

Test Report Serial Number: 45461940 R1.0 Test Report Date:

18 June 2024

Project Number: 1656

SAR Test Report - New Application

Applicant:

Garmin International Inc. 1200 East 151 St. Olathe, KS, 66062 **USA**

FCC ID:

IPH-04806

Product Model Number / HVIN

A04806

Maximum <u>reported</u> SAR								
DTS - 2.4GHz WLAN:	0.38							
DSS/DTS Bluetooth:	0.20	1g Head (W/kg)						
General Pop. Limit:	1.60	(******9)						

Maximum <u>reported</u> SAR								
DTS - 2.4GHz WLAN:	<0.1	10g						
DSS/DTS Bluetooth:	<0.1	Extremity						
General Pop. Limit:	4.00	(W/kg)						

IC Registration Number

Product Name / PMN

A04806

In Accordance With:

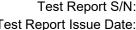
FCC 47 CFR §2.1093

Radiofrequency Radiation Exposure Evaluation: Portable Devices

Approved By:

Ben Hewson, President

Celltech Labs Inc. 21-364 Lougheed Rd. Kelowna, BC, V1X 7R8 Canada



Industry

IC Registration 3874A

This report shall not be reproduced in any form without the expressed written consent of Celltech Labs Inc.

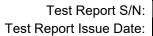
45461940 R1.0 18 June 2024

Table of Contents

1.0 DOCUMENT CONTROL	4
2.0 CLIENT AND DEVICE INFORMATION	5
3.0 SCOPE OF EVALUATION	6
4.0 NORMATIVE REFERENCES	7
5.0 STATEMENT OF COMPLIANCE	8
6.0 SAR MEASUREMENT SYSTEM	9
7.0 RF CONDUCTED POWER MEASUREMENT	10
Table 7.0 Conducted Power Measurements – 2.4GHz WiFi BT BLE ANT	10
8.0 MEASUREMENT METHOD	11
Table 8.1 Number of Test Channels and SAR test reduction	
9.0 ACCESSORIES EVALUATED	13
Table 9.0 Accessories Evaluated	13
10.0 SAR MEASUREMENT SUMMARY	14
Table 10.0: Measured Results -Extremity 10g	
11.0 SCALING OF MAXIMUM MEASURE SAR	15
TABLE 11.0 SAR SCALING – EXTREMITY 10G TABLE 11.1 SAR SCALING – HEAD – HELD TO FACE 1G	
12.0 SAR EXPOSURE LIMITS	18
Table 12.0 Exposure Limits	18
13.0 DETAILS OF SAR EVALUATION	19
13.0 Day Log	19
13.1 DUT SETUP AND CONFIGURATION	
13.2 DUT POSITIONING	
13.4 Fluid Dielectric and Systems Performance Check	
13.5 SCAN RESOLUTION 100MHz TO 2GHz	
13.6 SCAN RESOLUTION 2GHz TO 3GHz	
14.0 SAR MEASUREMENT VARIABILITY & UNCERTAINTY	
Table 14.1 Measurement Variability	
15.0 FLUID DIELECTRIC PARAMETERS	
Table 15.0 Fluid Dielectric Parameters 2450MHz HEAD TSL	
TABLE 15.0 FLUID DIELECTRIC PARAMETERS 2450MHz HEAD TSL	25
16.0 SYSTEM VERIFICATION TEST RESULTS	25
16.0 SYSTEM VERIFICATION TEST RESULTS Table 16.0 System Verification Results 2450MHz HEAD TSL	25 26
16.0 SYSTEM VERIFICATION TEST RESULTS	25 26 26

Test Report S/N: Test Report Issue Date: 18 June 2024

45461940 R1.0


18.0 MEASUREMENT SYSTEM SPECIFICATIONS	28
Table 18.0 Measurement System Specifications	28
19.0 TEST EQUIPMENT LIST	30
Table 19.0 Equipment List and Calibration	30
20.0 FLUID COMPOSITION	31
Table 20.0 Fluid Composition 2450MHz HEAD TSL	31
END OF REPORT	31
APPENDIX A – SYSTEM VERIFICATION PLOTS	32
APPENDIX B – MEASUREMENT PLOTS OF MAXIMUM MEASURED SAR	34
APPENDIX C – SET- UP PICTURES	38
FIGURE C.1 – PHOTO – SETUP: EXTREMITY, DUT BACK OMM- METAL BAND	
FIGURE C.2 – PHOTO – SETUP: EXTREMITY, DUT BACK OMM- METAL BAND - CLOSE	
FIGURE C.3 – PHOTO – SETUP: EXTREMITY, DUT BACK OMM – SILICONE BAND	
FIGURE C.4 – PHOTO – SETUP: EXTREMITY, DUT BACK 0MM – SILICONE BAND - CLOSE	
FIGURE C.5 – PHOTO – SETUP: FACE, DUT FRONT 10MM – SILICONE BAND	
FIGURE C.6 – PHOTO – SETUP: FACE, DUT FRONT 10MM – SILICONE BAND – CLOSE	43
APPENDIX D – PROBE CALIBRATION	
APPENDIX E – DIPOLE CALIBRATION	45
APPENDIX F - PHANTOM	46

45461940 R1.0 18 June 2024

1.0 DOCUMENT CONTROL

Revision History										
Samples Tested By: Ben Hewson/ Trevor Whillock		Dat	e(s) of Evaluation:	4-5 April 2024						
Report Prepared By:		Ben Hewson	Report Reviewed By:		Art Voss					
Report	Door	ription of Revision	Revised	Revised	Revision Date					
Revision	Desc	inpulon of Revision	Section	Ву	Revision Date					
0.1		Draft	n/a	Ben Hewson	12 June 2024					
1.0		Initial Release	n/a	Ben Hewson	18 June 2024					

45461940 R1.0 18 June 2024

2.0 CLIENT AND DEVICE INFORMATION

	DUT Information
Device Identifier(s):	FCC ID: IPH-04806
Device Model(s) / HVIN:	A04806
Device Marketing Name / PMN:	A04806
Test Sample Serial No.:	3470345874 - Conducted, 3470346065 - OTA
Software Ver /SVIN:	V8.00
Device Type:	Portable Transceiver
	Digital Transmission Systems (DTS)
	Spread Spectrum Transmitter (DSS)
Equipment Class:	Low Power Communication Device (DXX)
	Global Navigation Satellite System (GNSS) Receivers
	NFC - Low Power Communication Device Transmitter (DXX)
	WiFi (DTS): 2412-2462MHz
Transmit Frequency Range:	BT/BLE/ANT: 2402-2480MHz
	NFC: 13.56MHz
	WiFi - Digital Transmission System (DTS): 17.5dBm
Manuf. Max. Rated Output Power:	BlueTooth - Spread Spectrum Transmitter (DSS):11.5dBm
(Conducted)	BLE/ANT - Low Power Communication Device Transmitter (DXX): 2.0dBm
	NFC - Low Power Communication Device Transmitter (DXX): 43.42dBuV/m
Antenna Type and Gain:	-3.9 dBi Max Slot Antenna
	WiFi: DSSS, OFDM, CCK, MCS0-7
	BT BR: GFSK
Modulation:	BT EDR: Pi/4-DQPSK, 8DPSK
Modulation.	BLE: GMSK
	ANT: GFSK
	NFC: ASK
DUT Power Source:	4.5VDC Rechargeable Li-lon
DUT Dimensions [LxWxH]	H x W x D: 47mm dia x 10.5mm
Deviation(s) from standard/procedure:	None
Modification of DUT:	None

45461940 R1.0 18 June 2024

3.0 SCOPE OF EVALUATION

This Certification Report was prepared on behalf of:

Garmin International Inc.

,(the 'Applicant"), in accordance with the applicable Federal Communications Commission (FCC) CFR 47 and Innovation, Scientific and Economic Development (ISED) Canada rules parts and regulations (the 'Rules'). The scope of this investigation was limited to only the equipment, devices and accessories (the 'Equipment') supplied by the Applicant. The tests and measurements performed on this Equipment were only those set forth in the applicable Rules and/or the Test and Measurement Standards they reference. The Rules applied and the Test and Measurement Standards used during this evaluation appear in the Normative References section of this report. The limits set forth in the technical requirements of the applicable Rules were applied to the measurement results obtained during this evaluation and ,unless otherwise noted, these limits were used as the Pass/Fail criteria. The Pass/Fail statements made in this report apply to only the tests and measurements performed on only the Equipment tested during this evaluation. Where applicable and permissible, information including test and measurement data and/or results from previous evaluations of same or similar equipment, devices and/or accessories may be cited in this report.

The A04806, operates as a Portable transceiver near extremity, that is capable of operating in the 2.4GHz WiFi and Bluetooth, BLE & ANT frequency bands and has an additional NFC feature that operates at a fixed transmit frequency of 13.56MHz. The device is intended for General Population Use. The product operates from an internal proprietary Li-ion rechargeable battery which can be connected to a compliant USB interface port, AC or DC adapter for charging. Test samples provided by the manufacturer were capable of transmitting at select frequencies and modulations preset by the manufacturer. An additional antenna modification was prepared for one sample allowing the ability to connect test equipment for antenna port conducted power analysis.

Application:

This is an application for a new device certification.

Scope:

The scope of this evaluation limited to the evaluation of SAR for intended applications. It will include evaluation of the 2.4 GHz WiFi/BT transmitters for all required RF exposure configurations including Extremity and Head Configuration as the device may be operational while held to face.

The Test Plan developed for this evaluation is based on the required test channels and configurations which produced the highest worst case SAR and where applicable, SAR test reduction and/or SAR test exclusion may be utilized. The DUT was evaluated for SAR at the maximum tune up tolerance and conducted output power level, preset by the manufacturer and in accordance with the procedures described in RSS-102, IEC/IEEE 62209-1528, FCC KDB 447498 and FCC KDB 248227.

45461940 R1.0 18 June 2024

4.0 NORMATIVE REFERENCES

Normative References*									
ANSI / ISO 17025:2017	General Requirements for competence of testing and calibration laboratories								
FCC CFR Title 47 Part 2	Code of Federal Regulations								
Title 47:	Telecommunication								
Part 2.1093:	Radiofrequency Radiation Exposure Evaluation: Portable Devices								
IEC International Standard	/IEEE International Committee on Electromagnetic Safety								
IEC/IEEE 62209-1528	Measurement procudeure for the assessment of sepcific absorption rate of human expoure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 1528; Human models, insturmentation, and procedures (Frequency range of 4 MHz to 10 GHz)								
FCC KDB									
KDB 865664 D01v01r04	SAR Measurement Requirements for 100MHz to 6GHz								
KDB 865664 D02v01r02	RF Exposure Compliance Reporting and Documentation Considerations								
FCC KDB									
KDB 447498 D04v01	RF Exposure Procedures and Equipment Authorization Policies for Mobile and Portable Devices								
	Interim General RF Exposure Guidance								
FCC KDB									
KDB 248227 D01v02r02	SAR Guidance for IEEE 802.11 (WiFi) Transmitters								
* When the issue number	or issue date is omitted, the latest version is assumed.								

45461940 R1.0 18 June 2024

5.0 STATEMENT OF COMPLIANCE

This measurement report demonstrates that samples of the product model(s) were evaluated for Specific Absorption Rate (SAR) on the date(s) shown, in accordance with the Measurement Procedures cited and were found to comply with the Standard(s) Applied based on the Exposure Limits of the Use Group indicated for which the product is intended to be used.

Applicant:	Model / HVIN:	
Garmin International Inc.	A04806	
Standard(s) Applied:	Measurement Procedure(s):	
FCC 47 CFR §2.1093	FCC KDB 865664, FCC KDB 447498, FC0 IEC/IEEE Standard 62209-1528	C KDB 248227
Reason For Issue:	Use Group:	Limits Applied:
New Certification Class I Permissive Change	General Population / Uncontrolled	x 1.6W/kg - 1g Volume 8.0W/kg - 1g Volume
Class II Permissive Change	Occupational / Controlled	x 4.0W/kg - 10g Volume
Reason for Change:		Date(s) Evaluated:
		4-5 April 2024

The results of this investigation are based solely on the test sample(s) provided by the applicant which was not adjusted, modified or altered in any manner whatsoever except as required to carry out specific tests or measurements. A description of the device, operating configuration, detailed summary of the test results, methodologies and procedures used during this evaluation, the equipment used and the various provisions of the rules are included in this test report.

I attest that the data reported herein is true and accurate within the tolerance of the Measurement Instrument Uncertainty; that all tests and measurements were performed in accordance with accepted practices or procedures; and that all tests and measurements were performed by me or by trained personnel under my direct supervision. The results of this investigation are based solely on the test sample(s) provided by the client which were not adjusted, modified or altered in any manner whatsoever, except as required to carry out specific tests or measurements. This test report has been completed in accordance with ISO/IEC 17025.

Trevor Whillock Celltech Labs Inc.

12 June 2024

Date

6.0 SAR MEASUREMENT SYSTEM

SAR Measurement System


Celltech Labs Inc. SAR measurement facility employs a Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY6 measurement system is comprised of the measurement server, a robot controller, a computer, a near-field probe, a probe alignment sensor, an Elliptical Planar Phantom (ELI) phantom and a specific anthropomorphic mannequin (SAM) phantom for Head and/or Body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller and a teach pendant (Joystick) to control the robot's servo motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical form the DAE to digital electronic signal and transfers data to the DASY6 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gainswitching multiplexer, a fast 16-bit AD-converter, a command decoder and a control logic unit. Transmission to the DASY6 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot utilizes a controller with built in VME-bus computer.

DASY 6 SAR System with SAM Phantom

DASY 6 Measurement Controller

45461940 R1.0 18 June 2024

7.0 RF CONDUCTED POWER MEASUREMENT

Table 7.0 Conducted Power Measurements - 2.4GHz WiFi BT BLE ANT

				Co	nducted Pow	er Measur	ements						
						Bit	Measured	Rated	Rated		SAR Test	Duty	Crest
Band	Mode	Bandwidth	Channel	Frequency	Modulation	Rate	Power	Power	Power	Delta	Channel	Cycle	Factor
		(MHz)		(MHz)		(Mbps)	(dBm)	(dBm)	(W)	(dB)	(Y/-)	(%)	(1/DC)
			1	2412			14.38	15.50	0.035	-1.12	-	-	-
WLAN 2.4G	802.11b	20	6	2437	сск	1	16.73	17.50	0.056	-0.77	-	-	-
WE/117 2.40	002.116	20	11	2462	John		17.18	17.50	0.056	-0.32	Υ	100.0	1.000
			13	2472			15.55	17.50	0.056	-1.95	-	-	-
			1	2412			15.44	17.50	0.056	-2.06	-	-	-
WLAN 2.4G	802.11g	20	6	2437	OFDM	6	16.72	17.50	0.056	-0.78	-	-	-
WE 117 2.10	002.119	20	11	2462		·	12.69	17.50	0.056	-4.81	-	-	-
			13	2472			10.50	17.50	0.056	-7.00	-	-	-
			1	2412		0	14.30	16.00	0.040	-1.70	-	-	-
WLAN 2.4G	802.11n	20	6	2437	MCS0		15.33	16.00	0.040	-0.67	-	-	-
112.10			11	2462			13.24	16.00	0.040	-2.76	-	-	-
			13	2472			11.12	16.00	0.040	-4.88	-	-	-
	BR		2	2402	GFSK		9.71	11.5	0.014	-1.79	-	-	-
			38	2441			10.03	11.5	0.014	-1.47	-	-	-
			78	2480			10.20	11.5	0.014	-1.30	Υ	100.0	1.000
			2	2402			8.88	11.5	0.014	-2.62	-	-	-
BT	2EDR	1	41	2441	Pi/4-DQPSK		9.79	11.5	0.014	-1.71	-	-	-
			80	2480			10.13	11.5	0.014	-1.37	-	-	-
	.===		2	2402	000011		8.54	11.5	0.014	-2.96	-	-	-
	3EDR		41	2441	8DPSK		9.32	11.5	0.014	-2.18	-	-	-
			80	2480			9.90	11.5	0.014	-1.60	-	-	-
DT		4	2	2404	OMOK		-2.59	2.00	0.002	-4.59	-	-	-
ВТ	LE	1	38	2440	GMSK	-	1.66	2.00	0.002	-0.34	-	-	-
			78	2480			-1.46	2.00	0.002	-3.46	-	-	-
БТ		0	2	2404	OMOK		0.87	2.00	0.002	-1.13	-	-	-
ВТ	LE	2	40	2440	GMSK	-	1.80	2.00	0.002	-0.20	-	-	-
			80	2480			-1.82	2.00	0.002	-3.82	-	-	-
	A N.I.T.		2	2402	0501			2.00	0.002	-2.00	-	-	-
ANT	ANT	1	40	2440	GFSK	-	1.74	2.00	0.002	-0.26	-	-	-
			80	2480			-1.38	2.00	0.002	-3.38	-	-	-

The rated power and tolerance are stated for typical transmission modes and data rates. Some modes and data rates may produce lower than rated conducted power levels. Power measurements taken across the various channels, modes and data rates did not produce levels in excess of the Rated Power plus Tolerance. SAR was evaluated using the power level setting and duty cycle specified by the manufacturer to be the max output power and produce the most conservative SAR. SAR was evaluated at the maximum average tune up tolerance. See section 2.0 Client and Device Information for details. The reported SAR was not scaled down.

45461940 R1.0 18 June 2024

8.0 MEASUREMENT METHOD

Table 8.1 Number of Test Channels and SAR test reduction

The intended use of the device would have it transmit as a portable transceiver near extremity and/or held to face. As such the device was evaluated for both Extremity SAR (10g - 0mm) and Head SAR (1g - 10mm).

Wi-FI SAR Evaluation:

SAR was evaluated in DSSS mode at the maximum duty cycle. The power level setting selected was specified by the manufacturer to be the max output power and produce the most conservative SAR.

The device supports channel 1 thru 13 for 2.5 GHz WLAN, though channel 13 was reduced in power. Per FCC KDB 248227, provided higher maximum output power is not specified for other channels, channels 1,6 and 11 are used to configure 22 MHz and 20MHz OFDM channels for SAR measurements; otherwise, the closest adjacent channel with the highest maximum output power specified for production units should be tested instead of channels 1,6 or 11. When 40 MHz channels are supported, and provided higher mazimum putput power is not specified for other applicable 40 MHz cahnnels, channel 6 is used to measure SAR. The highest conducted output power was found on Channel 11 and selected for initial evaluation.

SAR test reduction methodology was applied to reduce the total number of required test channels from the SAR test evaluation.

When applicable, SAR test reduction methods may be utilized.

802.11b DSSS SAR test reduction is determined according to the following:

- a) When the reported SAR of the highest measured maximum output power channel is ≤ to 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- b) When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel.
- 2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements
- a) When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration.
- b) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

The initial test configuration for 2.4 GHz is determined by the 802.11 configuration with the highest maximum output power specified for production units, including tune-up tolerance, in each standalone and aggregated frequency band.

When the same maximum output power was specified for multiple transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwith, lowest order modulation and lowest data rate. When the maximum ouput power are the same for multiple test channels, SAR is measured using the channel closest to the middle frequency band. When all the channels have the same maximum output power use the higher number channel.

When the reported SAR of the initial test configuration is > 0.8 W/kg, SAR measurement is required for subsequent next highest measured output power channel(s) in the initial test configuration until reported SAR is \leq 1.2 W/kg or all required channels are tested.

1-g SAR Estimates Based on Area Scans per KDB 447498 - the SAR measurements in 2.4Ghz met the conditions and were evaluated using the provisions of 447498 , with SAR measurements below 1.0W/kg and no warning messages.

45461940 R1.0 18 June 2024

Table 8.2 Exemptions for Single RF Source

Per FCC KDB 447498 D04 Appendix B Exemptions for Single RF Sources

B.4 SAR-based Exemption

SAR-based thresholds are derived based on frequency, power, and separation distance of the RF source. The formula defines the thresholds in general for either available maximum time-averaged power or maximum time-averaged ERP, whichever is greater.

If the ERP of a device is not easily determined, such as for a portable device with a small form factor, the available maximum time averaged power may be used if the device antenna or radiating structure does not exceed an electrical length of N4.

The separation distance is the smallest distance from any part of the antenna or radiating structure to all persons, and for portable or mobile devices this is from the device outer housing to the closest antenna.

 P_{th} (mW) = ERP_{20cm}(mW) = 2040f

for 0.3GHz ≤ f < 1.5GHz (B.1)

 P_{th} (mW) = ERP_{20cm}(mW) = 3060

for $1.5GHz \le f \le 6GHz$ (B.1)

 P_{th} (mW) = (ERP_{20cm})(d/20cm)^x

for d ≤ 20cm (B.2)

 P_{th} (mW) = (ERP_{20cm})

for 20cm < d ≤ 40cm (B.2)

 $x = -log_{10} (60/(ERP_{20cm})(\sqrt{f})$

where ${\bf f}$ is in GHz, ${\bf d}$ is separation distance (cm), ${\bf ERP_{20cm}}$ is per Formula (B.1).

Transmitter	Frequency (f) (GHz)	Separation Distance (d) (cm)	Average Power (mW)	Antenna Gain (dBi)	ERP or Avg. Power (mW)*	P _{th} (mW)
ANT	2.48	0.5	1.6	-3.9	0.65	2.72
BLE	2.48	0.5	1.6	-3.9	0.65	2.72

^{*}If the ERP of a device is not easily determined, such as for a portable device with a small form factor, the available maximum time averaged power may be used if the device antenna or radiating structure does not exceed an electrical length of N4.

The BLE and ANT transmitters has a maximum frequency of 2480MHz. The BLE and ANT power was measured by the client and has a maximum average transmission power of 2.0mW and a minimum antenna separation distance of 5 mm.

Based on 447498 D04 Appendix B the BLE and ANT transmitters are exempt from further evaluation.

NFC Test Exclusion

The field strength of NFC Transmitter was measured and found to be 43dBuV/m @3m. The conversion of field strength to EIRP is given by:

EIRP = FS - 104.7 + 20*Log10(d) where FS = field strength, d = measurement distance (3m)

EIRP = 43.4 - 104.7 + 20*Log10(3)

 $\mathsf{EIRP} = -52\mathsf{dBm} = 0.0061\mathsf{mW}$

device qualifies for SAR test exemption per KDB 447498 D04 Appendix B, B.2, 1 mW Blanket Exemption The test exclusion threshold from the equations above, at 13.56MHz is 3W.

The NFC Transmitter qualifies for SAR Test Exclusion.

Simultaneous SAR Evaluation

Simultaneous transmission cannot occur between any of the 2.4GHz WiFi, Bluetooth or Ant transmitters. Simultaneous transmission can occur between the NFC transmitter and any, and only, one of the 2.4GHz transmitters. The NFC transmitter qualifies for SAR test exclusion and the NFC estimated SAR is less than 0.000 W/kg. The NFC transmitter does not significantly contribute to the <u>reported</u> SAR.

45461940 R1.0 18 June 2024

9.0 ACCESSORIES EVALUATED

Table 9.0 Accessories Evaluated

Accessory List										
Test Report ID Number	Manufacturer's Part Number	Description	SAR Evaluated	SAR Tested						
B1	010-13113-02	QuickFit 22 - Silicone Band	Υ	Υ						
B2	010-12496-06	QuickFit 22 - Metal Band	Y	Υ						

Test Report S/N: Test Report Issue Date: 18 June 2024

45461940 R1.0

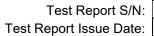

10.0 SAR MEASUREMENT SUMMARY

Table 10.0: Measured Results -Extremity 10g

	Measured 10g SAR Results - EXTREMITY Configuration																
		Test			DUT				Sp	acing	Measured	SAR	Delta	Crest	Fluid	Duty	reported
Date	Plot	Frequency		Con	figuration	1		Accessories	DUT	Antenna	SAR	Drift	Power	Factor	Sensitivity	Factor	SAR
	ID	(MHz)	Pos	Mode	BW	Mod	BR		(mm)	(mm)	(W/kg)	(dB)	(dB)	(n)	(n)	(%)	(W/kg)
	Area Scan																
4/4/2024	E51	2462	Back Touch	802.11b-NA	20	CCK	1	Band 1 -Silicone	0	5	0.079	-0.300	-0.320	1.000	1.000	100.000	0.091
4/4/2024	E52	2462	Back Touch	802.11b-NA	20	CCK	1	- Bnd2 - Metal -	0	5	0.079	-0.260	-0.320	1.000	1.000	100.000	0.090
4/4/2024	E53	2412	Back Touch	802.11b-NA	20	CCK	1	- Band 1 -	0	5	0.054	0.520	-1.120	1.000	1.000	100.000	0.069
4/4/2024	E54	2437	Back Touch	802.11b-NA	20	CCK	1	- Band 1 -	0	5	0.062	0.620	-0.770	1.000	1.000	100.000	0.074
4/4/2024	E55	2480	Back Touch	BT BR-NA	1	GFSK	1	- Band 1 -	0	5	0.038	1.490	-0.800	1.000	1.000	100.000	0.046
	Zoom Scan																
4/4/2024	E51Z	2462	Back Touch	802.11b-NA	20	CCK	1	Band 1 -Silicone	0	5	0.061	0.120	-0.320	1.000	1.000	100.000	0.065
4/4/2024	E55Z	2480	Back Touch	BT BR-NA	1	GFSK	1	- Band 1 -	0	5	0.033	1.210	-0.800	1.000	1.000	100.000	0.040
	Applicable SAR Limit			Use Group					Limit								
FCC	CFR 2.1	093		Health Cana	ada Safety	/ Code 6		Gen	eral Po	pulation/U	ser Unaware				4 W/kg		

Table 10.1: Measured Results -Head - Held-to Face 1g

	Measured 1g SAR Results - FACE Configuration																
		Test			DUT				Sp	acing	Measured	SAR	Delta	Crest	Fluid	Duty	reported
Date	Plot	Frequency		Con	figuration	า		Accessories	DUT	Antenna	SAR	Drift	Power	Power Factor	Sensitivity	Factor	SAR
	ID	(MHz)	Pos	Mode	BW	Mod	BR		(mm)	(mm)	(W/kg)	(dB)	(dB)	(n)	(n)	(%)	(W/kg)
	Area Scan																
4/4/2024	F51	2462	Front 10mm	802.11b-NA	20	CCK	1	- Band 1 -	10	15	0.040	0.050	-0.320	1.000	1.000	100.000	0.043
4/4/2024	F52	2480	Front 10mm	BT BR-NA	1	GFSK	1	- Band 1 -	10	15	0.172	0.220	-0.800	1.000	1.000	100.000	0.207
	Zoom Scan																
4/4/2024	F51Z	2462	Front 10mm	802.11b-NA	20	ССК	1	- Band 1 -	10	15	0.350	-0.040	-0.320	1.000	1.000	100.000	0.380
4/4/2024	4/4/2024 F52Z 2480			BT BR-NA	1	GFSK	1	- Band 1 -	10	15	0.163	0.270	-0.800	1.000	1.000	100.000	0.196
	Applicable SAR Limit									Use Grou	р				Limit		
FCC	FCC CFR 2.1093 Health Canada Safety Code 6							General Population/User Unaware 1.6 W/kg									

45461940 R1.0 18 June 2024

11.0 SCALING OF MAXIMUM MEASURE SAR

Table 11.0 SAR Scaling - Extremity 10g

	Scaling of Ma	ximum Measu	red SAR (10g)			
			Configuration			İ
Meas	sured Parameters	Extremity	Extremity			İ
	Plot ID	E51Z	E55Z			1
Maxim	um Measured SAR _M	0.061	0.033			(W/kg)
	Frequency	2462	2480			(MHz)
Drift	Power Drift	0.120 (2)	1.210 (6)			(dB)
Co	onducted Power	17.180	10.200			(dBm)
DC Tra	ansmiter Duty Cycle	(3)	(7)			(%)
DF Use	e Duty Factor	100.0 (4)	100.0 (8)			(%)
	Fluid	Deviation from	Γarget			
Δe	Permitivity	-8.61%	-9.09%			
Δσ	Conductivity	4.30%	3.83%			
Fluid S	Sensitivity Calculation	(1g)	IEC/IEEE 622	09-1528 7.8.2		
	Delta SAR = 0	Ce * Δe + Cσ * Δα	7	(8)		
	ce = (0.003456*f ³) - (0.03			(11)		
С	$C\sigma = (0.004479 * f^3) - (0.0)$	1586*f ²)- (0.1972	*f) + 0.7717	(12)		
f	Frequency (GHz)	2.462	2.48			
	Ce	-0.159	-0.160			
	Сσ	0.257	0.253			
	Ce * ∆e	0.014	0.015			
	Cσ * Δσ	0.011	0.010			
	ΔSAR	0.025 (1)	0.024 (5)			(%)
	Manufac	turer's Tuneup 1	olerance			
Measure	ed Conducted Power	17.180	10.200			(dBm)
Rated	l Conducted Power	17.500	11.000			(dBm)
	ΔΡ	-0.320	-0.800			(dB)
		r Duty Cycle [Cr	est Factor]			
Transm	niter Duty Cycle (DC)	100.0	100.0			(%)
	CF (1/DC)	1.00 (3)	1.00 (7)			
		tment for Fluid	Sensitivity			
SAR ₁	1 = SAR _M X [ΔSAR]	0.061 (1)	0.033 (5)			(W/kg
	SAR Adjust	ment for Tuneu	p Tolerance			
SAF	$R_2 = SAR_1 + [\Delta P]$	0.065	0.040			(W/kg
	SAR	Adjustment for	Drift			
SAR	$R_3 = SAR_2 + [Drift]$	0.065 (2)	0.040 (6)			(W/kg
	SAR Adjustment for	Transmitter Duty	/ Cycle [Crest Fa	actor]		
SAI	$R_4 = SAR_3 \times [CF]$	0.065 (3)	0.040 (7)			(W/kg
	SAR Adjus	stment for Use D	uty Factor			I
SAI	R ₅ = SAR ₄ x [DF]	0.065 (4)	0.040 (8)			(W/kg
		reported 1g SAF	2			I
,	reported SAR	0.07	0.04			(W/kg

Celltech
Testing and Engineering Services Lab

45461940 R1.0 18 June 2024

Table 11.1 SAR Scaling – Head – Held to Face 1g

	Scaling of M	aximum Measu	red SAR (1g)			
			Configuration			
IVI	easured Parameters	Face	Face			
	Plot ID	F51Z	F52Z			1
Max	imum Measured SAR _M	0.350	0.163			(W/kg)
	Frequency	2462	2480			(MHz)
Drift	Power Drift	-0.040	0.270 (13)			(dB)
	Conducted Power	17.180	10.200			(dBm)
DC	Transmiter Duty Cycle	(10)	(14)			(%)
DF	Use Duty Factor	100.0 (11)	100.0 (15)			(%)
	Fluid	Deviation from	Target			1
Δе	Permitivity	-8.61%	-9.09%]
Δσ	Conductivity	4.30%	3.83%]
Fluid	d Sensitivity Calculation	(1g)	IEC/IEEE 622	09-1528 7.8.2		Ì
	Delta SAR = 0	Ce * Δe + Cσ * Δe	J	(8)		
C	$e = (-0.0007854*f^3) + (0.0)$	09402*f ²) - (0.027	742*f) - 0.2026	(9)		
	$C\sigma = (0.009804*f^3) - (0.08)$			(10)		
f	Frequency (GHz)	2.462	2.48			1
	Ce	-0.225	-0.225			
	Сσ	0.478	0.474			1
	Ce * ∆e	0.019	0.020			1
	Cσ * Δσ	0.021	0.018			1
	ΔSAR	0.040 (9)	0.039 (12)			(%)
	Manufac	turer's Tuneup 1	Tolerance			Ī
Meas	ured Conducted Power	17.180	10.200			(dBm)
Rat	ed Conducted Power	17.500	11.000			(dBm)
	ΔΡ	-0.320	-0.800			(dB)
	Transmitte	r Duty Cycle [Cr	est Factor]			
Tran	smiter Duty Cycle (DC)	100.0	100.0			(%)
	CF (1/DC)	1.00 (10)	1.00 (14)			
	SAR Adjus	stment for Fluid	Sensitivity			1
SA	$AR_1 = SAR_M X [\Delta SAR]$	0.350 (9)	0.163 (12)			(W/kg)
	SAR Adjust	ment for Tuneu	p Tolerance			I
	$SAR_2 = SAR_1 + [\Delta P]$	0.377	0.196			(W/kg)
	SAR	Adjustment for	Drift			1
S	AR ₃ = SAR ₂ + [Drift]	0.380	0.196 (13)			(W/kg)
	SAR Adjustment for	Transmitter Duty	Cycle [Crest Fa	actor]		1
	SAR ₄ = SAR ₃ x [CF]	0.380 (10)	0.196 (14)			(W/kg)
	SAR Adjus	stment for Use D	Outy Factor			İ
	SAR ₅ = SAR ₄ x [DF]	0.380 (11)				(W/kg
		reported 1g SAF	?			Ì
	reported SAR	0.38	0.20			(W/kg)
					 	<u>,</u>

45461940 R1.0 18 June 2024

NOTES to Table

Scaling of the Maximum Measured SAR is based on the highest Face, Body, Extremity and/or Head SAR measured of ALL test channels, configurations and accessories used during THIS evaluation. The Measured Fluid Deviation parameters, Drift, Conducted Power, Duty Cycle [Crest] and Use Duty Factor apply only to those test frequencies and configurations producing the highest SAR. The <u>reported</u> SAR is the accumulation of all SAR Adjustments from the applicable steps above. The Plot ID is for identification of the SAR Measurement Plot(s) in the Annexes of this report.

NOTE: The above adjustments have been applied to <u>ALL</u> Measured SAR values. In some cases, the highest Measure SAR may not have produced the highest <u>reported</u> SAR after all adjustments have been made.

NOTE: Some of the above adjustments may not be applicable to each configuration. They are identified by grayed fields.

SAR₁

Per IEC/IEEE 62209-1528, FCC KDB 865664, ISED RSS-102 and ISED Notice 2012-DRS0529, SAR adjustment is applied when the calculated ΔSAR, resulting from the equations indicated, is negative (-).

 Δ SAR is given as a percentage (%). The SAR is MULTIPLIED by this scaling factor only when the scaling factor is negative (-).

SAR₂

Per IEC/IEEE 62209-1528, FCC KDB 865664 and ISED RSS-102, adjustment is required only when the difference (ΔP) between the Measured Conducted Power and the Manufacturer's Rated Conducted Power is (-) Negative.

 ΔP is given in dB. The absolute value of ΔP is ADDED (logarithmically) to the SAR when ΔP is negative (-).

SAR₃

Per IEC/IEEE 62209-1528, FCC KDB 865664 and ISED RSS-102, adjustment is required only when Measured Drift is negative (-). The absolute value of Measured Drift is ADDED (logarithmically) to the SAR.

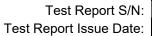
Drift is given in dB. The absolute value of Drift is ADDED (logarithmically) to the SAR when Drift is negative (-).

SAR₄

Per IEC/IEEE 62209-1528, FCC KDB 865664 and ISED RSS-102, when the transmit Duty Cyle (DC) is less than 100%, the <u>reported</u> SAR must be scaled to 100% by the Crest Factor (CF). CF = 1/DC where DC is in decimal.

CF is given as a decimal. The SAR is MULTIPLIED by this scaling factor only when the scaling factor is greater than 1.

SAR₅


Use Duty Factor applies to Push-To-Talk (PTT) transceivers or other devices whereby the user has some control of the transmitter on-off period. Per IEC/IEEE 62209-1528, FCC KDB 447498, FCC KDB 643646 and ISED RSS-102, a Duty Factor (DF) of 50% may be applied. In cases where Voice Activated transmit is employed, a DF of 75% may be applied.

DF is given as a percentage (5). The SAR is MULTIPLIED by this scaling factor only when the scaling factor is less than 100%.

reported SAR

The reported SAR is the Maximum SAR after all applicable adjustments have been made and is indicated on the cover page of this report.

- Note (1): Delta SAR is Positive, SAR Adjustment for Fluid Sensitivity is not Required, in accordance with ISED Notice 2012-DRS0529
- Note (2): Crest Factor = 1 (100% Duty Cycle), Crest Factor Adjustment not Required
- Note (3): Use Duty Factor is 100%. No Duty Factor Correction applied.
- Note (4): Delta SAR is Positive, SAR Adjustment for Fluid Sensitivity is not Required, in accordance with ISED Notice 2012-DRS0529
- Note (5): Power Drift is Positive, Drift Adjustment not Required.
- Note (6): Crest Factor = 1 (100% Duty Cycle), Crest Factor Adjustment not Required.
- Note (7): Use Duty Factor is 100%. No Duty Factor Correction applied.

45461940 R1.0 18 June 2024

12.0 SAR EXPOSURE LIMITS

Table 12.0 Exposure Limits

	SAR RF EXPOSURE LIMITS									
FCC 47 CFR§2.1093	Health Canada Safety Code 6	General Population /	Occupational /							
100 47 CH\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Tieattii Cariada Salety Code o	Uncontrolled Exposure (4)	Controlled Exposure ⁽⁵⁾							
Spa	tial Average ⁽¹⁾	0.08 W/kg	0.4 W/kg							
(averaged	over the whole body)	0.00 W/kg	O.4 Wing							
Sp	oatial Peak ⁽²⁾	1.6 W/kg	8.0 W/kg							
(Head and Trunk av	eraged over any 1 g of tissue)	1.0 W/Kg	0.0 W/kg							
Sp	oatial Peak ⁽³⁾	4.0 W/kg	20.0 W/kg							
(Hands/Wrists/Fee	t/Ankles averaged over 10 g)	4.0 W/Kg	20.0 W/kg							

- (1) The Spatial Average value of the SAR averaged over the whole body.
- (2) The Spatial Peak value of the SAR averaged over any 1 gram of tissue, defined as a tissue volume in the shape of a cube and over the appropriate averaging time.
- (3) The Spatial Peak value of the SAR averaged over any 10 grams of tissue, defined as a tissue volume in the shape of a cube and over the appropriate averaging time.
- (4) Uncontrolled environments are defined as locations where there is potential exposure to individuals who have no knowledge or control of their potential exposure.
- (5) Controlled environments are defined as locations where there is potential exposure to individuals who have knowledge of their potential exposure and can exercise control over their exposure.

45461940 R1.0 18 June 2024

13.0 DETAILS OF SAR EVALUATION

13.0 Day Log

1		-	AY LOG			ctric			
		U	Θ.						
		Ambient	Fluid	Relative	Barometric	Diel			
	Date	Temp	Temp	Humidity	Pressure	Ιġ	ည	est	
		(° C)	(°C)	(%)	(kPa)	FI	SF	<u> </u>	Task
	4 April 2024	24.2	22.4	25%	100.7	Х	Х	X	2450H Fluids
	5 April 2024	22.5	22.2	26%	100.6			Х	2450H Fluids

^{*}Per IEC/IEEE 62209-1528, test series was started within 24 hours of Fluid Parameter Measurement

45461940 R1.0 18 June 2024

13.1 DUT Setup and Configuration

	DUT Setup and Configuration
1	The device was evaluated for Extremity at a 0mm distance, for Head (held-to-face) at a 10mm distance, from a flat phantom filled with head tissue-equivalent medium. The DUT was evaluated for SAR in accordance with the procedures as described in FCC KDB 447498, 248227, 865664 and IEC/IEEE 62209-1528.
	2.4GHz 802.11g/n OFDM SAR Test Exclusion
	As Per KDB 248227 D01v02r02 - 5.2.2, b) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2W/kg
2	When applying this formula to 10-g, the threshold should be multiplied by 2.5, i.e. when 10-g extremity SAR s considered the threshold adjusted SAR is ≤ 3.0W/kg
	Maximum 802.11g/n OFDM specified power(POFDM)= 17.5dBm (44.67mW) Maximum 802.11b DSSS specified power (PDSSS)= 17.5 dBm (44.67mW) Ratio OFDM/DSSS power = 100% Highest reported SAR (SARMAX)= 0.38W/kg
	POFDM/PDSSS X SARMAX = 0.38W/kg ≤ 3.0 W/kg (Extremity) and ≤ 1.5 W/kg (Body) and SAR test exclusion applies.
3	The Device was capable of transmitting at various modulations, data rates and duty cycles. The Conducted Power was highest when measured in DSSS Mode-5.5 Mbps at 100% Duty cycle than any other configuration in the 2.4GHz Band. The DUT was evaluated for SAR at the maximum conducted output power level, preset by the manufacturer.
4	Bluetooth was evaluated for SAR in BT BR (GFSK) mode with a transmit duty cycle of 100% in the worst-case configuration from the WiFi test evaluation. The Duty cycle could not be altered in test mode or by the user. The DUT was evaluated for SAR at the maximum conducted output power level, preset by the manufacturer.
5	Each SAR evaluation was performed with a fully charged battery.

13.2 DUT Positioning

DUT Positionin

Positioning

The DUT Positioner was securely fastened to the Phantom Platform. Registration marks were placed on the DUT and the Positioner to ensure consistent positioning of the DUT for each test evaluation.

FACE Configuration

Head SAR - (held- to-face). Devices that are designed to be near extremity and may operate with in a mode for voice communication, with the device positioned next to the mouth. When next-to-mouth SAR evaluation is required, the device is positioned at 10mm from a flat phantom filled with head tissue-equivalent medium.

BODY Configuration

Devices that are designed to be worn on the Body are positioned on the device holder with the surface of the DUT being 5mm from bottom of the phantom in the Body configuration.

HEAD Configuration

This device is not intended to be held to the ear and was not tested in the HEAD configuration.

LIMB Worn Configuration

Extremity SAR - (limb-worn) Devices that are designed to be near extremity are positioned with the back side directly against the phantom surface with the strap removed or opened to allow direct contact of the DUT to the phantom surface.

45461940 R1.0 18 June 2024

13.3 General Procedures and Report

a

General Procedures and Reporting

General Procedures

The fluid dielectric parameters of the Active Tissue Simulating Liquid (TSL) were measured as described in this Section, recorded and entered into the DASY Measurement Server. Active meaning the TSL used during the SAR evaluation of the DUT. The temperature of the Active TSL was measured and recorded prior to performing a System Performance Check (SPC). An SPC was performed with the Active TSL prior to the start of the test series. The temperature of the Active TSL was measured throughout the day and the Active TSL temperature was maintained to $\pm 0.5^{\circ}$ C. The Active TSL temperature was maintained to within $\pm 1.0^{\circ}$ C throughout the test series. TSL analysis and SPC were repeated when the Active TSL use exceeded 84 hours.

An Area Scan exceeding the length and width of the DUT projection was performed and the locations of all maximas within 2dB of the Peak SAR recorded. A Zoom Scan centered over the Peak SAR location(s) was performed and the 1g and 10g SAR values recorded. The resolutions of the Area Scan and Zoom Scan are described in the Scan Resolution table(s) in this Section. A Power Reference Measurement was taken at the phantom reference point immediately prior to the Area Scan. A Power Drift measurement was taken at the phantom reference point immediately following the Zoom Scan to determine the power drift. A Z-Scan from the <u>Maximum Distance</u> to Phantom Surface to the fluid surface was performed following the power drift measurement.

Reporting

Where appropriate the 1g SAR, 10g SAR and power drift measurements are recorded in the SAR Measurement Summary tables in the SAR Measurement Summary Section of this report. The SAR values shown in the 100% DC (Duty Cycle) column are the SAR values reported by the SAR Measurement Server with the DUT operating at or compensated for a 100% transmit duty cycle. A duty cycle compensation (crest factor) and fluid sensitivy scaling factor is shown, as well as other information such as transmit channel and frequency, modulation, accessories tested and DUT-phantom separation distance.

In the Scaling of Maximum Measured SAR Section of this report, the highest measured SAR in the BODY and/or FACE and/or EXTREMITY (limb-worn) configurations, within the entire scope of this assessment, are, when applicable, scaled for Fluid Sensitivity, Manufacturer's Tune-Up Tolerance, Simultaneous Transmission and Drift. With the exception of Duty Cycle correction/compensation, SAR values are ONLY scaled up, not down. The final results of this scaling is the <u>reported SAR</u> which appears on the Cover Page of this report.

45461940 R1.0 18 June 2024

13.4 Fluid Dielectric and Systems Performance Check

Fluid Dielectric and Systems Performance Check

Fluid Dielectric Measurement Procedure

The fluid dielectric parameters of the Tissue Simulating Liquid (TSL) are measured using the Open-Ended Coax Method connected to an Agilent 8753ET Network Analyzer connected to a measurement server running Aprel Dielectric Property Measurement System. A frequency range of ± 100MHz for frequencies > 300MHz and ± 50MHz for frequencies ≤ 300MHz with frequency step size of 10MHz is used. The center frequency is centered around the SAR measurement probe's calibration point for that TSL frequency range. A calibration of the setup is performed using a short-open-deionized water (at 23°C in a 300ml beaker) method. A sample of the TSL is placed in a 300ml beaker and the open-ended coax is submerged approximately 8mm below the fluid surface in the approximate center of the beaker. A check of the setup is made to ensure no air is trapped under the open-ended coax. The sample of TSL is measured and compared to the FCC KDB 865664 targets for HEAD or BODY for the entire fluid measurement range. Fluid adjustment are made if the dielectric parameters are > 5% in range that the DUT is to be tested. If the adjustments fail to bring the parameters to ≤ 5% but are < 10%, the SAR Fluid Sensitivity as per IEC\IEE 62209-1528 and FCC KDB 865664 are applied to the highest measured SAR. A TSL with dielectric parameters > 10% in the DUT test frequency range are not used.

Systems Performance Check

The fluid dielectric parameters of the Active TSL are entered into the DASY Measurement Server at each of the 10MHz step size intervals. Active meaning the TSL used during the SAR evaluation of the DUT. The DASY Measurement System will automatically interpolate the dielectric parameters for DUT test frequencies that fall between the 10MHz step intervals.

A Systems Performance Check (SPC) is performed in accordance with IEC\IEEE 62209-1528 "System Check" and FCC KDB 865664 "System Verification". A validation source, dipole or Confined Loop Antenna (CLA), is placed under the geometric center of the phantom and separated from the phantom in accordance to the validation source's Calibration Certificate data. A CW signal set to the frequency of the validate source's and SAR measurement probe's calibration frequency with a forward power set to the validation source's Calibration Certificate data power setting is applied to the validation source. An Area Scan is centered over the projection of the validation source's feed point and an Area Scan is taken. A Zoom Scan centered over the Peak SAR measurement of the Area Scan and the 1g and 10g SAR is measured. The measured 1g and 10g SAR is compared to the 1g and 10g SAR measurements from the validation source's Calibration Certificate. When required, the measured SAR is normalized to 1.0W and compared to the normalized SAR indicated on the validation source's Calibration Certificate. The SPC is considered valid when the measured and normalized SAR is 10% of the measured and normalize SAR of the validation source's Calibration Certificate.

The fluid dielectric parameters of the Active TSL and SPC are repeated when the Active TSL has been in use for greater than 84 hours or if the Active TSL temperature has exceed ± 1°C of the initial fluid analysis.

13.5 Scan Resolution 100MHz to 2GHz

to determine the 1-gram and 10-gram peak spatial-average SAR

Scan Resolution 100MHz to 2GHz							
Maximum distance from the closest measurement point to phantom surface:	4 ± 1 mm						
(Geometric Center of Probe Center)	4 ± 1 mm						
Maximum probe angle normal to phantom surface.	E0 . 40						
(Flat Section ELI Phantom)	5° ± 1°						
Area Scan Spatial Resolution ΔX, ΔΥ	15 mm						
Zoom Scan Spatial Resolution ΔX, ΔY	7.5 mm						
Zoom Scan Spatial Resolution ∆Z	5 mm						
(Uniform Grid)	3 111111						
Zoom Scan Volume X, Y, Z	30 mm						
Fluid Depth	150 ± 5 mm						
An Area Scan with an area extending beyond the device was used to locate the candidate maximas within 2dB of the global maxima.							
A Zoom Scan centered over the peak SAR location(s) determined by the Area Scan was used							

13.6 Scan Resolution 2GHz to 3GHz

Scan Resolution 2GHz to 3GHz						
Maximum distance from the closest measurement point to phantom surface:	4 ± 1 mm					
(Geometric Center of Probe Center)	, <u>, , , , , , , , , , , , , , , , , , </u>					
Maximum probe angle normal to phantom surface.	5° ± 1°					
(Flat Section ELI Phantom)	3 1 1					
Area Scan Spatial Resolution ΔX , ΔY	12 mm					
Zoom Scan Spatial Resolution ΔX , ΔY	5 mm					
Zoom Scan Spatial Resolution ∆Z	5 mm					
(Uniform Grid)	3					
Zoom Scan Volume X, Y, Z	30 mm					
Fluid Depth	150 ± 5 mm					

An Area Scan with an area extending beyond the device was used to locate the candidate maximas within 2dB of the global maxima.

A Zoom Scan centered over the peak SAR location(s) determined by the Area Scan was used to determine the 1-gram and 10-gram peak spatial-average SAR

13.7 Scan Resolution 5GHz to 6GHz

Scan Resolution 5GHz to 6GHz						
Maximum distance from the closest measurement point to phantom surface:	4 ± 1 mm					
(Geometric Center of Probe Center)	4 ± 1 mm					
Maximum probe angle normal to phantom surface.	5° ± 1°					
(Flat Section ELI Phantom)						
Area Scan Spatial Resolution ΔX, ΔΥ	10 mm					
Zoom Scan Spatial Resolution ΔX, ΔY	4 mm					
Zoom Scan Spatial Resolution ∆Z	2 mm					
(Uniform Grid)	2 111111					
Zoom Scan Volume X, Y, Z	22 mm					
Fluid Depth	100 ± 5 mm					

An Area Scan with an area extending beyond the device was used to locate the candidate maximas within 2dB of the global maxima.

A Zoom Scan centered over the peak SAR location(s) determined by the Area Scan was used to determine the 1-gram and 10-gram peak spatial-average SAR

45461940 R1.0 18 June 2024

14.0 SAR MEASUREMENT VARIABILITY & UNCERTAINTY

Table 14.1 Measurement Variability

Per FCC KDB Publication 865664, SAR measurement variability is not required to be assessed for each frequency band where all measured SAR values are <0.8 W/kg for 1g and < 2.0 W/kg for 10g.

Table 14.2 Measurement Uncertainty

Per FCC KDB 865664 when the highest measured SAR is <1.5 W/kg for 1 g and < 3.75 W/kg for 10g all frequency bands, the extensive SAR measurement uncertainty analysis tables described in IEEE std 1528-2013 are not required.

45461940 R1.0 18 June 2024

15.0 FLUID DIELECTRIC PARAMETERS

Table 15.0 Fluid Dielectric Parameters 2450MHz HEAD TSL

			F		d Sensitivity	•						
Date:	4-Apr-2	024	Fluid Te	emp: 22.4	Frequency:	2450MHz	Tissue:	Head	ΔSAR	ΔSAR	SAR Co	rrection
	Freq		Test E	Test σ	Target &	Target σ	Deviation	Deviation	ДОАК	ДОАК	Facto	or (1)
	(MHz)		Test c	(S/m)	rargere	(S/m)	Permittivity	Conductivity	1g	10g	1g	10g
2400	0.0000		36.0600	1.8200	39.2900	1.76	-8.22%	3.41%	0.035	0.022	1.000	1.000
2404	4.0000	*	35.9800	1.8200	39.2820	1.76	-8.41%	3.41%	0.036	0.022	1.000	1.000
2410	0.0000		35.8600	1.8200	39.2700	1.76	-8.68%	3.41%	0.036	0.023	1.000	1.000
2412	2.0000	*	35.8780	1.8220	39.2660	1.76	-8.63%	3.41%	0.036	0.023	1.000	1.000
2420	0.0000		35.9500	1.8300	39.2500	1.77	-8.41%	3.39%	0.035	0.022	1.000	1.000
2430	0.0000		35.7500	1.8600	39.2400	1.78	-8.89%	4.49%	0.042	0.026	1.000	1.000
2437	7.0000	*	35.7920	1.8740	39.2260	1.79	-8.75%	4.87%	0.043	0.027	1.000	1.000
2440	0.0000		35.8100	1.8800	39.2200	1.79	-8.69%	5.03%	0.044	0.027	1.000	1.000
244	1.0000	*	35.7970	1.8790	39.2180	1.79	-8.72%	4.91%	0.043	0.027	1.000	1.000
2450	0.0000		35.6800	1.8700	39.2000	1.80	-8.98%	3.89%	0.039	0.024	1.000	1.000
2460	0.0000		35.8400	1.8900	39.1900	1.81	-8.55%	4.42%	0.040	0.025	1.000	1.000
2462	2.0000	*	35.8140	1.8900	39.1860	1.81	-8.61%	4.30%	0.040	0.025	1.000	1.000
2470	0.0000		35.7100	1.8900	39.1700	1.82	-8.83%	3.85%	0.038	0.024	1.000	1.000
2472	2.0000	*	35.6880	1.8920	39.1680	1.82	-8.88%	3.84%	0.038	0.024	1.000	1.000
2480	0.0000	*	35.6000	1.9000	39.1600	1.83	-9.09%	3.83%	0.039	0.024	1.000	1.000
2490	0.0000		35.6900	1.9100	39.1500	1.84	-8.84%	3.80%	0.038	0.024	1.000	1.000

*Channel Frequency Tested

16.0 SYSTEM VERIFICATION TEST RESULTS

Table 16.0 System Verification Results 2450MHz HEAD TSL

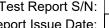
System Verification Test Results										
D	4-	Frequency	requency Validation Sour							
Da	ate	(MHz)	P	/N	S/N					
4 Apr	il 2024	2450	D24	50V2	825					
Fluid Type	Fluid Temp °C	Ambient Temp °C	Ambient Humidity (%)	Forward Power (mW)	Source Spacing (mm)					
Head	22.4	24	25%	250	10					
		Fluid Pa	rameters							
	Permittivity		Conductivity							
Measured	Target	Deviation	Measured	Target	Deviation					
35.68	39.20	-8.98%	1.87	1.80	3.89%					
		Measur	ed SAR							
	1 gram									
Measured	Target	Deviation	Measured	Target	Deviation					
13.90	13.18	5.46%	6.26	6.01	4.25%					
	Me	asured SAR No	ormalized to 1	.0W						
	1 gram			10 gram						
Normalized	Target	Deviation	Normalized	Target	Deviation					
55.60	52.72	5.46%	25.04	24.02	4.27%					

Prior to the SAR evaluations, system checks were performed on the planar section of the phantom and a SPEAG validation dipole in accordance with the procedures described in IEC/IEEE 62209-1528 and FCC KDB 865664,

The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer.

The forward power was applied to the dipole and the system was verified to a tolerance of +10% from the system manufacturer's dipole calibration target SAR value.

The forward power applied was same forward power applied by the calibration lab during the calibration of this validation source.



45461940 R1.0 18 June 2024

17.0 SYSTEM VALIDATION SUMMARY

Table 17.0 System Validation Summary

SAR Validation Summary Chart							
Validation	Probe	Probe	Validation	Frequency	Validation Results		lts
Date	Model	S/N	Source	(MHz)	Linearity	Isotropy	Extrapolation
✓ = Complete				✓ = Not Required			
21-Jun-23	EX3DV4	7826	D2450V2	2450	Pass	Pass	Pass

45461940 R1.0 18 June 2024

18.0 MEASUREMENT SYSTEM SPECIFICATIONS

Table 18.0 Measurement System Specifications

Measurement System Specification					
Specifications					
Positioner	Stäubli Unimation Corp. Robot Model: TX90XL				
Repeatability	+/- 0.035 mm				
No. of axis	6.0				
Data Acquisition Electronic (DAE) S	ystem				
Cell Controller					
Processor	Intel(R) Core(TM) i7-7700				
Clock Speed	3.60 GHz				
Operating System	Windows 10 Professional				
Data Converter					
Features	Signal Amplifier, multiplexer, A/D converter, and control logic				
Software	Measurement Software: DASY6, V 6.4.0.12171 / DASY52 V10.2(1504)				
Software	Postprocessing Software: SEMCAD X, V14.6.12(7470)				
Connecting Lines	Optical downlink for data and status info., Optical uplink for commands and clock				
DASY Measurement Server					
Function	Real-time data evaluation for field measurements and surface detection				
Hardware	Intel ULV Celeron CPU 400 MHz; 128 MB chip disk; 128 MB RAM				
Connections	COM1, COM2, DAE, Robot, Ethernet, Service Interface				
E-Field Probe					
Model	EX3DV4				
Serial No.	7826				
Construction	Triangular core fiber optic detection system				
Frequency	10 MHz to 6 GHz				
Linearity	±0.2 dB (30 MHz to 3 GHz)				
Phantom					
Туре	MFP V5.1C Planar Phantom				
Shell Material	Fiberglass				
Thickness	2mm +/2mm				
Volume	> 8 Liter				

18 June 2024

Table 18.1

Table 10.1					
Measurement System Specification (Continued)					
	Probe Specification				
	Symmetrical design with triangular core;				
	Built-in shielding against static charges				
	PEEK enclosure material (resistant to organic solvents (e.g. DGBE)				
Calibration:	ISO/IEC 17025				
Frequency:	4 MHz - 10 GHz; Linearity: ± 0.2 dB (30 MHz - 10 GHz)				
Directivity:	± 0.1 dB in TSL (rotation around probe axis)				
	\pm 0.3 dB in TSL (rotation normal to probe axis)				
Dynamic Range	10 μW/g to > 100 mW/g; Linearity: ± 0.2 dB (noise: typically <1 mW/g)				
Dimensions:	Overall length: 337 mm; (tip: 20 mm)				
	Tip diameter: 2.5 mm; Tip (body: 12 mm)				
	Typical distance from probe tip to dipole centers: 1 mm				
Application:	High precision dosimetric measurements in any exposure scenario (e.g., very strong	EVODVA E Elett Beete			
	gradient fields); the only probe that enables compliance testing for frequencies up to 6 GHz with precision of better than 30%	EX3DV4 E-Field Probe			

Phantom Specification

The ELI V5.0 phantom is an elliptical planar fiberglass shell phantom with a shell thickness of 2.0mm +/- .2mm at the planar area. This phantom conforms to OET Bulletin 65, Supplement C, IEC\IEEE 62209-1528.

ELI Phantom

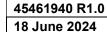
Phantom Specification

The SAM V4.0 phantom is a flat planar fiberglass shell phantom with a shell thickness of 2.0mm +/-.2mm at the planar area. This phantom conforms to OET Bulletin 65, Supplement C, IEC\IEEE 62209-1528.

SAM Phantom

Phantom Specification

The MFP V5.1C phantom is a flat planar fiberglass shell phantom with a shell thickness of 2.0mm +/-.2mm at the planar area. This phantom conforms to OET Bulletin 65, Supplement C, IEC\IEEE 62209-1528.


MFP Phantom

Device Positioner Specification

The DASY device positioner has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

Device Positioner

19.0 TEST EQUIPMENT LIST

Table 19.0 Equipment List and Calibration

Test Equipment List					
DESCRIPTION	ASSET NO.	SERIAL NO.	DATE CALIBRATED	CALIBRATION DUE	
Schmid & Partner DASY 6 System	-	-	-	-	
-DASY Measurement Server	00158	1078	CNR	CNR	
-Robot	00046	599396-01	CNR	CNR	
-DAE4	00019	353	16-Apr-23	16-May-24	
-EX3DV4 E-Field Probe	00357	7826	16-May-23	16-May-24	
-D2450V2 Validation Dipole	00219	825	24-Apr-21	16-May-24	
ELI Phantom	00247	1234	CNR	CNR	
SAM Phantom	00154	1033	CNR	CNR	
MFP Phantom	00355	1177/2	CNR	CNR	
HP 85070C Dielectric Probe Kit	00033	none	CNR	CNR	
Gigatronics 8652A Power Meter	00007	1835801	10-May-22	10-May-25	
Gigatronics 80701A Power Sensor	00186	1837002	COU	COU	
Gigatronics 80334A Power Sensor	00237	1837001	10-May-22	10-May-25	
HP 8753ET Network Analyzer	00134	US39170292	6-Jan-24	6-Jan-27	
Rohde & Schwarz SMR20 Signal Generator	00006	100104	COU	COU	
Amplifier Research 10W1000C Power Amplifier	00041	27887	CNR	CNR	
Amplifier Research 5S1G4 Power Amplifier	00106	26235	CNR	CNR	
Narda Directional Coupler 3020A	00064	-	CNR	CNR	
Bipolar Power Supply 6299A	00086	1144A02155	CNR	CNR	
DC-18G 10W 30db Attenuator	00102	-	COU	COU	
R&S FSP40 Spectrum Analyzer	00241	100500	9-Aug-21	9-Aug-24	
HP 8566B Spectrum Analyzer	00051	2747A055100	6-Jul-24	6-Jul-27	
RF Cable-SMA	00311	-	CNR	CNR	
HP Calibration Kit	00145	-	CNR	CNR	

CNR = Calibration Not Required SB=Stand By COU = Calibrate on Use

Note: Per KDB 865664, Dipoles are evaluated annually for return loss and impedance. The dipole's SAR target can only be assessed by the SAR equipment manufacturer and remains the target until the dipole is recalibrated by the manufacturer. The dipole's SAR is evaluated and compared to this target during each and every System Verification which is performed prior to and/or during each DUT SAR evaluation. The results of these verifications are shown in Section 16.0

45461940 R1.0 18 June 2024

20.0 FLUID COMPOSITION

Table 20.0 Fluid Composition 2450MHz HEAD TSL

Tissue Simulating Liquid (TSL) Composition				2450MHz Head	
Component by Percent Weight					
Water	Glycol	Salt ⁽¹⁾	HEC ⁽²⁾	Bacteriacide ⁽³⁾	
52.0	48.0	0.0	0.0	0.0	

- (1) Non-lodinized
- (2) HydroxyEthyl-Cellulose: Sigma-Aldrich P/N 54290-500g
- (3) Dow Chemical Dowicil 75 Antimicrobial Perservative

END OF REPORT

45461940 R1.0 18 June 2024

APPENDIX A - SYSTEM VERIFICATION PLOTS

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN:825 Procedure Name: SPC 2450H_Input=250mw, Target=[11.86]13.18][14.50]W/kg_

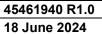
Communication System: UID 0, CW (0); Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.87$ S/m; $\epsilon_r = 35.68$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

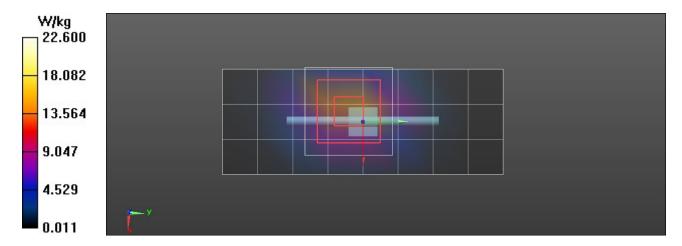
Date/Time: 4/4/2024 5:19:30 PM

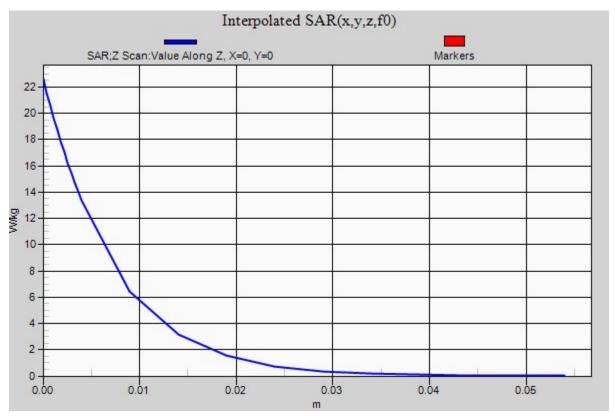
DASY5 Configuration:

- Probe: EX3DV4 SN7826; ConvF(7.91, 7.42, 7.62) @ 2450 MHz; Calibrated: 5/16/2023
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 4/18/2023


Maximum value of SAR (measured) = 15.8 W/kg

- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)


SPC/SPC 2450H_Input=250mw, Target=[11.86]13.18][14.50]W/kg_/Area Scan (4x9x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 14.6 W/kg


SPC/SPC 2450H_Input=250mw, Target=[11.86]13.18][14.50]W/kg_/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 84.34 V/m; Power Drift = 0.24 dB
Peak SAR (extrapolated) = 30.1 W/kg
SAR(1 g) = 13.9 W/kg; SAR(10 g) = 6.26 W/kg
Smallest distance from peaks to all points 3 dB below = 10 mm
Ratio of SAR at M2 to SAR at M1 = 46.6%

SPC/SPC 2450H_Input=250mw, Target=[11.86]13.18][14.50]W/kg_/Z Scan (1x1x22): Measurement grid: dx=20mm, dy=20mm, dz=5mm Penetration depth = 6.940 (6.889, 6.943) [mm]
Maximum value of SAR (interpolated) = 22.6 W/kg

45461940 R1.0 18 June 2024

APPENDIX B – MEASUREMENT PLOTS OF MAXIMUM MEASURED SAR

F51/F51Z

DUT: A04806; Type: Extremity Worn Transmitter; Serial: 3470346065

Procedure Name: F51-A04806, Face-Front Side, 10mm, 2462 MHz, Band-1, WIFI, CCK-1Mbps 2

Communication System: UID 0, CW (0); Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2462 MHz; σ = 1.89 S/m; ϵ_r = 35.814; ρ = 1000 kg/m³ Phantom section: Flat Section

Date/Time: 4/4/2024 7:04:31 PM

DASY5 Configuration:

- Probe: EX3DV4 SN7826; ConvF(7.91, 7.42, 7.62) @ 2462 MHz; Calibrated: 5/16/2023
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 4/18/2023
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

2450H/F51-A04806, Face-Front Side, 10mm, 2462 MHz, Band-1, WIFI, CCK-1Mbps 2/Area Scan (61x61x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Reference Value = 13.56 V/m; Power Drift = 0.05 dB

Fast SAR: SAR(1 g) = 0.400 W/kg; SAR(10 g) = 0.181 W/kg Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.472 W/kg

2450H/F51-A04806, Face-Front Side, 10mm, 2462 MHz, Band-1, WIFI, CCK-1Mbps 2/Area Scan (7x7x1): Measurement grid: dx=12mm, dy=12mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.358 W/kg

2450H/F51-A04806, Face-Front Side, 10mm, 2462 MHz, Band-1, WIFI, CCK-1Mbps 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.29 V/m; Power Drift = -0.04 dB

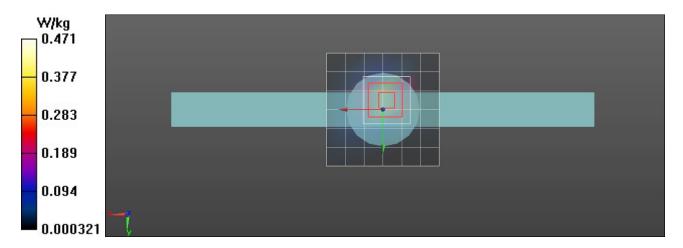
Peak SAR (extrapolated) = 0.640 W/kg

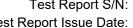
SAR(1 g) = 0.350 W/kg; SAR(10 g) = 0.158 W/kg

Smallest distance from peaks to all points 3 dB below = 10 mm

Ratio of SAR at M2 to SAR at M1 = 55.5%

Info: Interpolated medium parameters used for SAR evaluation.


Maximum value of SAR (measured) = 0.410 W/kg


2450H/F51-A04806, Face-Front Side, 10mm, 2462 MHz, Band-1, WIFI, CCK-1Mbps 2/Z Scan (1x1x17): Measurement grid: dx=20mm, dz=20mm

Info: Interpolated medium parameters used for SAR evaluation.

Penetration depth = n/a (n/a, 7.405) [mm]

Maximum value of SAR (interpolated) = 0.471 W/kg

45461940 R1.0 18 June 2024

F52/F52Z

DUT: A04806; Type: Extremity Worn Transmitter; Serial: 3470346065

Procedure Name: F52-A04806, Face - Front Side, 10mm, 2480 MHz, Band-WIFI, CCK-1Mbps

Communication System: UID 0, CW (0); Frequency: 2480 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2480 MHz; σ = 1.9 S/m; ϵ_r = 35.6; ρ = 1000 kg/m³

Phantom section: Flat Section

Date/Time: 4/4/2024 7:21:11 PM

DASY5 Configuration:

- Probe: EX3DV4 SN7826; ConvF(7.91, 7.42, 7.62) @ 2480 MHz; Calibrated: 5/16/2023
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 4/18/2023
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

2450H/F52-A04806, Face - Front Side, 10mm, 2480 MHz, Band-WIFI, CCK-1Mbps/Area Scan (61x61x1): Interpolated grid: dx=1.200 mm, dy=1.200

Reference Value = 7.910 V/m; Power Drift = 0.22 dB

Fast SAR: SAR(1 g) = 0.172 W/kg; SAR(10 g) = 0.085 W/kg

Maximum value of SAR (interpolated) = 0.200 W/kg

2450H/F52-A04806, Face - Front Side, 10mm, 2480 MHz, Band-WIFI, CCK-1Mbps/Area Scan (7x7x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.169 W/kg

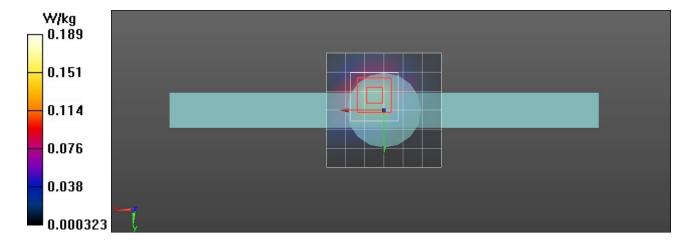
2450H/F52-A04806, Face - Front Side, 10mm, 2480 MHz, Band-WIFI, CCK-1Mbps/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.961 V/m; Power Drift = 0.27 dB

Peak SAR (extrapolated) = 0.288 W/kg

SAR(1 g) = 0.163 W/kg; SAR(10 g) = 0.083 W/kg

Smallest distance from peaks to all points 3 dB below = 13 mm


Ratio of SAR at M2 to SAR at M1 = 58.2%

Maximum value of SAR (measured) = 0.180 W/kg

2450H/F52-A04806, Face - Front Side, 10mm, 2480 MHz, Band-WIFI, CCK-1Mbps/Z Scan (1x1x17): Measurement grid: dx=20mm, dy=20mm, dz=20mm

Penetration depth = n/a (n/a, 7.276) [mm]

Maximum value of SAR (interpolated) = 0.189 W/kg

45461940 R1.0 18 June 2024

E51/E51Z

DUT: A04806; Type: Extremity Worn Transmitter; Serial: 3470346065

Procedure Name: E51- A04806, Extremity-Back Side, 2462 MHz, Band-1, WIFI, CCK-1Mbps

Communication System: UID 0, CW (0); Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.89 \text{ S/m}$; $\varepsilon_r = 35.814$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Date/Time: 4/4/2024 5:46:41 PM

DASY5 Configuration:

Probe: EX3DV4 - SN7826; ConvF(7.91, 7.42, 7.62) @ 2462 MHz; Calibrated: 5/16/2023

Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn353; Calibrated: 4/18/2023

Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234

Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

2450H/E51- A04806, Extremity-Back Side, 2462 MHz, Band-1, WIFI, CCK-1Mbps/Area Scan (61x61x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Reference Value = 7.002 V/m; Power Drift = -0.30 dB

Fast SAR: SAR(1 g) = 0.160 W/kg; SAR(10 g) = 0.079 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.194 W/kg

2450H/E51- A04806, Extremity-Back Side, 2462 MHz, Band-1, WIFI, CCK-1Mbps/Area Scan (7x7x1): Measurement grid: dx=12mm, dy=12mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.150 W/kg

 $\textbf{2450H/E51-A04806, Extremity-Back Side, 2462 MHz, Band-1, WIFI, CCK-1Mbps/Zoom Scan (7x7x7)/Cube \ 0: \ \textit{Measurement grid: } dx=5mm, \\ \textbf{2450H/E51-A04806, Extremity-Back Side, 2462 MHz, Band-1, WIFI, CCK-1Mbps/Zoom Scan (7x7x7)/Cube \ 0: \ \textit{Measurement grid: } dx=5mm, \\ \textbf{2450H/E51-A04806, Extremity-Back Side, 2462 MHz, Band-1, WIFI, CCK-1Mbps/Zoom Scan (7x7x7)/Cube \ 0: \ \textit{Measurement grid: } dx=5mm, \\ \textbf{2450H/E51-A04806, Extremity-Back Side, 2462 MHz, Band-1, WIFI, CCK-1Mbps/Zoom Scan (7x7x7)/Cube \ 0: \ \textit{Measurement grid: } dx=5mm, \\ \textbf{2450H/E51-A04806, Extremity-Back Side, 2462 MHz, Band-1, WIFI, CCK-1Mbps/Zoom Scan (7x7x7)/Cube \ 0: \ \textit{Measurement grid: } dx=5mm, \\ \textbf{2450H/E51-A04806, Extremity-Back Side, 2462 MHz, Band-1, WIFI, CCK-1Mbps/Zoom Scan (7x7x7)/Cube \ 0: \ \textit{Measurement grid: } dx=5mm, \\ \textbf{2450H/E51-A04806, Extremity-Back Side, 2462 MHz, Band-1, WIFI, CCK-1Mbps/Zoom Scan (7x7x7)/Cube \ 0: \ \textit{Measurement grid: } dx=5mm, \\ \textbf{2450H/E51-A04806, Extremity-Back Side, 2462 MHz, Band-1, WIFI, CCK-1Mbps/Zoom Scan (7x7x7)/Cube \ 0: \ \textit{Measurement grid: } dx=5mm, \\ \textbf{2450H/E51-A04806, Extremity-Back Side, 2462 MHz, Band-1, WIFI, CCK-1Mbps/Zoom Scan (7x7x7)/Cube \ 0: \ \textit{Measurement grid: } dx=5mm, \\ \textbf{2450H/E51-A04806, Extremity-Back Side, 2462 MHz, Band-1, WIFI, CCK-1Mbps/Zoom Scan (7x7x7)/Cube \ 0: \ \textit{Measurement grid: } dx=5mm, \\ \textbf{2450H/E51-A04806, Extremity-Back Side, 2462 MHz, Band-1, WIFI, CCK-1Mbps/Zoom Scan (7x7x7)/Cube \ 0: \ \textit{Measurement grid: } dx=5mm, \\ \textbf{2450H/E51-A04806, Extremity-Back Side, 2462 MHz, Band-1, WIFI, CCK-1Mbps/Zoom Scan (7x7x7)/Cube \ 0: \ \textit{Measurement grid: } dx=5mm, \\ \textbf{2450H/E51-A04806, Extremity-Back Side, 2462 MHz, Band-1, WIFI, CCK-1Mbps/Zoom Scan (7x7x7)/Cube \ 0: \ \textit{Measurement grid: } dx=5mm, \\ \textbf{2450H/E51-A04806, Back Side, 2462 MHz, Band-1, WIFI, Back Side, 2462 MHz, Band-1, WIFI, Back Side, 2462 MHz, Band-1, WIFI, Back Side, 2462 MHz, Band-1, WIFI, Back Side, 2462 MHz, Band-1, WIFI, Back Side, 2462 MHz, Band-1, WIFI, Back Side, 2462 MHz, Band-1, WIFI$

dy=5mm, dz=5mm

Reference Value = 6.413 V/m; Power Drift = 0.13 dB

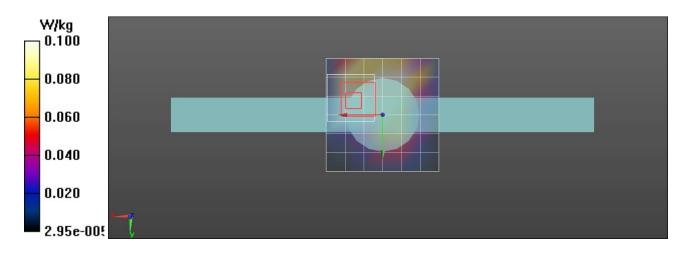
Peak SAR (extrapolated) = 0.237 W/kg

SAR(1 g) = 0.126 W/kg; SAR(10 g) = 0.061 W/kg

Smallest distance from peaks to all points 3 dB below = 8.1 mm

Ratio of SAR at M2 to SAR at M1 = 51.1%

Info: Interpolated medium parameters used for SAR evaluation.


Maximum value of SAR (measured) = 0.144 W/kg

2450H/E51- A04806, Extremity-Back Side, 2462 MHz, Band-1, WIFI, CCK-1Mbps/Z Scan (1x1x17): Measurement grid: dx=20mm, dz=20mm

Info: Interpolated medium parameters used for SAR evaluation.

Penetration depth = n/a (n/a, 8.204) [mm]

Maximum value of SAR (interpolated) = 0.100 W/kg

E55/E55Z

DUT: A04806; Type: Extremity Worn Transmitter; Serial: 3470346065

Procedure Name: E55-A04806, Extremity-Back Side, 2480 MHz, Band-WIFI, CCK-1Mbps

Communication System: UID 0, CW (0); Frequency: 2480 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2480 MHz; σ = 1.9 S/m; ϵ_r = 35.6; ρ = 1000 kg/m³

Phantom section: Flat Section

Date/Time: 4/4/2024 6:46:06 PM

DASY5 Configuration:

- Probe: EX3DV4 SN7826; ConvF(7.91, 7.42, 7.62) @ 2480 MHz; Calibrated: 5/16/2023
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 4/18/2023
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

2450H/E55-A04806, Extremity-Back Side, 2480 MHz, Band-WIFI, CCK-1Mbps/Area Scan (61x61x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Reference Value = 4.076 V/m; Power Drift = 1.49 dB

Fast SAR: SAR(1 g) = 0.077 W/kg; SAR(10 g) = 0.038 W/kg

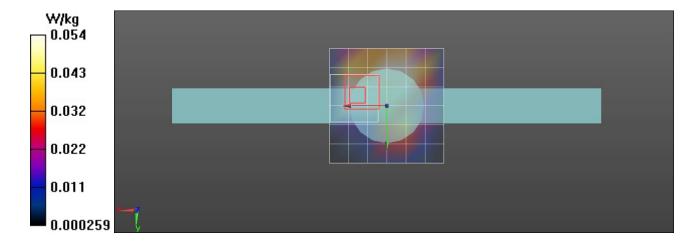
Maximum value of SAR (interpolated) = 0.0899 W/kg

2450H/E55-A04806, Extremity-Back Side, 2480 MHz, Band-WIFI, CCK-1Mbps/Area Scan (7x7x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.0758 W/kg

2450H/E55-A04806, Extremity-Back Side, 2480 MHz, Band-WIFI, CCK-1Mbps/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.304 V/m; Power Drift = 1.21 dB

Peak SAR (extrapolated) = 0.129 W/kg


SAR(1 g) = 0.068 W/kg; SAR(10 g) = 0.033 W/kg

Ratio of SAR at M2 to SAR at M1 = 50.3%

Maximum value of SAR (measured) = 0.0791 W/kg

2450H/E55-A04806, Extremity-Back Side, 2480 MHz, Band-WIFI, CCK-1Mbps/Z Scan (1x1x17): Measurement grid: dx=20mm, dy=20mm, dz=20mm Penetration depth = n/a (n/a, 7.327) [mm]

Maximum value of SAR (interpolated) = 0.0535 W/kg

