

FCC TEST REPORT

REPORT NO.: RF90022018

MODEL NO.: 1400 U/P

RECEIVED: February 20, 2001

TESTED: April 2, 2001

APPLICANT: CHIC TECHNOLOGY CORPORATION

ADDRESS: 16F, No.150, Chien-I Road, Chung Ho City, Taipei Hsien, Taiwan R.O.C

ISSUED BY: Advance Data Technology Corporation

LAB LOCATION: 13-1, Lane 19, Wen Shan 3rd St., Kweishan, Taoyuan Hsien, Taiwan, R.O.C.

This test report consists of 19 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by NVLAP or any U.S. government agencies. The test results in the report only apply to the tested sample.

Accredited Laboratory

Table of Contents

1	CERTIFICATION	3
2	SUMMARY OF TEST RESULTS	4
3	GENERAL INFORMATION	5
3.1	GENERAL DESCRIPTION OF EUT	5
3.2	DESCRIPTION OF TEST MODES	
3.3	GENERAL DESCRIPTION OF APPLIED STANDARDS	
3.4	DESCRIPTION OF SUPPORT UNITS	
4	TEST PROCEDURES AND RESULTS	7
4.1	CONDUCTED EMISSION MEASUREMENT	7
4.1.1	LIMITS OF CONDUCTED EMISSION MEASUREMENT	
4.1.2	TEST INSTRUMENTS	8
4.1.3	TEST PROCEDURES	9
4.1.4	TEST SETUP	10
4.1.5	TEST RESULTS	11
4.2	RADIATED EMISSION MEASUREMENT	12
4.2.1	LIMITS OF RADIATED EMISSION MEASUREMENT	12
4.2.2	TEST INSTRUMENTS	13
4.2.3	TEST PROCEDURES	
4.2.4	TEST SETUP	15
4.2.5	TEST RESULTS	16
4	PHOTOGRAPHS OF THE TEST CONFIGURATION	18
5	INFORMATION ON THE TESTING LABORATORIES	19
	FX PHOTOGRAPHS OF FUT	

1 CERTIFICATION

PRODUCT: RF/Optical Mouse

BRAND NAME: Chic

MODEL NO: 1400 U/P

APPLICANT: Chic Technology Corporation

OEM BRAND NAME:

FUJITSU COMPUTERS

OEM PRODUCT NAME: Touchbird Optical Wireless Mouse

OEM MODEL NO: TAV:X316BL1

STANDARDS: 47 CFR Part 15, Subpart C (Section 15.227),

ANSI C63.4-1992

SITE REGISTERATION 90422 (FCC)

NO: IC 3789-5 (Canada IC)

We, **Advance Data Technology Corporation**, hereby certify that one sample (1400 U/P) of the designation has been tested in our facility on April 2, 2001.

The test record, data evaluation and Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions herein specified.

Tested by : Steven Lu , Date: April 3, >001

Prepared by: Vemi Chen, Date: April 3, 200/

Approved by : Alan Lane, Manager Date: April 3, 2005

2 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

	APPLIED STANDARD: 47 CFR Part 15, Subpart C						
STANDARD PARAGRAPH	TEST REQUIREMENTS	RESULT	REMARK				
15.107	AC Power Conducted Emissions Spec.: 48 dBuV	N/A	N/A				
15.227	Transmitter Radiated Emissions Spec.: Table 15.209	PASS	Minimum passing margin is –7.0dBuV at 432.76 MHz				

NOTE:

The receiver portion of the EUT has been tested in ADT. The test result has been verified to comply with FCC Part 15, Subpart B, Class B – Computing Devices (FCC DoC). The engineering test report can be provided upon FCC requests.

3 GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

PRODUCT	RF/Optical Mouse
MODEL NO.	1400 U/P
POWER SUPPLY	3VDC (1.5V x 2 batteries)
DATA CABLE	NA
I/O PORTS	NA
MODULATION TYPE	FSK
FREQUENCY RANGE	27.045MHz ~ 27.095MHz
NUMBER OF CHANNEL	2
ANTENNA TYPE	Printed Antenna
ASSOCIATED DEVICES	NA
DESCRIPTION OF MODELS	

3.2 DESCRIPTION OF TEST MODES

Two channels are provided in this EUT.

Channel	Frequency	Channel	Frequency
1	27.045 MHz	7	
2	27.095 MHz	8	
3		9	
4		10	
5		11	
6			

3.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF/Optical Mouse, according to the specifications of the manufacturers, it must comply with the requirements of the following standards:

FCC CFR 47 Part 15, Subpart C. (15.227)

All tests have been performed and recorded as per the above standards.

3.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	Personal Computer	IBM	2187-12W	1S218714ABNA000V	NA
2	MONITOR	ADI	SM-5514A	521S030301A	BR8SM-5514AC
3	PS/2 KEYBOARD	FORWARD	FDA-104GA	FDKB8110111	F4ZDA-104G
4	MOUSE	LOGITECH	M-S43	LZE00703207	DZL211106
5	MODEM	ACEEX	1414	980020508	IFAXDM1414
6	PRINTER	HP	2225C+	3123S97230	DSI6XU2225

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	NA
2	1.8 m braid shielded wire, terminated with VGA connector via metallic frame, w/o core.
3	1.5 m foil shielded wire, terminated with PS/2 connector via metallic frame, w/o core.
4	1.5 m foil shielded wire, terminated with PS2 connector via drain wire, w/o core.
5	1.2 m braid shielded wire, terminated with DB25 and DB9 connector via metallic frame, w/o
	core.
6	1.2m braid shielded wire, terminated with DB25 and Centronics connector via metallic frame,
	w/o core.

NOTE: All power cords of the above support units are non shielded (1.8m).

4 TEST PROCEDURES AND RESULTS

4.1 CONDUCTED EMISSION MEASUREMENT

4.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

EDECLIENCY (MIL)	Class A (dBuV)	Class B (dBuV)	
FREQUENCY (MHz)	Quasi-peak	Average	Quasi-peak	Average
0.15 - 0.5	79	66	66 - 56	56 - 46
0.50 - 5.0	73	60	56	46
5.0 - 30.0	73	60	60	50

NOTES: (1) The lower limit shall apply at the transition frequencies.

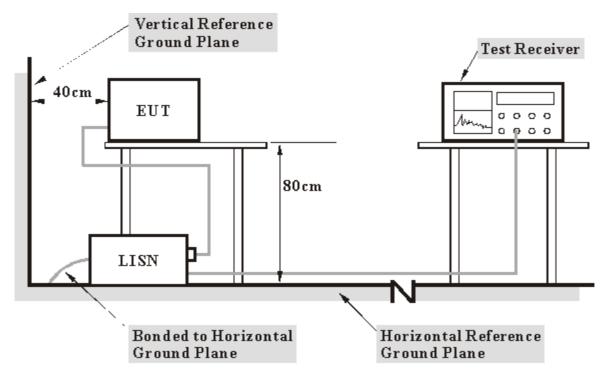
- (2) The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.
- (3) All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

4.1.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
ROHDE & SCHWARZ Test Receiver	ESHS30	828109/007	July 6, 2001
ROHDE & SCHWARZ Artificial Mains Network (for EUT)	ESH3-Z5	839135/006	July 9, 2001
ROHDE & SCHWARZ 4-wire ISN	ENY41	837032/016	Nov. 28, 2001
ROHDE & SCHWARZ 2-wire ISN	ENY22	837497/016	Dec. 3, 2001
EMCO-L.I.S.N. (for peripheral)	3825/2	9204-1964	July 9, 2001
Software	Cond-V2e	NA	NA
RF cable (JYEBAO)	RG-58A/U	Cable-C02.01	July 9, 2001
HP Terminator (For EMCO LISN)	11593A	E1-01-298	Feb. 20, 2002
HP Terminator (For EMCO LISN)	11593A	E1-01-299	Feb. 20, 2002
Shielded Room	Site 2	ADT-C02	NA
VCCI Site Registration No.	Site 2	C-240	NA

NOTE: 1. The measurement uncertainty is less than +/- 2.6dB, which is calculated as per the NAMAS document NIS81.

2. The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.



4.1.3 TEST PROCEDURES

- a. Place the EUT at 0.4 meter away from the conduction wall of the shielded room.
- b. Connect the EUT to the power mains through a Line Impedance Stabilization Network (LISN).
- c. Connect the other support units to the other LISN too.
- d. Make sure the $50\Omega/$ $50\mu H$ coupling impedance is provided to the measurement instrument by the LISNs.
- e. Measure the maximum conducted interference on both lines of the power mains connects to the EUT, within frequency range $450 \text{KHz} \sim 30 \text{MHz}$.
- f. The emission level under limit by 10dB is not needed to be reported.

4.1.4 TEST SETUP

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMIN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

For the actual test configuration, please refer to the related Item in this test report (**Photographs of the Test Configuration**).

4.1.5 TEST RESULTS

This EUT is excused from investigation of conducted emission, for it is powered by battery only. According to paragraph 15.207(a), measurements to demonstrate compliance with the conducted limited are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines.

4.2 RADIATED EMISSION MEASUREMENT

4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT

According to 15.227 the field strength of emissions from intentional radiators operated under these frequencies bands shall not exceed the following:

Fundamental Frequency (MHz)	Field Strength of Fundamental (dBµV/meter)	
	Peak	Average
26.96-27.28	100	80

Field strength limits are at the distance of 3 meters, emissions radiated outside of the specified bands, shall be according to the general radiated limits in 15.209 as following:

Other Frequencies	Field Strength of Fundamental		
(MHz)	μV/meter	dBµV/meter	
30-88	100	40.0	
88-216	150	43.5	
216-960	200	46.0	
Above 960	500	54.0	

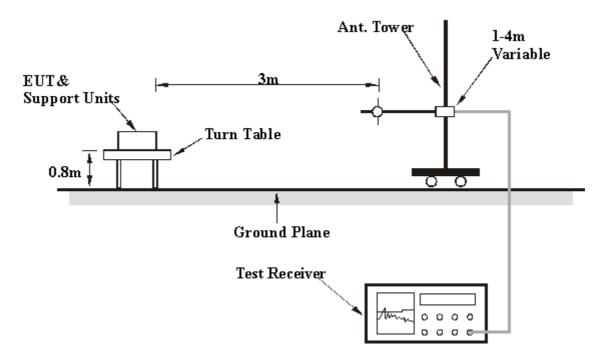
As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.2.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
HP Spectrum Analyzer	8590L	3544A01176	April 18, 2001
HP Preamplifier	8447D	2944A08485	April 26, 2001
* HP Preamplifier	8449B	3008A01201	Dec. 13, 2001
* ROHDE & SCHWARZ TEST RECEIVER	ESMI	839013/007 839379/002	Jan. 25, 2002
SCHWARZBECK Tunable Dipole Antenna	VHA 9103 UHA 9105	E101051 E101055	Nov. 23, 2001
* CHASE BILOG Antenna	CBL6112A	2221	Aug. 4, 2001
* EMCO Turn Table	1060	1115	NA
* SHOSHIN Tower	AP-4701	A6Y005	NA
* Software	AS61D	NA	NA
* ANRITSU RF Switches	MP59B	M35046	Aug. 4, 2001
* TIMES RF cable	LMR-600	CABLE-ST5- 01	Aug. 4, 2001
Open Field Test Site	Site 5	ADT-R05	July 28, 2001
VCCI Site Registration No.	Site 5	R-1039	NA

NOTE:1. The measurement uncertainty is less than +/- 3.0dB, which is calculated as per the NAMAS document NIS81.

- 2. The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.
- 3. "*" = These equipments are used for the final measurement.



4.2.3 TEST PROCEDURES

- a. The EUT was placed on the turn table 0.8 meter above ground in 3 meter open area test site
- b. Set the resolution bandwidth to 120KHz in the test receiver and select Peak function to scan the frequency below 1 GHz.
- c. Shift the interference-receiving antenna located in antenna tower upwards and downwards between 1 and 4 meters above ground and find out the local peak emission on frequency domain.
- d. Locate the interference-receiving antenna at the position where the local peak reach the maximum emission.
- e. Rotate the turn table and stop at the angle where the measurement device has maximum reading
- f. Shift the interference-receiving antenna again to detect the maximum emission of the local peak
- g. If the reading of the local peak under Peak function is lower than limit by 6dB, then Quasi Peak detection is not needed and this reading should be recorded. And if it is higher than Peak limit, then the test is fail. Others, switch the receiver to Quasi Peak function, set the resolution bandwidth to 100 kHz and repeat the procedures $C \sim F$. If the reading is lower than limit, this reading should be recorded, otherwise, the test is fail.
- h. Set the resolution and video bandwidth of the spectrum analyzer to 1MHz and repeat procedures $C \sim F$ for frequency band from 1 GHz to 10 times carrier frequency.
- i. If the reading for the local peak is lower than the Average limit, no further testing is needed in this local peak and this reading should be recorded. If it is higher than Average limit but lower than Peak limit, then set the resolution bandwidth to 1MHz and video bandwidth to 300Hz. Repeat procedures $C \sim F$. If the maximum reading is lower than Average limit, then this reading should be recorded. If it is higher, then the test is fail.
- Note:1. The frequency range of verification is either from 30 MHz to 1GHz or from 30 MHz up to 10 times carrier frequency of EUT (whichever is the highest frequency range).
 - 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for frequency below 1GHz.
 - 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 300 Hz for frequency above 1GHz.

4.2.4 TEST SETUP

For the actual test configuration, please refer to the related Item in this test report (**Photographs of the Test Configuration**).

4.2.5 TEST RESULTS

EUT	RF/Optical Mouse	Model	1400 U/P
Mode	Channel 1	Detector Function	PK, AV
Frequency Range	30-1000 MHz	Test Distance	3M
Environmental	20℃, 70%RH	Tested By	Steven Lu
Conditions			

ANTENNA POLARITY: Vertical		Detector Function :			6dB Bandwidth : 120 kHz.				Frequency Range: 30 – 1000 MHz.		
Frequency (MHz)	Correction Factor (dB)	Read Val (dBu	ue	Le	ssion vel V/m)	Limit (dBuV/m)		Margin (dB)		Antenna Height	Table Angle
		P.K.	A.V.	P.K.	A.V.	P.K.	A.V.	P.K	A.V.	(cm)	(Degree)
*27.06	19.11	41.59	-	60.7	-	100	80	-39.3	-	100	246

ANTENNA POLARITY: Horizontal		Detector Function :			6dB Bandwidth : 120 kHz.				Frequency Range: 30 – 1000 MHz.		
Frequency (MHz)	Correction Factor (dB)	Read Val (dBu	ue	Le	ssion vel (V/m)		mit ıV/m)	Margin (dB)		Antenna Height	Table Angle
		P.K.	A.V.	P.K.	A.V.	P.K.	A.V.	P.K	A.V.	(cm)	(Degree)
*27.06	19.11	45.20	-	64.3	-	100	80	-35.7	-	279	117

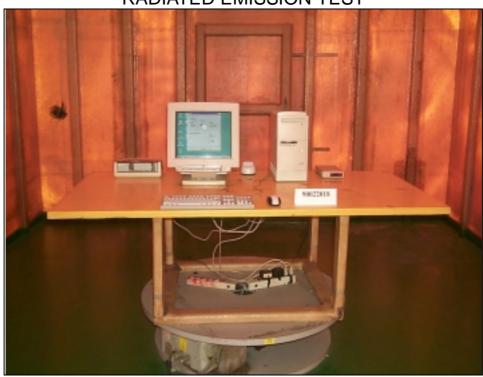
NOTES: 1. Emission level (dBuV/m) = Correction Factor (dB) + Reading value (dBuV).

- 2. Correction Factor (dB) = Ant. Factor (dB)+Cable loss (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. The limit value is defined as per 15.227
- 6. " * " : Fundamental frequency

EUT	RF/Optical Mouse	Model	1400 U/P
Mode	Channel 2	Detector Function	Quasi-Peak
Frequency Range	30-1000 MHz	Test Distance	3M
Environmental	20℃, 70%RH	Tested By	Steven Lu
Conditions			

	ANTENNA POLARITY: HORIZONTAL									
Frequency (MHz)	Correction Factor (dB)	Reading Value (dBuV)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)			
135.25	13.44	12.66	26.1	43.5	-17.4	199	107			
162.26	15.35	7.35	22.7	43.5	-20.8	146	231			
189.32	15.76	8.34	24.1	46.0	-19.4	138	220			
216.38	14.75	13.75	28.5	46.0	-17.5	131	81			
243.40	13.07	25.13	38.2	46.0	-7.8	149	254			
270.44	11.97	26.13	38.1	46.0	-7.9	145	266			
297.47	11.42	24.08	35.5	46.0	-10.5	146	266			
324.54	10.64	22.06	32.7	46.0	-13.3	100	306			
351.64	9.75	24.25	34.0	46.0	-12.0	113	95			
378.64	8.87	20.53	29.4	46.0	-16.6	137	275			
405.64	8.13	23.57	31.7	46.0	-14.3	117	271			
432.76	7.87	31.13	39.0	46.0	-7.0	100	293			
459.76	7.45	21.85	29.3	46.0	-16.7	113	263			

ANTENNA POLARITY: VERTICAL									
Frequency (MHz)	Correction Factor (dB)	Reading Value (dBuV)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)		
135.22	13.44	17.36	30.8	43.5	-12.7	132	111		
162.24	11.65	13.25	24.9	43.5	-18.6	113	191		
243.44	13.07	17.03	30.1	46.0	-15.9	123	80		
270.45	11.97	17.53	29.5	46.0	-16.5	211	294		
297.51	11.42	14.78	26.2	46.0	-19.5	141	325		
405.75	18.87	11.33	30.2	46.0	-15.8	123	315		
432.24	7.87	26.33	34.2	46.0	-11.8	141	81		
459.75	19.55	10.05	29.6	46.0	-16.4	100	202		


NOTES:(1) Emission level (dBuV/m) = Correction Factor (dB) + Reading value (dBuV).

- (2) Correction Factor (dB) = Ant. Factor (dB)+Cable loss (dB)
- (3) The other emission levels were very low against the limit.
- (4) Margin value = Emission level Limit value

4 PHOTOGRAPHS OF THE TEST CONFIGURATION

5 INFORMATION ON THE TESTING LABORATORIES

We, ADT Corp., were founded in 1988 to provide our best service in EMC and Safety consultation. Our laboratories are accredited by the following approval agencies according to ISO/IEC Guide 25 or EN 45001:

USA FCC, NVLAP Germany TUV Rheinland

Japan VCCI New Zealand RFS

Norway NEMKO, DNV U.K. INCHCAPE BSMI

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site: www.adt.com.tw/index.5/phtml.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC Lab:Hsin Chu EMC Lab:Tel: 886-2-26052180Tel: 886-35-935343Fax: 886-2-26052943Fax: 886-35-935342

Lin Kou Safety Lab: Design Center:

Tel: 886-2-26093195 Tel: 886-2-26093195 Fax: 886-2-26093184 Fax: 886-2-26093184

Email: service@mail.adt.com.tw
Web Site: www.adt.com.tw