

PERSONAL COMMUNICATIONS SECTOR

PRODUCT SAFETY AND COMPLIANCE EMC LABORATORY

EMC TEST REPORT - Addendum

Test Report Number - 16421-1BT

Report Date - July 13, 2005

Revision 2

The test results contained herein relate only to the model(s) identified. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical characteristics.

As the responsible EMC Engineer, I hereby declare that the equipment tested as specified in this report conforms to the requirements indicated.

Mark Sidlow

Signature: Name: Mark Sidlow

Title:Senior Electrical Engineer Date :2005-13-05

This report must not be reproduced, except in full, without written approval from this laboratory.

THIS REPORT MUST NOT BE USED TO CLAIM PRODUCT ENDORSEMENT BY A2LA OR ANY AGENCY OF THE U.S. GOVERNMENT.

A2LA Certificate Number: 1846-01

Table of Contents

Test Report Details	4
Applicable Standards	5
Summary of Testing	6
General and Special Conditions	6
Equipment and Cable Configurations	
Measuring Equipment and Calibration Information	
Description of Bluetooth Transmitter	
Measurement Procedures and Data	9
CARRIER FREQUENCY SEPARATION	9
Measurement Procedure	
Measurement Results	
Carrier Frequency Separation	
NUMBER OF HOPPING FREQUENCIES	
Measurement Procedure	
Measurement Results	
Number of Hopping Frequencies (Channels 0 – 39)	
Number of Hopping Frequencies (Channels 39 – 78)	
TIME OF OCCUPANCY (DWELL TIME)	
Measurement Procedure	
Measurement Results	
Dwell Time	
20dB Bandwidth	
Measurement Procedure	
Measurement Results	
FIELD STRENGTH OF SPURIOUS EMISSIONS	
Measurement Procedure	
Measurement Results	
30-1000MHz Low Channel Dual Polarization X	
30-1000MHz Low Channel Dual Polarization Y	
30-1000MHz Low Channel Dual Polarization Z	
30-1000MHz Mid Channel Dual Polarization X	
30 -1000MHz Mid Channel Dual Polarization Y	
30 -1000MHz Mid Channel Dual Polarization Z	
30 -1000MHz High Channel Dual Polarization X	
30 -1000MHz High Channel Dual Polarization Y	
30 -1000MHz High Channel Dual Polarization Z	
1-25 GHz Low Channel Dual Polarization X	
1-25 GHz Low Channel Dual Polarization Y	
1-25 GHz Low Channel Dual Polarization Z	
1-25 GHz Mid Channel Dual Polarization X	
1-25 GHz Mid Channel Dual Polarization Y	
1-25 GHz Mid Channel Dual Polarization Z	
1-25 GHz High Channel Dual Polarization X	
1-25 GHz High Channel Dual Polarization Y	
1-25 GHz High Channel Dual Polarization Z	35

Authorized Band Emissions Low Channel Dual Polarization X	36
Authorized Band Emissions Low Channel Dual Polarization Y	37
Authorized Band Emissions Low Channel Dual Polarization Z	38
Authorized Band Emissions Mid Channel Dual Polarization X	
Authorized Band Emissions Mid Channel Dual Polarization Y	
Authorized Band Emissions Mid Channel Dual Polarization Z	41
Authorized Band Emissions High Channel Dual Polarization X	42
Authorized Band Emissions High Channel Dual Polarization Y	
Authorized Band Emissions High Channel Dual Polarization Z	44
PEAK OUTPUT POWER	
Measurement Procedure	45
Measurement Results	45
Peak Output Power	
BAND-EDGE COMPLIANCE OF RF CONDUCTED EMISSIONS	46
Measurement Procedure	46
Measurement Results	46
Low Band Edge with Hopping Disabled	47
Low Band Edge with Hopping Enabled	47
High Band Edge with Hopping Disabled	
High Band Edge with Hopping Enabled	48
SPURIOUS RF CONDUCTED EMISSIONS	49
Measurement Procedure	49
Measurement Results	49
Conducted Spurious Emissions 30-3000MHz (Low Channel Enabled)	50
Conducted Spurious Emissions 2-10GHz (Low Channel Enabled)	50
Conducted Spurious Emissions 10-20GHz (Low Channel Enabled)	
Conducted Spurious Emissions 30-3000MHz (Mid Channel Enabled)	
Conducted Spurious Emissions 10-20GHz (Mid Channel Enabled)	512
Conducted Spurious Emissions 30-3000MHz (High Channel Enabled)	
Conducted Spurious Emissions 2-10GHz (High Channel Enabled)	
Conducted Spurious Emissions 10-20GHz (High Channel Enabled)	
Conducted Spurious Emissions 20-26.5GHz (High Chan Enabled)	55

Test Report Details

Tests Performed By: Motorola Personal Communications Sector

Product Safety and Compliance Group

600 North US Hwy 45 Libertyville, IL 60048

PH (847) 523-6167 Fax (847) 523-4538 Motorola PCS FRN: 0004321311 FCC Registration Number: 316588 Industry Canada Number: IC3908

Radiated Emissions

Performed By: Motorola Personal Communications Sector

Product Safety and Compliance Group

600 North US Hwy 45 Libertyville, IL 60048

PH (847) 523-6167 Fax (847) 523-4538

Motorola PCS FRN: 0004321311 FCC Registration Number: 316588 Industry Canada Number: IC3908

Tests Requested By: Motorola Inc.

Personal Communications Sector

600 North US Hwy 45 Libertyville, IL 60048

Product Type: Cellular Phone

Signaling Capability: GSM 1900, Bluetooth

Model Number: C390

Serial Numbers: TA18502060, TA18502009, TA18502013

Testing Complete Date: July 13, 2005

Applicable Standards

All tests and measurements indicated in this document were performed in accordance with the Code of Federal Regulations Title 47 Part 2, Sub-part J as well as the following parts:

Χ	_Part 15 Subpart C – Intentional Radiators
	Part 22 Subpart H - Public Mobile Services
	Part 24 - Personal Communications Services
	Part 90 - Private Land Mobile Radio Service

Applicable Standards: TIA EIA 137-A, TIA EIA 98-C, ANSI 63.4 2001, RSS-118 (AMPS), RSS-128 (TDMA), RSS-129 (CDMA), RSS-133 (PCS)

DA 00-705, "Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems" published by the Federal Communications Commission was also used in the testing of this product.

Summary of Testing

Test	Test Name	Pass/Fail
1	Carrier Frequency Separation	Pass
2	Number of Hopping Frequencies	Pass
3	Time of Occupancy (Dwell Time)	Pass
4	20 dB Bandwidth	Pass
5	Spurious RF Conducted Emissions	Pass
6	Field Strength of Spurious Emissions	Pass
7	Max Power	N/A
8	Band Edges	See plots
9	Conducted Spurious Emissions	Pass
Test	Test Name	Results
1	Carrier Frequency Separation	1.0 MHz
2	Number of Hopping	79
2 3	Time of Occupancy (Dwell Time)	2.93 ms
4	20 dB Bandwidth	829 kHz
5	Spurious RF Conducted Emissions	See plots
6	Field Strength of Spurious Emissions	See plots
7	Max Power	6.616 dBm
8	Band Edges	See plots
9	Conducted Spurious Emissions	See plots

The margin with respect to the limit is the minimum margin for all modes and bands. () indicates the margin at which the product exceeds the limit.

General and Special Conditions

The EUT was tested using a fully charged battery when applicable. Where a battery could not be used due to the need for a controlled variation of input voltage, an external power supply was utilized.

All testing was done in an indoor controlled environment with an average temperature of 22° C and relative humidity of 50%.

Equipment and Cable Configurations

The EUT was tested in a stand-alone configuration that is representative of typical use.

Measuring Equipment and Calibration Information

Manufacturer	Equipment Type	Model No.	Serial Number	Cal. Due Date
Rohde & Schwarz	Receiver	ESI26	838786/010	2/7/2006
Hewlett-Packard	EMC Analyzer	8593EM	3536A00118	10/2/2005
Hewlett-Packard	EMC Analyzer	7405	US39440191	11/13/2005
ETS	DRG Horn Antenna	265	2455	5/25/2006
ETS	DRG Horn Antenna	3115	6222	10/4/2005
ETS	Log-Periodic Antenna	3148	1189	7/15/2005
ETS	Biconical Antenna	3110B	3370	11/14/2005
Attenuator	Weinschel	AS-6	6675	10/14/2005
Attenuator	Weinschel	AS-6	6677	11/4/2005
Rohde & Schwarz	Mobile Test Set	CMD 80	DE29008	N/A
Hewlett-Packard	Signal Generator	83623B	3844A01195	5/23/2006
Thermotron	Environmental Chamber	S-4	31580	1/18/2006
Giga-Tronics	Power Meter	8651A	8650508	12/27/2005
Hewlett-Packard	Pre-Amplifier	8447F	2805A03419	7/7/2005

All equipment is on a one-year calibration cycle.

Description of Bluetooth Transmitter

The C390 cell phone offers Bluetooth as a feature. The Bluetooth spreadspectrum, frequency hopping transceiver is designed to operate between 2400 and 2483 MHz. The Bluetooth antenna is mounted on the PCB inside of the EUT. The antenna installation is permanent. For a more thorough description of the functionality please refer to Exhibit 12 of this package.

As a Bluetooth transmitter, it is designed operate with other Bluetooth devices as defined by industrial standard. In this application, the device is battery-operated. Therefore conducted AC line emissions testing as described in CFR47, Part 15.207 was not necessary.

The maximum Bluetooth antenna gain is 1.5dB.

Measurement Procedures and Data

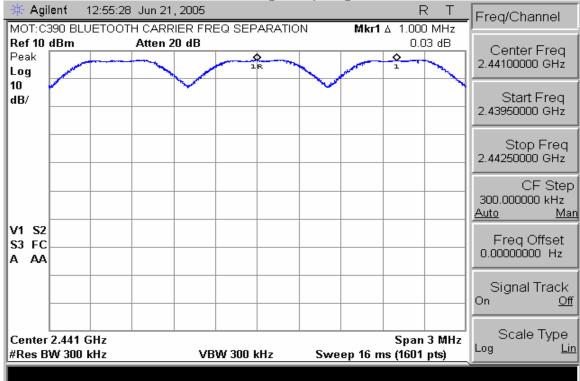
CARRIER FREQUENCY SEPARATION

CFR 47 Part 15.247

Measurement Procedure

The RF output port of the Equipment-Under-Test is directly coupled to the input of the EMC analyzer through a specialized RF connector and a 10dB passive attenuator. A fully charged battery was used for the supply voltage.

The Bluetooth transmitter of the C390 had its hopping function enabled. The following spectrum analyzer settings were used:


- 1. Span = wide enough to capture the peaks of two adjacent channels
- 2. Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span
- 3. Video (or Average) Bandwidth (VBW) ≥ RBW
- 4. Sweep = auto
- 5. Detector function = peak
- 6. Trace = max hold

The trace was allowed to stabilize. The marker-delta function was used to determine the separation between the peaks of the adjacent channels.

Measurement Results

See attached.

Carrier Frequency Separation

NUMBER OF HOPPING FREQUENCIES

CFR 47 Part 15.247

Measurement Procedure

The RF output port of the Equipment-Under-Test is directly coupled to the input of the EMC analyzer through a specialized RF connector and a 10dB passive attenuator. A fully charged battery was used for the supply voltage.

The Bluetooth frequency hopping function of the EUT was enabled. The spectrum analyzer used the following settings:

- 1. Span = the frequency band of operation
- 2. RBW \geq 1% of the span
- 3. VBW ≥ RBW
- 4. Sweep = auto
- 5. Detector function = peak
- 6. Trace = max hold

The trace was allowed to stabilize.

Measurement Results

See attached.

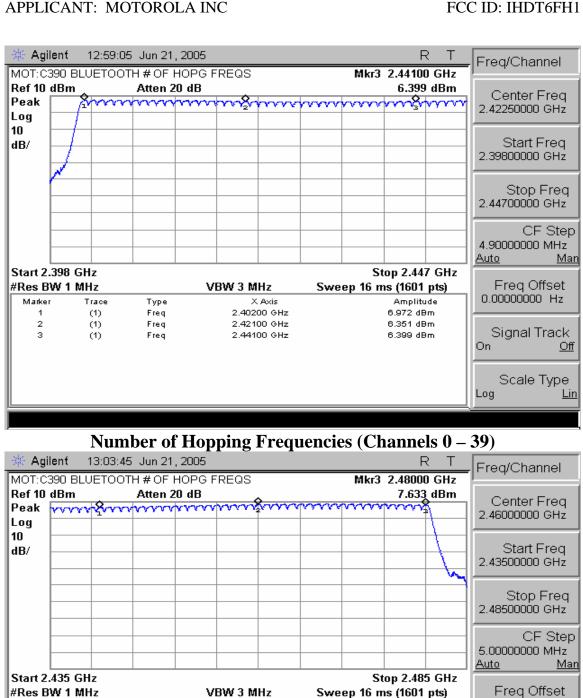
Marker

2

Trace

(1)

(1)


(1)

Туре

Frea

Freq

Freq

Number of Hopping Frequencies (Channels 39 – 78)

X Axis 2.44100 GHz

2.46000 GHz

2.48000 GHz

0.00000000 Hz

On

Log

Signal Track

Scale Type

Off

<u>Lin</u>

Amplitude

6.363 dBm

8.112 dBm

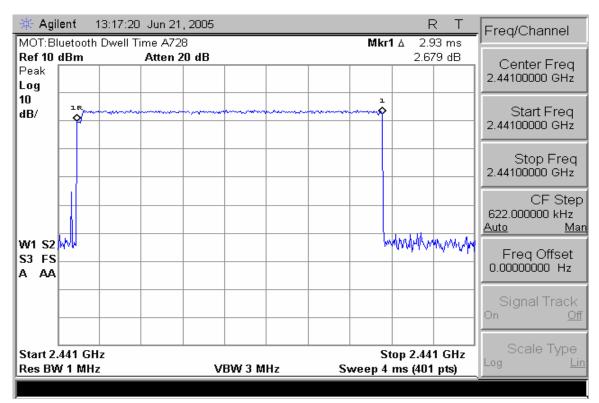
7.633 dBm

TIME OF OCCUPANCY (DWELL TIME)

CFR47 Part 15.247

Measurement Procedure

The RF output port of the Equipment-Under-Test is directly coupled to the input of the EMC analyzer through a specialized RF connector and a 10dB passive attenuator. A fully charged battery was used for the supply voltage.


The Bluetooth hopping function of the EUT was enabled. The following spectrum analyzer settings were used:

- 1. Span = zero span, centered on a hopping channel
- 2. RBW = 1 MHz
- 3. VBW ≥ RBW
- 4. Sweep = as necessary to capture the entire dwell time per hopping channel
- 5. Detector function = peak
- 6. Trace = max hold

The marker-delta function was used to determine the dwell time.

Measurement Results

Attached

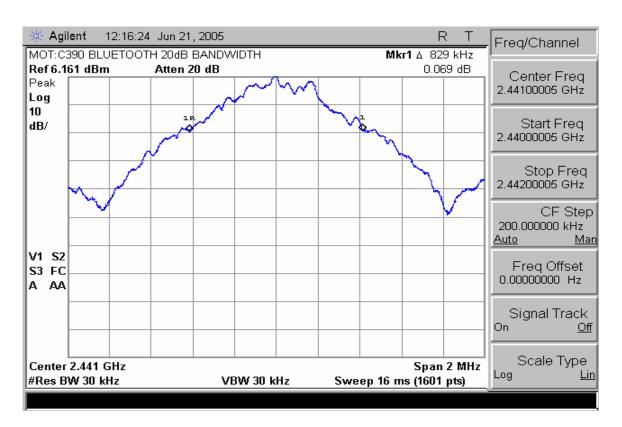
Dwell Time

20dB Bandwidth

CFR 47 Part 15.247

Measurement Procedure

The RF output port of the Equipment-Under-Test is directly coupled to the input of the EMC analyzer through a specialized RF connector and a 10dB passive attenuator. A fully charged battery was used for the supply voltage.


The Bluetooth frequency hopping function of the EUT was enabled. The spectrum analyzer used the following settings:

- 1. Span = approx. 2 to 3 times the 20dB bandwidth, centered on a hopping frequency
- 2. RBW \geq 1% of the 20dB span
- 3. VBW ≥ RBW
- 4. Sweep = auto
- 5. Detector function = peak
- 6. Trace = max hold

The trace was allowed to stabilize. The EUT was transmitting at its maximum data rate. The marker-to-peak function was used to set the marker to the peak of the emission. The marker-delta function was used to measure 20dB down one side of the emission. The marker-delta function and marker was moved to the other side of the emission until it was even with the reference marker. The marker-delta reading at this point was the 20dB bandwidth of the emission.

Measurement Results

Attached

FIELD STRENGTH OF SPURIOUS EMISSIONS

CFR Part 2.1053, 15.249

Measurement Procedure

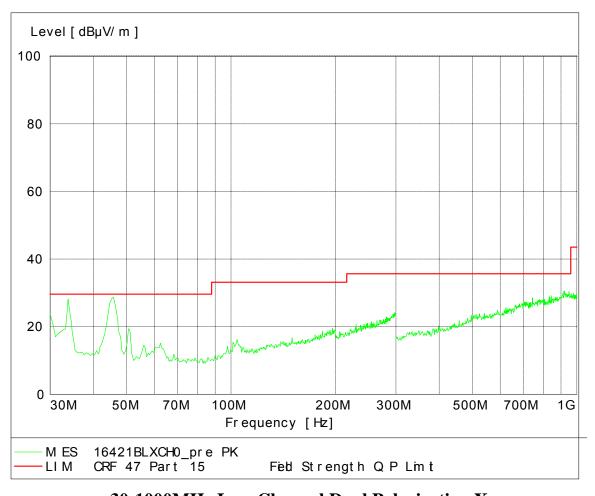
The Equipment-Under-Test is placed inside the semi-anechoic chamber on a wooden table at the turntable center. For each spurious frequency, the antenna mast is raised and lowered from 1 to 4 meters and the turntable is rotated 360 degrees to obtain a maximum reading on the spectrum analyzer. This is repeated for both horizontal and vertical polarizations of the receive antenna.

Field Strength (dBuV/m) = EMI Receiver Level (dBuV) + Cable Loss (dB) Amplifier Gain (dB) + Antenna Correction Factor (1/m)

A fully charged battery was used for the supply voltage.

Measurement Results

Attached


Primary Radiated Emissions

Motorola

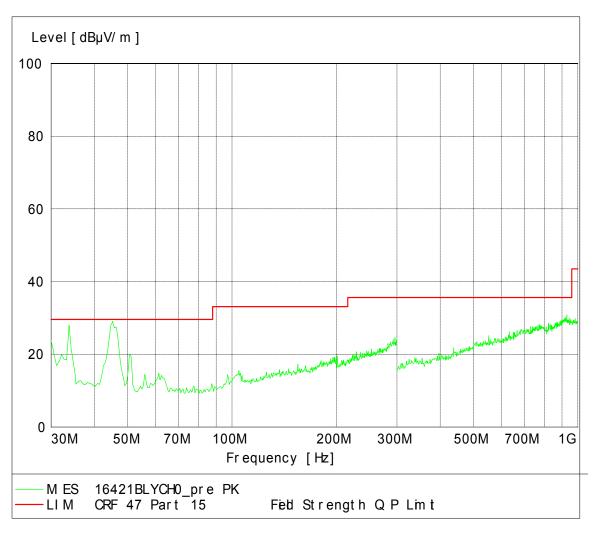
Model: C390 ID Code: 16421-1

BT CH0 2402MHz X-Axis

GREEN HORIZONTAL AND VERTICAL

30-1000MHz Low Channel Dual Polarization X

Frequency	Measured	Detector	Limit
MHz	$dB\mu V/m$	Type	$dB\mu V/m$
33.78	28.12	Qusi Peak	29.6
45.69	28.78	Qusi Peak	29.6
50.56	19.38	Qusi Peak	29.6
62.46	15.06	Qusi Peak	29.6
104.12	16.15	Qusi Peak	33.1


Primary Radiated Emissions

Motorola

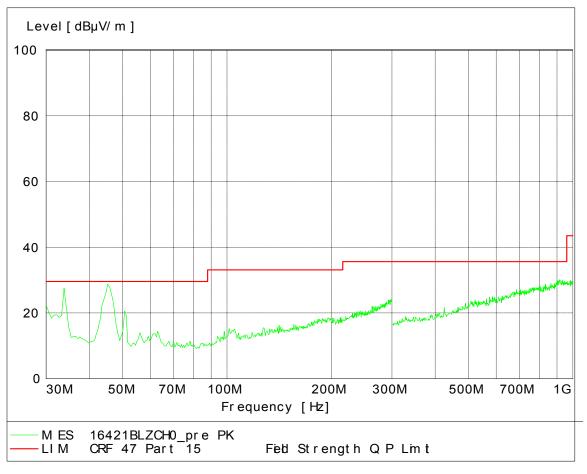
Model: C390 ID Code: 16421-1

BT CH0 2402MHz Y-Axis

GREEN HORIZONTAL AND VERTICAL

30-1000MHz Low Channel Dual Polarization Y

Frequency	Measured	Detector	Limit
MHz	$dB\mu V/m$	Type	$dB\muV/m$
33.78	28.04	Qusi Peak	29.6
45.15	29.08	Qusi Peak	29.6
50.56	19.96	Qusi Peak	29.6
61.38	14.72	Qusi Peak	29.6
104.67	15.60	Qusi Peak	33.1


Primary Radiated Emissions

Motorola

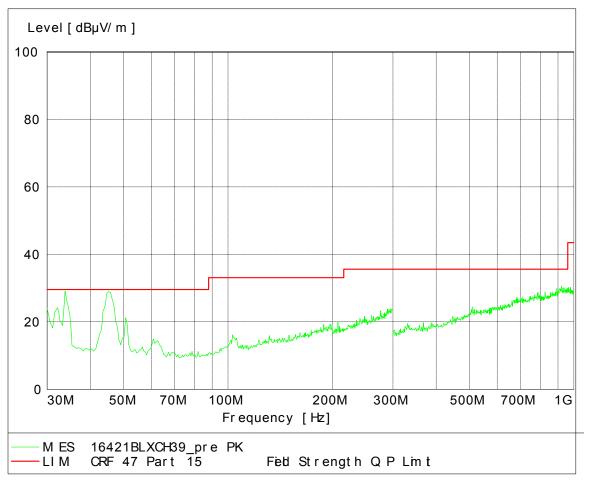
Model: C390 ID Code: 16421-1

BT CH0 2402MHz Z-Axis

GREEN HORIZONTAL AND VERTICAL

30-1000MHz Low Channel Dual Polarization Z

Frequency	Measured	Detector	Limit
MHz	$dB\mu V/m$	Type	$dB\mu V/m$
33.78	27.61	Qusi Peak	29.6
45.15	28.77	Qusi Peak	29.6
50.56	20.51	Qusi Peak	29.6


Primary Radiated Emissions

Motorola

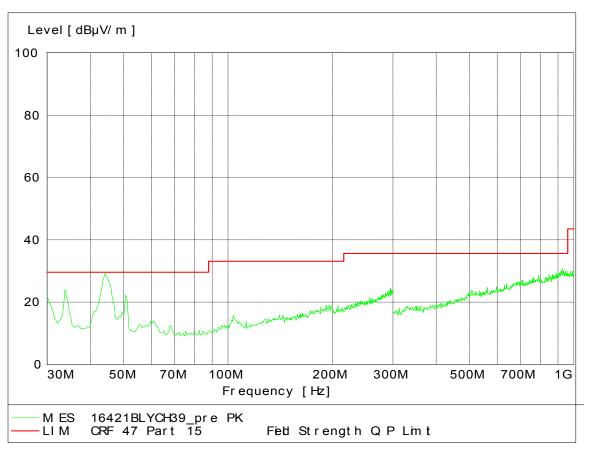
Model: C390 ID Code: 16421-1

BT CH39 2442MHz X-Axis

GREEN HORIZONTAL AND VERTICAL

30-1000MHz Mid Channel Dual Polarization X

Frequency	Measured	Detector	Limit
MHz	$dB\mu V/m$	Type	$dB\mu V/m$
32.16	24.25	Qusi Peak	29.6
33.78	29.16	Qusi Peak	29.6
45.15	29.03	Qusi Peak	29.6
50.56	21.22	Qusi Peak	29.6
60.84	14.93	Qusi Peak	29.6
60.84	14.93	Qusi Peak	29.6
103.58	15.40	Qusi Peak	33.1


Primary Radiated Emissions

Motorola

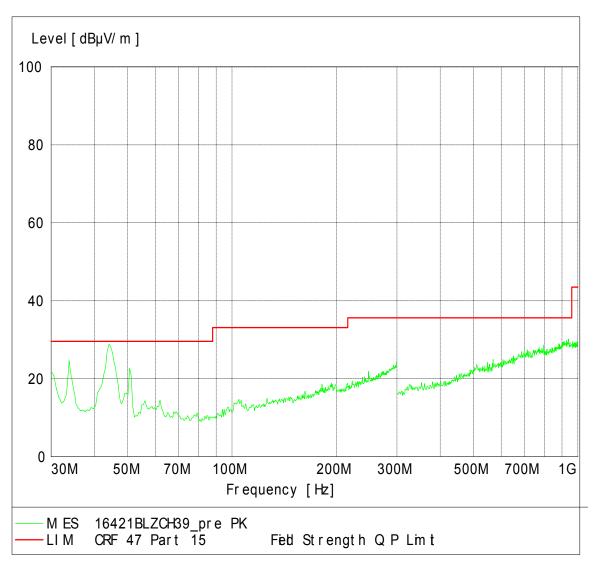
Model: C390 ID Code: 16421-1

BT CH39 2442MHz Y-Axis

GREEN HORIZONTAL AND VERTICAL

30 -1000MHz Mid Channel Dual Polarization Y

Frequency	Measured	Detector	Limit
MHz	$dB\mu V/m$	Type	$dB\mu V/m$
33.78	24.24	Qusi Peak	29.6
44.06	29.24	Qusi Peak	29.6
50.56	22.21	Qusi Peak	29.6
103.58	15.74	Qusi Peak	33.1


Primary Radiated Emissions

Motorola

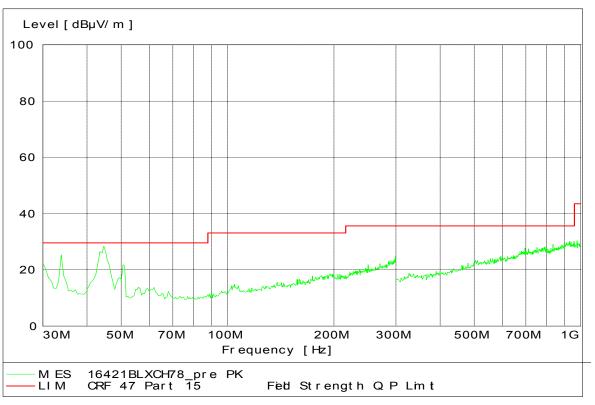
Model: C390 ID Code: 16421-1

BT CH39 2442MHz Z-Axis

GREEN HORIZONTAL AND VERTICAL

30 -1000MHz Mid Channel Dual Polarization Z

Frequency	Measured	Detector	Limit
MHz	dBμV/m	Type	dBμV/m
33.78	24.64	Qusi Peak	29.6
44.06	28.94	Qusi Peak	29.6
50.56	22.66	Qusi Peak	29.6


Primary Radiated Emissions

Motorola

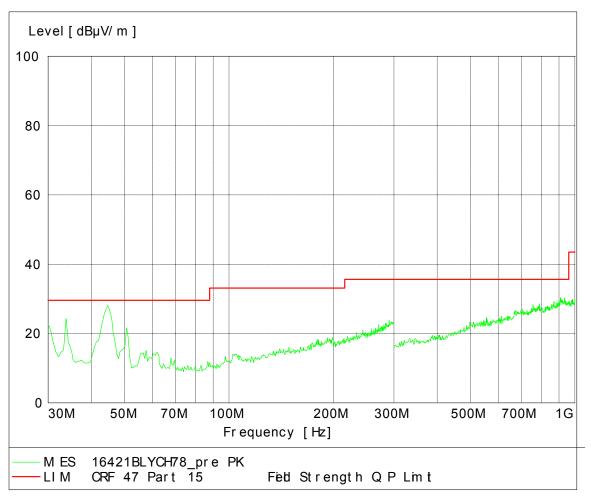
Model: C390 ID Code: 16421-1

BT CH78 2480MHz X-Axis

GREEN HORIZONTAL AND VERTICAL

30 -1000MHz High Channel Dual Polarization X

Frequency	Measured	Detector	Limit
MHz	dBμV/m	Type	dBμV/m
33.78	25.32	Qusi Peak	29.6
44.60	28.39	Qusi Peak	29.6
50.56	21.79	Qusi Peak	29.6


Primary Radiated Emissions

Motorola

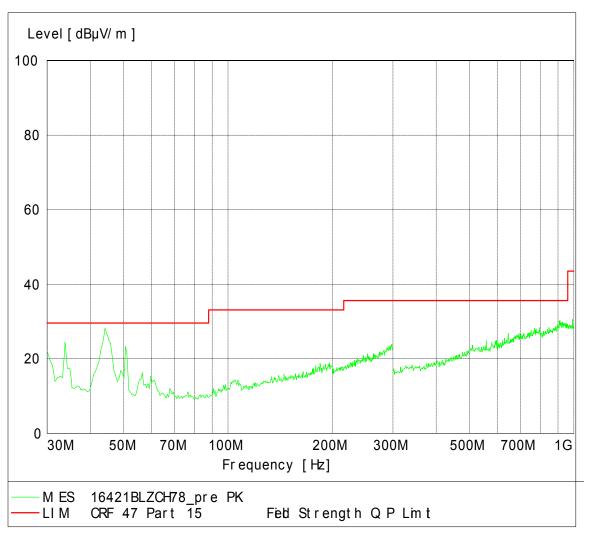
Model: C390 ID Code: 16421-1

BT CH78 2480MHz Y-Axis

GREEN HORIZONTAL AND VERTICAL

30 -1000MHz High Channel Dual Polarization Y

Frequency	Measured	Detector	Limit
MHz	$dB\mu V/m$	Type	$dB\mu V/m$
33.78	24.32	Qusi Peak	29.6
44.60	28.08	Qusi Peak	29.6
50.56	21.65	Qusi Peak	33.1


Primary Radiated Emissions

Motorola

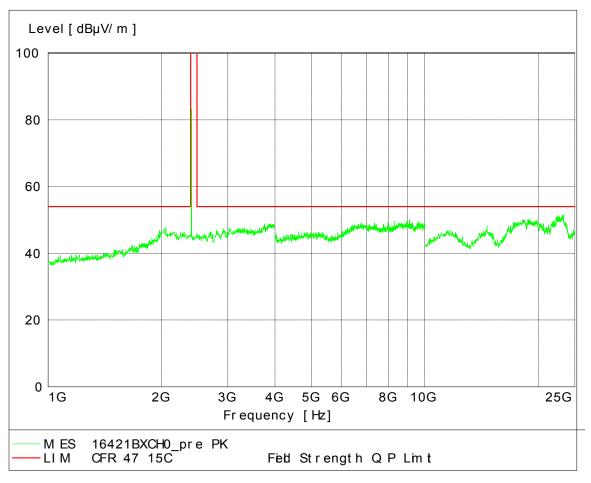
Model: C390 ID Code: 16421-1

BT CH78 2480MHz Z-Axis

GREEN HORIZONTAL AND VERTICAL

30 -1000MHz High Channel Dual Polarization Z

Frequency	Measured	Detector	Limit
MHz	$dB\mu V/m$	Type	dBμV/m
33.78	24.35	Qusi Peak	29.6
44.60	28.16	Qusi Peak	29.6
50.56	23.30	Qusi Peak	33.1


Primary Radiated Emissions

Motorola

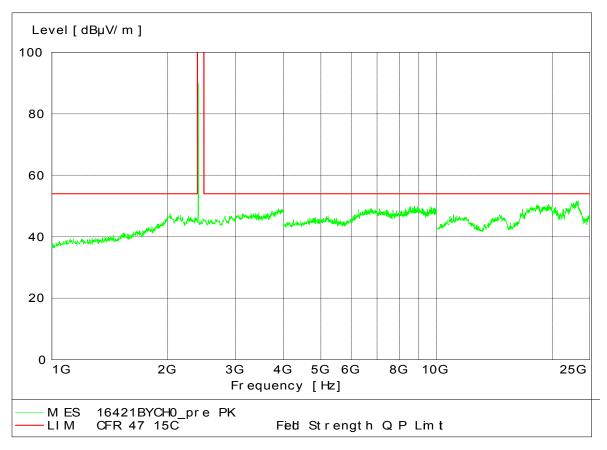
Model: C390 ID Code: 16421-1

BT CH0 2402MHz X-Axis

GREEN HORIZONTAL AND VERTICAL

1-25 GHz Low Channel Dual Polarization X

Frequency	Measured	Detector	Limit
MHz	$dB\mu V/m$	Type	dBμV/m
2400	83.21	Peak	999
14601	46.04	Peak	54


Primary Radiated Emissions

Motorola

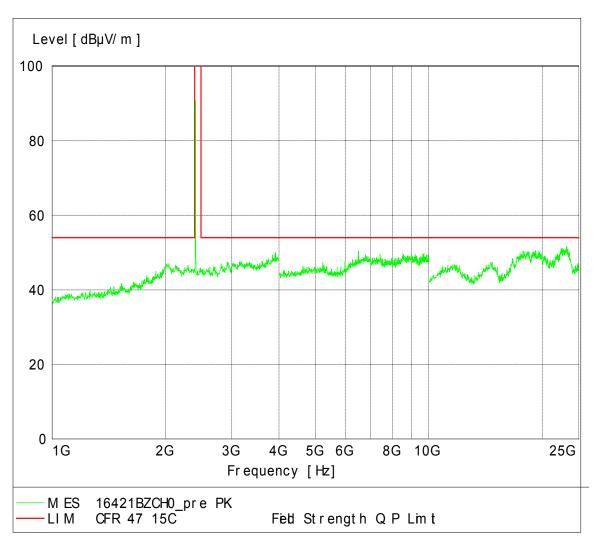
Model: C390 ID Code: 16421-1

BT CH0 2402MHz Y-Axis

GREEN HORIZONTAL AND VERTICAL

1-25 GHz Low Channel Dual Polarization Y

Frequency	Measured	Detector	Limit
MHz	$dB\mu V/m$	Type	$dB\mu V/m$
2400	89.83	Peak	999


Primary Radiated Emissions

Motorola

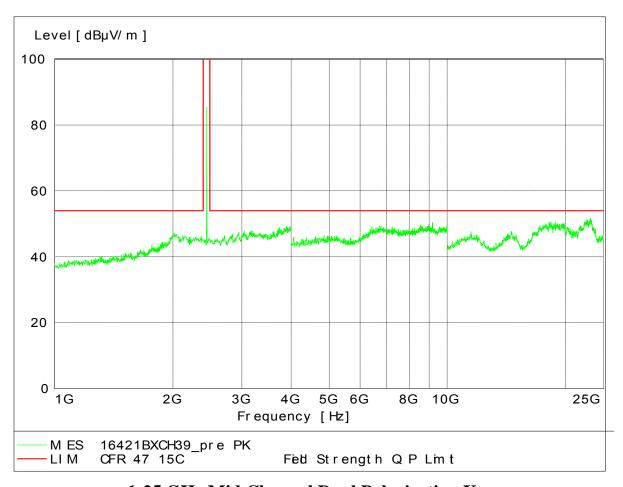
Model: C390 ID Code: 16421-1

BT CH0 2402MHz Z-Axis

GREEN HORIZONTAL AND VERTICAL

1-25 GHz Low Channel Dual Polarization Z

Frequency	Measured	Detector	Limit
MHz	dBμV/m	Type	dBμV/m
2400	90.71	Peak	999
7438	48.51	Peak	54


Primary Radiated Emissions

Motorola

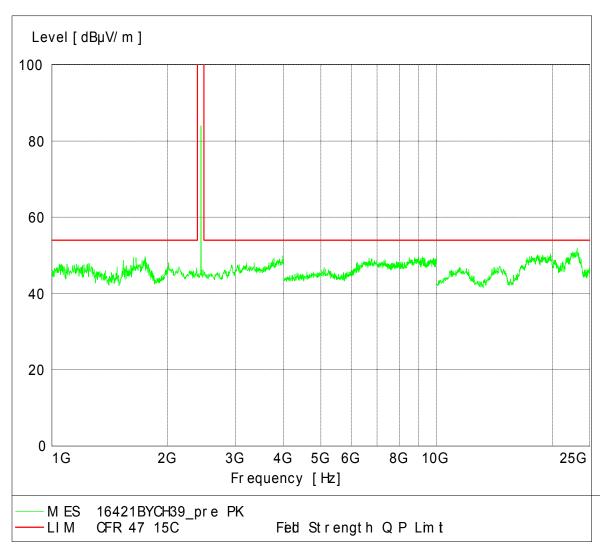
Model: C390 ID Code: 16421-1

BT CH39 2441MHz X-Axis

GREEN HORIZONTAL AND VERTICAL

1-25 GHz Mid Channel Dual Polarization X

Frequency	Measured	Detector	Limit
MHz	$dB\mu V/m$	Type	$dB\mu V/m$
24408	85.5	Peak	999


Primary Radiated Emissions

Motorola

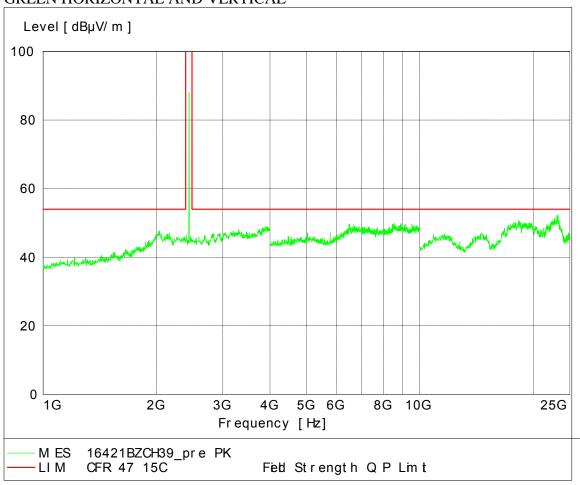
Model: C390 ID Code: 16421-1

BT CH39 2441MHz Y-Axis

GREEN HORIZONTAL AND VERTICAL

1-25 GHz Mid Channel Dual Polarization Y

Frequency	Measured	Detector	Limit
MHz	$dB\mu V/m$	Type	dBμV/m
2440	83.96	Peak	999


Primary Radiated Emissions

Motorola

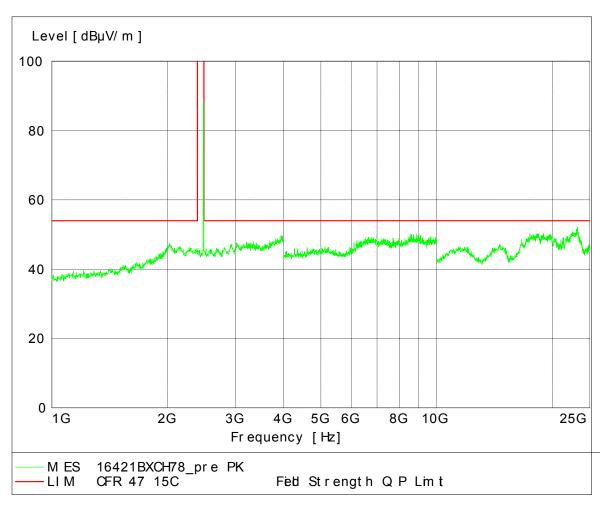
Model: C390 ID Code: 16421-1

BT CH39 2441MHz Z-Axis

GREEN HORIZONTAL AND VERTICAL

1-25 GHz Mid Channel Dual Polarization Z

Frequency	Measured	Detector	Limit
MHz	$dB\mu V/m$	Type	dBμV/m
2440	88.00	Peak	999


Primary Radiated Emissions

Motorola

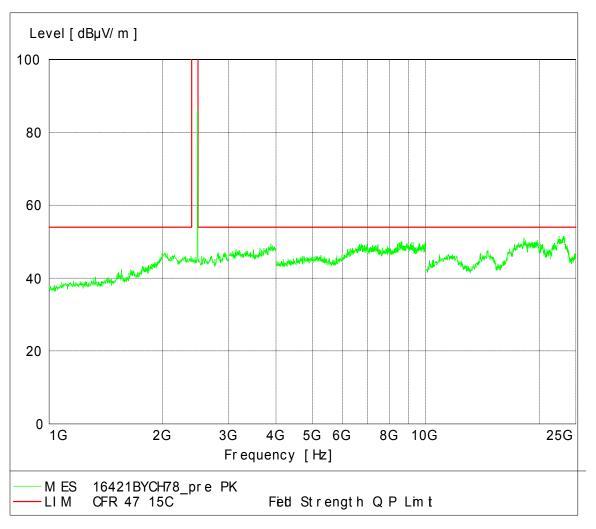
Model: C390 ID Code: 16421-1

BT CH78 2480MHz X-Axis

GREEN HORIZONTAL AND VERTICAL

1-25~GHz~High~Channel~Dual~Polarization~X

Frequency	Measured	Detector	Limit
MHz	dBμV/m	Type	dBμV/m
2477	88.39	Peak	999


Primary Radiated Emissions

Motorola

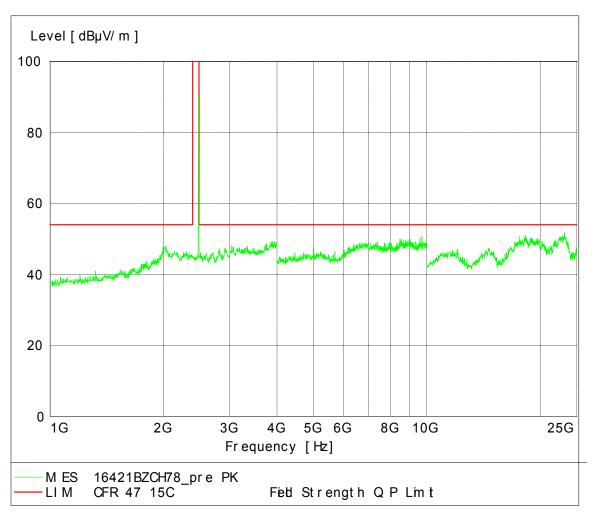
Model: C390 ID Code: 16421-1

BT CH78 2480MHz Y-Axis

GREEN HORIZONTAL AND VERTICAL

1-25 GHz High Channel Dual Polarization Y

Frequency	Measured	Detector	Limit
MHz	$dB\mu V/m$	Type	$dB\mu V/m$
2477	86.02	Peak	999
14601	47.55	Peak	54


Primary Radiated Emissions

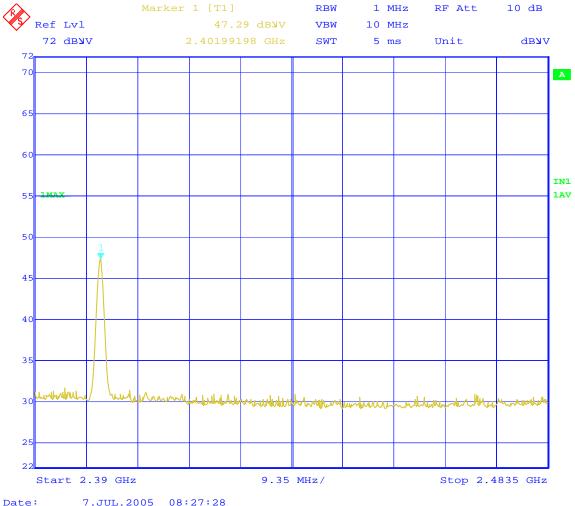
Motorola

Model: C390 ID Code: 16421-1

BT CH78 2480MHz Z-Axis

GREEN HORIZONTAL AND VERTICAL

1-25 GHz High Channel Dual Polarization Z

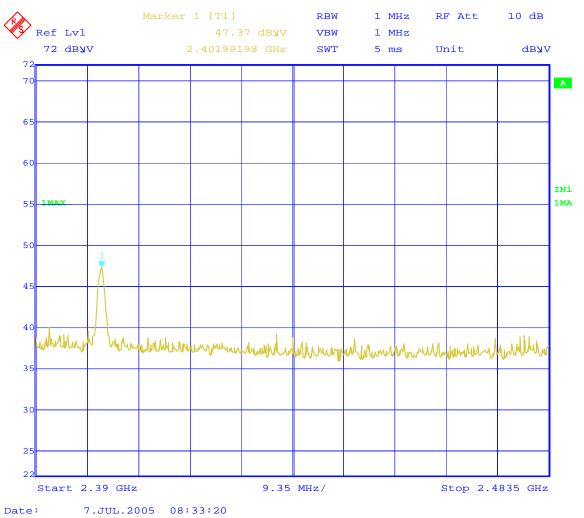

		-	
Frequency	Measured	Detector	Limit
MHz	$dB\mu V/m$	Type	dBμV/m
2477	90.57	Peak	999
9705	50.67	Peak	54
12068	47.1	Peak	54
17615	49.42	Peak	54
19665	50.16	Peak	54

Radiated Emissions Band Edge

Motorola

Model: C390 ID Code: 16421-1

BT CH0 2402MHz X-Axis

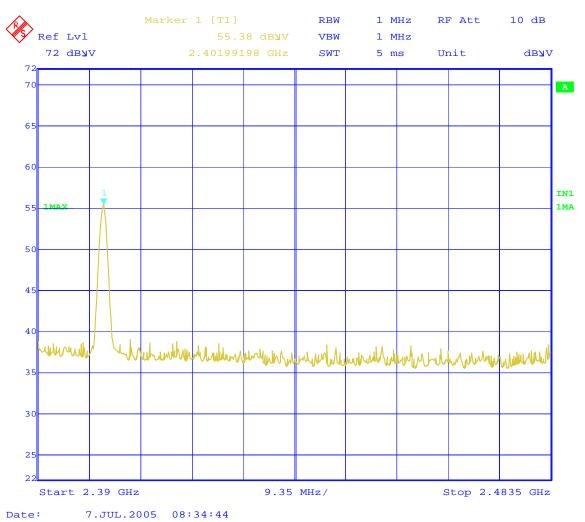


Authorized Band Emissions Low Channel Dual Polarization X

Motorola

Model: C390 ID Code: 16421-1

BT CH0 2402MHz Y-Axis

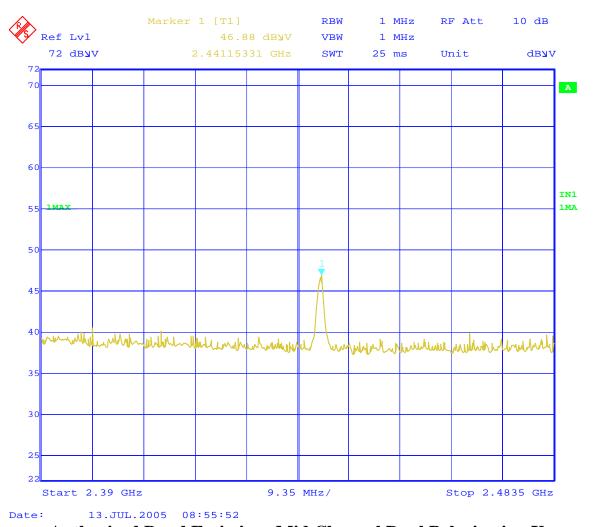


Authorized Band Emissions Low Channel Dual Polarization Y

Motorola

Model: C390 ID Code: 16421-1

CH0 2402MHz Z-Axis

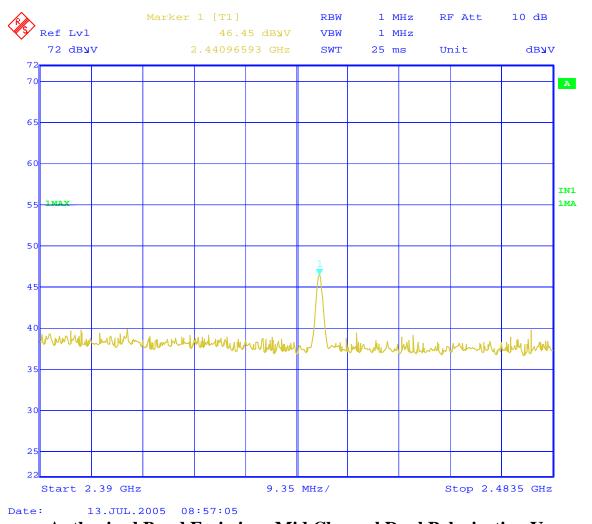


Authorized Band Emissions Low Channel Dual Polarization Z

Motorola

Model: C390 ID Code: 16421-1

BT CH39 2442MHz X-Axis

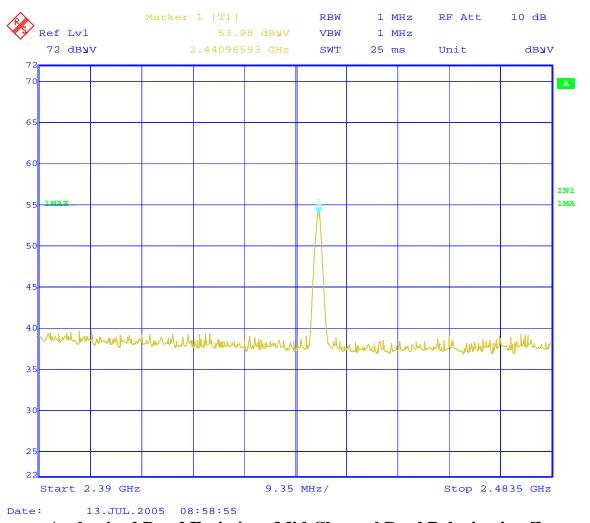


Authorized Band Emissions Mid Channel Dual Polarization X

Motorola

Model: C390 ID Code: 16421-1

BT CH39 2442MHz Y-Axis

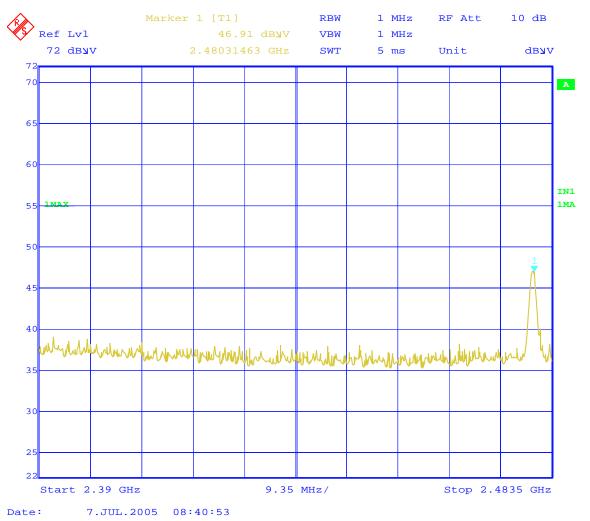


Authorized Band Emissions Mid Channel Dual Polarization Y

Motorola

Model: C390 ID Code: 16421-1

BT CH39 2442MHz Z-Axis

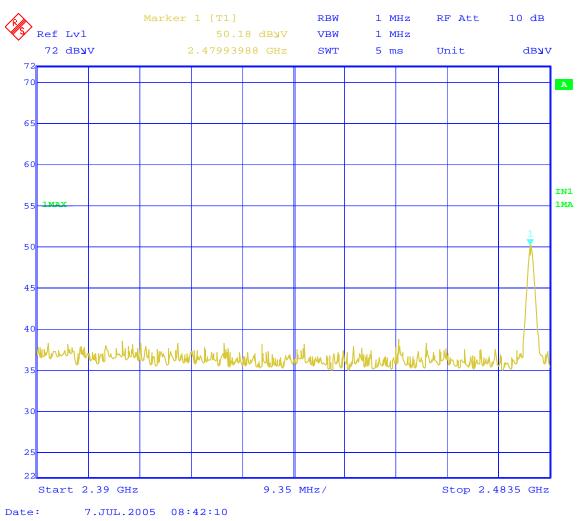


Authorized Band Emissions Mid Channel Dual Polarization Z

Motorola

Model: C390 ID Code: 16421-1

BT CH78 2480MHz X-Axis

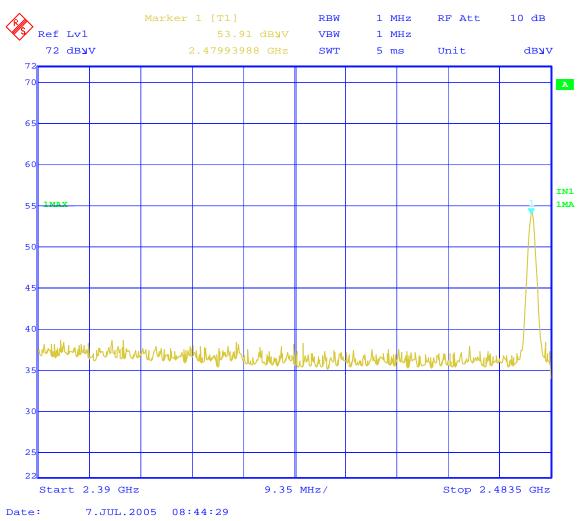


Authorized Band Emissions High Channel Dual Polarization X

Motorola

Model: C390 ID Code: 16421-1

BT CH78 2480MHz Y-Axis



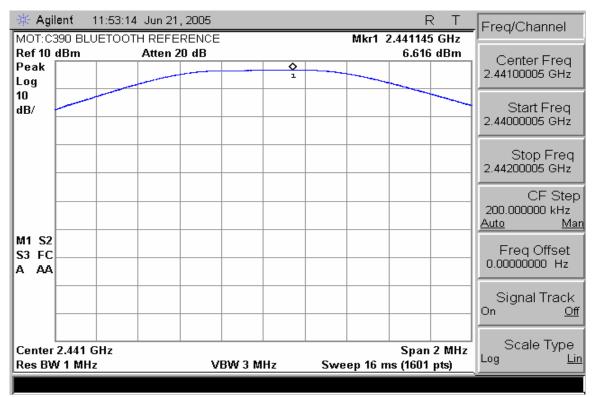
Authorized Band Emissions High Channel Dual Polarization Y

Motorola

Model: C390 ID Code: 16421-1

BT CH78 2480MHz Z-Axis

Authorized Band Emissions High Channel Dual Polarization Z


PEAK OUTPUT POWER

CFR 47 Part 15.247

Measurement Procedure

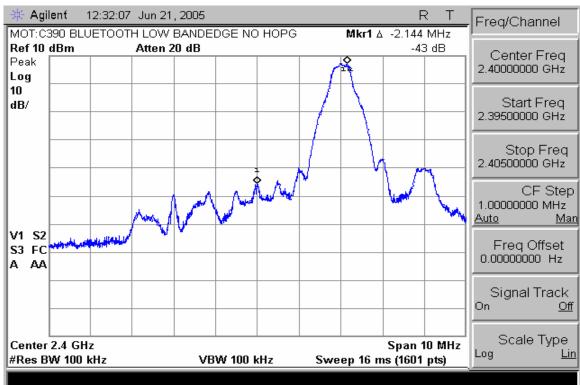
The RF output port of the Equipment-Under-Test is directly coupled to the input of the EMC analyzer through a specialized RF connector and a 10dB passive attenuator. A fully charged battery was used for the supply voltage.

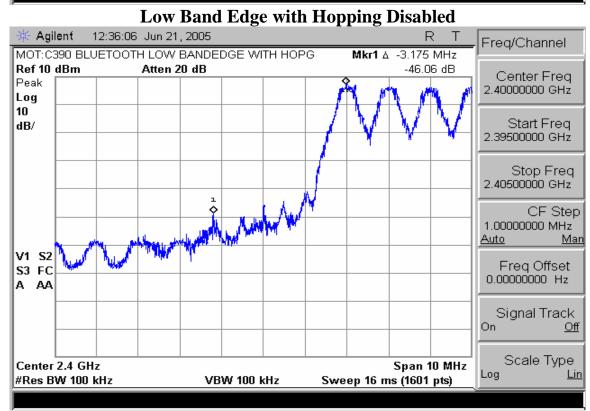
Measurement Results

Peak Output Power

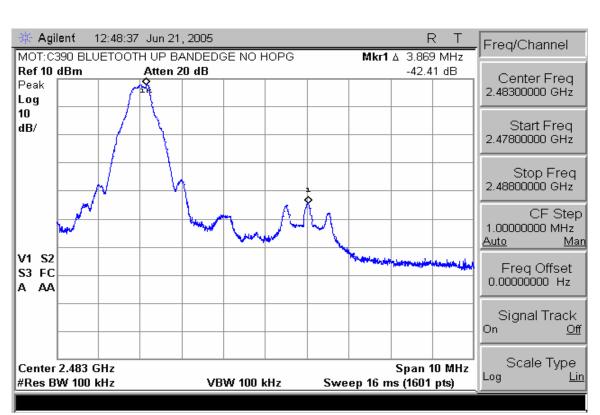
APPLICANT: MOTOROLA INC FCC ID: IHDT6FH1

BAND-EDGE COMPLIANCE OF RF CONDUCTED EMISSIONS

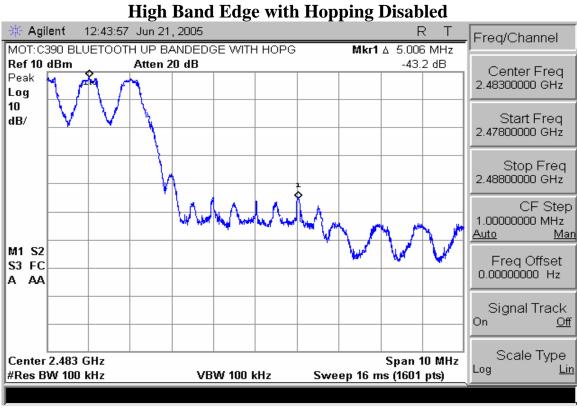

CFR 47 Part 15.247


Measurement Procedure

The RF output port of the Equipment-Under-Test is directly coupled to the input of the EMC analyzer through a specialized RF connector and a 10dB passive attenuator. A fully charged battery was used for the supply voltage.


Measurement Results

See Attached:



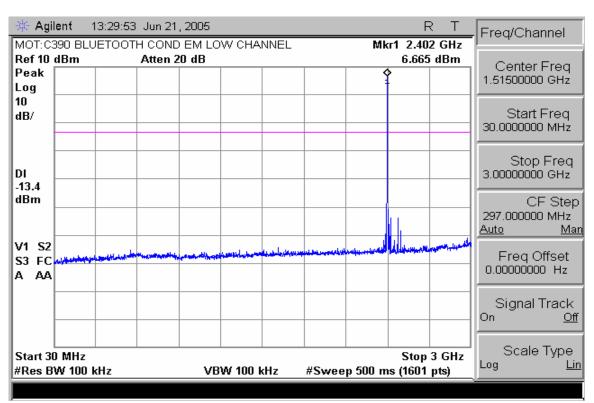
Low Band Edge with Hopping Enabled

FCC ID: IHDT6FH1

High Band Edge with Hopping Enabled

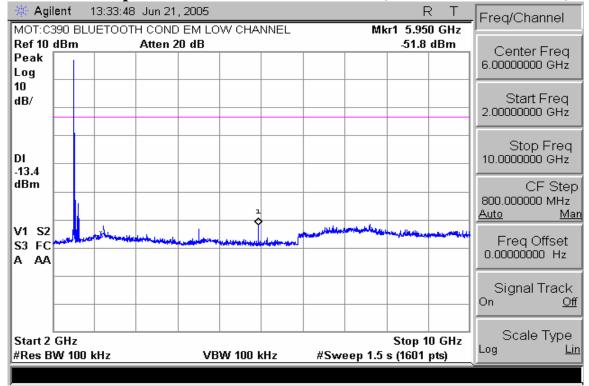
APPLICANT: MOTOROLA INC FCC ID: IHDT6FH1

SPURIOUS RF CONDUCTED EMISSIONS

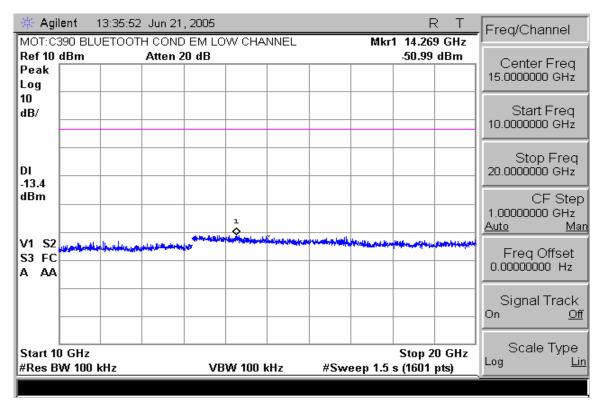

CFR 47 Part 15.247

Measurement Procedure

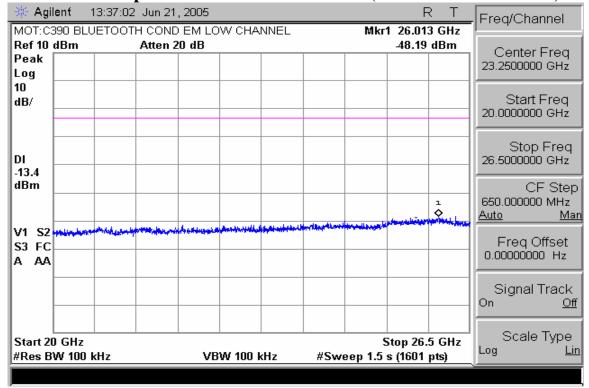
The RF output port of the Equipment-Under-Test is directly coupled to the input of the EMC analyzer through a specialized RF connector and a 10dB passive attenuator. A fully charged battery was used for the supply voltage.

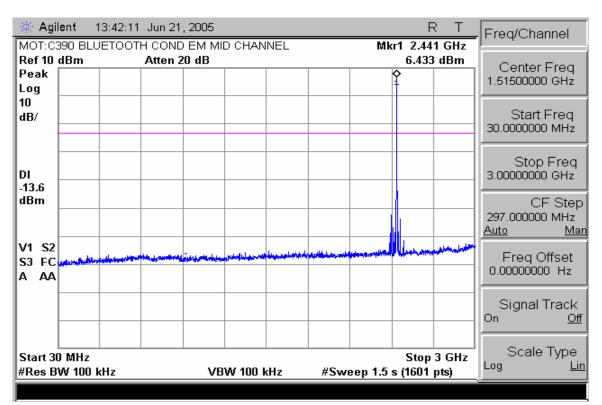

Measurement Results

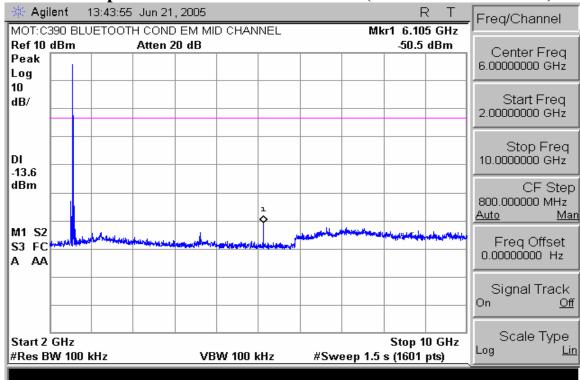
See attached:

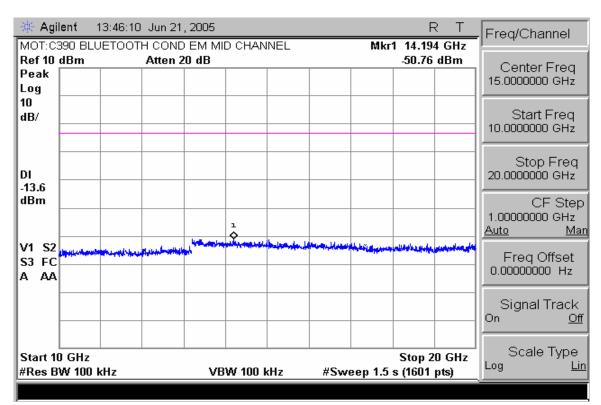


FCC ID: IHDT6FH1

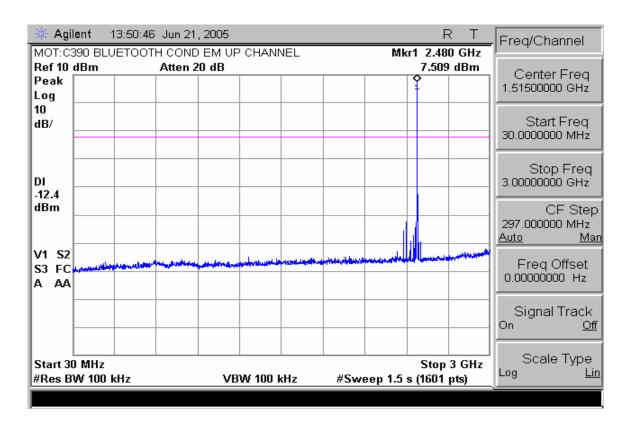

Conducted Spurious Emissions 30-3000MHz (Low Channel Enabled)

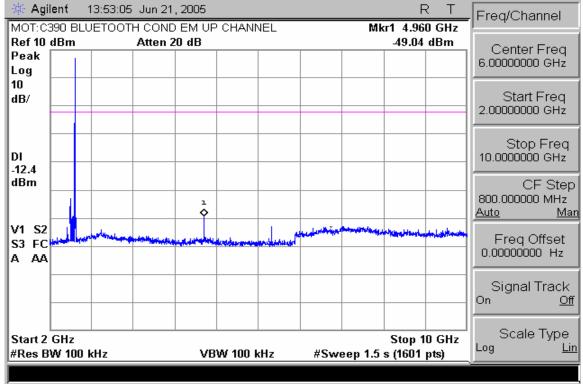

Conducted Spurious Emissions 2-10GHz (Low Channel Enabled)

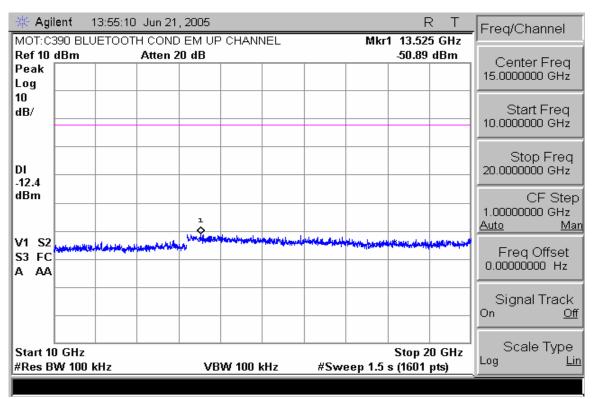

Conducted Spurious Emissions 10-20GHz (Low Channel Enabled)


Conducted Spurious Emissions 20-26.5GHz (Low Channel Enabled)

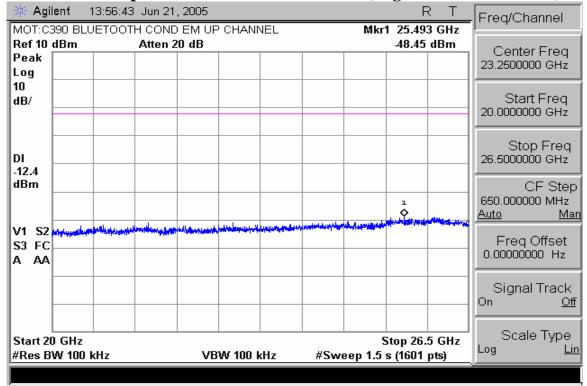
Conducted Spurious Emissions 30-3000MHz (Mid Channel Enabled)


Conducted Spurious Emissions 2-10GHz (Mid Channel Enabled)


Conducted Spurious Emissions 10-20GHz (Mid Channel Enabled)


Conducted Spurious Emissions 20-26.5GHz (Mid Chan Enabled)

Conducted Spurious Emissions 30-3000MHz (High Channel Enabled)



Conducted Spurious Emissions 2-10GHz (High Channel Enabled)

FCC ID: IHDT6FH1

Conducted Spurious Emissions 10-20GHz (High Channel Enabled)

Conducted Spurious Emissions 20-26.5GHz (High Chan Enabled)

APPLICANT: MOTOROLA INC FCC ID: IHDT6FH1

End of Test Report