Calibration Laboratory of Schmid & Partner **Engineering AG**

Zeughausstrasse 43, 8004 Zurich, Switzerland

C

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client UL

Certificate No. CLA13-1017 Mar25

Research Triangle Park, USA

CALIBRATION CERTIFICATE

Object

CLA13 - SN: 1017

Calibration procedure(s)

QA CAL-15.v11

Calibration Procedure for SAR Validation Sources below 700 MHz

Calibration date:

Primary Standards

March 10, 2025

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	[ID #	Cai Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	26-Mar-24 (No. 217-04036/04037)	Mar-25
Power sensor NRP-Z91	SN: 103244	26-Mar-24 (No. 217-04036)	Mar-25
Power sensor NRP-Z91	SN: 103245	26-Mar-24 (No. 217-04037)	Mar-25
Reference 20 dB Attenuator	SN: CC2552 (20x)	26-Mar-24 (No. 217-04046)	Mar-25
Type-N mismatch combination	SN: 310982 / 06327	26-Mar-24 (No. 217-04047)	Mar-25
Reference Probe EX3DV4	SN: 3877	06-Jan-25 (No. EX3-3877_Jan25)	Jan-26
DAE4	SN: 654	18-Oct-24 (No. DAE4-654_Oct24)	Oct-25
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter NRP2	SN: 107193	08-Nov-21 (in house check Jun-24)	In house check: Jun-26
Power sensor NRP-Z91	SN: 100922	15-Dec-09 (in house check Jun-24)	In house check: Jun-26
Power sensor NRP-Z91	SN: 100418	01-Jan-04 (in house check Jun-24)	In house check: Jun-26
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-24)	In house check: Jun-26
Network Analyzer Keysight E5063A	SN:MY54504221	31-Oct-19 (in house check Sep-24)	In house check: Sep-26
	Name	Function	Signature
Calibrated by:	Krešimir Franjić	Laboratory Technician	
Approved by:	Sven Kühn	Technical Manager	51-
			000

Cal Date (Certificate No.)

Issued: March 10, 2025

Scheduled Calibration

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: CLA13-1017 Mar25 Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm
EUT Positioning	Touch Position	
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	13 MHz ± 1 MHz	

HSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal HSL parameters	22.0 °C	55.0	0.75 mho/m
Measured HSL parameters	(22.0 ± 0.2) °C	53.0 ± 6 %	0.72 mho/m ± 6 %
HSL temperature change during test	< 0.5 °C		

SAR result with HSL

SAR averaged over 1 cm³ (1 g) of HSL	Condition	
SAR measured	1 W input power	0.525 W/kg
SAR for nominal HSL parameters	normalized to 1W	0.538 W/kg ± 18.4 % (k=2)

SAR averaged over 10 cm³ (10 g) of HSL	condition	
SAR measured	1 W input power	0.328 W/kg
SAR for nominal HSL parameters	normalized to 1W	0.336 W/kg ± 18.0 % (k=2)

Certificate No: CLA13-1017_Mar25

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with HSL

Impedance, transformed to feed point	55.1 Ω + 6.3 j Ω	
Return Loss	-22.3 dB	

Additional EUT Data

Manufactured by	SPEAG
Manufactured by	31 LAO

Certificate No: CLA13-1017_Mar25 Page 4 of 6

DASY5 Validation Report for HSL

Date: 10.03.2025

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: CLA13; Type: CLA13; Serial: CLA13 - SN: 1017

Communication System: UID 0 - CW; Frequency: 13 MHz

Medium parameters used: f = 13 MHz; $\sigma = 0.72$ S/m; $\epsilon_r = 53$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN3877; ConvF(15.48, 15.48, 15.48) @ 13 MHz; Calibrated: 06.01.2025

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn654; Calibrated: 18.10,2024

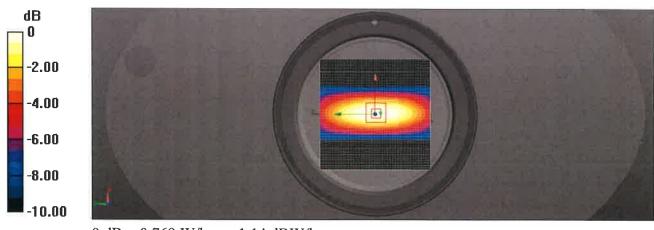
Phantom: ELI v6.0; Type: QDOVA003AA; Serial: TP:2034

DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

CLA Calibration for HSL-LF Tissue/CLA-13, touch configuration, Pin=1W/Zoom Scan,

dist=1.4mm (8x10x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 30.19 V/m; Power Drift = -0.08 dB


Peak SAR (extrapolated) = 1.05 W/kg

SAR(1 g) = 0.525 W/kg; SAR(10 g) = 0.328 W/kg

Smallest distance from peaks to all points 3 dB below = 18 mm

Ratio of SAR at M2 to SAR at M1 = 77.2%

Maximum value of SAR (measured) = 0.769 W/kg

0 dB = 0.769 W/kg = -1.14 dBW/kg

Impedance Measurement Plot for HSL

Calibration Laboratory of Schmid & Partner Engineering AG

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108

Client

UL

Research Triangle Park, USA

Certificate No.

D2450V2-963 Oct24

CALIBRATION CERTIFICATE

Object **D2450V2 - SN: 963**

Calibration procedure(s) QA CAL-05.v12

Calibration Procedure for SAR Validation Sources between 0.7 - 3 GHz

Calibration date October 11, 2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22\pm3)^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Cal
Power Sensor R&S NRP-33T	SN: 100967	28-Mar-24 (No. 217-04038)	Mar-25
Power Sensor R&S NRP18A	SN: 101859	22-Jul-24 (No. 4030A315008547)	Jul-25
Spectrum Analyzer R&S FSV40	SN: 101832	25-Jan-24 (No. 4030-315007551)	Jan-25
Mismatch; Short [S4188] Attenuator [S4423]	SN: 1152	28-Mar-24 (No. 217-04050)	Mar-25
OCP DAK-12	SN: 1016	24-Sep-24 (No. OCP-DAK12-1016_Sep24)	Sep-25
OCP DAK-3.5	SN: 1249	23-Sep-24 (No. OCP-DAK3.5-1249_Sep24)	Sep-25
Reference Probe EX3DV4	SN: 7349	03-Jun-24 (No. EX3-7349_Jun24)	Jun-25
DAE4ip	SN: 1836	10-Jan-24 (No. DAE4ip-1836_Jan24)	Jan-25

Secondary Standards	ID	Check Date (in house)	Scheduled Check
ACAD Source Box	SN: 1000	28-May-24 (No. 675-ACAD_Source_Box-240528)	May-25
Signal Generator R&S SMB100A	SN: 182081	28-May-24 (No. 675-CAL16-S4588-240528)	May-25
Mismatch; SMA	SN: 1102	22-May-24 (No. 675-Mismatch_SMA-240522)	May-25

Name Function Signature

Calibrated by Krešimir Franjić Laboratory Technician

Approved by Sven Kühn Technical Manager

Issued: October 14, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-963_Oct24 Page 1 of 6

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards

- IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation

· DASY System Handbook

Methods Applied and Interpretation of Parameters

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- · Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- · SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-963_Oct24 Page 2 of 6

D2450V2 - SN: 963 October 11, 2024

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module SAR	16.4.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with spacer
Zoom Scan Resolution	dx, dy = 5mm, dz = 1.5mm	Graded Ratio = 1.5 mm (Z direction)
Frequency	2450MHz ±1MHz	

Head TSL parameters at 2450 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ±0.2)°C	37.7 ±6%	1.82 mho/m ±6%
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 2450 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	24 dBm input power	13.2 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.6 W/kg ±17.0% (k = 2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	24 dBm input power	6.14 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.4 W/kg ±16.5% (k = 2)

Certificate No: D2450V2-963_Oct24

D2450V2 - SN: 963 October 11, 2024

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 2450 MHz

Impedance	55.2 Ω + 2.7 jΩ
Return Loss	-25.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.16 ns
----------------------------------	---------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D2450V2-963_Oct24 Page 4 of 6

October 11, 2024 D2450V2 - SN: 963

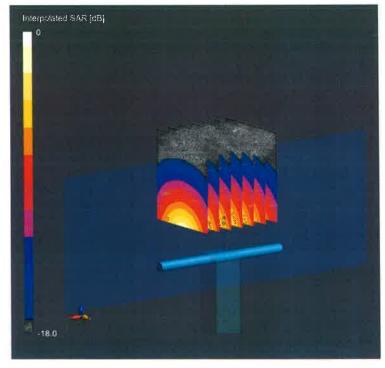
System Performance Check Report

Summary

Dipole	Frequency [MHz]	TSL	Power [dBm]
D2450V2 - SN963	2450	HSL	24

Exposure Conditions

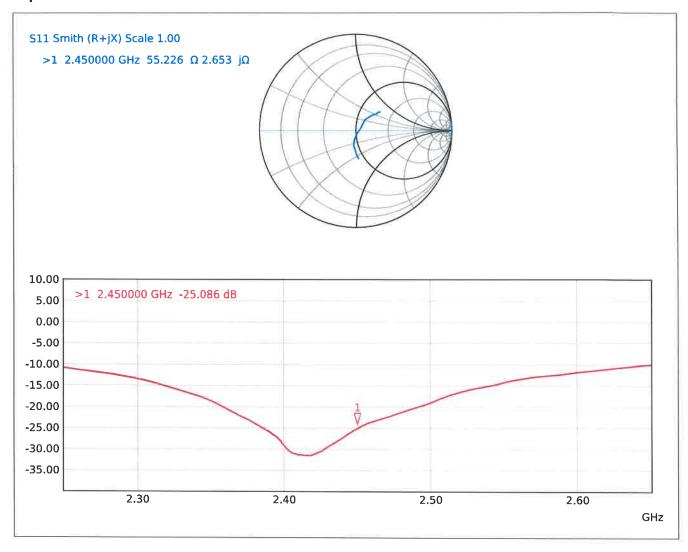
Phantom Section, TSL	Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat	10		CW, 0	2450, 0	7.24	1.82	37.7


Hardware Setup

Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
MFP V8.0 Center	HSL, 2024-10-11	EX3DV4 - SN7349, 2024-06-03	DAE4ip Sn1836, 2024-01-10

Scans Setup Zoom Scan

Grid Extents [mm]	30 x 30 x 30	
Grid Steps [mm]	5.0 x 5.0 x 1.5	
Sensor Surface [mm]	1.4	
Graded Grid	Yes	
Grading Ratio	1.5	
MAIA		
Surface Detection		
Scan Method	Measured	


	Zoom Scan
Date	2024-10-11
psSAR1g [W/Kg]	13.2
psSAR10g [W/Kg]	6.14
Power Drift [dB]	0.01
Power Scaling	Disabled
Scaling Factor [dB]	
TSL Correction	Positive / Negative

0 dB = 27.3 W/Kg

D2450V2 - SN: 963 October 11, 2024

Impedance Measurement Plot for Head TSL

