following block diagram shows the EUT configured and arranged in the manner in which it was measured.

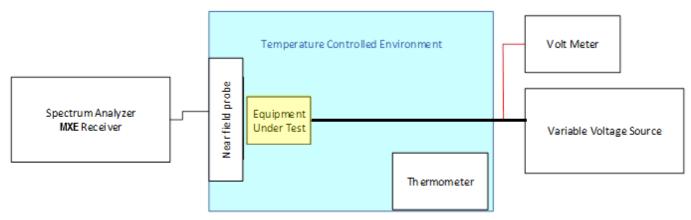


Figure TR55.1: Schematic drawing of the test equipment setup for NFC

This line is the end of the test record.

Page 32 of 35	Version B				
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin					

Test Record Transmitter Bandwidth Test Test ID TR56 Project GCL-0799

Test Date(s) 22 Jul 2025 Test Personnel Vladimir Tolstik

Product Model A04916 Serial Number tested 600129685

Operating Mode M16 (NfcTag)
Arrangement A4 (Udc)
Input Power USB 5 Vdc

Test Standards: FCC Part 15, ANSI C63.10, RSS-GEN (as noted in Section 6 of the report).

Radio Protocol NFC Radio Band 13.56 MHz

Pass/Fail Judgment: Reported

Test record created by: Andy Heier, Vladimir Tolstik

Date of this record: 22 Jul 2025

Original record, Version A.

Test Equipment Used

Description	Make	Model #	Serial #	Last Cal/Ver	Next Due
PXE Receiver 44 GHz	Keysight	N9048B	MY62220139	21-Oct-2024	21-Oct-2025

Table TR56.1: List of test equipment used

Test Software Used: Keysight PXE firmware A.33.03

Background

There are regulatory requirements to present an additional type of bandwidth analysis: 99% Occupied Bandwidth. There are no limits or functional requirements around this data, beyond a reporting requirement. The contents of this test record are for information, and do not affect compliance of the devices that are the subject of this report.

Test Setup

This block diagram shows the test equipment setup.

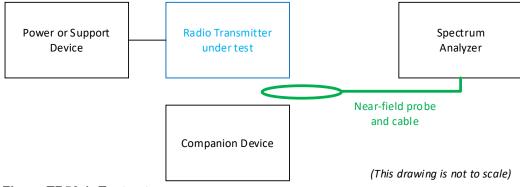


Figure TR56.1: Test setup

Page 33 of 35	Version B				
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin					

Occupied Bandwidth, 99% Test Method

During this test a small loop probe is placed between transmitter and companion device (an NFC tag) because the test sample only transmits in response to a nearby companion device. This loop probe is then connected by a cable to the spectrum analyzer. The analyzer has a built-in capability to identify the minimum bandwidth that contains a specified percentage of the total power observed. The spectrum is scanned with significant sweep so that the varied effects of modulation are appropriately assessed. Since the focus is on the relative distribution of energy across a range of frequencies, the absolute amplitudes recorded during this test are not relevant and may not include cable losses or attenuation factors.

Occupied Bandwidth, 99% Test Data

The measured 99% occupied bandwidth data is 2.1083 MHz shown by the spectral data.

Figure TR56.1: Spectral occupied bandwidth data

This line is the end of the test record.

Concluding Notes

This report stands as an integrated record of the tests performed and must be copied or distributed in its complete form. The reproduction of selected pages or sections separate from the complete report would require specific approval from the manager of the Garmin Compliance Lab.

This is the final page of the report.

Page 35 of 35	GCL Test Report 2025-035	Version B		
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				