

MOBILE DEVICES BUSINESS

PRODUCT SAFETY AND COMPLIANCE EMC LABORATORY

EMC TEST REPORT

<u>Test Report Number</u> – 19799-1 Supplement

Report Date – January 30, 2007

The test results contained herein relate only to the model(s) identified. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical characteristics.

As the responsible EMC Engineer, I hereby declare that the equipment tested as specified in this report conforms to the requirements indicated.

Signature:

Name: Albert J. Patapack

Title: EMC Engineer

Date: January 30, 2007

This report must not be reproduced, except in full, without written approval from this laboratory.

THIS REPORT MUST NOT BE USED TO CLAIM PRODUCT ENDORSEMENT BY A2LA OR ANY AGENCY OF THE U.S. GOVERNMENT.

A2LA Certificate Number: 2518-02

Test Report Number: 19799-1 Supplement 1 of 10 EXHIBIT 6A3

Table of Contents

Description	Page
Test Report Details	3
Applicable Standards	3
Summary of Testing	4
General and Special Conditions	4
Equipment and Cable Configuration	5
Measurement Procedures and Data	6

Test Report Number: 19799-1 Supplement 2 of 10 EXHIBIT 6A3

Test Report Details

Tests Performed By: Motorola Mobile Devices business (MDb)

Product Safety and Compliance Group

600 North US Hwy 45 Libertyville, IL 60048

PH (847) 523-6167 Fax (847) 523-4538 Motorola MDb FRN: 0004321311 FCC Registration Number: 316588 Industry Canada Number: IC3908-1

Tests Requested By: Motorola Inc.

Mobile Devices business 600 North US Hwy 45 Libertyville, IL 60048

Signaling Capability: GSM 1900, EDGE, Bluetooth

FCC ID: IHDT6HQ1

Serial Numbers: 004401023508993, 004401023509207,

004401023509041, 004010235091132,

004401023509082

Testing Complete Date: January 30, 2007

Applicable Standards

All tests and measurements indicated in this document were performed in accordance with the Code of Federal Regulations Title 47:

X Part 15 Subpart B – Unintentional Radiators

Applicable Standards: ANSI 63.4 2003

Test Report Number: 19799-1 Supplement 3 of 10 EXHIBIT 6A3

Summary of Testing

Test	Test Name	
#		Pass/Fail
1	Field Strength of Spurious Emissions from Unintentional Radiators	Pass
2	AC Line Conducted Emissions	Pass
Test #	Test Name	Margin with respect to the Limit
1	Field Strength of Spurious Emissions from Unintentional Radiators	see results
2	AC Line Conducted Emissions	see results

The margin with respect to the limit is the minimum margin for all modes and bands.

General and Special Conditions

The EUT was tested using a fully charged battery.

All testing was done in an indoor controlled environment with an average temperature of 22° C and relative humidity of 50%.

Test Report Number: 19799-1 Supplement 4 of 10 EXHIBIT 6A3

Equipment List

Manufacturer	Equipment Type	Model No.	Serial Number	Calibration Due Date	
Rohde Schwarz	Receiver	ESI26	100001	3/08/07	
Rohde Schwarz	Receiver	ESI40	100226	6/05/07	
A.H. Systems Inc.	DRG Horn Antenna	SAS 200/571	365	5/12/07	
ETS	Log-Periodic Antenna	3148	1188	6/05/07	
ETS	Biconical Antenna	3110B	3370	3/03/07	
Attenuator	Weinschel	AS-6	7075	6/29/07	
Attenuator	Attenuator Weinschel		6675	1/06/07	
Attenuator	Weinschel	AS-6	7074	06/29/07	
ETS	LISN	3810/2NM	00062907	5/10/07	
ETS	LISN	3810/2NM	00062912	5/10/07	
Dell	Laptop Computer	M20	NA	NA	
Iomega	Zip Drive	Z250S	P9HM1992CK	NA	
Olympus	Camera	D-600L	4020727	NA	

All equipment is on a one-year calibration cycle.

The Dell M20 Laptop Computer, the Iomega Z250S Zip Drive and the Olympus D-600L Camera are labeled as DoC.

Test Report Number: 19799-1 Supplement 5 of 10 EXHIBIT 6A3

Measurement Procedures and Data

FIELD STRENGTH OF EMISSIONS FROM UNINTENTIONAL RADIATORS

Measurement Procedure

The equipment under test is placed inside the semi-anechoic chamber on a wooden table on the turntable center. For each radiated emission, the antenna mast is raised and lowered from 1 to 4 meters and the turntable is rotated 360 degrees to obtain a maximum peak reading on the spectrum analyzer. The final radiated emissions are then measured using an EMI receiver employing a CISPR quasi-peak detector function below 1000 MHz and an average detector function above 1000 MHz. This is repeated for both horizontal and vertical polarizations of the receive antenna.

The field strength of each radiated emission is calculated by correcting the EMI receiver level for cable loss, amplifier gain, and antenna correction factors.

Field Strength (dBuV/m) = EMI Receiver Level (dBuV) + Cable Loss (dB) - Amplifier Gain <math>(dB) + Antenna Correction Factor (1/m)

Test Setup

The EUT and the host equipment were setup according to the procedures in ANSI C63.4-2003. The EUT was connected to a laptop computer using a USB data cable. The USB data cable is 1 m in length. The parallel and the serial ports of the computer were populated. The EUT was communicating with the laptop computer continuously.

Test Report Number: 19799-1 Supplement 6 of 10 EXHIBIT 6A3

Measurement Results

Operating Mode – Rx Mode, Data Transfer Mode.

<u>30 MHz – 1000 MHz</u>

Frequency MHz	Level dBµV/m	Measured dBμV	Transd dB	Cables dB	Limit dBµV/m	Margin dB	Height cm	Angle deg	Pol.
30.56	33.29	12.1	13.4	7.8	40	6.7	100	341	VERT
34.72	35.72	15.58	12.3	7.8	40	4.3	100	19	VERT
39.84	32.94	13.65	11.4	7.9	40	7.1	100	22	VERT
107.52	37.36	17.3	10.6	9.5	43.5	6.1	250	228	HORI
107.56	38.65	17.59	11.6	9.5	43.5	4.9	150	230	VERT
915.12	39.96	-0.36	24.4	15.9	46	6.0	174	259	HORI
920.76	39.97	-0.27	24.3	16.0	46	6.0	100	89	HORI
931.96	39.66	-0.32	24	16.0	46	6.3	124	348	HORI

Above 1 GHz

Frequency MHz	Level dBµV/m	Measured dBμV	Transd dB	Gain dB	Limit dBµV/m	Margin dB	Height cm	Angle deg	Pol.
1166.0	36.8	21.20	24.1	8.5	53.9	17.1	115	91	VERT
1973.6	41.88	19.34	28.5	6	53.9	12.0	150	311	HORI
1985.5	41.95	19.23	28.7	6	53.9	11.9	227	240	HORI
1997.2	42.21	19.39	28.9	6	53.9	11.7	100	201	HORI

Notes: Worst Case emissions reported.

Peak Radiated Data for Emissions Above 1GHz

Frequency MHz	Level dBµV/m	Angle deg	Height cm	Pol.
1164.33	48.21	95	200	VER
1166.33	53.84	93	100	VER
1168.34	52.32	93	100	VER
1971.94	51.92	15	100	HOR
1973.95	54.41	289	200	HOR
1983.97	53.14	218	200	HOR
1985.97	52.20	247	100	HOR
1995.99	53.30	186	100	HOR
1997.99	52.50	184	100	HOR
2000.00	52.31	247	200	HOR

Test Report Number: 19799-1 Supplement 7 of 10 EXHIBIT 6A3

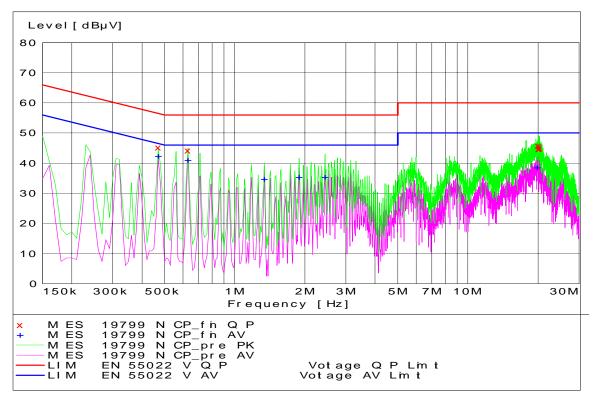
AC LINE CONDUCTED EMISSIONS

Measurement Procedure

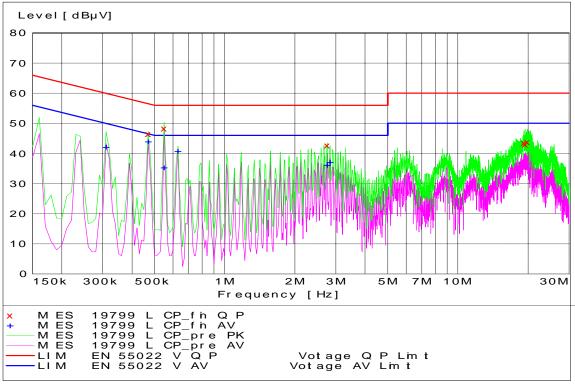
Measured levels of ac power line conducted emission shall be the radio-noise voltage from the line probe or across the 50 Ω LISN port, where permitted, terminated into a 50 Ω noise meter, or where permitted or required, the radio-noise current on the power line sensed by a current probe.

All radio-noise voltage and current measurements shall be made on each current-carrying conductor at the plug end of the EUT power cord or calibrated extension cord by the use of mating plugs and receptacles on the EUT and LISN. Equipment shall be tested with power cords that are normally supplied using an LISN, the 50 Ω measuring port is terminated by a 50 Ω radio-noise meter or a 50 Ω resistive load. All other ports are terminated in 50 Ω .

Detectors - Quasi Peak and Average Detector


Test Setup

The EUT and the host equipment were setup according to the procedures in ANSI C63.4-2003. The EUT was connected to a laptop computer using a USB data cable. The USB data cable is 1 m in length. The parallel and the serial ports of the computer were populated. The EUT was communicating with the laptop computer continuously.


Measurement Results

See attached:

Test Report Number: 19799-1 Supplement 8 of 10 EXHIBIT 6A3

AC LINE COMPUTER PERIPHERAL (NEUTRAL)

AC LINE COMPUTER PERIPHERAL (LINE)

Test Report Number: 19799-1 Supplement 9 of 10 EXHIBIT 6A3

End of Test Report

Test Report Number: 19799-1 Supplement 10 of 10 EXHIBIT 6A3