

Test Report Serial Number: Test Report Date: Project Number: 45461383-R2.1 2 August 2017 1368

SAR Test Report - New Certification

Applicant:

Garmin International Inc. 1200 East 151 St. Olathe, KS, 66062 USA

FCC ID:

IPH-03164

Product Model Number / HVIN

A03164

Maximum Reported 1g SAR							
FCC	Body	0.89					
ISED	Body	0.93	W/kg				
Genera	Pop. Limit:	1.60					

ISED Registration Number

1792A-03164

Product Name / PMN

A03164

In Accordance With:

FCC 47 CFR §2.1093

Radiofrequency Radiation Exposure Evaluation: Portable Devices

IC RSS-102 Issue 5

Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)

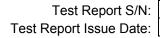
Approved By:

Ben Hewson, President

Celltech Labs Inc. 21-364 Lougheed Rd. Kelowna, BC, V1X 7R8

Canada

Industry Canada



Test Lab Certificate: 2470.01

IC Registration 3874A-1

FCC Registration: 714830

This report shall not be reproduced in any form without the expressed written consent of Celltech Labs Inc.

45461383-R2.1

2 August 2017

1.0 DOCUMENT CONTROL	3
2.0 NORMATIVE REFERENCES	3
3.0 CLIENT AND DEVICE INFORMATION	4
4.0 STATEMENT OF COMPLIANCE	5
5.0 SAR MEASUREMENT SYSTEM	6
6.0 RF CONDUCTED POWER MEASUREMENT	7
7.0 NUMBER OF TEST CHANNELS (N _C)	7
8.0 ACCESSORIES EVALUATED	8
9.0 SAR MEASUREMENT SUMMARY	9
10.0 SCALING OF MAXIMUM MEASURE SAR	10
11.0 SAR EXPOSURE LIMITS	12
12.0 DETAILS OF SAR EVALUATION	13
13.0 MEASUREMENT UNCERTAINTIES	14
14.0 FLUID DIELECTRIC PARAMETERS	16
15.0 SYSTEM VERIFICATION TEST RESULTS	20
16.0 MEASUREMENT SYSTEM SPECIFICATIONS	21
17.0 TEST EQUIPMENT LIST	23
18.0 FLUID COMPOSITION	24
APPENDIX A - SYSTEM VERIFICATION PLOTS	25
APPENDIX B – MEASUREMENT PLOTS OF MAXIMUMUM MEASURED SAR	29
APPENDIX C - SETUP PHOTOS	37
APPENDIX D – DUT AND ACCESSORY PHOTOS	42
APPENDIX E – PROBE CALIBRATION	45
APPENDIX F – DIPOLE CALIBRATION	46
APPENDIX G - PHANTOM	47

45461383-R2.1 2 August 2017

1.0 DOCUMENT CONTROL

Revision History								
Sar	nples Tested By:	Trevor Whillock	Dat	e(s) of Evaluation:	23 March - 11 April, 2017			
Rep	ort Prepared By:	Trevor Whillock	Re	port Reviewed By:	Ben Hewson			
Report	Door	rintian of Povision	Revised	Revised	Revision Date			
Revision	Desc	ription of Revision	Section	Ву	Revision Date			
1.0		Initial Release	n/a	Trevor Whillock	12 May 2017			
1.1	Coi	rections to Report	n/a	Art Voss	17 May 2017			
	Rev	ised Reported SAR	Cover					
	Corr	Corrected Rated Power						
2.0	Revised Conducted Power Values		6.0	Art Voss	1 August 2017			
	Corrected SAR Scaling		10.0					
	Revised OFDM/DSSS Evaluation		12.0					
2.1	Revised Table 6.0 t	o Included Tune-Up Tolerance	6.0	Art Voss	2 August 2017			

2.0 NORMATIVE REFERENCES

	Normative References*
ANSI / ISO 17025:2005	General Requirements for competence of testing and calibration laboratories
FCC CFR Title 47 Part 2	Code of Federal Regulations
Title 47:	Telecommunication
Part 2.1093:	Radiofrequency Radiation Exposure Evaluation: Portable Devices
Health Canada	
Safety Code 6 (2015)	Limits of Human Exposure to Radiofrequency Electromagnetic Energy in the Frequency Range from 3kHz to 300GHz
Industry Canada Spectrum	Management & Telecommunications Policy
RSS-102 Issue 5:	Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)
IEEE International Committee	ee on Electromagnetic Safety
IEEE 1528-2013:	IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
IEC International Standard	
IEC 62209-2 2010	Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 2
FCC KDB	
KDB 865664 D01v01r04	SAR Measurement Requirements for 100MHz to 6GHz
FCC KDB	
KDB 447498 D01v06	Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies
FCC KDB	
KDB 248227 D01v02r02	SAR Test Guidane for IEEE 802.11 (WiFI) Transmitters
* When the issue number	or issue date is omitted, the latest version is assumed.

45461383-R2.1 2 August 2017

3.0 CLIENT AND DEVICE INFORMATION

Client Information					
Applicant Name Garmin International Inc.					
	1200 East 151 St				
Applicant Address	Olathe, KS, 66062				
	USA				
	DUT Information				
Device Identifier(s):	FCC ID: IPH-03164				
Device identifier(3).	ISED: 1792A-03164				
Type of Equipment:	Personal Navigation Divice				
Device Model(s) / HVIN:	A03164				
Device Marketing Name / PMN:	A03164				
Test Sample Serial No.:	T/A Sample - Identical Prototype				
Transmit Frequency Range:	BLE: 2402-2480 MHz				
Transmit Frequency Kange.	WiFi: 2412-2462 MHz				
Number of Channels:	n/a				
	BT/BLE/ANT: 4dBm				
	WiFi: CW Mode: 18.0dBm ± 1.0dB				
Manuf. Max. Rated Output Power:	WiFi: DSSS: 18.0dBm ± 2.0dB				
	WiFi: OFDM: 16.0dBm ± 2.0dB				
	WiFi: MCS0-7 (20): 14.5dBm ± 2.0dB				
Modulation:	CCK, DSSS, OFDM, MCS 0-7				
Duty Cycle: 100%					
DUT Power Source: 5V USB, Internal Li-ion battery					
Deviation(s) from standard/procedure: None					
Modification of DUT:	None				

45461383-R2.1 2 August 2017

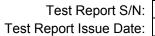
4.0 STATEMENT OF COMPLIANCE

This measurement repo	ort demonstrates that the:
Applicant:	Model / HVIN:
Garmin International Inc.	A03164
complies with the SAR (Specific Absorption Rate)	RF exposure requirements and limits specified in the following:
Standard(s):	Measurement Procedure(s):
FCC 47 CFR §2.1093	FCC KDB 865664, FCC KDB 447498, FCC KDB 248227
Health Canada's Safety Code 6	Industry Canada RSS-102 Issue 5
	IEEE Standard 1528-2013, IEC 62209-2
Use Group: Occupational / Controlled	X General Population / Uncontrolled
Reason for Issue:	
New Certification	

A description of the device, operating configuration, detailed summary of the test results, methodology and procedures used during this evaluation, equipment used and the various provisions of the rules are included within this test report.

45461383-R2.1

2 August 2017


5.0 SAR MEASUREMENT SYSTEM

SAR Measurement System

Celltech Labs Inc. SAR measurement facility employs a Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY measurement system is comprised of the measurement server, a robot controller, a computer, a near-field probe, a probe alignment sensor, an Elliptical Planar Phantom (ELI) phantom and a specific anthropomorphic mannequin (SAM) phantom for Head and/or Body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller and a teach pendant (Joystick) to control the robot's servo motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical form the DAE to digital electronic signal and transfers data to the DASY measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter, a command decoder and a control logic unit. Transmission to the DASY measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot utilizes a controller with built in VME-bus computer.

DASY SAR System with SAM Phantom

45461383-R2.1 2 August 2017

6.0 RF CONDUCTED POWER MEASUREMENT

Table 6.0									
Conducted Power Measurements									
Channel	Frequency (MHz)	Modulation	Rate (Mbps)	Measured Power (dBm)	Rated Power (dBm)	SAR Test Channel (Y/N)			
1	2412	CW	n/a	18.09	18±1.0	Υ			
6	2437	CW	n/a	18.07	18±1.0	Υ			
11	2462	CW	n/a	18.28	18±1.0	Υ			
1	2412	CCk	1.0	16.12	18±2.0	N			
6	2437	CCk	1.0	16.25	18±2.0	N			
11	2462	CCk	1.0	16.51	18±2.0	N			
1	2412	DSSS	5.5	16.09	18±2.0	N			
6	2437	DSSS	5.5	16.24	18±2.0	N			
11	2462	DSSS	5.5	16.41	18±2.0	N			
1	2412	OFDM	6.0	15.02	16±2.0	N			
6	2437	OFDM	6.0	15.23	16±2.0	N			
11	2462	OFDM	6.0	15.50	16±2.0	N			
1	2412	MCS-0	6.5	14.48	14.5±2.0	N			
6	2437	MCS-0	6.5	14.65	14.5±2.0	N			
11	2462	MCS-0	6.5	14.94	14.5±2.0	N			
Notes:									

Notes:

The Conducted Power of the DUT was measured at the antenna port, the unit was tested at 100% duty cycle transmit.

Reference Section 12.0 for Details of SAR Evaluation

7.0 NUMBER OF TEST CHANNELS (N_C)

As per FCC KDB 248277, the required 802.11 test channels are Ch1, Ch6 and Ch 11 CW Mode which were the highest output power channels compared to other modes.

45461383-R2.1 2 August 2017

8.0 ACCESSORIES EVALUATED

Table 8.0											
	Manufacturer's Accessory List										
Test Report ID Number	Manufacturer's Par Number	Description	UDC Group ⁽¹⁾	Type II Group ⁽²⁾	SAR ⁽³⁾ Evaluated	SAR ⁽⁴⁾ Tested					
T1	320-0059-00	Ca-Assy.,MIcro B to A, Mass Storage	n/a	n/a	N	N					

Test Report S/N: Test Report Issue Date: 2 August 2017

45461383-R2.1

9.0 SAR MEASUREMENT SUMMARY

Table 9.0										
	2450 Band Wifi- BODY SAR Evaluation Results (FCC/IC)									
							D	UT	Measured SAR	
Doto		Diet#	Side	Freq	Accessories		Spacing		1g (W/kg)	SAR Drift
Date	Model	Plot #	Tested				DUT	ANT	Duty Cycle	
				(MHz)	Body	Audio	(mm)	(mm)	100%	(dB)
23 Mar 2017	011-04262-00	B1	1	2412	n/a	n/a	0	0	0.478	-0.309
23 Mar 2017	011-04262-00	B2	1	2437	n/a	n/a	0	0	0.469	-0.585
23 Mar 2017	011-04262-00	В3	1	2462	n/a	n/a	0	0	0.432	-0.376
	SAR LIMIT(S)		Body		Spatial Peak		RF Exposure Category			
FCC 47 C	FCC 47 CFR 2.1093 Health Canada Safety Code 6		1.6 W/kg		1g average		General Population			

Table 9.1										
	2450 Band Wifi- BODY/Side SAR Evaluation Results (FCC/IC)									
								UT	Measured SAR	
Dete		Die4#	Side	Freq	Freq Accessories		Spa	cing	1g (W/kg)	SAR Drift
Date	Model	Plot #	Tested	(MHz)			DUT	ANT	Duty Cycle	
					Body	Audio	(mm)	(mm)	100%	(dB)
11 Apr 2017	011-04262-00	B4	2	2412	n/a	n/a	0	0	0.706	-0.174
11 Apr 2017	011-04262-00	B5	3	2412	n/a	n/a	0	0	0.333	-0.357
11 Apr 2017	011-04262-00	B6	5	2412	n/a	n/a	0	0	0.406	-1.140
11 Apr 2017	011-04262-00	В7	6	2412	n/a	n/a	0	0	0.108	-0.825
	SAR LIMIT(S)			Body		Spatial Peak		RF Exposure Category		
FCC 47 C	FCC 47 CFR 2.1093 Health Canada Safety Code 6		1.6 W/kg		1g average		General Population			

45461383-R2.1 2 August 2017

10.0 SCALING OF MAXIMUM MEASURE SAR

Table 10.0)	•									
			Scali	ng of Ma	ximum M	easured	SAR (1)				
			Meas	ured			Measured	Mea	sured	Measured	
		Freq	Fluid De	eviation		Co	onducted Pov	wer D	rift	SAR (1g)	
Plot ID	Configuration	(MHz)	Permittivity	Cond	luctivity		(dBm)	(0	dB)	(W/kg)	
B4	Body	2412	-5.56%	3.0	03%		18.1	-0	293	0.706	
	Step 1										
				Fluid	Sensitivity Adj	ustment					
		Scale					Measured			Step 1 Adjusted	
		Facto	r				SAR			SAR (1g)	
Plot ID		(%)		Х			(W/kg)		=	(W/kg)	
B4		2.730	%	X			0.706		=	0.725	
					Step 2						
			_		cturer's Tune-U	p Tolerance	<u> </u>				
	Measu		Rat					Step 1 Adjusted SAR		Step 2 Adjusted	
DI-4 ID	Conducted		Pov			Delta		()A//()	-	SAR (1g)	
Plot ID B4	(dBm 18.1	,	(dB 19	,		(dB) -0.9	+	(W/kg) 0.725	=	(W/kg) 0.892	
D4	10.1		19	.0	Step 3	-0.9	т	0.725	-	0.092	
			Cimi	ultanagus Tra	ansmission - Bl	uotooth and/o	r \//i⊏i*				
	Rated Output		Separation	illaneous ma		nated	I VVIFI			Step 3 Adjusted	
	Power (Pmax)	Freq	Distance			SAR		Step 2 Adjusted SAR		SAR (1g)	
Plot ID	(mW)	(MHz)	(mm)			/kg)	+	(W/kg)	=	(W/kg)	
B4	2.5	2412	5			000	+	0.892	=	0.892	
					Step 4					0.000	
					Drift Adjustme	ent					
		Measu	red			04-	0 Adii	040		Step 4 Adjusted	
		Drift				Ste	p 3 Adjusted	SAR		SAR (1g)	
Plot ID		(dB)		+		(W/kg)			=	(W/kg)	
B4		-0.174 -			0.892					0.928	
					Step 5						
					Reported SA	R					
			FCC					IC			
			From Steps 1 through 3					From Steps 1 through	1 4		
Plot ID			1g SAR (W/kg)					1g SAR (W/kg)			
B4	0.892						0.928				

NOTE to Step 3:

The BlueTooth and WiFi transmitters share the same antenna. Transmission is interleaved between the two transmitters and can not transmit simultaneously.

Test Exclusion of the BlueTooth/BlueTooth Low Energy (BLE)/ANT transmitter is evaluated using Max Power = 4.0dBm (2.5mW), Separation Distance = 5mm, Transmit Frequency = 2.412GHz.

Per KDB 447498 D01v06 [4.3.1(a)], SAR Test Exclusion is given by:

[(Max Power, mW) / (Separation Distance, mm)] * [$^{\pm}$ f, GHz] \leq 3.0 for 1g SAR [(2.5)/(5)] * [($^{\pm}$ 2.412)] = 0.78 \leq 3.0

Therefore the BlueTooth/BLE/ANT transmitter meets the SAR Test Exclusion criteria.

For reference only, per KDB 447498 D01v06 [4.3.2(b)], the estimated BlueTooth SAR is given by:

[(Max Power, mW) / (Separation Distance, mm)] * [($\stackrel{.}{=}$ f, GHz) / (x)], where x = 7.5 for 1g SAR [(2.5)/(5)] * [($\stackrel{.}{=}$ 2.412) / (7.5)] = 0.105W/kg

45461383-R2.1

2 August 2017

NOTES to Table 10.0

(1) Scaling of the Maximum Measured SAR is based on the highest, 100% duty cycle, Face, Body and/or Head SAR measured of ALL test channels, configurations and accessories used during THIS evaluation. The Measured Fluid Deviation parameters apply only to deviation of the tissue equivalent fluids used at the frequencies which produced the highest measured SAR. The Measured Conducted Power applies to the Conducted Power measured at the frequencies producing the highest Face and Body SAR. The Measured Drift is the SAR drift associated with that specific SAR measurement. The Reported SAR is the accumulation of all SAR Adjustments from the applicable Steps 1 through 4. The Plot ID is for indentification of the SAR Measurement Plots in Annex A of this report.

NOTE: Some of the scaling factors in Steps 1 through 4 may not apply and are identified by light gray text.

Step 1

Per IEC-62209-1 and FCC KDB 865664. Scaling required only when Measured Fluid Deviation is greater than 5%. If the Measured Fluid Deviation is greater than 5%, Table 10.1 will be shown and will indicate the SAR scaling factor in percent (%). SAR is MULTIPLIED by this scaling factor only when the scaling factor is positive (+).

Step 2

Per KDB 447498. Scaling required only when the difference (Delta) between the Measured Conducted Power and the Manufacturer's Rated Conducted Power is (-) Negative. The absolute value of Delta is ADDED to the SAR.

Step 3

Per KDB 447498 4.3.2. The SAR, either measured or calculated, of ANY and ALL simultaneous transmitters must be added together and includes all contributors.

Step 4

Per IEC 62209-1. Scaling required only when Measured Drift is (-) Negative. The absolute value of Measured Drift is added to Reported or Simultaneous Reported SAR.

Step 5

The Reported SAR is the Maximum Final Adjusted Cumulative SAR from the applicable Steps 1 through 4 and are reported on Page 1 of this report.

Table 10.1

Fluid Sensitivity Calculation (1g) Delta SAR = Ce * Delta Er + C(sigma)*Delta Sigma						
Frequency (GHz)	Plot ID					
2.412	B4					
Ce	-0.2251					
Сσ	0.4885					
ΔΕ	-5.56%					
Δσ	3.03%					
ΔSAR	2.73%					
Scale Factor Is Positive. Scaling Required						

I attest that the data reported herein is true and accurate within the tolerance of the Measurement Instrument Uncertainty; that all tests and measurements were performed in accordance with accepted practices or procedures; and that all tests and measurements were performed by me or by trained personnel under my direct supervision. The results of this investigation are based solely on the test sample(s) provided by the client which were not adjusted, modified or altered in any manner whatsoever, except as required to carry out specific tests or measurements. This test report has been completed in accordance with ISO/IEC 17025.

Trevor Whillock Test Lab Engineer Celltech Labs Inc.

> 27 April 2017 Date

45461383-R2.1 2 August 2017

11.0 SAR EXPOSURE LIMITS

Table 11.0								
SAR RF EXPOSURE LIMITS								
FCC 47 CFR§2.1093	Health Canada Safety Code 6	General Population /	Occupational /					
FCC 47 CFRg2.1093	nealth Canada Safety Code 6	Uncontrolled Exposure ⁽⁴⁾	Controlled Exposure ⁽⁵⁾					
Spa	tial Average ⁽¹⁾	0.08 W/kg	0.4 W/kg					
(averaged	over the whole body)	0.00 W/kg	O.4 W/Kg					
Sp	oatial Peak ⁽²⁾	1.6 W/kg	8.0 W/kg					
(Head and Trunk averaged over any 1 g of tissue)		1.0 VV/kg	0.0 W/kg					
Sp	oatial Peak ⁽³⁾	4.0 W/kg	20.0 W/kg					
(Hands/Wrists/Fee	t/Ankles averaged over 10 g)	4.0 W/kg	20.0 W/kg					

- (1) The Spatial Average value of the SAR averaged over the whole body.
- (2) The Spatial Peak value of the SAR averaged over any 1 gram of tissue, defined as a tissue volume in the shape of a cube and over the appropriate averaging time.
- (3) The Spatial Peak value of the SAR averaged over any 10 grams of tissue, defined as a tissue volume in the shape of a cube and over the appropriate averaging time.
- (4) Uncontrolled environments are defined as locations where there is potential exposure to individuals who have no knowledge or control of their potential exposure.
- (5) Controlled environments are defined as locations where there is potential exposure to individuals who have knowledge of their potential exposure and can exercise control over their exposure.

SAR evaluation.

6

Test Report S/N: Test Report Issue Date: 45461383-R2.1 2 August 2017

12.0 DETAILS OF SAR EVALUATION

EVALUATION DETAILS The DUT was evaluated for SAR in accordance with the procedures described in IEEE 1528, FCC KDB 865646, 447498, 248227 1 and RSS-102. Since the overall diagonal dimension of the device is < 20cm the device was evaluated at a phantom separation distance of less than 5mm on all surfaces and edges where the transmitter was located less than 25mm from that edge or surface. The Device was capable of transmitting in Continuous Wave CW) and the Conducted Power was higher in CW mode than any 2 other configuration. The DUT was evaluated for SAR at the maximum conducted output power level, preset by the manufacturer. The device was tested in an unmodulated continuous transmit mode at 100% duty cycle. 2.4GHz 802.11g/n OFDM SAR Test Exclusion As Per KDB 248277 D01v02r02 - 5.2.2, b) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg. 3 Maximum 802.11g/n OFDM specified power (P_{OFDM}) = 20dBm (18±2.0dBm) Maximum 802.11b DSSS specified power (P_{DSSS}) = 18dBm(16±2.0dBm) Ratio OFDM/DSSS power = 18.0 - 20.0 = -2dBm (< 100%) Therefore SAR * Ratio can not exceed 1.2W/kg 4 Each SAR evaluations were performed with a fully charged battery. The fluid temperature remained within +/-2°C from the time of the fluid dielectric parameter measurement to the completion of the 5

SCAN PROCEDURE							
Maximum distance from the closest measurement point to phantom surface.	4 ± 1mm						
Maximum probe angle normal to phantom surface.	5° ± 1°						
Area Scan Spatial Resolution ΔX, ΔY	12mm						
Zoom Scan Spatial Resolution ΔX, ΔY	5mm						
Zoom Scan Spatial Resolution ΔZ	5mm						
Zoom Scan Volume X, Y, Z	30mm x 30mm x 30mm						
Phantom	ELI						
Fluid Depth	150mm						

The fluid temperature remained within +/-0.5°C throughout the test day.

An Area Scan with an area extending beyond the device was used to locate the candidate maximas within 2dB of the global maxima.

A Zoom Scan centered over the peak SAR location(s) determined by the Area Scan was used to determine the 1 gram and 10 gram peak spatial-averge SAR

45461383-R2.1 2 August 2017

13.0 MEASUREMENT UNCERTAINTIES

Table 13.0									
UNCERTAI	NTY BUD	GET FOR D	EVICE EVA	LUATION (IE	EE 15	28-20	13 Table 9)		
Uncertainty Component	IEEE 1528 Section	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	ci 10g	Uncertainty Value ±% (1g)	Uncertainty Value ±% (10g)	V _i or V _{eff}
Measurement System									
Probe Calibration*	E.2.1	6.6	Normal	1	1	1	6.60	6.60	∞
Axial Isotropy*	E.2.2	4.7	Rectangular	1.732050808	0.7	0.7	1.9	1.9	00
Hemispherical Isotropy*	E.2.2	9.6	Rectangular	1.732050808	0.7	0.7	3.9	3.9	~
Boundary Effect*	E.2.3	8.3	Rectangular	1.732050808	1	1	4.8	4.8	∞
Linearity*	E.2.4	4.7	Rectangular	1.732050808	1	1	2.7	2.7	∞
System Detection Limits*	E.2.4	1.0	Rectangular	1.732050808	1	1	0.6	0.6	∞
Modulation Response	E.2.5	4.0	Rectangular	1.732050808	1	1	2.3	2.3	∞
Readout Electronics*	E.2.6	1.0	Normal	1	1	1	1.0	1.0	∞
Response Time*	E.2.7	0.8	Rectangular	1.732050808	1	1	0.5	0.5	∞
Integration Time*	E.2.8	1.4	Rectangular	1.732050808	1	1	0.8	0.8	∞
RF Ambient Conditions - Noise	E.6.1	0.0	Rectangular	1.732050808	1	1	0.0	0.0	00
RF Ambient Conditions - Reflection	E.6.1	0.0	Rectangular	1.732050808	1	1	0.0	0.0	∞
Probe Positioner Mechanical Tolerance*	E.6.2	0.4	Rectangular	1.732050808	1	1	0.2	0.2	∞
Probe Positioning wrt Phantom Shell*	E.6.3	2.9	Rectangular	1.732050808	1	1	1.7	1.7	∞
Extrapolation, interpolation & integration algorithms for max. SAR evaluation*	E.5	3.9	Rectangular	1.732050808	1	1	2.3	2.3	∞
Test Sample Related									
Test Sample Positioning	E.4.2	0.3	Normal	1	1	1	0.3	0.3	5
Device Holder Uncertainty*	E.4.1	3.6	Normal	1	1	1	3.6	3.6	∞
SAR Drift Measurement**	E.2.9	0.0	Rectangular	1.732050808	1	1	0.0	0.0	∞
SAR Scaling***	E.6.5	2.0	Rectangular	1.732050808	1	1	1.2	1.2	∞
Phantom and Tissue Parameters									
Phantom Uncertainty*	E.3.1	4.0	Rectangular	1.732050808	1	1	2.3	2.3	∞
SAR Correction Uncertainty	E.3.2	1.2	Normal	1	1	0.84	1.2	1.0	∞
Liquid Conductivity (measurement)	E.3.3	6.8	Normal	1	0.78	0.71	5.3	4.8	10
Liquid Permittivity (measurement)	E.3.3	5.3	Normal	1	0.23	0.26	1.2	1.4	10
Liquid Conductivity (Temperature)	E.3.2	0.1	Rectangular	1.732050808	0.78	0.71	0.1	0.0	∞
Liquid Permittivity Temperature)	E.3.2	0.0	Rectangular	1.732050808	0.23	0.26	0.0	0.0	∞
Effective Degrees of Freedon	n ⁽¹⁾							V _{eff} =	873.2
Combined Standard Uncertainty			RSS				12.59	12.40	
Expanded Uncertainty (95% Confide	k=2				25.18	24.80			

⁽¹⁾ The Effective Degrees of Freedom is > 30 therefore a coverage factor of k=2 represents an approximate confidence level of 95%.

^{*} Provided by SPEAG

45461383-R2.1 2 August 2017

restriction

Table 13.1						
Calculation of the Degrees and Effective Degrees of Freedom						
		u _c	4			
	v _{eff} =	m	4 4			
$v_i = n - 1$		Σ-	C _i ⁴ U _i ⁴ V _i	ı		
		 <i>i</i> =1	V			

45461383-R2.1 2 August 2017

14.0 FLUID DIELECTRIC PARAMETERS

Aprel Laboratory Test Result for UIM Dielectric Parameter Wed 22/Mar/2017 15:50:46

Freq Frequency(GHz)
FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon
FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma

FCC_eB FCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM

*******	******	*****	******	*****
Freq	FCC_eB	FCC_sE	B Test_e	Test_s
2.3500	52.83	1.85	51.77	1.95
2.3600	52.82	1.86	51.79	1.97
2.3700	52.81	1.87	51.73	1.96
2.3800	52.79	1.88	51.63	1.97
2.3900	52.78	1.89	51.58	1.97
2.4000	52.77	1.90	51.45	2.01
2.4100	52.75	1.91	51.53	2.05
2.4200	52.74	1.92	51.64	2.06
2.4300	52.73	1.93	51.50	2.10
2.4400	52.71	1.94	51.60	2.08
2.4500	52.70	1.95	51.36	2.10
2.4600	52.69	1.96	51.47	2.08
2.4700	52.67	1.98	51.46	2.09
2.4800	52.66	1.99	51.39	2.10
2.4900	52.65	2.01	51.18	2.09
2.5000	52.64	2.02	51.31	2.14
2.5100	52.62	2.04	50.91	2.16
2.5200	52.61	2.05	51.04	2.19
2.5300	52.60	2.06	50.98	2.23
2.5400	52.59	2.08	51.09	2.20
2.5500	52.57	2.09	51.00	2.25

45461383-R2.1 2 August 2017

Table 14.0

FLUID DIELECTRIC PARAMETERS 22 Mar 2017 Fluid Temp: Date: 23 Frequency: 2450MHz Tissue: **Body** Deviation **Deviation** Freq (MHz) Test_e Test_s Target_e Target_s **Permittivity** Conductivity 2350.0000 51.7700 1.9500 52.8300 1.85 -2.01% 5.41% 2360.0000 51.7900 1.9700 52.8200 1.86 -1.95% 5.91% 2370.0000 51.7300 4.81% 1.9600 52.8100 1.87 -2.05% 2380.0000 51.6300 1.9700 52.7900 1.88 -2.20% 4.79% 2390.0000 51.5800 1.9700 52.7800 1.89 -2.27% 4.23% 2400.0000 51.4500 2.0100 52.7700 1.90 -2.50% 5.79% 2410.0000 51.5300 2.0500 52.7500 1.91 -2.31% 7.33% 2412.0000 51.5520 2.0520 52.7480 1.91 -2.27% 7.32% 2420.0000 51.6400 2.0600 52.7400 1.92 -2.09% 7.29% 2430.0000 51.5000 2.1000 52.7300 1.93 -2.33% 8.81% 2437.0000 51.5700 2.0860 52.7160 1.94 7.69% -2.17% 2440.0000 51.6000 2.0800 52.7100 1.94 7.22% -2.11% 2450.0000 51.3600 2.1000 52.7000 1.95 -2.54% 7.69% 2460.0000 51.4700 2.0800 52.6900 1.96 -2.32% 6.12% 2462.0000 51.4680 2.0820 52.6860 1.96 -2.31% 6.01% 2470.0000 51.4600 2.0900 52.6700 1.98 -2.30% 5.56% 1.98 2472.0000 51.4460 2.0920 52.6680 -2.32% 5.55% 2480.0000 51.3900 2.1000 52.6600 1.99 -2.41% 5.53% 2490.0000 51.1800 2.0900 52.6500 2.01 -2.79% 3.98% 2500.0000 51.3100 2.1400 52.6400 -2.53% 5.94% 2.02 2510.0000 50.9100 2.1600 52.6200 2.04 -3.25% 5.88% 6.83% 2520.0000 51.0400 2.1900 52.6100 2.05 -2.98% 2530.0000 50.9800 2.2300 52.6000 2.06 8.25% -3.08% 2540.0000 51.0900 2.2000 52.5900 2.08 -2.85% 5.77% 2550.0000 51.0000 2.2500 52.5700 2.09 -2.99% 7.66%

*Channel Frequency Tested

45461383-R2.1

2 August 2017

Aprel Laboratory
Test Result for UIM Dielectric Parameter
Tue 11/Apr/2017 15:01:54
Freq Frequency(GHz)

FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma

FCC_eB FCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma

Test_e Epsilon of UIM
Test_s Sigma of UIM

******	*****	******	******	*****
Freq	FCC_eB	FCC_sE	3 Test_e	Test_s
2.3500	52.83	1.85	50.11	1.87
2.3600	52.82	1.86	50.00	1.91
2.3700	52.81	1.87	49.73	1.90
2.3800	52.79	1.88	49.92	1.90
2.3900	52.78	1.89	49.94	1.95
2.4000	52.77	1.90	49.78	1.95
2.4100	52.75	1.91	49.81	1.96
2.4200	52.74	1.92	49.84	2.01
2.4300	52.73	1.93	49.58	2.00
2.4400	52.71	1.94	49.77	2.00
2.4500	52.70	1.95	49.53	2.01
2.4600	52.69	1.96	49.81	2.03
2.4700	52.67	1.98	49.45	2.04
2.4800	52.66	1.99	49.49	2.06
2.4900	52.65	2.01	49.54	2.08
2.5000	52.64	2.02	49.50	2.10
2.5100	52.62	2.04	49.50	2.10
2.5200	52.61	2.05	49.38	2.12
2.5300	52.60	2.06	49.46	2.12
2.5400	52.59	2.08	49.32	2.12
2.5500	52.57	2.09	49.21	2.17

45461383-R2.1 2 August 2017

3.83%

Table 14.1

2550.0000

49.2100

FLUID DIELECTRIC PARAMETERS Date: 11 Apr 2017 Fluid Temp: 22.2 2450MHz Tissue: **Body** Frequency: Deviation Deviation Freq (MHz) Test_e Test_s Target_e Target_s **Permittivity** Conductivity 2350.0000 50.1100 1.8700 52.8300 1.85 -5.15% 1.08% 2360.0000 50.0000 52.8200 2.69% 1.9100 1.86 -5.34% 2370.0000 49.7300 1.9000 52.8100 1.87 -5.83% 1.60% 2380.0000 49.9200 1.9000 52.7900 1.88 -5.44% 1.06% 2390.0000 49.9400 1.9500 52.7800 1.89 -5.38% 3.17% 49.7800 2400.0000 1.9500 52.7700 1.90 -5.67% 2.63% 2410.0000 49.8100 2.62% 1.9600 52.7500 1.91 -5.57% 2412.0000 49.8160 1.9700 52.7480 1.91 -5.56% 3.03% 2420.0000 49.8400 2.0100 52.7400 1.92 4.69% -5.50% 2430.0000 49.5800 2.0000 52.7300 1.93 -5.97% 3.63% 52.7160 2437.0000 49.7130 2.0000 3.25% 1.94 -5.70% 1.94 2440.0000 49.7700 2.0000 52.7100 -5.58% 3.09% 2450.0000 49.5300 2.0100 52.7000 1.95 -6.02% 3.08% 2460.0000 49.8100 2.0300 52.6900 1.96 -5.47% 3.57% 2462.0000 49.7380 2.0320 52.6860 1.96 -5.60% 3.46% 1.98 2470.0000 49.4500 2.0400 52.6700 -6.11% 3.03% 2472.0000 49.4580 2.0440 52.6680 1.98 -6.09% 3.13% 2480.0000 49.4900 52.6600 3.52% 2.0600 1.99 -6.02% 2490.0000 3.48% 49.5400 2.0800 52.6500 2.01 -5.91% 2500.0000 49.5000 2.02 -5.97% 3.96% 2.1000 52.6400 2.94% 49.5000 2510.0000 2.1000 52.6200 2.04 -5.93% 2520.0000 49.3800 52.6100 2.05 3.41% 2.1200 -6.14% 2530.0000 49.4600 52.6000 2.91% 2.1200 2.06 -5.97% 2540.0000 49.3200 2.1200 52.5900 2.08 -6.22% 1.92%

*Channel Frequency Tested

52.5700

2.09

-6.39%

2.1700

45461383-R2.1

2 August 2017

15.0 SYSTEM VERIFICATION TEST RESULTS

Table 15.0											
System Verification Test Results											
		Francisco	Fluid	Fluid	Ambient	Ambient	Forward	Dipole		Validation	
		Frequenc y	Type	Temp	Temp	Humidity	Power	Spacing		Source	
Date		(MHz)		°C	°C	(%)	(mW)	(mm)	P/	/N	S/N
22-Mar-	-17	2450	Body	23.1	22	16%	250	10	D245	50V2	825
		SA	AR					Fluid Pa	rameters		
1 gram 10 gram				Permittivity Conductivity			,				
Measured	Target	Deviation	Measure d	Target	Deviatio n	Measure d	Target	Deviatio n	Measure d	Target	Deviatio n
13	13	0.00%	6.14	6.05	1.49%	51.4	52.7	-2.54%	2.10	1.95	7.69%

Prior to the SAR evaluations, system checks were performed on the planar section of the phantom and a SPEAG validation dipole in accordance with the procedures described in IEEE 1528-2013, FCC KDB 865664 and IEC 62209-1. The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer.

The forward power was applied to the dipole and the system was verified to a tolerance of +10% from the system manufacturer's dipole calibration target SAR value

Table 15.1											
	System Verification Test Results										
			Fluid	Fluid	Ambient	Ambient	Forward	Dipole	Validation		
		Frequency	Type	Temp	Temp	Humidity	Power	Spacing		Source	
Date		(MHz)		°C	°C	(%)	(mW)	(mm)	P/N		S/N
11-Apr	-17	2450	Body	22.2	23	16%	250	10	D2450V2 82		825
		SA	AR .			Fluid Parameters					
1 gram 10 gram				Permittivity Conductivity			ı				
Measured	Target	Deviation	Measured	Target	Deviation	Measured	Target	Deviation	Measured	Target	Deviation
13.7	13	5.38%	6.27	6.05	3.64%	49.5	52.7	-6.02%	2.01	1.95	3.08%

Prior to the SAR evaluations, system checks were performed on the planar section of the phantom and a SPEAG validation dipole in accordance with the procedures described in IEEE 1528-2013, FCC KDB 865664 and IEC 62209-1.

The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer.

The forward power was applied to the dipole and the system was verified to a tolerance of +10% from the system manufacturer's dipole calibration target SAR value

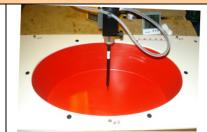
45461383-R2.1 2 August 2017

16.0 MEASUREMENT SYSTEM SPECIFICATIONS

Table 16.0							
Measurement System Specification							
<u>Specifications</u>							
Positioner	Stäubli Unimation Corp. Robot Model: RX60L						
Repeatability	0.02 mm						
No. of axis	6						
Data Acquisition Electronic (DAE) System							
Cell Controller							
Processor	AMD Athlon XP 2400+						
Clock Speed	2.0 GHz						
Operating System	Windows XP Professional						
Data Converter							
Features	Signal Amplifier, multiplexer, A/D converter, and control logic						
Software	Measurement Software: DASY, V4.7 Build 80						
Software	Postprocessing Software: SEMCAD, V1.8 Build 186						
Connecting Lines	Optical downlink for data and status info., Optical uplink for commands and clock						
DASY Measurement Server							
Function	Real-time data evaluation for field measurements and surface detection						
Hardware	PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM						
Connections	COM1, COM2, DAE, Robot, Ethernet, Service Interface						
E-Field Probe							
Model	EX3DV4						
Serial No.	3600						
Construction	Triangular core fiber optic detection system						
Frequency	10 MHz to 6 GHz						
Linearity	±0.2 dB (30 MHz to 3 GHz)						
<u>Phantom</u>							
Туре	ELI						
Shell Material	Fiberglass						
Thickness	2mm +/2mm						
Volume	> 30 Liter						

Table 16.1

Measurement System Specification (Continued)


	Probe Specification
	Symmetrical design with triangular core;
Construction:	Built-in shielding against static charges
	PEEK enclosure material (resistant to organic solvents, glycol)
	In air from 10 MHz to 2.5 GHz
Calibration:	In head simulating tissue at frequencies of 900 MHz
	and 1.8 GHz (accuracy ± 8%)
Frequency:	10 MHz to > 6 GHz; Linearity: ± 0.2 dB (30 MHz to 3 GHz)
Directivity	±0.2 dB in head tissue (rotation around probe axis)
Directivity:	\pm 0.4 dB in head tissue (rotation normal to probe axis)
Dynamic Range:	$5 \mu W/g$ to > 100 mW/g; Linearity: \pm 0.2 dB
Surface Detect:	±0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces
Dimensions:	Overall length: 330 mm; Tip length: 16 mm; Body diameter: 12 mm; Tip diameter: 6.8 mm Distance from probe tip to dipole centers: 2.7 mm
Application:	General dosimetry up to 3 GHz; Compliance tests of mobile phone
	Phantom Specification

EX3DV4 E-Field Probe

Phantom Specification

The ELI V5.0 phantom is an elliptical planar fiberglass shell phantom with a shell thickness of 2.0mm +/- .2mm at the planar area. This phantom conforms to OET Bulletin 65, Supplement C, IEEE 1528-2013, IEC 62209-1 and IEC 62209-2.

ELI Phantom

Device Positioner Specification

The DASY device positioner has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

Device Positioner

45461383-R2.1 2 August 2017

17.0 TEST EQUIPMENT LIST

Table 17.0

Test Equipment List DATE **CALIBRATION DESCRIPTION** ASSET NO. SERIAL NO. **CALIBRATED** INTERVAL Schmid & Partner DASY System -DASY Measurement Server 00158 1078 CNR CNR 00046 599396-01 CNR CNR -Robot -DAE4 00019 20 April 2016 353 Annual -EX3DV6 E-Field Probe 00213 3600 27 April 2016 Annual -D2450V2 Validation Dipole 00219 825 22 April 2015 Triennial **ELI Phantom** 00247 CNR CNR HP 85070C Dielectric Probe Kit 00033 **CNR** CNR none Gigatronics 8652A Power Meter 00110 1835801 29 Feb 2016 Triennial 00248 29 Feb 2016 Triennial Gigatronics 80701A Power Sensor 1833687 00134 US39170292 22 Oct 2014 Triennial HP 8753ET Network Analyzer Rohde & Schwarz SMR20 Signal Generator 00006 100104 8 May 2014 Triennial Amplifier Research 5S1G4 Power Amplifier 00106 26235 CNR CNR

CNR = Calibration Not Required

45461383-R2.1 2 August 2017

18.0 FLUID COMPOSITION

Table 18.0			2450MHz Body					
Tissue Simulating Liquid (TSL) Composition								
	Component by Percent Weight							
Water Glycol Salt ⁽¹⁾ HEC ⁽²⁾ Bacteriacide ⁽³⁾								
69.98	30.0	0.02	0.0	0.0				

(1) Non-lodinized

(2) HydroxyEthyl-Cellulose: Sigma-Aldrich P/N 54290-500g

(3) Dow Chemical Dowicil 75 Antimicrobial Perservative

45461383-R2.1 2 August 2017

APPENDIX A - SYSTEM VERIFICATION PLOTS

Date/Time: 22/03/2017 2:31:46 PM

Test Laboratory: Celltech Labs

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 825; Calibrated: 22/04/2015

Program Name: 2450MHz Body SPC

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; σ = 2.1 mho/m; ϵ_r = 51.4; ρ = 1000 kg/m³

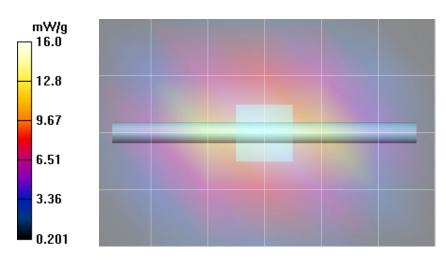
Phantom section: Flat Section

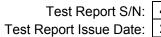
DASY Configuration:

- Probe: EX3DV4 - SN3600 2016; ConvF(6.55, 6.55, 6.55); Calibrated: 27/04/2016

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353 2016; Calibrated: 20/04/2016
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx

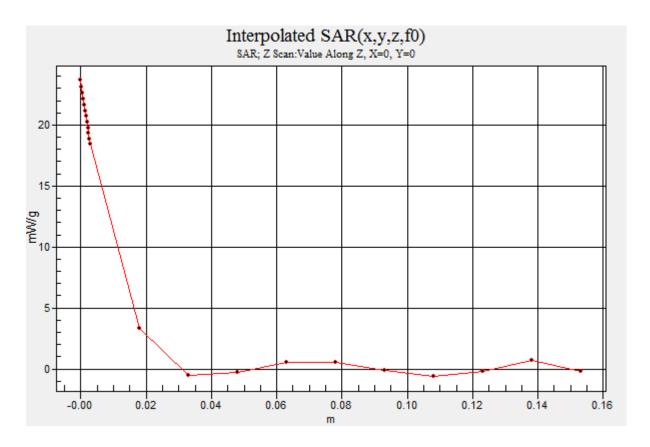
- Measurement SW: DASY, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145


2450MHz Body Dipole d=10mm P=250mW TS=[11.7][13.0][14.3]/Area Scan (5x7x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 16.0 mW/g


2450MHz Body Dipole d=10mm P=250mW TS=[11.7][13.0][14.3]/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 95.5 V/m; Power Drift = -0.035 dB

Peak SAR (extrapolated) = 29.0 W/kg


SAR(1 g) = 14 mW/g; SAR(10 g) = 6.5 mW/g Maximum value of SAR (measured) = 15.8 mW/g

45461383-R2.1 2 August 2017

45461383-R2.1 2 August 2017

Date/Time: 11/04/2017 2:03:30 PM

Test Laboratory: Celltech Labs

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 825; Calibrated: 22/04/2015

Program Name: 2450MHz Body SPC

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

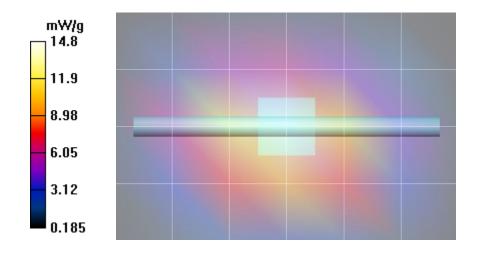
Medium parameters used: f = 2450 MHz; $\sigma = 2.01 \text{ mho/m}$; $\varepsilon_r = 49.5$; $\rho = 1000 \text{ kg/m}^3$

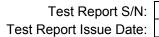
Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 SN3600 2016; ConvF(6.55, 6.55, 6.55); Calibrated: 27/04/2016
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353 2016; Calibrated: 20/04/2016
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx
- Measurement SW: DASY, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145

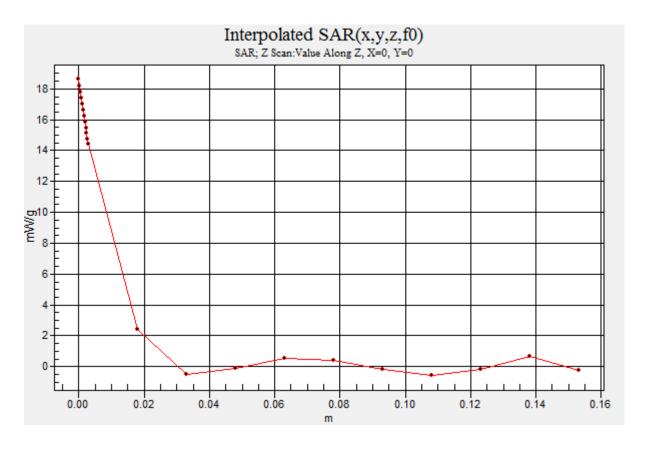
2450MHz Body Dipole d=10mm P=250mW TS=[11.7][13.0][14.3]/Area Scan (5x7x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 14.8 mW/g


2450MHz Body Dipole d=10mm P=250mW TS=[11.7][13.0][14.3]/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm,


dy=7.5mm, dz=5mm

Reference Value = 92.1 V/m; Power Drift = 0.040 dB

Peak SAR (extrapolated) = 28.6 W/kg


SAR(1 g) = 13.7 mW/g; SAR(10 g) = 6.27 mW/g Maximum value of SAR (measured) = 15.6 mW/g

45461383-R2.1 2 August 2017

45461383-R2.1

2 August 2017

APPENDIX B - MEASUREMENT PLOTS OF MAXIMUMUM MEASURED SAR

Plot B1

Date/Time: 23/03/2017 12:23:37 PM

Test Laboratory: Celltech Labs

DUT:Type:Serial:

Program Name: 2450MHz Body

Communication System: CW; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 2.05 \text{ mho/m}$; $\varepsilon_r = 51.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 - SN3600 2016; ConvF(6.55, 6.55, 6.55); Calibrated: 27/04/2016

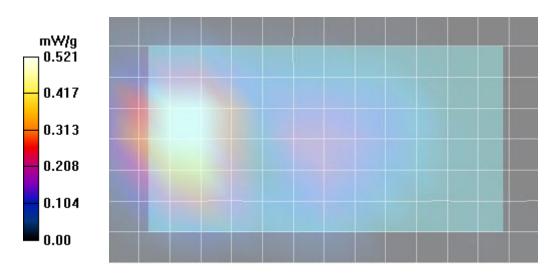
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353 2016; Calibrated: 20/04/2016
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx
- Measurement SW: DASY, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145

B1 A03164, 2412 MHz Body/Area Scan (9x15x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 0.521 mW/g

B1 A03164, 2412 MHz Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 12.8 V/m; Power Drift = -0.309 dB

Peak SAR (extrapolated) = 0.809 W/kg

SAR(1 g) = 0.478 mW/g; SAR(10 g) = 0.261 mW/g

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 0.529 mW/g

45461383-R2.1 2 August 2017

Plot B2

Date/Time: 23/03/2017 1:21:52 PM

Test Laboratory: Celltech Labs

DUT:;

Program Name: 2450MHz Body

Communication System: CW; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437 MHz; σ = 2.09 mho/m; ϵ_r = 51.6; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 - SN3600 2016; ConvF(6.55, 6.55, 6.55); Calibrated: 27/04/2016

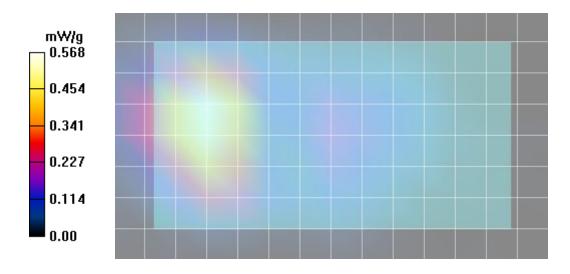
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353 2016; Calibrated: 20/04/2016
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx
- Measurement SW: DASY, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145

B2 A03164, 2437MHz Body/Area Scan (9x15x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 0.568 mW/g

B2 A03164, 2437MHz Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 10.6 V/m; Power Drift = -0.585 dB

Peak SAR (extrapolated) = 0.808 W/kg

SAR(1 g) = 0.469 mW/g; SAR(10 g) = 0.256 mW/g

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 0.518 mW/g

45461383-R2.1 2 August 2017

Plot B3

Date/Time: 23/03/2017 2:25:08 PM

Test Laboratory: Celltech Labs

DUT:

Program Name: 2450MHz Body

Communication System: CW; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 2.08 \text{ mho/m}$; $\varepsilon_r = 51.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 - SN3600 2016; ConvF(6.55, 6.55, 6.55); Calibrated: 27/04/2016

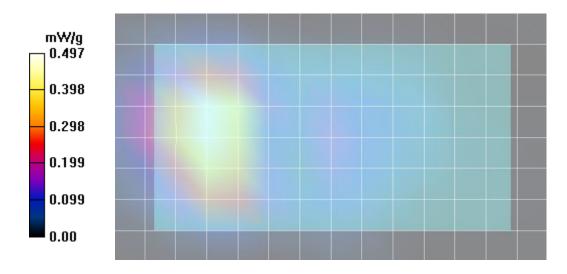
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353 2016; Calibrated: 20/04/2016
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx
- Measurement SW: DASY, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145

B3 A03164, 2462MHz Body/Area Scan (9x15x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 0.497 mW/g

B3 A031642462MHz Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 9.45 V/m; Power Drift = -0.376 dB

Peak SAR (extrapolated) = 0.745 W/kg

SAR(1 g) = 0.432 mW/g; SAR(10 g) = 0.234 mW/g

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 0.474 mW/g

45461383-R2.1 2 August 2017

Plot B4

Date/Time: 11/04/2017 3:04:16 PM

Test Laboratory: Celltech Labs

DUT: A03164; Type:Serial: Program Name: 2450MHz Body

Communication System: CW; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.97 \text{ mho/m}$; $\varepsilon_r = 49.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 - SN3600 2016; ConvF(6.55, 6.55, 6.55); Calibrated: 27/04/2016

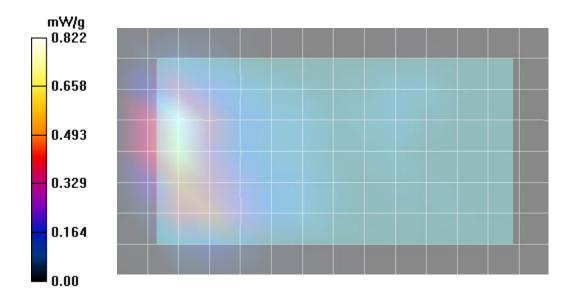
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353 2016; Calibrated: 20/04/2016
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx
- Measurement SW: DASY, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145

B4 A03164 w/c 2412 MHz Body ,Side 2/Area Scan (9x15x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 0.822 mW/g

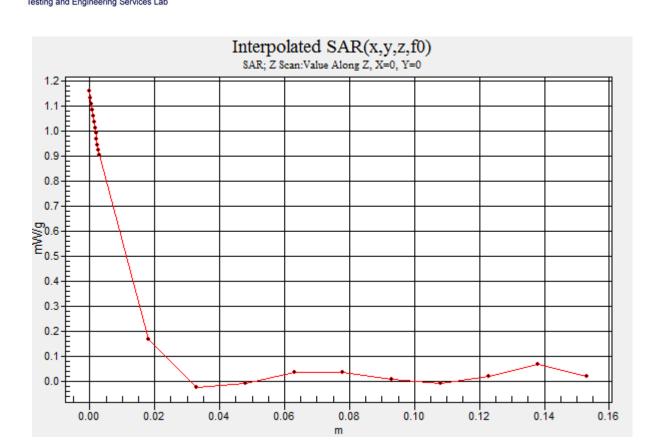
B4 A03164 w/c 2412 MHz Body ,Side 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 14.2 V/m; Power Drift = -0.174 dB

Peak SAR (extrapolated) = 1.71 W/kg

SAR(1 g) = 0.706 mW/g; SAR(10 g) = 0.294 mW/g

Info: Interpolated medium parameters used for SAR evaluation!


Maximum value of SAR (measured) = 0.808 mW/g

45461383-R2.1

2 August 2017

45461383-R2.1 2 August 2017

Plot B5

Date/Time: 11/04/2017 3:48:20 PM

Test Laboratory: Celltech Labs

DUT: A03164; Type: Serial: Program Name: 2450MHz Body

Communication System: CW; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.97$ mho/m; $\epsilon_r = 49.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 - SN3600 2016; ConvF(6.55, 6.55, 6.55); Calibrated: 27/04/2016

- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)

Surface Detection)

- Electronics: DAE4 Sn353 2016; Calibrated: 20/04/2016

- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx

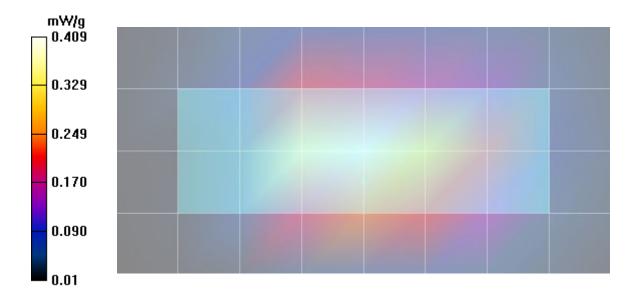
- Measurement SW: DASY, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145

B5 A03164 w/c 2412 MHz Body ,Side 3/Area Scan (9x5x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 0.409 mW/g

B5 A03164 w/c 2412 MHz Body ,Side 3/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 11.3 V/m; Power Drift = -0.357 dB

Peak SAR (extrapolated) = 0.818 W/kg

SAR(1 g) = 0.333 mW/g; SAR(10 g) = 0.147 mW/g

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 0.373 mW/g

45461383-R2.1 2 August 2017

Plot B6

Date/Time: 12/04/2017 9:19:45 AM

Test Laboratory: Celltech Labs

DUT: A03164 Side DUT; Type:Serial: Program Name: 2450MHz Body

Communication System: CW; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.97$ mho/m; $\varepsilon_r = 49.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 - SN3600 2016; ConvF(6.55, 6.55, 6.55); Calibrated: 27/04/2016

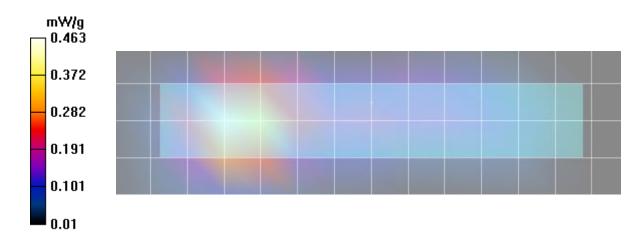
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353 2016; Calibrated: 20/04/2016
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx
- Measurement SW: DASY, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 145

B6 A03164 w/c 2412 MHz Body ,Side 5/Area Scan (5x15x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 0.463 mW/g

B6 A03164 w/c 2412 MHz Body ,Side 5/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 8.15 V/m; Power Drift = -1.14 dB

Peak SAR (extrapolated) = 0.913 W/kg

SAR(1 g) = 0.406 mW/g; SAR(10 g) = 0.184 mW/g

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 0.458 mW/g

45461383-R2.1 2 August 2017

Plot B7

Date/Time: 12/04/2017 9:58:49 AM

Test Laboratory: Celltech Labs

DUT: A03164 Side DUT; Type:Serial: Program Name: 2450MHz Body

Communication System: CW; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.97 \text{ mho/m}$; $\varepsilon_r = 49.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 - SN3600 2016; ConvF(6.55, 6.55, 6.55); Calibrated: 27/04/2016

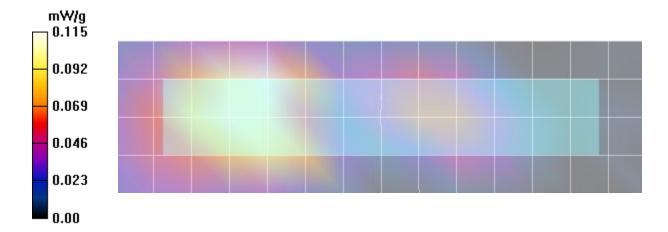
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353 2016; Calibrated: 20/04/2016
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx
- Measurement SW: DASY, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 145

B7 A03164 w/c 2412 MHz Body ,Side 6/Area Scan (5x15x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 0.115 mW/g

B7 A03164 w/c 2412 MHz Body ,Side 6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 5.08 V/m; Power Drift = -0.825 dB

Peak SAR (extrapolated) = 0.231 W/kg

SAR(1 g) = 0.108 mW/g; SAR(10 g) = 0.057 mW/g

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 0.121 mW/g

