

4740 Discovery Drive | Lincoln, NE 68521 tel- 402.323.6233 | tel -888.657.6860 | fax - 402.323.6238 info@nceelabs.com | http://nceelabs.com

Amended

DXX FCC/ISED Test Report

Prepared for: Garmin International Inc.

Address: 1200 E. 151st Street

Olathe, Kansas, 66062, USA

Product: A03491

Test Report No: R20181015-20-01A

Approved by:

Nic S. Johnson, NCE

Technical Manager

INARTE Certified EMC Engineer #EMC-003337-NE

DATE: 24 May 2019

Total Pages: 39

The Nebraska Center for Excellence in Electronics (NCEE) authorizes the above named company to reproduce this report provided it is reproduced in its entirety for use by the company's employees only. Any use that a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. NCEE accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

Report Number:	eport Number: R20181015-20-01		А
Prepared for:	Garmin		

REVISION PAGE

Rev. No.	Date	Description	
0	28 February 2019	Original – NJohnson	
		Prepared by KVepuri/CFarrington	
Α	24 May 2019	Updated table in Section 1.	
		-Includes NCEE Labs report R20181015-20-01 and its amendment in fullNJ	

Report Number:

Prepared for:

R20180716-20-01

Garmin

Rev

Α

CONTENTS

Rev	ision Pa	age	2
1.0	Sui	mmary of test results	4
2.0	EU'	T Description	5
	2.1	Equipment under test	5
	2.2	Description of test modes	6
	2.3	Description of support units	6
3.0	Lak	poratory description	7
	3.1	Laboratory description	7
	3.2	Test personnel	7
	3.3	Test equipment	8
4.0	Det	tailed results	9
	4.1	Duty Cycle	9
	4.2	Radiated emissions	12
	4.3	Peak Output Power	20
	4.4	Bandwidth	24
	4.5	Bandedges	29
	4.6	Conducted AC Mains Emissions	33
Арр	endix /	A: Sample Calculation	36
Арр	endix I	B – Measurement Uncertainty	38
REF	ORT E	ND	39

1.0 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

- (1) US Code of Federal Regulations, Title 47, Part 15
- (2) ISED RSS-Gen, Issue 5
- (3) ISED RSS-210, Issue 9

SUMMARY						
Requirement	Test Type and Limit	Result	Remark			
FCC 15.203	Unique Antenna Requirement	Pass	PCB Antenna			
FCC 15.35 RSS-Gen, 6.10	Duty cycle of pulsed emissions	ons N/A Not required				
NA	Maximum Peak Output Power	N/A	Informational Purpose Only			
NA	Minimum Bandwidth	N/A	Informational Purpose Only			
FCC 15.209 RSS-Gen, 7.1	Receiver Radiated Emissions	Pass	Meets the requirement of the limit.			
FCC 15.209 RSS-Gen, 8.9 RSS-210 B1.2 FCC 15.249(a)	Transmitter Radiated Emissions	Pass	Meets the requirement of the limit.			
FCC 15.209, 15.205, 15.249(d) RSS-Gen, 8.9 RSS-210, 5.5	Band Edge Measurement	Pass	Meets the requirement of the limit.			
FCC 15.207 RSS-Gen. 8.8	Conducted AC Emissions	Pass	Meets the requirement of the limit.			

Lincoln, NE 68521 Page 4 of 39

2.0 EUT DESCRIPTION

2.1 EQUIPMENT UNDER TEST

Summary

EUT	A03491	
EUT Received	1/14/2019	
EUT Tested	1/14/2019 - 2/19/2019	
Serial No.	3492 398407923bw 00	
Operating Band	2400 – 2483.5 MHz	
Device Type	BLE	
Power Supply	PHIHong MN:PSAF10R-050Q	

NOTE: For more detailed features description, please refer to the manufacturer's specifications or user's manual.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 5 of 39

Report Number:	R20180716-20-01	Rev	А
Prepared for:	Garmin		

2.2 DESCRIPTION OF TEST MODES

The EUT operates on, and was tested at the frequencies below using GMSK modulation:

Channel	Frequency
1	2402 MHz
2	2440 MHz
3	2480 MHz

These are the only three representative channels tested in the frequency range according to FCC Part 15.31 and RSS-Gen Table A1. See the operational description for a list of all channel frequency and designations.

This EUT was set to transmit in a worse-case scenario with modulation on. The manufacturer modified the unit to transmit continuously on the lowest, middle and highest frequency channels.

2.3 DESCRIPTION OF SUPPORT UNITS

None

Report Number: R20180716-20-01 Rev Α

Prepared for:

Garmin

3.0 LABORATORY DESCRIPTION

3.1 LABORATORY DESCRIPTION

All testing was performed at the following Facility:

The Nebraska Center for Excellence in Electronics (NCEE Labs) 4740 Discovery Drive Lincoln, NE 68521

A2LA Certificate Number: 1953.01 FCC Accredited Test Site Designation No: US1060 Industry Canada Test Site Registration No: 4294A-1 NCC CAB Identification No: US0177

Environmental conditions varied slightly throughout the tests:

Relative humidity of 35 \pm 4% Temperature of 22 \pm 3° Celsius

3.2 **TEST PERSONNEL**

No.	PERSONNEL	TITLE	ROLE
1	Nic Johnson	Technical Manager	Review of Results
2	Karthik Vepuri	EMC Test Engineer	Testing and Report
3	Caleb Farrington	EMC Test Technician	Testing and Report

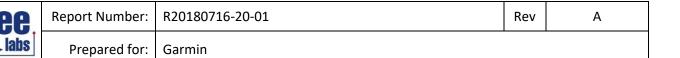
Notes:

All personnel are permanent staff members of NCEE Labs. No testing or review was sub-contracted or performed by sub-contracted personnel.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive

Lincoln, NE 68521 Page 7 of 39

3.3 TEST EQUIPMENT


DESCRIPTION AND MANUFACTURER	MODEL NO.	SERIAL NO.	LAST CALIBRATION DATE	CALIBRATION DUE DATE
Rohde & Schwarz Test Receiver	ES126	100037	30 Jan 2018	30 Jan 2019
EMCO Biconilog Antenna	3142B	1647	02 Aug 2017	02 Aug 2018**
EMCO Horn Antenna	3115	6416	26 Jan 2018	26 Jan 2020
EMCO Horn Antenna	3116	2576	31 Jan 2018	31 Jan 2020
Rohde & Schwarz Preamplifier	TS-PR18	3545700803	09 Mar 2018*	09 Mar 2019*
Trilithic High Pass Filter	6HC330	23042	09 Mar 2018*	09 Mar 2019*
Rohde & Schwarz LISN	ESH3-Z5	836679/010	26 Jul 2018	26 Jul 2019
RF Cable (preamplifier to antenna)	MFR-57500	01-07-002	09 Mar 2018*	09 Mar 2019*
RF Cable (antenna to 10m chamber bulkhead)	FSCM 64639	01E3872	09 Mar 2018*	09 Mar 2019*
RF Cable (10m chamber bulkhead to control room bulkhead)	FSCM 64639	01E3874	09 Mar 2018*	09 Mar 2019*
RF Cable (Control room bulkhead to RF switch)	FSCM 64639	01E3871	09 Mar 2018*	09 Mar 2019*
RF Cable (RF switch to test receiver)	FSCM 64639	01F1206	09 Mar 2018*	09 Mar 2019*
RF switch – Rohde and Schwarz	TS-RSP	1113.5503.14	09 Mar 2018*	09 Mar 2019*
N connector bulkhead (10m chamber)	PE9128	NCEEBH1	09 Mar 2018*	09 Mar 2019*
N connector bulkhead (control room)	PE9128	NCEEBH2	09 Mar 2018*	09 Mar 2019*
Software Version 1.60	ESK-1	2575	N/A	N/A

^{*}Internal Characterization

Notes:

All equipment is owned by NCEE Labs and stored permanently at NCEE Labs facilities.

^{**} Extended Cal

4.0 **DETAILED RESULTS**

DUTY CYCLE 4.1

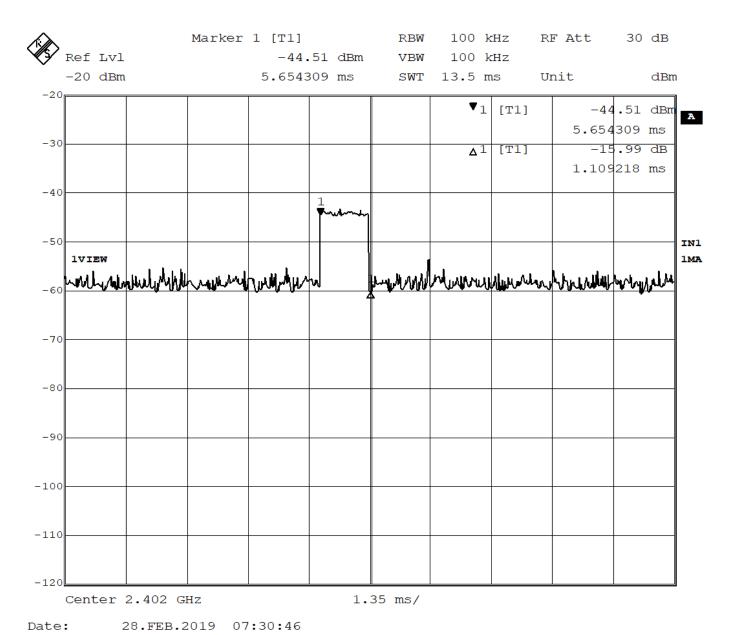
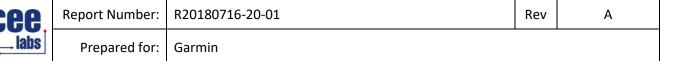



Figure 1 – On Time

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 9 of 39

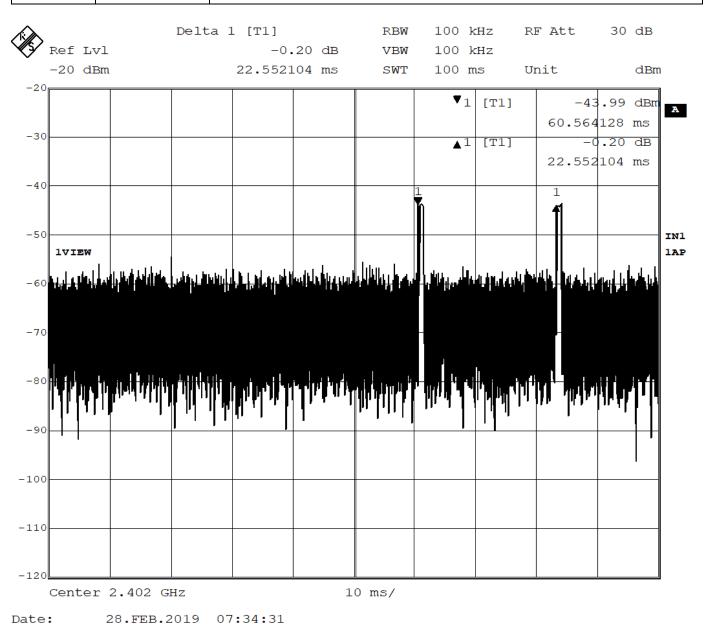
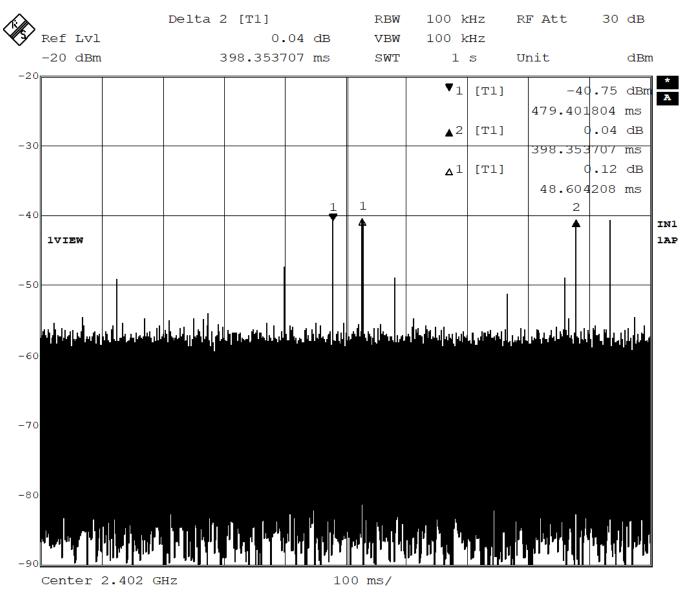



Figure 2 – Period

Date: 28.FEB.2019 07:36:09

Figure 3 - Period-2

*Maximum of 2 transmissions are possible in a given 100 ms window

Maximum duty cycle declared by the manufacturer = 1.1 ms

Duty cycle correction factor = 20*log((1.1x2)/100) = -33.15 dB = -20 dB (Maximum used)

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 11 of 39

R20180716-20-01 Report Number: Rev Α

Prepared for:

Garmin

4.2 RADIATED EMISSIONS

Test Method: ANSI C63.10, Section 6.5, 6.6

Limits for radiated emissions measurements:

Emissions radiated outside of the specified bands shall be applied to the limits in 15.209 as followed:

FREQUENCIES (MHz)	FIELD STRENGTH (µV/m)	MEASUREMENT DISTANCE (m)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	3
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 * log * Emission level (μ V/m).
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits by more than 20dB under any condition of modulation.

Test procedures:

- a. The EUT was placed on the top of a rotating table above the ground plane in a 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. The table was 0.8m high for measurements form 30MHz-1Ghz and 1.5m for measurements from 1GHz and higher.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna was a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are used to make the measurement.
- d. For each suspected emission, the EUT was arranged to maximize its emissions and then the antenna height was varied from 1 meter to 4 meters and the rotating table was turned from 0 degrees to 360 degrees to find the maximum emission reading.
- e. The test-receiver system was set to use a peak detector with a specified resolution bandwidth. For spectrum analyzer measurements, the composite maximum of several analyzer sweeps was used for final measurements.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. The EUT was maximized in all 3 orthogonal positions. The results are presented for the axis that had the highest emissions.

Report Number:	R20180716-20-01	Rev	Α
Prepared for:	Garmin		

NOTE:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequencies below 1GHz.
- 2. The resolution bandwidth 1 MHz for all measurements and at frequencies above 1GHz, A peak detector was used for all measurements above 1GHz. Measurements were made with an EMI Receiver.

Deviations from test standard:

No deviation.

Test setup:

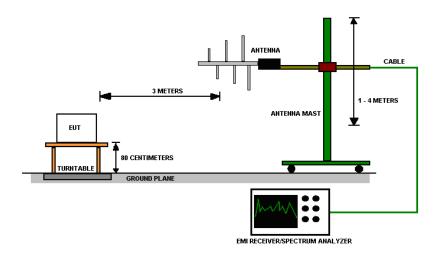


Figure 4 - Radiated Emissions Test Setup

EUT operating conditions

The EUT was powered by 5 VDC unless specified and set to transmit continuously on the lowest, middle and highest frequency channels.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 14 of 39

Test results:

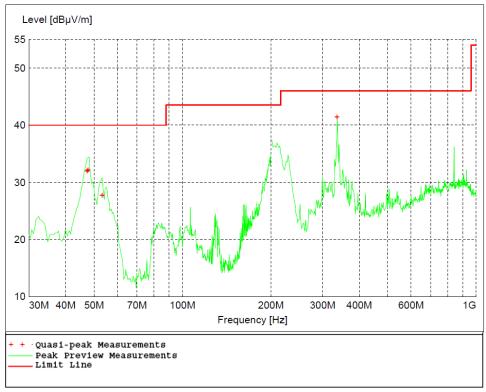


Figure 5 - Radiated Emissions Plot, Receive

Table 1 - Radiated Emissions Quasi-peak Measurements, Receive

Frequency	Level	Limit	Margin	Height	Angle	Pol
MHz	dBµV/m	dBµV/m	dB	cm.	deg.	
47.340000	32.03	40.00	8.00	100	291	VERT
47.700000	32.15	40.00	7.90	100	226	VERT
53.280000	27.71	40.00	12.30	100	175	VERT
336.000000	41.49	46.00	4.50	100	285	HORI

Table 2 - Radiated Emissions Peak Measurement vs Average Limits, Receive

Frequency	Level	Limit	Margin	Height	Angle	Pol
MHz	dBµV/m	dBµV/m	dB	cm.	deg.	
2430.000000	39.49	54.00	14.50	142	182	VERT
4532.800000	44.09	54.00	9.90	102	234	HORI

Peak measurements were compared to average limit and found to be compliant so average measurements were not performed

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 15 of 39

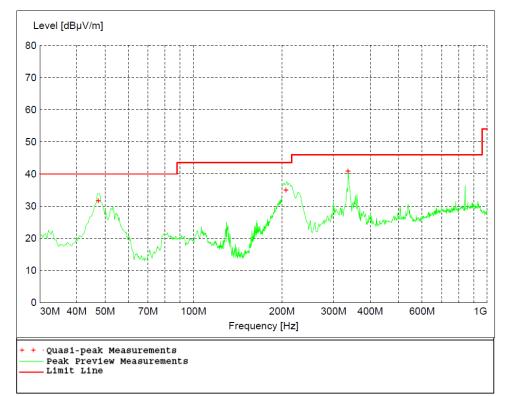


Figure 6 - Radiated Emissions Plot, Low Channel

Table 3 - Radiated Emissions Quasi-peak Measurements, Low Channel

Frequency	Level	Limit	Margin	Height	Angle	Pol
MHz	dBµV/m	dBμV/m	dB	cm.	deg.	
47.400000	31.73	40.00	8.30	100	256	VERT
206.640000	35.09	43.50	8.40	100	79	VERT
336.000000	40.91	46.00	5.10	100	269	HORI

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 16 of 39

Table 4 - Radiated Emissions Average Measurements, Low Channel

Frequency	Level	Limit	Margin	Height	Angle	Pol
MHz	dBµV/m	dBμV/m	dB	cm.	deg.	
2402.000000	73.84	94.00	20.16	201	299	VERT
4810.200000	24.98	54.00	29.02	382	65	VERT
7205.400000	29.55	54.00	24.45	268	219	VERT

Note: Average Level = Peak Level – Duty Cycle Correction Factor Duty Cycle Correction Factor is 20.00 dB.

Table 5 - Radiated Emissions Peak Measurements, Low Channel

Frequency	Level	Limit	Margin	Height	Angle	Pol
MHz	dBµV/m	dBμV/m	dB	cm.	deg.	
2402.000000	93.84	NA	NA	201	299	VERT
4810.200000	44.98	74.00	29.02	382	65	VERT
7205.400000	49.55	74.00	24.45	268	219	VERT

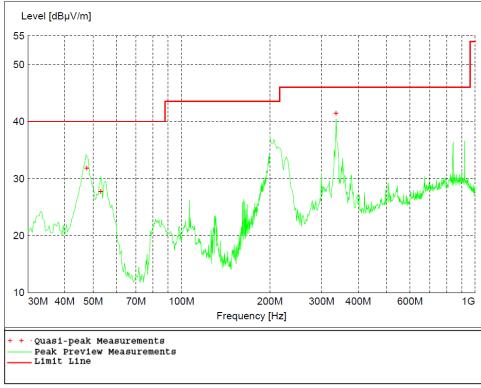


Figure 7 - Radiated Emissions Plot, Mid Channel

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 17 of 39

Report Number:	R20180716-20-01	Rev	А
Prenared for:	Garmin		

Table 6 - Radiated Emissions Quasi-peak Measurements, Mid Channel

Frequency	Level	Limit	Margin	Height	Angle	Pol
MHz	dBµV/m	dBμV/m	dB	cm.	deg.	
47.580000	31.82	40.00	8.20	100	336	VERT
53.100000	27.74	40.00	12.30	100	241	VERT
336.000000	41.45	46.00	4.50	100	290	HORI

Table 7 - Radiated Emissions Average Measurements, Mid Channel

Frequency	Level	Limit	Margin	Height	Angle	Pol
MHz	dBµV/m	dBμV/m	dB	cm.	deg.	
2442.000000	71.70	94.00	22.30	244	140	HORI
4896.400000	25.43	54.00	28.57	356	360	HORI

Note: Average Level = Peak Level – Duty Cycle Correction Factor Duty Cycle Correction Factor is 20.00 dB.

Table 8 - Radiated Emissions Peak Measurements, Mid Channel

Frequency	Level	Limit	Margin	Height	Angle	Pol
MHz	dBµV/m	dBμV/m	dB	cm.	deg.	
2442.000000	91.70	NA	NA	244	140	HORI
4896.400000	45.43	74.00	28.57	356	360	HORI

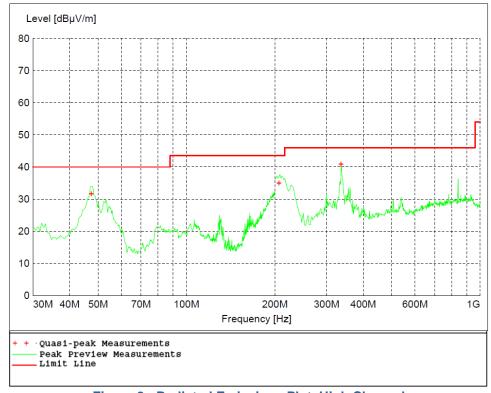


Figure 8 - Radiated Emissions Plot, High Channel

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 18 of 39

Report Number:	R20180716-20-01	Rev	А
Prepared for:	Garmin		

Table 9 - Radiated Emissions Quasi-peak Measurements, High Channel

Frequency	Level	Limit	Margin	Height	Angle	Pol
MHz	dBµV/m	dBμV/m	dB	cm.	deg.	
47.400000	31.73	40.00	8.30	100	256	VERT
206.640000	35.09	43.50	8.40	100	79	VERT
336.000000	40.91	46.00	5.10	100	269	HORI

The EUT was maximized in all 3 orthogonal axis. The worst-case is shown in the table above.

Table 10 - Radiated Emissions Average Measurements, High Channel

Frequency	Level	Limit	Margin	Height	Angle	Pol
MHz	dBµV/m	dBµV/m	dB	cm.	deg.	
2480.000000	72.27	94.00	21.73	234	131	HORI
4971.200000	24.29	54.00	29.71	400	30	VERT
7440.600000	26.20	54.00	27.80	301	226	VERT

Note: Average Level = Peak Level – Duty Cycle Correction Factor Duty Cycle Correction Factor is 20 dB.

Table 11 - Radiated Emissions Peak Measurements, High Channel

Frequency	Level	Limit	Margin	Height	Angle	Pol
MHz	dBµV/m	dBμV/m	dB	cm.	deg.	
2480.000000	92.27	NA	NA	234	131	HORI
4971.200000	44.29	74.00	29.71	400	30	VERT
7440.600000	46.20	74.00	27.80	301	226	VERT

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 19 of 39

4.3 PEAK OUTPUT POWER

Test Method: ANSI C63.10, Section(s) 7.8.5

Limits of bandwidth measurements:

For informational purposes only

Test procedures:

EIRP was calculated from field strength measurements using ANSI C63.10, Section 9.5, Equation (22). The field strength was measured at a 3m distance and maximized.

For Informational Purposes only

Deviations from test standard:

No deviation.

Test setup:

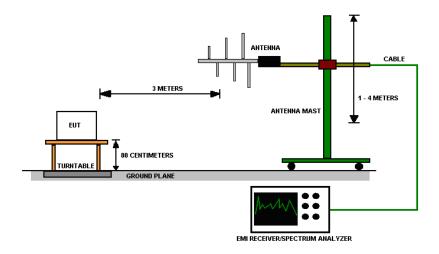
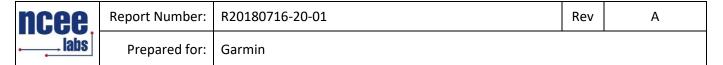


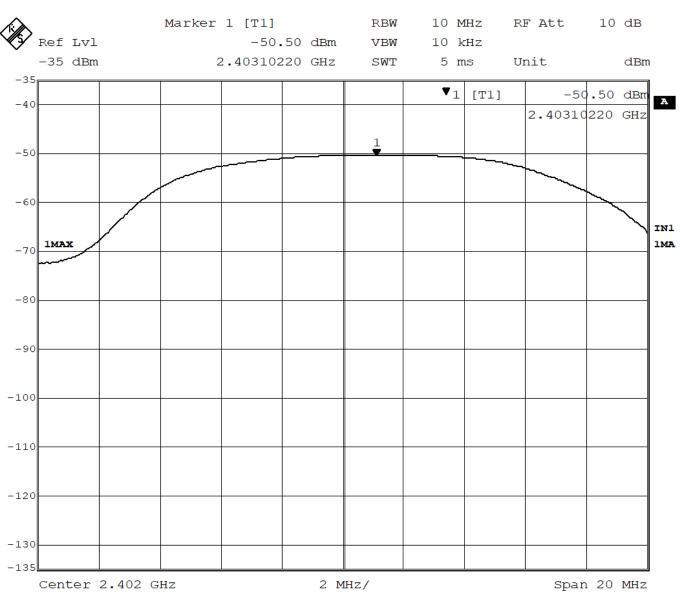
Figure 9 - Peak Output Power Measurements Test Setup

EUT operating conditions:

The EUT was powered by 5 VDC unless specified and set to transmit continuously on the lowest and highest frequency channel.


Test results:

Peak Output Power


CHANNEL	CHANNEL FREQUENCY (MHz)	PEAK OUTPUT POWER (dBm)	Method	
1	2402 MHz	-2.82	Radiated	
2	2440 MHz	-0.74	Radiated	
3	2480 MHz	-1.64	Radiated	

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive

Lincoln, NE 68521 Page 20 of 39

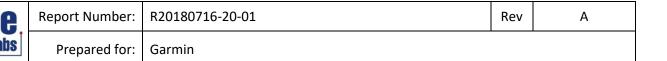
.

Date: 14.FEB.2019 12:56:17

Figure 10 – Output Power, Low Channel

Maximum power = -50.50 dBm + 107 + CL + AF - 95.23 = -2.82 dBm*

CL = cable loss = 7.60 dB


AF = antenna factor = 28.31 dB

107 = conversion from dBm to dB μ V on a 50 Ω measurement system

-95.23 = Conversion from field strength (dBµV/m) to EIRP (dBm) at a 3m measurement distance

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 21 of 39

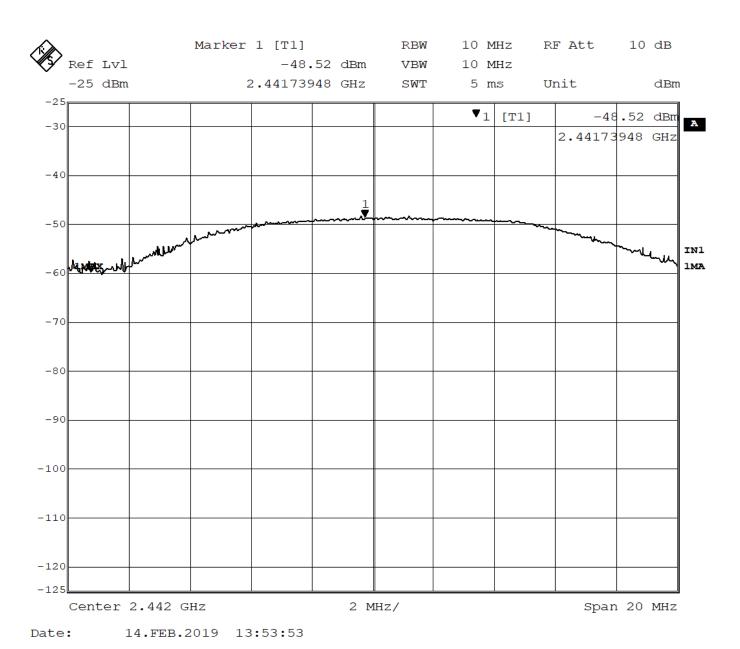
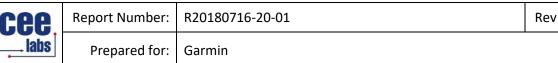


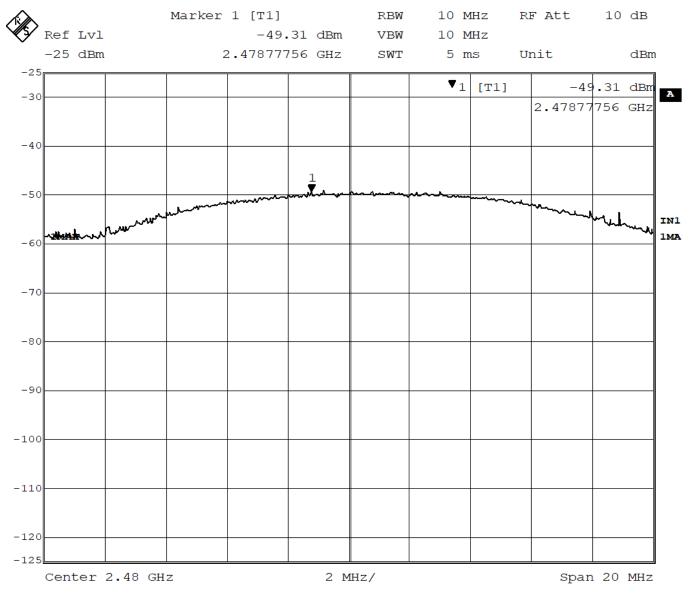
Figure 11 - Output Power, Mid Channel

. Maximum power = $-48.52 \text{ dBm} + 107 + CL + AF - 95.23 = -0.74 dBm^*$

CL = cable loss = 7.70 dB


AF = antenna factor = 28.31 dB

107 = conversion from dBm to dB μ V on a 50 Ω measurement system


-95.23 = Conversion from field strength (dB μ V/m) to EIRP (dBm) at a 3m measurement distance

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 22 of 39

Α

Date: 14.FEB.2019 12:34:58

Figure 12 - Output Power, High Channel

Maximum power = -49.31 dBm + 107 + CL + AF - 95.23 = -1.64 dBm*

CL = cable loss = 7.70 dB

AF = antenna factor = 28.20 dB

107 = conversion from dBm to dB μ V on a 50 Ω measurement system

-95.23 = Conversion from field strength (dB μ V/m) to EIRP (dBm) at a 3m measurement distance

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 23 of 39

4.4 BANDWIDTH

Test Method: ANSI C63.10, Section(s) 6.9.2

Limits of bandwidth measurements:

For Informational Purposes only

Test procedures:

The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 kHz RBW and 300 kHz VBW. The occupied bandwidth was measured using the spectrum analyzers 99% occupied bandwidth setting.

Test setup:

Bandwidth measurements were performed as radiated. See Section 4.2 for more details.

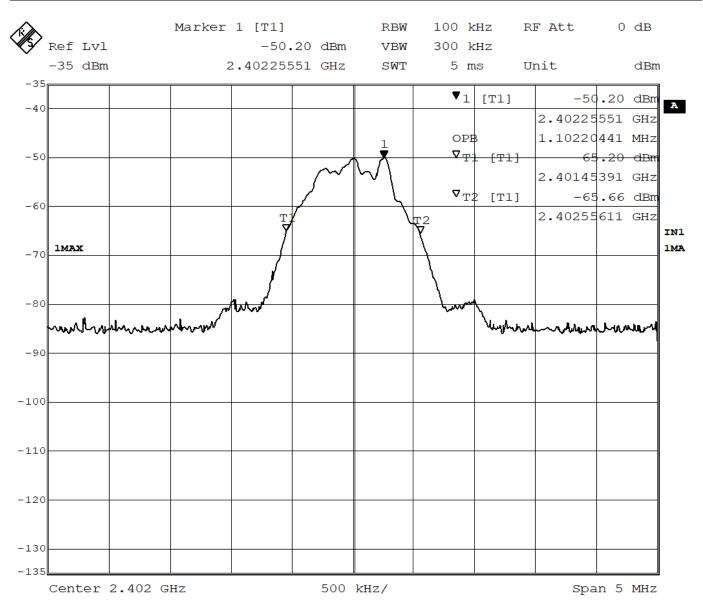
Deviations from test standard:

No deviation.

Test setup:

Report Number:	R20180716-20-01	Rev	А
Prenared for:	Garmin		

EUT operating conditions:


The EUT was powered by 5 VDC unless specified and set to transmit continuously on the lowest and highest frequency channel.

Test results:

Occupied Bandwidth

CHANNEL	CHANNEL FREQUENCY (MHz)	BW (MHz)	RESULT
1	2402 MHz	1.10	PASS
2	2440 MHz	1.08	PASS
3	2480 MHz	1.06	PASS

Date: 14.FEB.2019 12:52:27

Figure 13 - Occupied Bandwidth, Low Channel

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 26 of 39

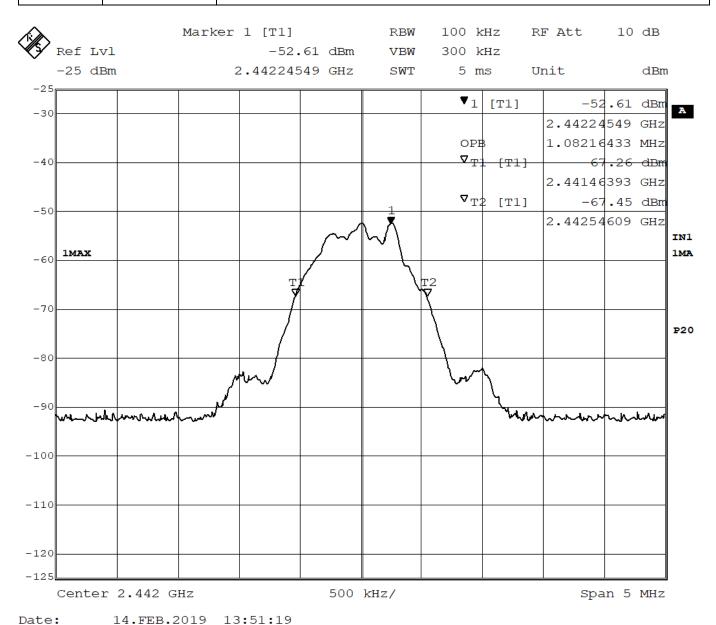
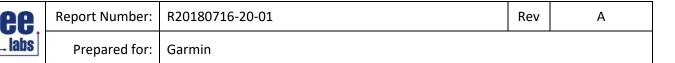



Figure 14 Coounied Bandwidth Mid C

Figure 14 - Occupied Bandwidth, Mid Channel

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 27 of 39

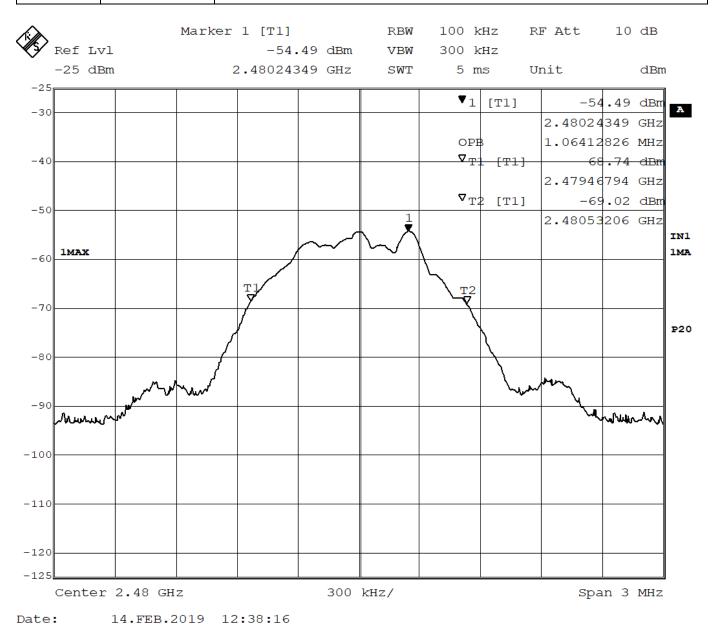


Figure 15 - Occupied Bandwidth, High Channel

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 28 of 39

4.5 BANDEDGES

Test Method: ANSI C63.10-2013, Section(s) 6.10.5

Limits of bandedge measurements:

For emissions outside of the allowed band of operation, the emission level needs to be 20dB under the maximum fundamental field strength. However, if the emissions fall within one of the restricted bands from 15.205 the field strength levels need to be under that of the limits in 15.209.

Test procedures:

The EUT was tested in the same method as described in section 4.4 - Bandwidth. The EUT was oriented as to produce the maximum emission levels. The resolution bandwidth was set to 100kHz and the EMI receiver was used to scan from the bandedge to the fundamental frequency with a quasi-peak detector. The highest emissions level beyond the bandedge was measured and recorded. All band edge measurements were evaluated to the general limits in Part 15.209.

Deviations from test standard:

No deviation.

Test setup:

All the measurements were done at 3m test distance while an operator was trying to activate the hopping sequence manually.

EUT operating conditions:

The EUT was powered by 5 VDC unless specified and set to transmit continuously on the lowest, middle and highest frequency channels.

Report Number:	R20180716-20-01	Rev	А
Prepared for:	Garmin		

Test results:

Highest Out of Band Emissions

CHANNEL	Band edge / Measureme nt Frequency (MHz)	Band	Relative Highest out of band level dBm	Relative Fundamental Level (dm)	Delta	Min (dB)	Result
1	2400.0	Band edge from FCC Part 15.249	-83.96	-50.27	33.69	19.84	PASS
3	2483.5	Band edge from FCC Part 15.249	-92.00	-54.51	37.49	18.27	PASS

*Minimum delta = [highest fundamental peak field strength from Section 4.2] – [Part 15.209 radiated emissions limit.]

From Section 4.2

Fundamental average field strength at Low Channel = $73.84 \text{ dB}\mu\text{V/m}$ Fundamental average field strength at High Channel = $72.27 \text{ dB}\mu\text{V/m}$

Low Channel minimum delta = $73.84 - 54.0~dB\mu V/m = 19.84~dBc$ High Channel minimum delta = $72.27 - 54.0~dB\mu V/m = 18.27~dBc$

Measurements do not include correction factors and are intended to be relative measurements only.

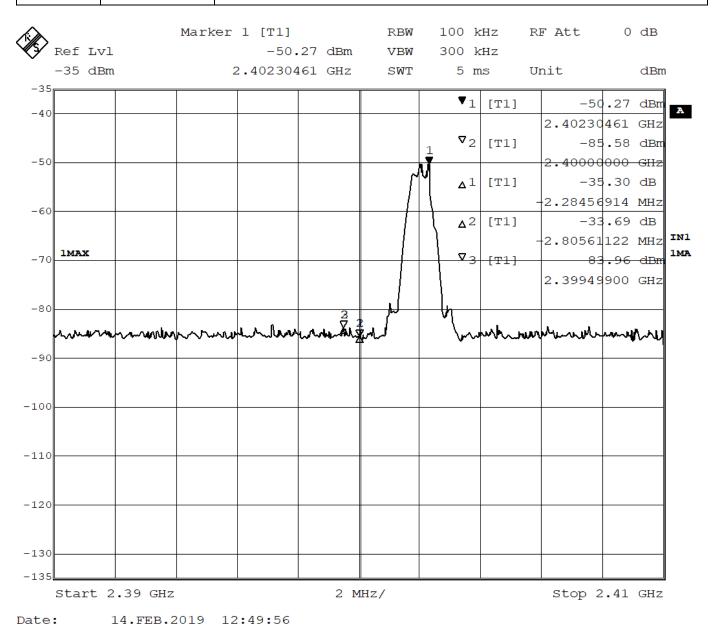
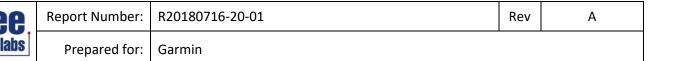



Figure 16 - Band-edge Measurement, Low Channel, Fundamental, Continuous Transmit

The plot shows an uncorrected measurement, used for relative measurements only

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive

Lincoln, NE 68521 Page 31 of 39

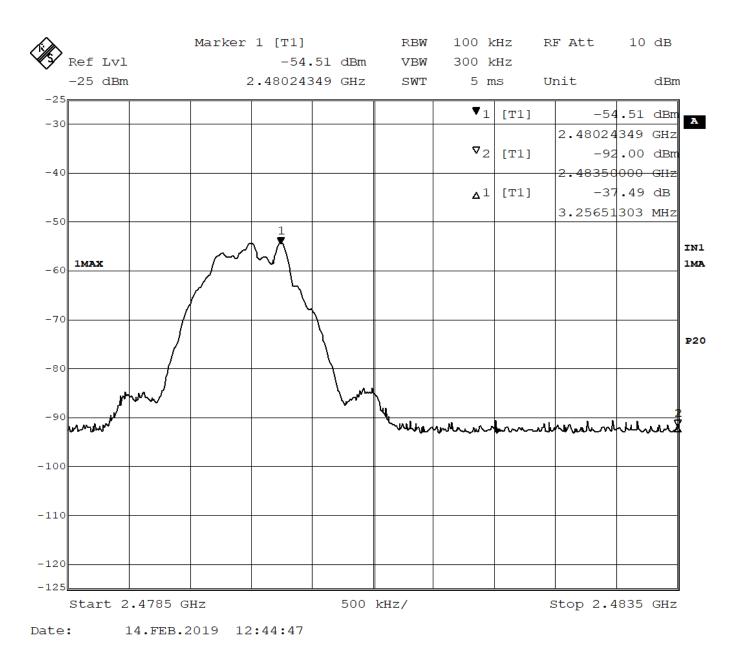


Figure 17 - Band-edge Measurement, High Channel, Fundamental, Continuous Transmit
The plot shows an uncorrected measurement, used for relative measurements only.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 32 of 39

Report Number:	R20180716-20-01	Rev	А
5 16			

Prepared for: | Garmin

4.6 CONDUCTED AC MAINS EMISSIONS

Test Method: ANSI C63.10-2013, Section(s) 6.2

Limits for conducted emissions measurements:

FREQUENCY OF EMISSION CONDUCTE (MHz) (dBµ\)		
	Quasi-peak	Average
0.15-0.5	66 to 56	56 to 46
0.5-5	56	46
5-30	60	50

Notes:

- 1. The lower limit shall apply at the transition frequencies.
- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

Test Procedures:

- a. The EUT was placed 0.8m above a ground reference plane and 0.4 meters from the conducting wall of a shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). The LISN provides 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference as well as the ground.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels over 10dB under the prescribed limits are not reported.
- d. Results were compared to the 15.207 limits.

Deviation from the test standard:

No deviation

EUT operating conditions:

The EUT was powered by 5 VDC unless specified and set to transmit continuously on the middle channel.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 33 of 39

Test Results:

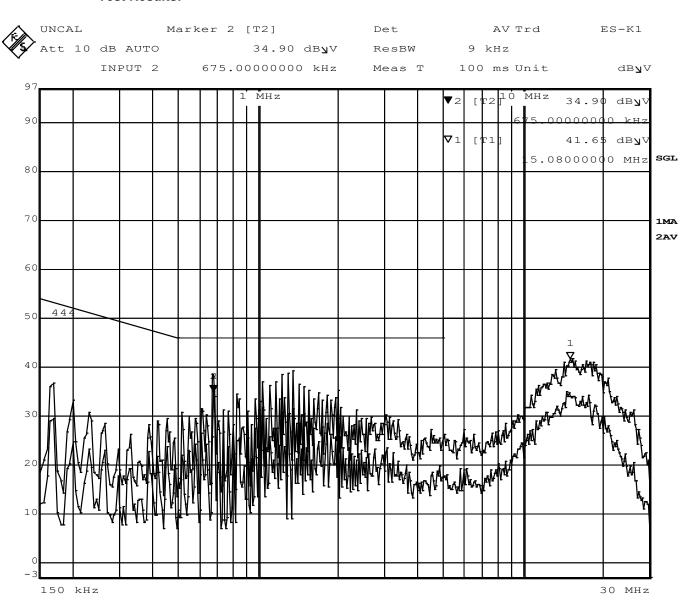


Figure 18 - Conducted Emissions Plot, L-F

All Measurements were found to be at least 10 dB below the limits.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 34 of 39

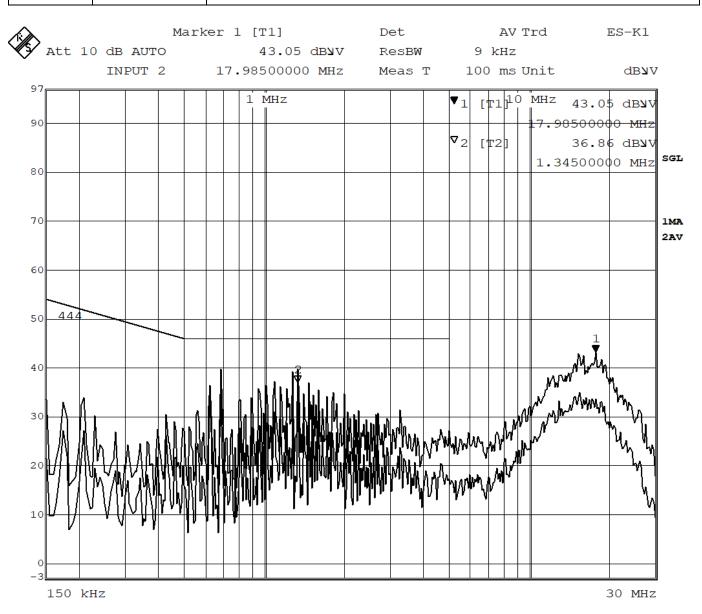


Figure 19 - Conducted Emissions Plot, N-F

All Measurements were found to be at least 10 dB below the limits.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 35 of 39

Report Number:	R20180716-20-01	Rev	А
----------------	-----------------	-----	---

Prepared for:

Garmin

APPENDIX A: SAMPLE CALCULATION

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF - (-CF + AG) + AV$$

where FS = Field Strength

RA = Receiver Amplitude

AF = Antenna Factor

CF = Cable Attenuation Factor

AG = Amplifier Gain

AV = Averaging Factor (if applicable)

Assume a receiver reading of 55 dB μ V is obtained. The Antenna Factor of 12 and a Cable Factor of 1.1 is added. The Amplifier Gain of 20 dB is subtracted, giving a field strength of 48.1 dB μ V/m.

$$FS = 55 + 12 - (-1.1 + 20) + 0 = 48.1 \text{ dB}\mu\text{V/m}$$

The 48.1 dB_μV/m value can be mathematically converted to its corresponding level in μV/m.

Level in $\mu V/m = Common Antilogarithm [(48.1 dB<math>\mu V/m$)/20]= 254.1 $\mu V/m$

AV is calculated by the taking the $20*log(T_{on}/100)$ where T_{on} is the maximum transmission time in any 100ms window.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 36 of 39

EIRP Calculations

In cases where direct antenna port measurement is not possible or would be inaccurate, output power is measured in EIRP. The maximum field strength is measured at a specified distance and the EIRP is calculated using the following equation;

EIRP (Watts) = [Field Strength (V/m) x antenna distance (m)] 2 / 30

Power (watts) = $10^{Power} (dBm)/10 / 1000$

Voltage $(dB\mu V)$ = Power (dBm) + 107 (for 50 Ω measurement systems)

Field Strength $(V/m) = 10^{field Strength} (dB\mu V/m) / 20] / 10^6$

Gain = 1 (numeric gain for isotropic radiator)

Conversion from 3m field strength to EIRP (d=3):

 $EIRP = [FS(V/m) \times d^2]/30 = FS[0.3]$ for d = 3

 $EIRP(dBm) = FS(dB\mu V/m) - 10(log 10^9) + 10log[0.3] = FS(dB\mu V/m) - 95.23$

10log(10^9) is the conversion from micro to milli

Lincoln, NE 68521 Page 37 of 39

Report Number:	R20180716-20-01	Rev	А
Prepared for:	Garmin		

APPENDIX B - MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been for tests performed in this test report:

Test	Frequency Range	Uncertainty Value (dB)
Radiated Emissions, 3m	30MHz - 1GHz	3.82
Radiated Emissions, 3m	1GHz - 18GHz	4.44
Emissions limits, conducted	30MHz – 18GHz	±3.30 dB

Expanded uncertainty values are calculated to a confidence level of 95%.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 38 of 39

REPORT END

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 39 of 39