

TEST REPORT

Report Number: 100937514ATL-001

October 30, 2012

Product Designation: 99116

Standard: 47 CFR Part 15, Subpart C (15.231 - Periodic operation in the band 40.66-
40.70 MHz and above 70 MHz)
RSS-210, Issue 8, 2010

Tested by:
Intertek Testing Services NA Inc.
1950 Evergreen Blvd., Suite 100
Duluth, GA 30096

Tests performed by:

Jeremy O. Pickens
Senior Staff Engineer

Client:
Hunter Fan
7130 Goodlett Farms Pkwy, Ste 400
Memphis, TN 38016
Contact: Robert Davis
Phone: (901) 248-2212
Fax: (901) 248-2382
E-mail: rdavis@hunterfan.com

Report reviewed by:

Troy Ihle
EMC Project Engineer

All services undertaken are subject to the following general policy: This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program. This report must not be used to claim product endorsement by A2LA, NIST, or any agency of the US Government.

1.0 Introduction and Conclusion

The tests indicated in section 2.0 were performed on the product constructed as described in section 3.0. The remaining test sections are the verbatim text from the actual data sheets used during the investigation. These test sections include the test name, the specified test Method, a list of the actual Test Equipment Used, documentation Photos, Results and raw Data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded the product tested complies with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested.

2.0 Test Summary

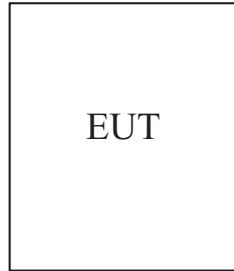
Section	Test Full Name	Test Date	Result
4.0	System setup including cable interconnection details, support equipment and simplified block diagram. (System Setup)		
5.0	Overview of EUT (Low Power Transmitters) (EUT Overview)		
6.0	Restrictions (FCC 15C-15.231 / RSS-210 A1.1)		
7.0	Duty Cycle Determination (FCC 15A-15.35(c) / RSS-GEN 4.5)	10/23/2012	
8.0	Radiated Emissions (FCC 15.231(b) / RSS-210 A1.1.2)	10/25/2012	PASS
9.0	Bandwidth Requirements (FCC 15.231(c) / RSS-210 A1.1.3)	10/25/2012	PASS
NA	Conducted emissions on AC power lines (Conducted Emissions) was waived due to the EUT was powered by battery.		
NA	Conducted Emissions for Intentional Radiators (FCC 15.207 / RSS-GEN 7.2.4) was waived due to the device was battery-powered.		

3.0 Description of Equipment Under Test

Equipment Under Test			
Description	Manufacturer	Model Number	Serial Number
Ceiling Fan Remote	Hunter Fan	99116	N/A

EUT receive date:	October 24, 2012
EUT receive condition:	Good

Description of EUT provided by Client:


The EUT was a hand held wireless transmitter used for remote control of a ceiling fan and light assembly.

Description of EUT exercising:

During testing, the device was powered from a new internal CR2032 battery and configured to transmit continuously.

4.0 System setup including cable interconnection details, support equipment and simplified block diagram. (System Setup)**Method:**

Record the details of EUTcabling, document the support equipment, and show the interconnections in a block diagram.

Drawing:

Setup Diagram

4.0 System setup including cable interconnection details, support equipment and simplified block diagram. (System Setup)

EUT Cabling						
ID	Description	Length	Shielding	Ferrites	Connection	
					From	To
None						

Support Equipment			
Description	Manufacturer	Model Number	Serial Number
None			

5.0 Overview of EUT (Low Power Transmitters) (EUT Overview)**Method:**

Complete the overview spreadsheet.

Related Submittal(s) Grants: This report is for use with an application for certification of a low power transmitter. One transmitter is included in the application.

5.0 Overview of EUT (Low Power Transmitters) (EUT Overview)

Data:

Applicant	Hunter Fan Company 7130 Goodlett Parkway, Suite 400 Memphis, TN 38016
Trade Name & Model No.	99116
FCC Identifier	IN2TX36
IC Identifier	3558A-TX36
Frequency Range (MHz)	434
Antenna Type (15.203)	Integral
Manufacturer name & address	Shenzhen H and T Intelligent Control Co.,Ltd Shenzhen , Guangdong, CHINA

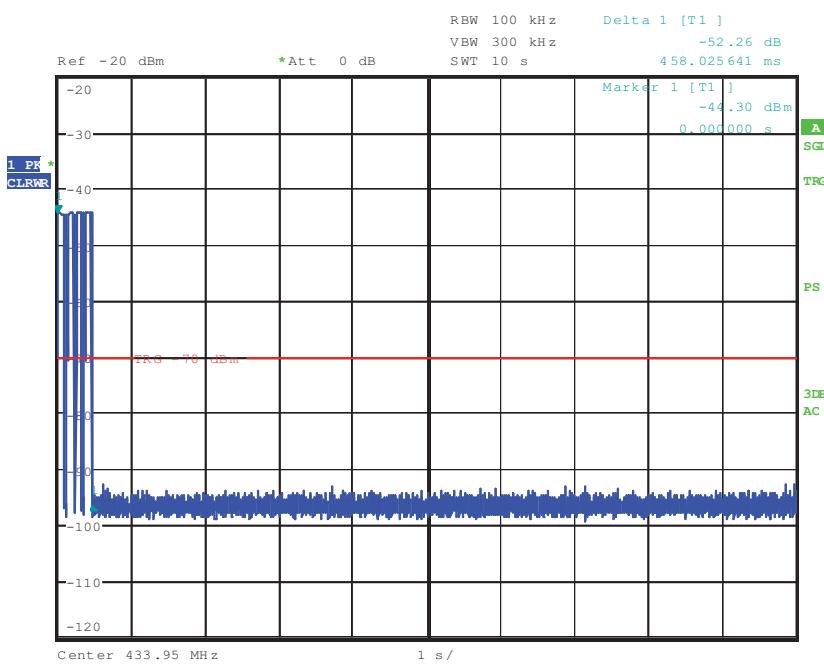
Related Submittals and Grants:	This report is for use with an application for certification of a low power transmitter. One transmitter is included in the application.
Additions, deviations and exclusions from standards	None

6.0 Restrictions (FCC 15C-15.231 / RSS-210 A1.1)

Method:

15.231(a) The provisions of this section are restricted to periodic operation within the band 40.66-40.70 MHz and above 70 MHz. Except as shown in paragraph (e) of this section, the intentional radiator is restricted to the transmission of a control signal such as those used with alarm systems, door openers, remote switches, etc. Continuous transmissions, voice, video and the radio control of toys are not permitted. Data is permitted to be sent with a control signal. The following conditions shall be met to comply with the provisions for this periodic operation:

(1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.


(2) A transmitter activated automatically shall cease transmission within 5 seconds after activation.

(3) Periodic transmissions at regular predetermined intervals are not permitted. However, polling or supervision transmissions, including data, to determine system integrity of transmitters used in security or safety applications are allowed if the total duration of transmissions does not exceed more than two seconds per hour for each transmitter. There is no limit on the number of individual transmissions, provided the total transmission time does not exceed two seconds per hour.

(4) Intentional radiators which are employed for radio control purposes during emergencies involving fire, security, and safety of life, when activated to signal an alarm, may operate during the pendency of the alarm condition

(5) Transmission of set-up information for security systems may exceed the transmission duration limits in paragraphs (a)(1) and (a)(2) of this section, provided such transmissions are under the control of a professional installer and do not exceed ten seconds after a manually operated switch is released or a transmitter is activated automatically. Such set-up information may include data.

Plot:

Date: 23.OCT.2012 16:55:00

10s Plot

6.0 Restrictions (FCC 15C-15.231 / RSS-210 A1.1)

Data:

15.231(a), RSS-210 A1.1

	Response	Requirement
Frequency Range (Mhz, max)	433.9	40.66-40.70 MHz and > 70MHz
Frequency Range (MHz, min)	433.9	40.66-40.70 MHz and > 70MHz
Transmit only control signal?	Yes	Only control signal allowed
Continuous transmission?	No	No
Voice transmission?	No	No
Video transmission?	No	No
Radio control of toy?	No	No

15.231(a)(1), RSS-210 A1.1.1(a)

Manually operated?	Yes	
Deactivates within 5 seconds?	Yes	Yes
Show plot (10 second sweep)	Present	

15.231(a)(2), RSS-210 A1.1.1(b)

Automatically operated?	No	
Deactivates within 5 seconds?	N/A	
Show plot (10 second sweep)	N/A	

15.231(a)(3), RSS-210 A1.1.1(c)

Periodically transmits at predetermined intervals?	No	Allowed, with restrictions
--	----	----------------------------

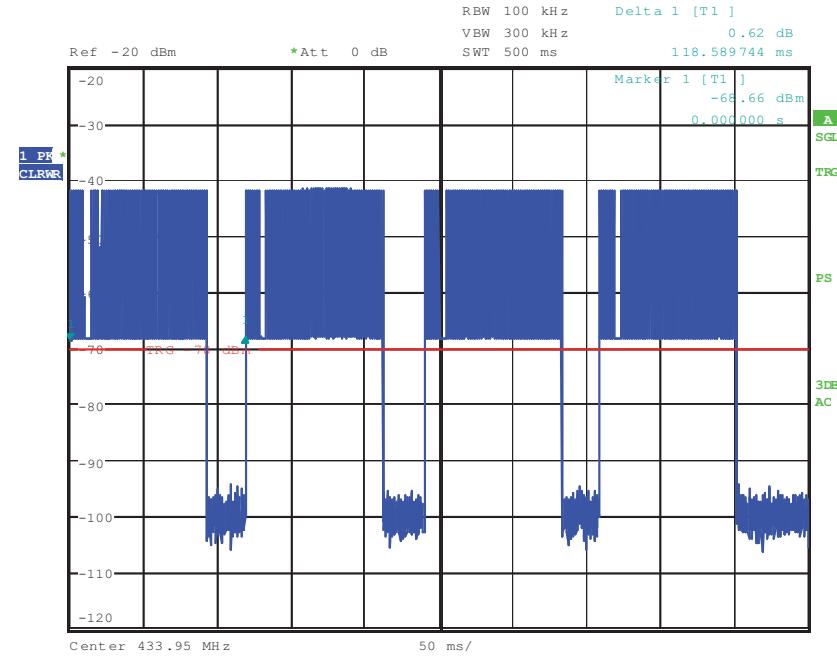
7.0 Duty Cycle Determination (FCC 15A-15.35(c) / RSS-GEN 4.5)

Method:

(c) Unless otherwise specified, e.g. §15.255(b), when the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted with any application for certification or shall be retained in the measurement data file for equipment subject to notification or verification.

Determine the period of the pulse train, T, in mSec and record the results. T is defined as the time from the beginning of one pulse train to the beginning of the next pulse train.

Count the number of different types of pulses, N and record the results.

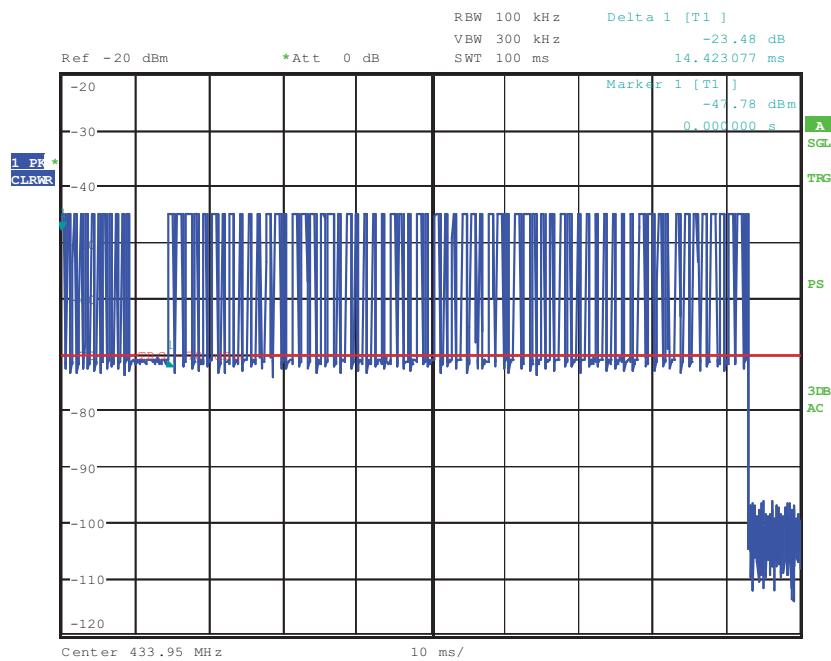

For each of the different types of pulses, count the number of occurrences within one pulse train.

Use the Duty Cycle Correction Factor, DCCF, from the results table and use it to adjust the field strength measurements recorded for radiated emissions.

Test Equipment Used:

Description:	Manufacturer:	Model:	Asset Number:	Cal Date:	Cal Due:
Spectrum Analyzer, 20Hz-50GHz	Rohde & Schwarz	FSU 50	100005	12/07/2011	12/07/2012

Plot:

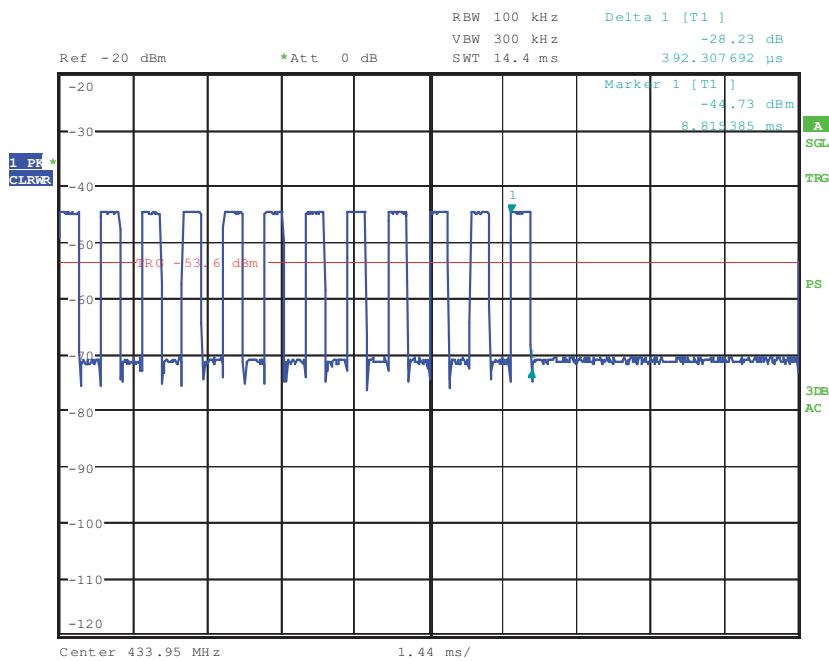


Date: 23.OCT.2012 16:59:30

One Button Push - 500ms Plot

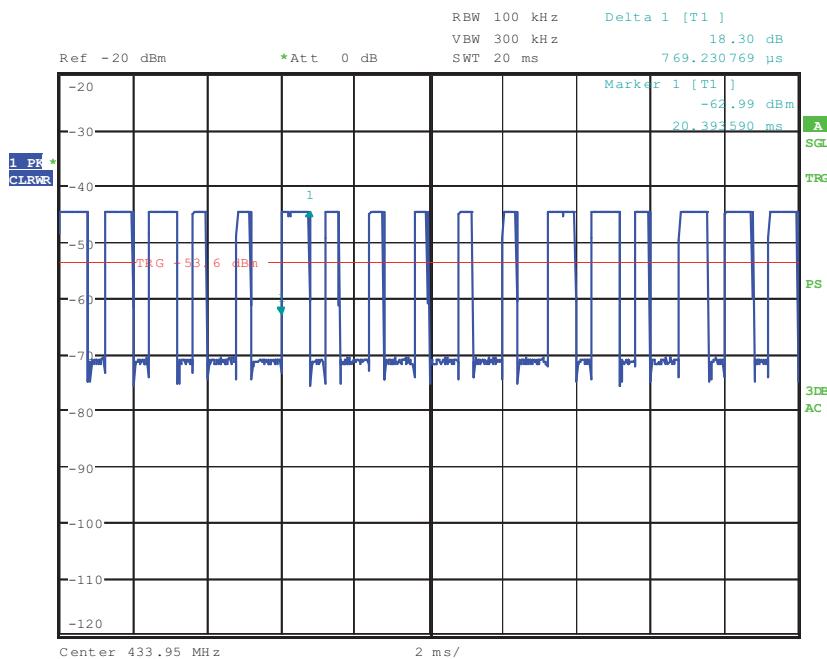
7.0 Duty Cycle Determination (FCC 15A-15.35(c) / RSS-GEN 4.5)

Plot:



Date: 23.OCT.2012 17:00:50

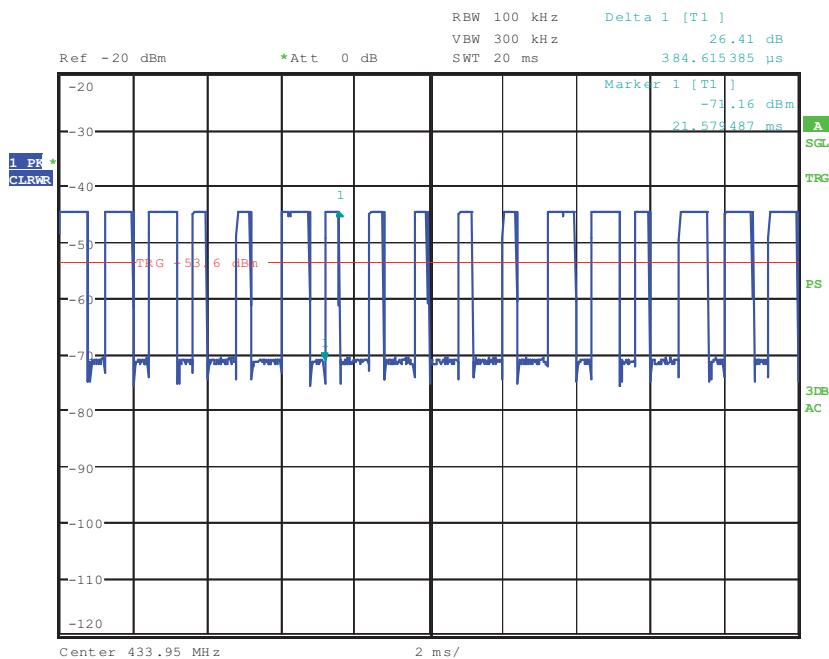
100ms Plot


7.0 Duty Cycle Determination (FCC 15A-15.35(c) / RSS-GEN 4.5)

Plot:

7.0 Duty Cycle Determination (FCC 15A-15.35(c) / RSS-GEN 4.5)

Plot:

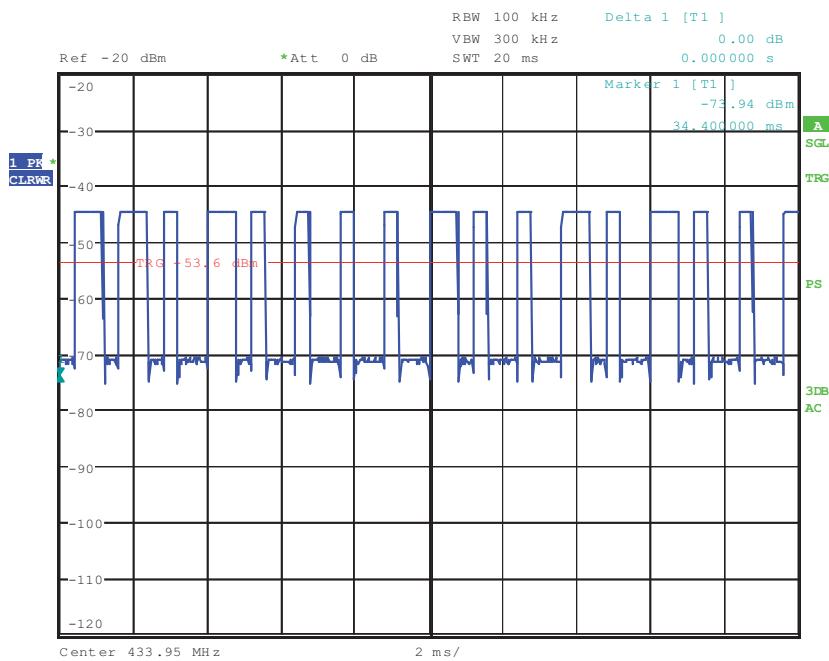


Date: 23.OCT.2012 17:06:06

Pulse Train - 14.4 - 34.4ms (Wide Pulse)

7.0 Duty Cycle Determination (FCC 15A-15.35(c) / RSS-GEN 4.5)

Plot:

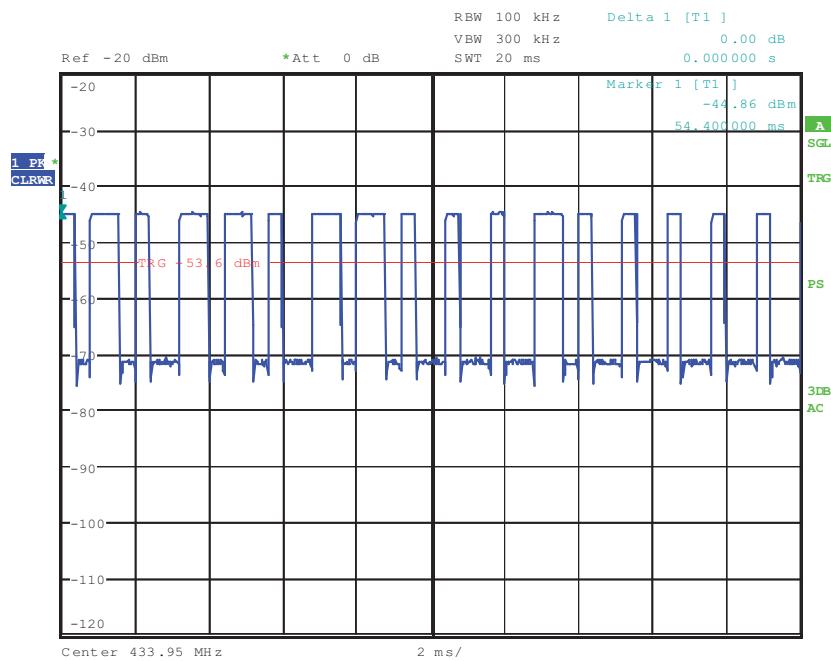


Date: 23.OCT.2012 17:06:31

Pulse Train - 14.4 - 34.4ms (Narrow Pulse)

7.0 Duty Cycle Determination (FCC 15A-15.35(c) / RSS-GEN 4.5)

Plot:

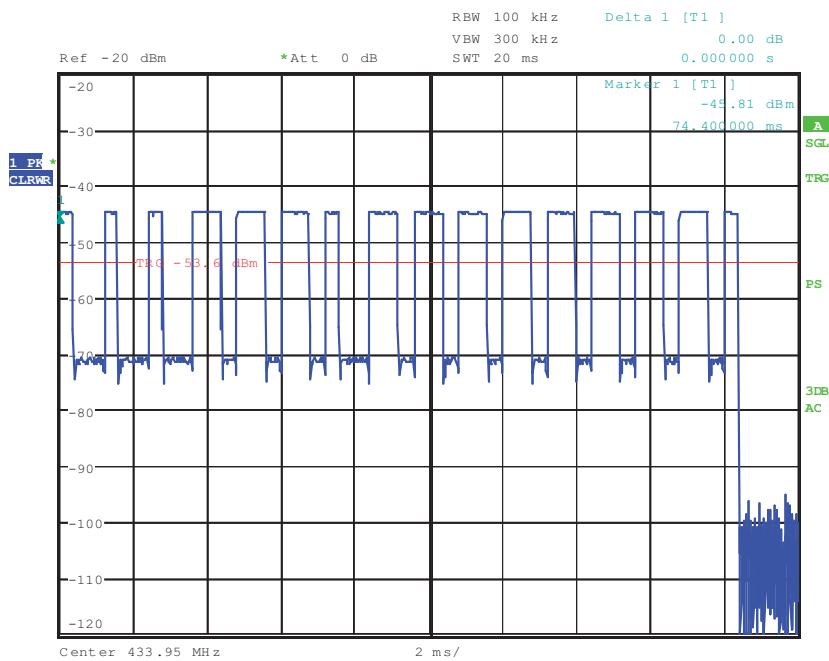


Date: 23.OCT.2012 17:08:24

Pulse Train - 34.4 - 54.4ms

7.0 Duty Cycle Determination (FCC 15A-15.35(c) / RSS-GEN 4.5)

Plot:



Date: 23.OCT.2012 17:09:26

Pulse Train - 54.4ms - 74.4ms

7.0 Duty Cycle Determination (FCC 15A-15.35(c) / RSS-GEN 4.5)

Plot:

Date: 23.OCT.2012 17:10:10

Pulse Train - 74.4ms - 94.4ms

7.0 Duty Cycle Determination (FCC 15A-15.35(c) / RSS-GEN 4.5)

Data:

Duration of Pulse Train, T (mSec):	118
Averaging Interval, A _I (mSec):	100
Number of different Pulses, N:	3

	Number (#P _x)	Pulse Width, mSec (PW _x)	Product (#P _x)*(PW _x)
Pulse Width 1	12	0.392	4.704
Pulse Width 2	33	0.769	25.377
Pulse Width 3	32	0.385	12.32
Pulse Width 4			
Pulse Width 5			
Pulse Width 6			
Pulse Width 7			
Pulse Width 8			
Pulse Width 9			
Pulse Width 10			

Duty Cycle:	0.42401
Duty Cycle Correction Factor, dB:	-7.5

$$T_{on} = (PW_1 * \#P_1) + (PW_2 * \#P_2) + \dots + (PW_n * \#P_n)$$

$$DutyCycle = T_{on} \div A_I$$

$$DCCF = 20 * \log_{10}(DutyCycle)$$

8.0 Radiated Emissions (FCC 15.231(b) / RSS-210 A1.1.2)

Method:

(b) In addition to the provisions of §15.205, the field strength of emissions from intentional radiators operated under this section shall not exceed the limits specified in FCC Part 15.231(b).

Intentional radiators operating under the provisions of this section shall demonstrate compliance with the limits on the field strength of emissions, as shown in the above table, based on the average value of the measured emissions. As an alternative, compliance with the limits in the above table may be based on the use of measurement instrumentation with a CISPR quasi-peak detector. The specific method of measurement employed shall be specified in the application for equipment authorization. If average emission measurements are employed, the provisions in §15.35 for averaging pulsed emissions and for limiting peak emissions apply. Further, compliance with the provisions of §15.205 shall be demonstrated using the measurement instrumentation specified in that section.

The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in §15.209, whichever limit permits a higher field strength.

For radiated emission measurements, the EUT is attached to a styro-foam block and placed on a non-conductive table whose top is 80cm above the ground plane. If the EUT is handheld, the signal shall be maximized through rotation and placement in the three orthogonal axes.

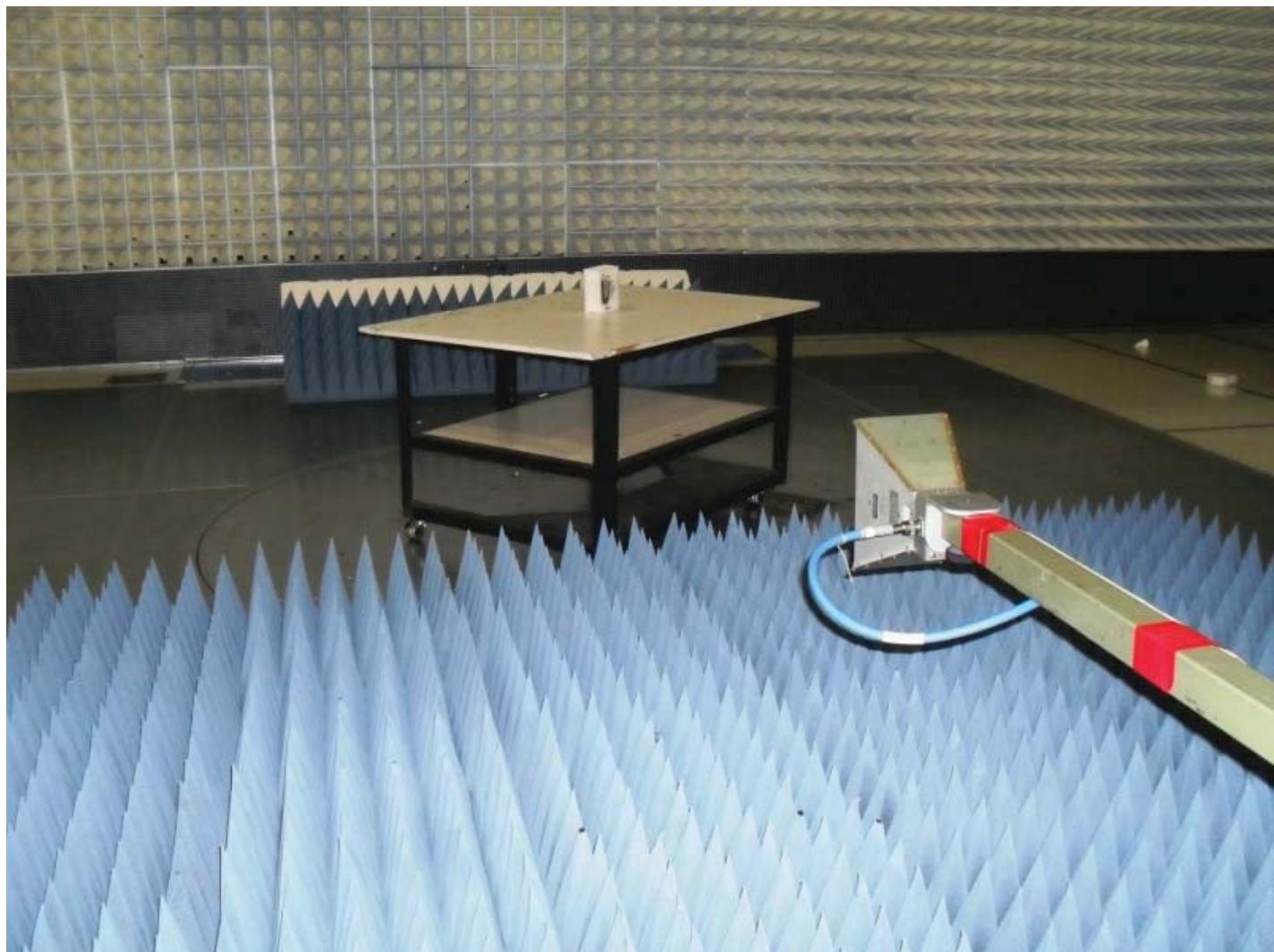
During the test the EUT is rotated and the antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters.

Radiated emissions are taken at 3 meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. All readings are extrapolated back to the equivalent 3-meter reading using inverse scaling with distance.

Radiated emission measurements were performed from 30 MHz to 10 times the highest frequency generated in the EUT. When provided, emissions plots are taken with a peak detector unless otherwise indicated.

Analyzer resolution is:

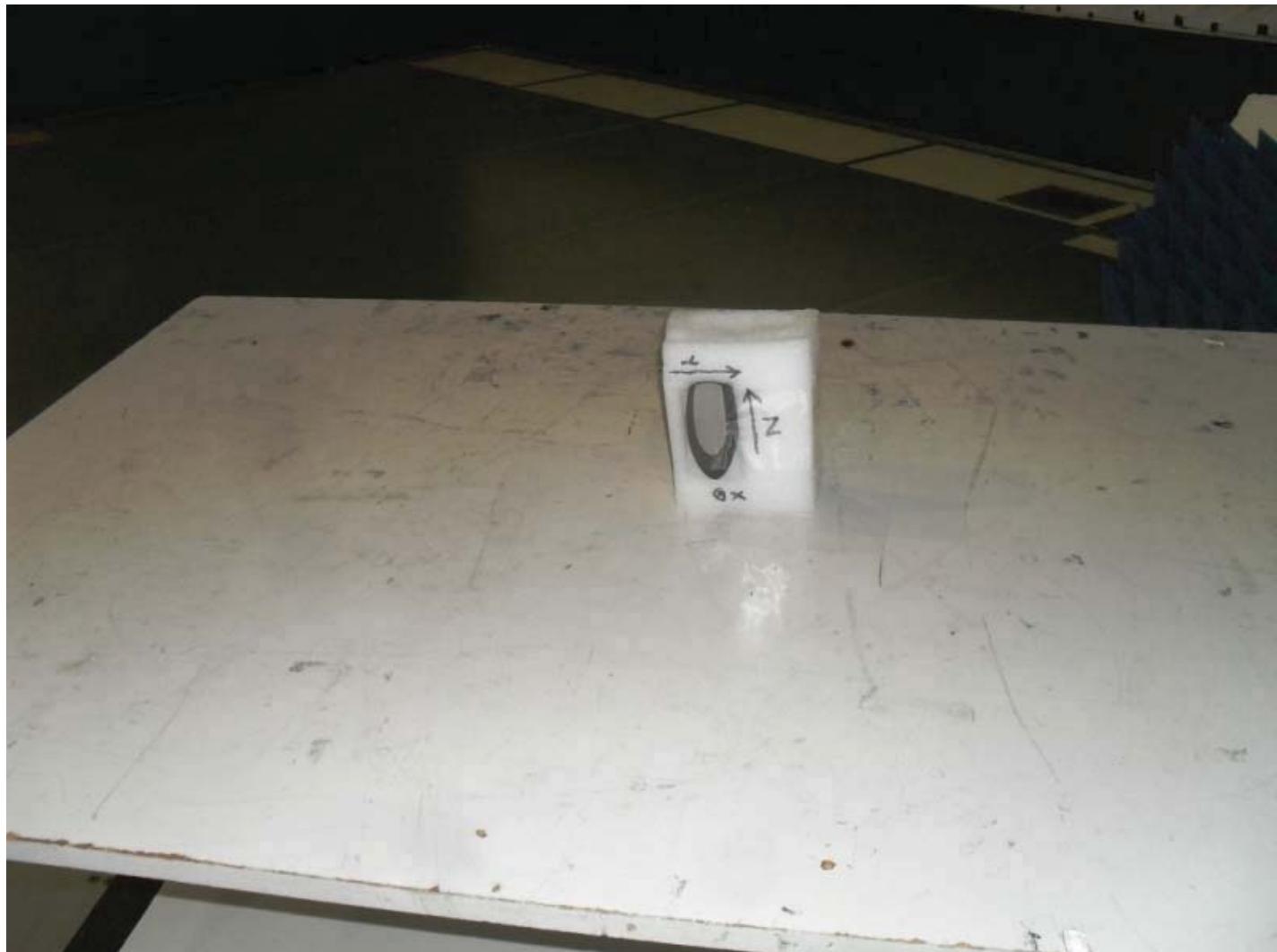
- 100 kHz or greater for frequencies 1000 MHz and below,
- 1 MHz for frequencies above 1000 MHz.


Equipment setup for radiated disturbance tests shall follow the guidelines of ANSI C63.4:2003.

The Peak value of the Field Strength was measured. The Average value was obtained from the Peak by subtracting the Duty Cycle Correction Factor or by using an average detector.

Test Equipment Used:

Description:	Manufacturer:	Model:	Asset Number:	Cal Date:	Cal Due:
7m Cable, 0.01-18GHz	Storm Products Co.	A81-0303-275.6	ST-5	07/25/2012	07/25/2013
7m Cable, 0.01-18GHz	Storm Products Co.	A81-0303-275.6	ST-4	07/25/2012	07/25/2013
Antenna, BiLog, 20-2000MHz	Chase	CBL6112A	211518	02/21/2012	02/21/2013
Antenna, Horn, <18 GHz	EMCO	3115	213061	07/19/2012	07/19/2013
Cable MP3, 18 GHz, N, 10m	Megaphase	G919-NKNK-394	MP3	05/07/2012	05/07/2013
Cable, 3-meters, 1-18GHz	Megaphase	EM18-N1N1-119	MP-HF-2	06/28/2012	06/28/2013
Cable, 3-meters, 1-18GHz	Megaphase	EM18-N1N1-119	MP-HF-1	06/28/2012	06/28/2013
Cable, N-N 3 meters, 18GHz	Megaphase	TM18 NKNK 118	E203	05/07/2012	05/07/2013
Cable, N-N, 3 meters, 18GHz	Megaphase	TM18-NKNK-118	E206	05/07/2012	05/07/2013
EMI Receiver	Hewlett Packard	8546A	213109	12/29/2011	12/29/2012
EMI Receiver, Preselector section	Hewlett Packard	85460A	213108	12/29/2011	12/29/2012
Filter, 1 GHz High Pass	Filtek	HP12/1000-5AB	213156a	07/06/2012	07/06/2013
Preamplifier, 10 MHz to 2000 MHz, 30 dB gain	Mini-Circuits	ZKL-2	200069	07/19/2012	07/19/2013
Preamplifier, 20 MHz to 18 GHz, 40 dB	A.H. Systems	PAM-0118	200108	05/22/2012	05/22/2013
Spectrum Analyzer, 20Hz-50GHz	Rohde & Schwarz	FSU 50	100005	12/07/2011	12/07/2012

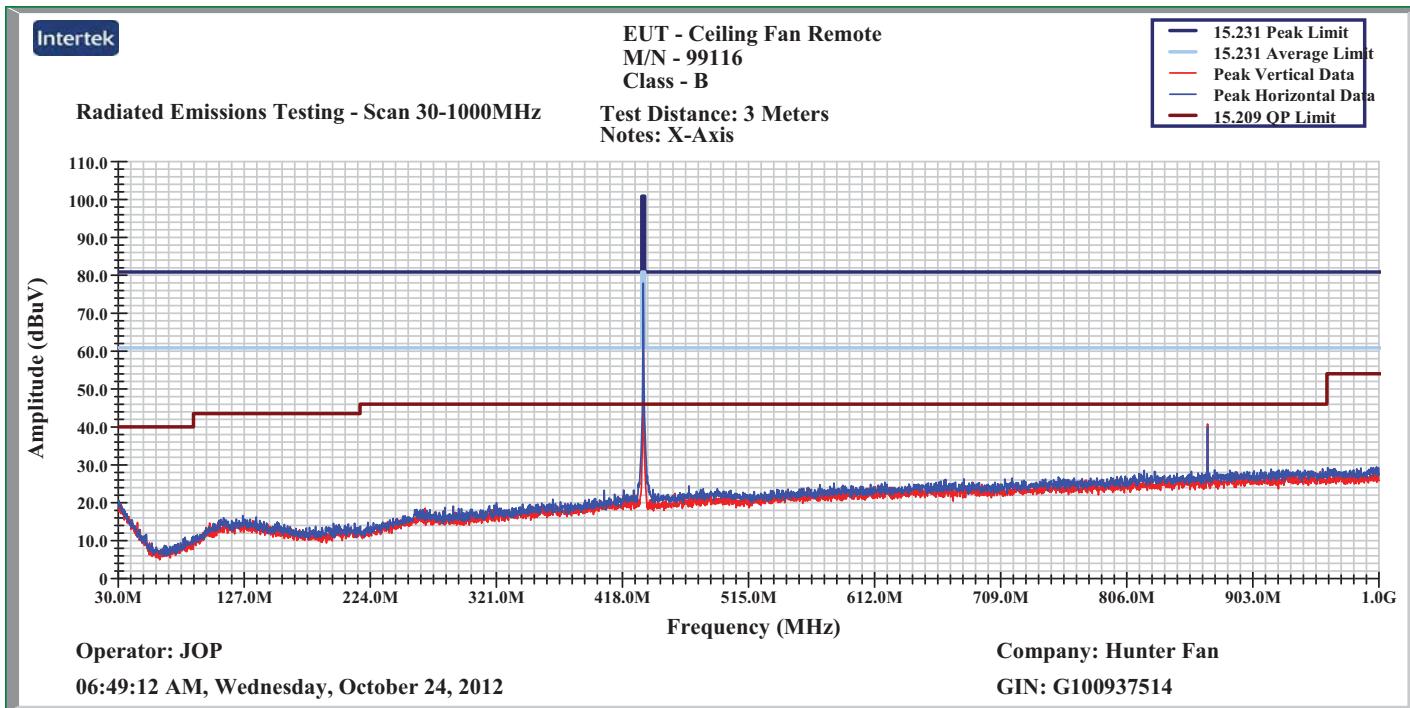

Results: The sample tested was found to Comply.

8.0 Radiated Emissions (FCC 15.231(b) / RSS-210 A1.1.2)**Photo:**

Test Setup

8.0 Radiated Emissions (FCC 15.231(b) / RSS-210 A1.1.2)

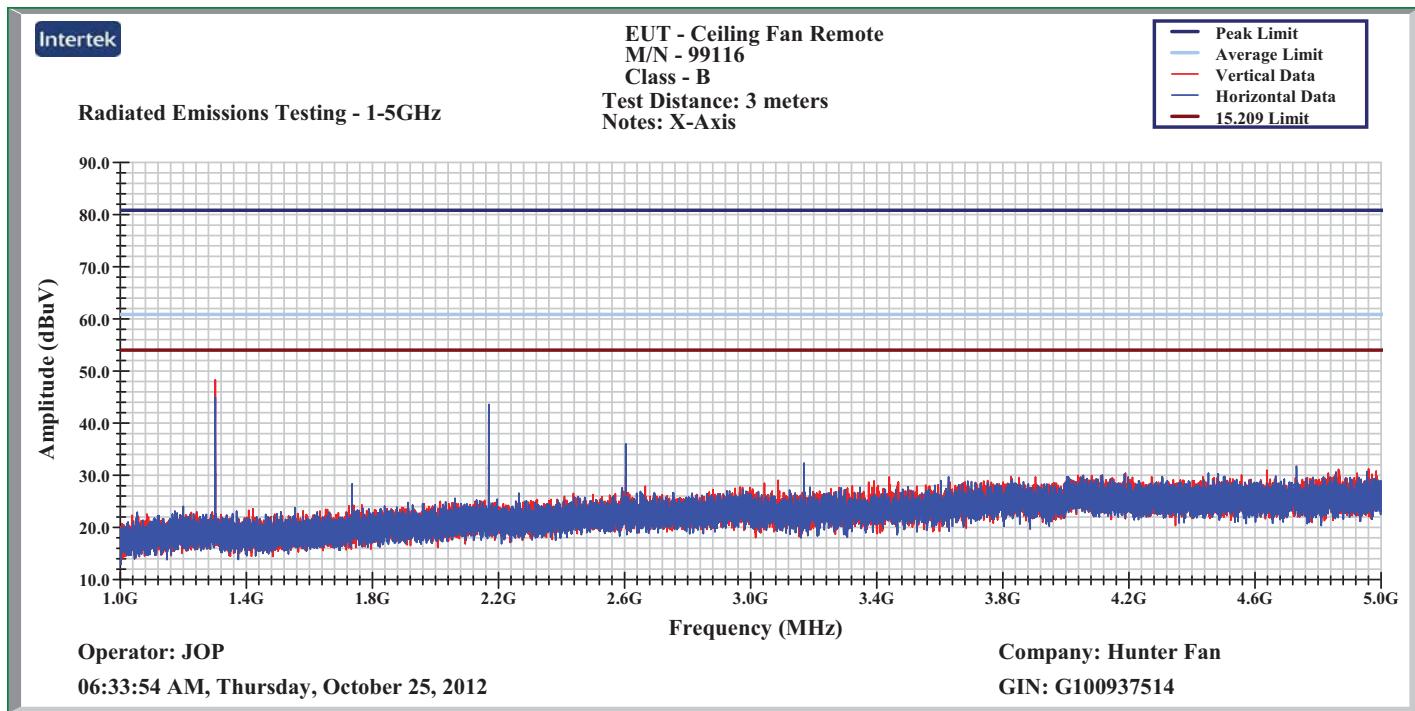
Photo:



Test Setup

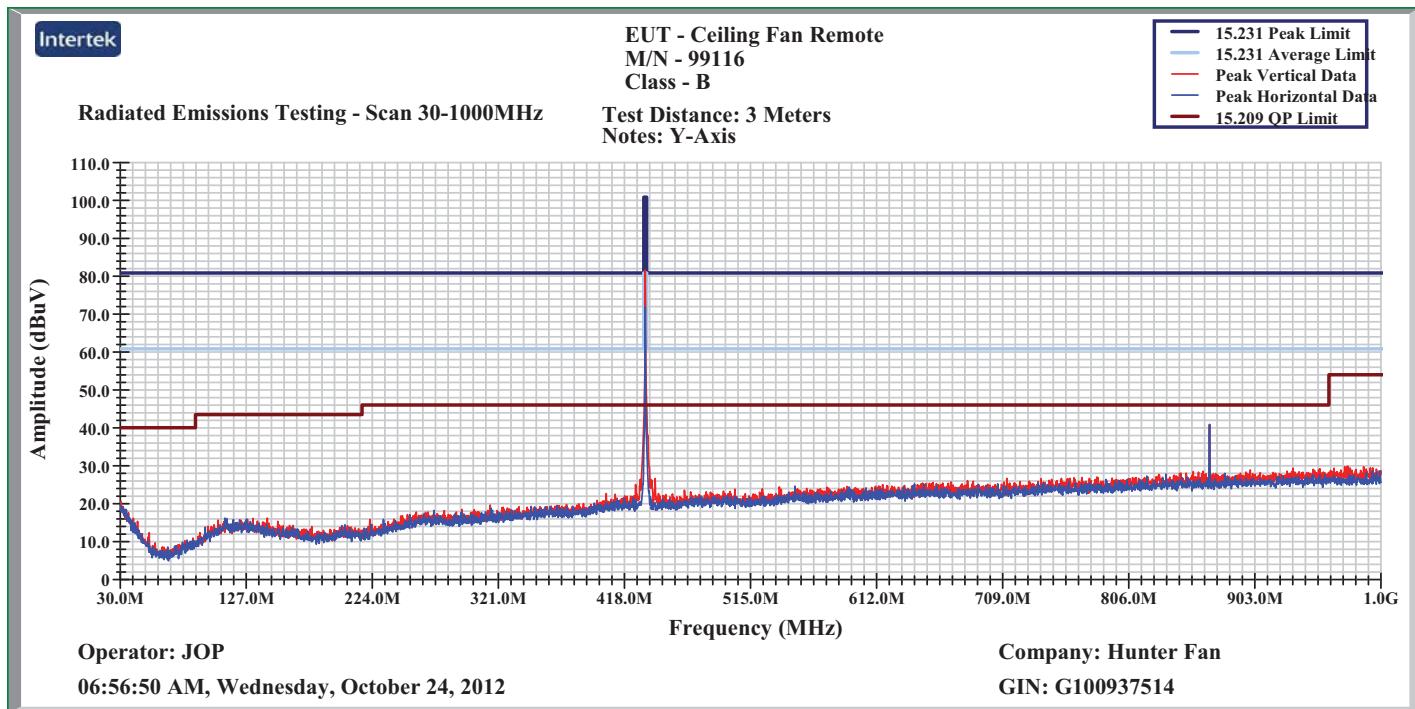
8.0 Radiated Emissions (FCC 15.231(b) / RSS-210 A1.1.2)**Photo:**

Test Setup

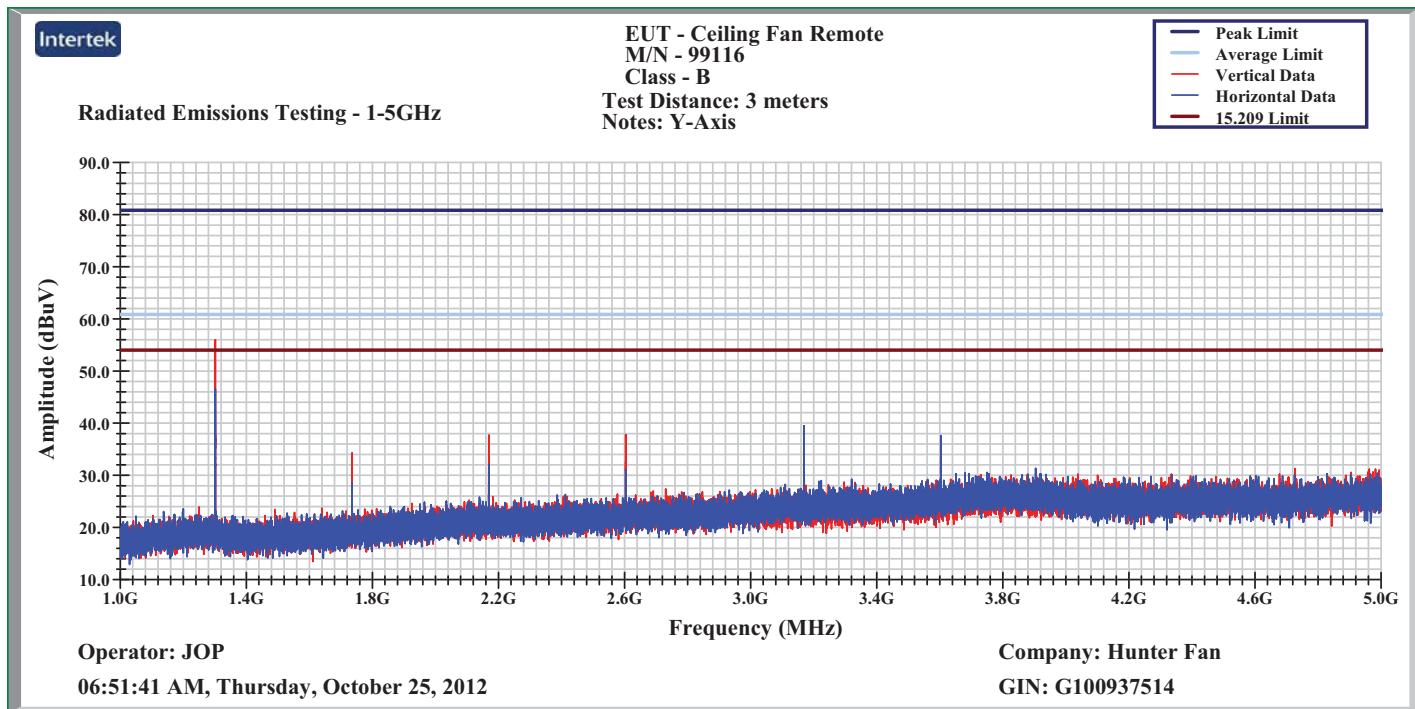

8.0 Radiated Emissions (FCC 15.231(b) / RSS-210 A1.1.2)

Peak Plot - X-Axis (30-1000MHz)

8.0 Radiated Emissions (FCC 15.231(b) / RSS-210 A1.1.2)

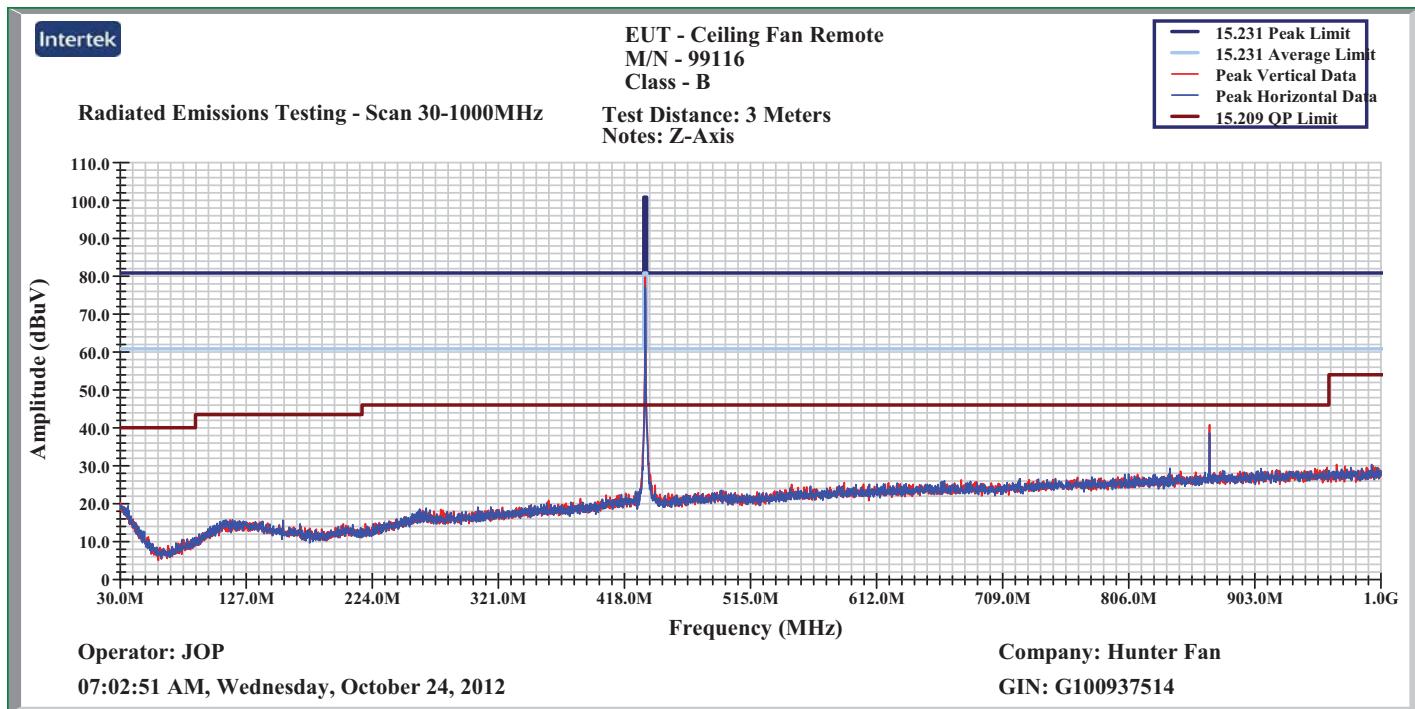

Plot:

Peak Plot - X-Axis (1-5GHz)


8.0 Radiated Emissions (FCC 15.231(b) / RSS-210 A1.1.2)

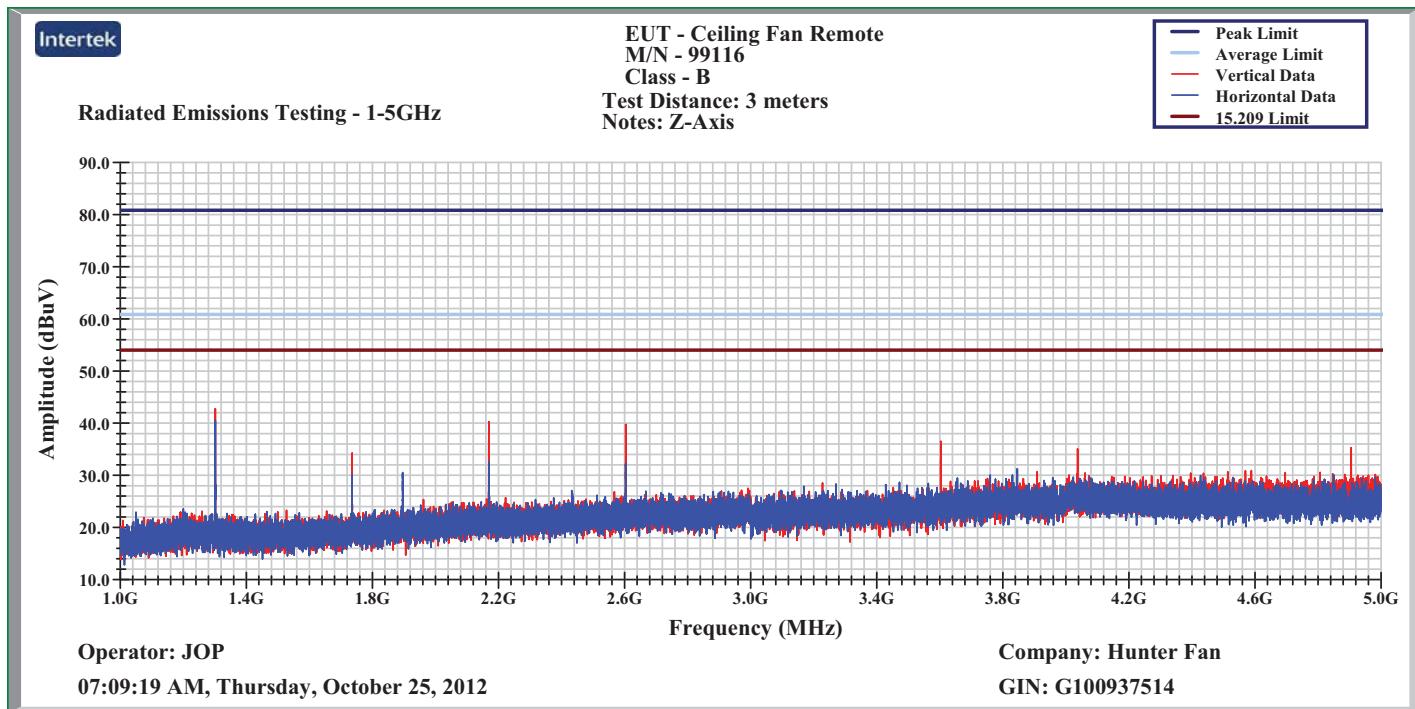
Plot:

8.0 Radiated Emissions (FCC 15.231(b) / RSS-210 A1.1.2)


Plot:

Peak Plot - Y-Axis (1-5GHz)

8.0 Radiated Emissions (FCC 15.231(b) / RSS-210 A1.1.2)


Plot:

Peak Plot - Z-Axis (1-5GHz)

8.0 Radiated Emissions (FCC 15.231(b) / RSS-210 A1.1.2)

Plot:

Peak Plot - Z-Axis (30-1000MHz)

8.0 Radiated Emissions (FCC 15.231(b) / RSS-210 A1.1.2)

Date: 10/24/2012

Limit: 15.231 Pk Limit at 434MHz-3m

Frequency Range (MHz): 30-1000

Test Distance (m): 3

Input power: New Battery

Modifications for compliance (y/n): N

Notes: Continuous Transmit Mode

A	B	C	D	E	F	G	H	I	J	K
Ant. Pol. (V/H)	Frequency MHz	Reading dB(uV)	Antenna Factor dB(1/m)	Cable Loss dB	Pre-amp Factor dB	Duty Cycle Factor dB	Net dB(uV/m)	3m Limit dB(uV/m)	Margin dB	Axis / Detector
V	433.963	83.8	16.8	3.9	37.1	0.0	67.4	94.0	-26.6	X / Peak
V	433.963	83.8	16.8	3.9	37.1	7.5	59.9	74.0	-14.1	X / Peak
H	433.963	95.8	16.8	3.9	37.1	0.0	79.5	94.0	-14.6	X / Peak
H	433.963	95.8	16.8	3.9	37.1	7.5	72.0	74.0	-2.1	X / Peak
V	433.963	96.9	16.8	3.9	37.1	0.0	80.5	94.0	-13.5	Y / Peak
V	433.963	96.9	16.8	3.9	37.1	7.5	73.0	74.0	-1.0	Y / Peak
H	433.963	92.5	16.8	3.9	37.1	0.0	76.1	94.0	-17.9	Y / Peak
H	433.963	92.5	16.8	3.9	37.1	7.5	68.6	74.0	-5.4	Y / Peak
V	433.963	96.0	16.8	3.9	37.1	0.0	79.6	94.0	-14.4	Z / Peak
V	433.963	96.0	16.8	3.9	37.1	7.5	72.1	74.0	-1.9	Z / Peak
H	433.963	94.9	16.8	3.9	37.1	0.0	78.6	94.0	-15.5	Z / Peak
H	433.963	94.9	16.8	3.9	37.1	7.5	71.1	74.0	-2.9	Z / Peak
Calculations		G=C+D+E-F			I=G-H					

Fundamental Measurements

8.0 Radiated Emissions (FCC 15.231(b) / RSS-210 A1.1.2)

Data:

Date: 10/25/2012

Limit: FCC15 Class B-3m

Frequency Range (MHz): 30-5000

Test Distance (m): 3

Input power: 3.3Vdc CR2032 Battery

Modifications for compliance (y/n): n

Notes: X-Axis

A	B	C	D	E	F	G	H	I	J	K
Ant. Pol. (V/H)	Frequency MHz	Reading dB(uV)	Antenna Factor dB(1/m)	Cable Loss dB	Pre-amp Factor dB	Duty Cycle Factor dB	Net dB(uV/m)	3m Limit dB(uV/m)	Margin dB	Axis / Detector
v	867.900	51.2	20.8	5.7	36.4	0.0	41.3	74.0	-32.7	X / Peak
v	867.900	51.2	20.8	5.7	36.4	7.5	33.8	54.0	-20.2	X / Peak
h	867.900	49.7	20.8	5.7	36.4	0.0	39.8	74.0	-34.2	X / Peak
h	867.900	49.7	20.8	5.7	36.4	7.5	32.3	54.0	-21.7	X / Peak
v	1301.800	56.1	25.8	6.2	37.2	0.0	50.8	74.0	-23.2	X / Peak
v	1301.800	56.1	25.8	6.2	37.2	7.5	43.3	54.0	-10.7	X / Peak
h	1301.800	54.8	25.6	6.2	37.2	0.0	49.3	74.0	-24.7	X / Peak
h	1301.800	54.8	25.6	6.2	37.2	7.5	41.8	54.0	-12.2	X / Peak
h	2169.700	53.8	27.8	7.4	37.5	0.0	51.6	80.8	-29.2	X / Peak
h	2169.700	53.8	27.8	7.4	37.5	7.5	44.1	60.8	-16.7	X / Peak
h	2603.650	49.8	28.8	7.5	37.7	0.0	48.4	80.8	-32.4	X / Peak
h	2603.650	49.8	28.8	7.5	37.7	7.5	40.9	60.8	-19.9	X / Peak
Calculations		G=C+D+E-F			I=G-H					

Note: X, Y, and Z denote the EUT was placed in the X, Y and Z orthogonal axes.

* Restricted band of operation

Spurious Emissions - X-Axis

8.0 Radiated Emissions (FCC 15.231(b) / RSS-210 A1.1.2)

Data:

Date: 10/25/2012

Limit: FCC15 Class B-3m

Frequency Range (MHz): 30-5000

Test Distance (m): 3

Input power: 3.3Vdc CR2032 Battery

Modifications for compliance (y/n): n

Notes: Y-Axis

A	B	C	D	E	F	G	H	I	J	K
Ant. Pol. (V/H)	Frequency MHz	Reading dB(uV)	Antenna Factor dB(1/m)	Cable Loss dB	Pre-amp Factor dB	Duty Cycle Factor dB	Net dB(uV/m)	3m Limit dB(uV/m)	Margin dB	Axis / Detector
v	867.900	48.6	20.8	5.7	36.4	0.0	38.7	74.0	-35.3	Y/ Peak
v	867.900	48.6	20.8	5.7	36.4	7.5	31.2	54.0	-22.8	Y/ Peak
h	867.900	52.5	20.8	5.7	36.4	0.0	42.6	74.0	-31.4	Y/ Peak
h	867.900	52.5	20.8	5.7	36.4	7.5	35.1	54.0	-18.9	Y/ Peak
v	1301.800	60.7	25.8	6.2	37.2	0.0	55.4	74.0	-18.6	Y/ Peak
v	1301.800	60.7	25.8	6.2	37.2	7.5	47.9	54.0	-6.1	Y/ Peak
h	1301.800	54.2	25.6	6.2	37.2	0.0	48.7	74.0	-25.3	Y/ Peak
h	1301.800	54.2	25.6	6.2	37.2	7.5	41.2	54.0	-12.8	Y/ Peak
v	2169.700	47.7	27.6	7.4	37.5	0.0	45.2	80.8	-35.6	Y/ Peak
v	2169.700	47.7	27.6	7.4	37.5	7.5	37.7	60.8	-23.1	Y/ Peak
v	2603.650	42.2	28.7	7.5	37.7	0.0	40.7	80.8	-40.1	Y/ Peak
v	2603.650	42.2	28.7	7.5	37.7	7.5	33.2	60.8	-27.6	Y/ Peak
v	3169.700	38.0	30.3	9.0	37.9	0.0	39.5	80.8	-41.3	Y/ Peak
v	3169.700	38.0	30.3	9.0	37.9	7.5	32.0	60.8	-28.8	Y/ Peak
Calculations		G=C+D+E-F			I=G-H					

Note: X, Y, and Z denote the EUT was placed in the X, Y and Z orthogonal axes.

* Restricted band of operation

Spurious Emissions - Y-Axis

8.0 Radiated Emissions (FCC 15.231(b) / RSS-210 A1.1.2)

Data:

Date: 10/25/2012

Limit: FCC15 Class B-3m

Frequency Range (MHz): 30-5000

Test Distance (m): 3

Input power: 3.3Vdc CR2032 Battery

Modifications for compliance (y/n): n

Notes: Z-Axis

A	B	C	D	E	F	G	H	I	J	K
Ant. Pol. (V/H)	Frequency MHz	Reading dB(uV)	Antenna Factor dB(1/m)	Cable Loss dB	Pre-amp Factor dB	Duty Cycle Factor dB	Net dB(uV/m)	3m Limit dB(uV/m)	Margin dB	Axis / Detector
v	867.900	51.6	20.8	5.7	36.4	0.0	41.7	74.0	-32.3	Z / Peak
v	867.900	51.6	20.8	5.7	36.4	7.5	34.2	54.0	-19.8	Z / Peak
h	867.900	48.2	20.8	5.7	36.4	0.0	38.3	74.0	-35.7	Z / Peak
h	867.900	48.2	20.8	5.7	36.4	7.5	30.8	54.0	-23.2	Z / Peak
v	1301.800	52.2	25.8	6.2	37.2	0.0	46.9	74.0	-27.1	Z / Peak
v	1301.800	52.2	25.8	6.2	37.2	7.5	39.4	54.0	-14.6	Z / Peak
h	1301.800	58.9	25.6	6.2	37.2	0.0	53.4	74.0	-20.6	Z / Peak
h	1301.800	58.9	25.6	6.2	37.2	7.5	45.9	54.0	-8.1	Z / Peak
v	2169.700	51.9	27.6	7.4	37.5	0.0	49.4	80.8	-31.4	Z / Peak
v	2169.700	51.9	27.6	7.4	37.5	7.5	41.9	60.8	-18.9	Z / Peak
v	2603.650	48.5	28.7	7.5	37.7	0.0	47.0	80.8	-33.8	Z / Peak
v	2603.650	48.5	28.7	7.5	37.7	7.5	39.5	60.8	-21.3	Z / Peak
Calculations		G=C+D+E-F			I=G-H					

Note: X, Y, and Z denote the EUT was placed in the X, Y and Z orthogonal axes.

* Restricted band of operation

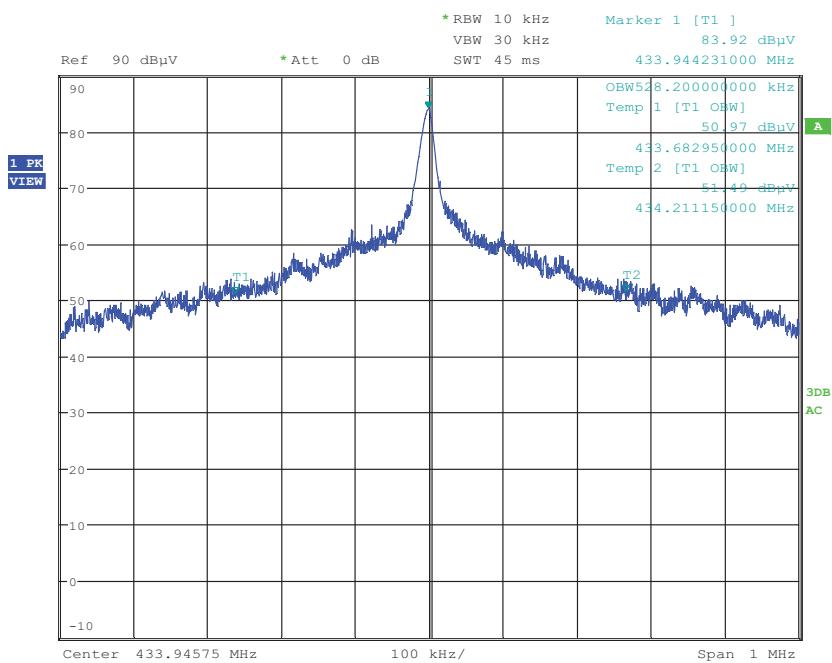
Spurious Emissions - Z-Axis

9.0 Bandwidth Requirements (FCC 15.231(c) / RSS-210 A1.1.3)

Method:

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

- Center Frequency is set to the fundamental of transmitter.
- Resolution Bandwidth is set to approximately 1% of the emission bandwidth.
- Video Bandwidth is set greater than or equal to the Resolution Bandwidth.

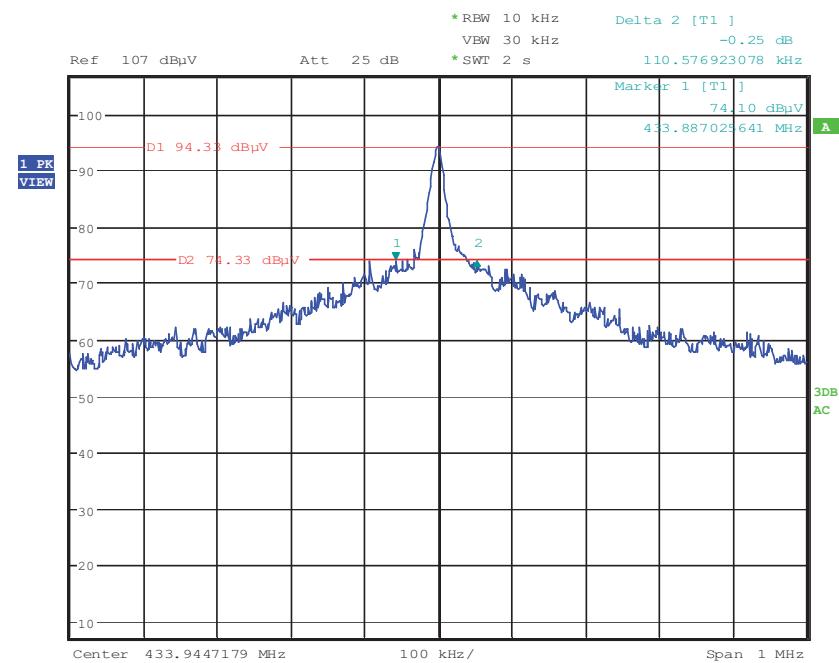

Test Equipment Used:

Description:	Manufacturer:	Model:	Asset Number:	Cal Date:	Cal Due:
Spectrum Analyzer, 20Hz-50GHz	Rohde & Schwarz	FSU 50	100005	12/07/2011	12/07/2012

Results: The sample tested was found to Comply.

9.0 Bandwidth Requirements (FCC 15.231(c) / RSS-210 A1.1.3)

Plot:



Date: 25.OCT.2012 10:15:33

Occupied Bandwidth

9.0 Bandwidth Requirements (FCC 15.231(c) / RSS-210 A1.1.3)

Plot:

Date: 24.OCT.2012 07:36:18

20dB Bandwidth

9.0 Bandwidth Requirements (FCC 15.231(c) / RSS-210 A1.1.3)**Data:**

Fundamental Frequency MHz	Measured Bandwidth MHz	Bandwidth Limit MHz
20dB Bandwidth		
433.9	0.0661	1.08475
99% Bandwidth		
433.9	0.528	1.08475

Suggested Instrument Settings	
RBW (kHz):	11
VBW (kHz):	33
Span (MHz):	1.085
Sweep time (s):	>1