

Exhibit 11: SAR Test Report IHDT6DV1 Addendum

Date of test: 01/21/04 **Date of Report:** 02/06/04

Motorola Personal Communications Sector Product Safety & Compliance Laboratory

600 N. US Highway 45

Laboratory: Room: MW113

Libertyville, Illinois 60048

Albert Patapack **Test Responsible:** Senior Staff Engineer

Accreditation: This laboratory is accredited to ISO/IEC 17025-1999 to perform the following tests:

ACCREDITED

Tests: Procedures:

Electromagnetic Specific Absorption Rate ANSI/IEEE C95.1-1992, 1999

(SAR) IEEE C95.3-1991 IEEE P1528 (DRAFT)

FCC OET Bulletin 65 (including Supplements A, B, C)

FCC ID: IHDT6DV1

Australian Communications Authority Radio

Communications (Electromagnetic Radiation – Human

Exposure) Standard 1999 CENELEC EN 50361 (2001)

Simulated Tissue Preparation APP-0247

RF Power Measurement DOI-0876, 0900, 0902, 0904, 0915

On the following products or types of products:

Wireless Communications Devices (Examples): Two Way Radios; Portable Phones (including

Licensed Non-Broadcast and PCS); Low Frequency Readers; and Pagers

A2LA certificate #1651-01

Motorola declares under its sole responsibility that portable cellular telephone FCC ID IHDT6DV1 to which this declaration relates, is in conformity with the appropriate General Population/Uncontrolled RF exposure standards, recommendations and guidelines (FCC 47 CFR measurement standards, guidelines and recommended practices. Any deviations from these

Statement of **Compliance:** §2.1093). It also declares that the product was tested in accordance with the appropriate standards, guidelines and recommended practices are noted below:

(none)

©Motorola, Inc. 2004

This test report shall not be reproduced except in full, without written approval of the laboratory.

The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report.

Motorola encourages all feedback, both positive and negative, on this test report.

Table of Contents

FCC ID: IHDT6DV1

1. INTRODUCTION	. 3
2. DESCRIPTION OF THE DEVICE UNDER TEST	.3
2.1 Antenna description	.3
3. TEST EQUIPMENT USED	.3
3.1 Dosimetric System	.3
3.2 Additional Equipment	.4
4. ELECTRICAL PARAMETERS OF THE TISSUE SIMULATING LIQUID	. 4
5. SYSTEM ACCURACY VERIFICATION	. 4
6. TEST RESULTS	. 5
6.1 Body Worn Test Results	.6
APPENDIX 1: SAR DISTRIBUTION COMPARISON FOR SYSTEM ACCURACY VERIFICATION	.7
APPENDIX 2: SAR DISTRIBUTION PLOTS FOR BODY WORN CONFIGURATION	.8
APPENDIX 3: PROBE CALIBRATION CERTIFICATE	.9
APPENDIX 4: DIPOLE CALIBRATION CERTIFICATE1	10

Page 2

1. Introduction

The Motorola Personal Communications Sector Product Safety Laboratory has performed measurements of the maximum potential exposure to the user of portable cellular phone (FCC ID IHDT6DV1). The Specific Absorption Rate (SAR) of this product was measured. The portable cellular phone was tested in accordance with FCC OET Bulletin 65 Supplement C 01-01.

2. Description of the Device Under Test

a. Antenna description

Туре	FICA Antenna					
Location	Back of pho	Back of phone at the bottom				
Dimensions	Length (max)	40 mm				
Dimensions	Width (max) 25 mm					
Configuration	Internal l	Internal Patch Antenna				

b. Device description

b. Device description										
FCC ID Number		IHDT6DV1								
Serial number		S50SF022H7								
Mode(s) of Operation	GSM GSM GSM 900 1800 1900			GPRS 900	GPRS 1800	GPRS 1900	Blue Tooth			
Modulation Mode(s)	GSM	GSM	GSM	GSM	GSM	GSM	Blue Tooth			
Maximum Output Power Setting	33.00 dBm	30.00 dBm	30.00 dBm	33.00 dBm	30.00 dBm	30.00 dBm	0.00 - 4.00 dBm			
Duty Cycle	1:8	1:8 1:8		2:8	2:8	2:8	1:1			
Transmitting Frequency Rang(s)	880.2- 914.8 MHz	914.8 1784.8 1909.80		880.2- 914.8 MHz	1710.2- 1784.8 MHz	1850.20 – 1909.80 MHz	2400 - 2483.5 MHz			
Production Unit or Identical Prototype (47 CFR §2908)		Identical Prototype								
Device Category				Portab	ole					
RF Exposure Limits			Gener	al Population	/ Uncontrolled					

3. Test Equipment Used

3.1 Dosimetric System

The Motorola Personal Communications Sector Product Safety & Compliance Laboratory utilizes a Dosimetric Assessment System (Dasy3TM v3.1d) manufactured by Schmid & Partner Engineering AG (SPEAGTM), of Zurich Switzerland. All the SAR measurements are taken within a shielded enclosure. The overall RSS uncertainty of the measurement system is $\pm 11.7\%$ (K=1) with an expanded uncertainty of $\pm 23.0\%$ (K=2). The measurement uncertainty budget is given in Appendix 6. Per IEEE 1528, this uncertainty budget is applicable to the SAR range of 0.4 W/kg to 10 W/kg. The list of calibrated equipment used for the measurements is shown below.

Description	Serial Number	Cal Due Date
DASY3 DAE V1	SN 375	25-Nov-04
E-Field Probe ET3DV6	SN 1522	21-Mar-04
Dipole Validation Kit, D1800V2	SN 273TR	24-Jun-04
S.A.M. Phantom used for 1900MHz	TP-1235	

3.2 Additional Equipment

Description	Serial Number	Cal Due Date
Signal Generator HP8648C	3847A04845	11/05/2004
Power Meter E4419B	GB39511086	2/06/2004
Power Sensor #1 – E9301A	US39210918	8/5/2004
Power Sensor #2 - E9301A	US39210917	8/5/2004
Network Analyzer HP8753ES	US39172529	18-Jun-04
Dielectric Probe Kit HP85070B	US33020235	

4. Electrical parameters of the tissue simulating liquid

Prior to conducting SAR measurements, the relative permittivity, ε_r , and the conductivity, σ , of the tissue simulating liquids were measured with the HP85070 Dielectric Probe Kit These values, along with the temperature of the tissue simulate are shown in the table below. The recommended limits for maximum permittivity and minimum conductivity are also shown. These come from the Federal Communication Commission, OET Bulletin 65 Supplement C 01-01. It is seen that the measured parameters are satisfactory for compliance testing.

		Ticous		Dielectric Parameters				
	(MHz)	Tissue type	Limits / Measured	$\mathbf{\epsilon}_r$	σ (S/m)	Temp (°C)		
ĺ	1880 Body —	Measured , 01/21/2004	51.3	1.58	19.1			
		Боау	Recommended Limits	53.3 ±5%	1.52 ±5%	18-25		

The list of ingredients and the percent composition used for the tissue simulates are indicated in the table below.

	800MHz	800MHz	1900MHz	1900MHz
Ingredient	Head	Body	Head	Body
Sugar	57.0	44.9	-	30.80
DGBE			47.0	
Water	40.45	53.06	52.8	68.91
Salt	1.45	0.94	0.2	0.29
HEC	1.0	1.0		
Bact.	0.1	0.1		

5. System Accuracy Verification

A system accuracy verification of the DASY3 was performed using the measurement equipment listed in Section 3.1. The daily system accuracy verification occurs within center section of the SAM phantom.

A SAR measurement was performed to see if the measured SAR was within +/- 10% from the target SAR indicated on the dipole certification sheet. These tests were done at 900MHz and/or 1800MHz. These frequencies are within 100MHz of the mid-band frequency of the test device. This is within the allowable window given in Supplement C 01-01 *Appendix D System Verification* section item #5. The test was conducted on the same days as the measurement of the DUT. Recommended limits for maximum permittivity, minimum conductivity are shown in the table below. These come from the Federal Communication Commission, OET Bulletin 65 Supplement C 01-01. The obtained results from the system accuracy verification are displayed in the table below. The distributions of SAR compare well with those of the reference measurements (see Appendix 1). The tissue stimulant depth was verified to be 15.0cm ±0.5cm. Z-axis scans showing the SAR penetration are also included in Appendix 1. SAR values are normalized to 1W forward power delivered to the dipole.

FCC ID: IHDT6DV1

f (MHz)	Description	SAR (W/kg), 1gram	Dielectric ε_r	Dielectric Parameters ε _r σ (S/m)		Tissue Temp (°C)
1800	Measured, 01/18/2004	41.26	39.9	1.38	20	19
1000	Recommended Limits	39.7	40.0 ±5%	1.4 ±5%	18-25	18-25

The following probe conversion factors were used on the E-Field probe(s) used for the system accuracy verification measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe	SN1522	900		
ET3DV6	5111322	1800	3.4	7 of 10

6. Test Results

The test sample was operated in a test mode that allows control of the transmitter without the need to place actual phone calls. For the purposes of this test the unit is commanded to test mode and manually set to the proper channel, transmitter power level and transmit mode of operation. The phone was tested in the configurations stipulated in OET Bulletin 65 Supplement C 01-01. Motorola also followed the requirements in Supplement. C / Appendix D: SAR Measurement Procedures, section titled "Devices Operating Next To A Person's Ear". These directions state "The device should be tested on the left and right side of the head phantom in the "Cheek/Touch" and "Ear/Tilt" positions. When applicable, each configuration should be tested with the antenna in its fully extended and fully retracted positions. These test configurations should be tested at the high, middle and low frequency channels of each operating mode; for example, AMPS, CDMA, and TDMA. If the SAR measured at the middle channel for each test configuration (left, right, Cheek/Touch, Tile/Ear, extended and retracted) is at least 2.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s)."

The DASY v3.1d SAR measurement system specified in section 3.1 was utilized within the intended operations as set by the SPEAGTM setup. The phone was positioned into the measurement configurations using the positioner supplied with the DASY 3.1d SAR measurement system. The measured dielectric constant of the material used for the positioner is less than 2.9 and the loss tangent is less than 0.02 (± 30%) at 850MHz. The default settings for the "coarse" and "cube" scans were chosen and use for measurements. The grid spacing of the course scan was set to 15cm as shown in the SAR plots included in appendix 2 and 3. Please refer to the DASY manual for additional information on SAR scanning procedures and algorithms used.

The Cellular Phone (FCC ID IHDT6DV1) has the following battery options: 750 mAH Battery

This battery was used to do all of the SAR testing. The phone was placed in the SAR measurement system with a fully charged battery.

6.1 Body Worn Test Results

The SAR results shown in table 5 are the maximum SAR values averaged over 1 gram of phantom tissue. Also shown are the measured conducted output powers, the temperature of the test facility during the test, the temperature of the tissue simulate after the test, the measured drift and the extrapolated SAR. The exact method of extrapolation is New SAR = Old SAR * 10^(-drift/10). The SAR reported at the end of the measurement process by the DASYTM measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test. The test conditions indicated as bold numbers in the following table are included in Appendix 3. Note that 800MHz digital mode SAR measurements were performed in accordance with OET Bulletin 65 Supplement C 01-01. All other test conditions measured lower SAR values than those included in Appendix 3.

A "flat" phantom was for the body-worn tests. This "flat" phantom is made out of 1" thick natural High Density Polyethylene with a thickness at the bottom equal to 2.0mm. It measures 52.7cm(long) x 26.7cm(wide) x 21.2cm(tall). The measured dielectric constant of the material used is less than 2.3 and the loss tangent is less than 0.0046 all the way up to 2.184GHz.

The tissue stimulant depth was verified to be $15.0 \text{cm} \pm 0.5 \text{cm}$. The same device holder described in section 6 was used for positioning the phone. There are no Body-Worn Accessories available for this phone at the time of testing hence the device was tested per the supplement C testing guidelines for devices that do not have body worn accessories. The phone was placed 1 inch away from a flat phantom per the supplement C standard guidelines to perform SAR measurement. The cellular phone was tested with a headset connected to the device for all body-worn SAR measurements.

The following probe conversion factors were used on the E-Field probe(s) used for the body worn measurements:

Description	Serial Number	f (MHz)	Conversio n Factor	Cal Cert pg #
E-Field Probe	GN1500	835		
ET3DV6	SN1522	1900	3.1	8 of 10

				Body Worn						
		Conducted	Front of phone 15 mm away from phantom				Back of phone 15 mm away from phantom			
		Output				Simulate				Simulate
f (MHz)	Description	Power (dBm)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Temp (°C)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Temp (°C)
, ,	Channel 512	29.98	(Wing)	(uB)	(W/Rg)	(0)	(W/Rg)	(uB)	(\(\dag{\eta}\)	(0)
Digital 1900MHz	Channel 661	29.94	0.089	0.1	0.09	18.8	0.283	-0.02	0.28	18.8
170001112	Channel 810	30.02								

Table 1: SAR measurement results for the portable cellular telephone FCC ID IHDT6DV1 at highest possible output power. Measured against the body.

			Body Worn							
		Back of photographic Conducted			Back of phone 15 mm away from phantom (GPRS Class 10)				n away from phar h enabled)	itom (Blue
f (MHz)	Description	Output Power (dBm)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)
	Channel 512	29.98								
Digital 1900MHz	Channel 661	29.94	0.538	-0.05	0.54	18.8	0.317	-0.04	0.32	18.8
	Channel 810	30.02								

Table 2: SAR measurement results for the portable cellular telephone FCC ID IHDT6DV1 at highest possible output power. Measured against the body.

Appendix 1

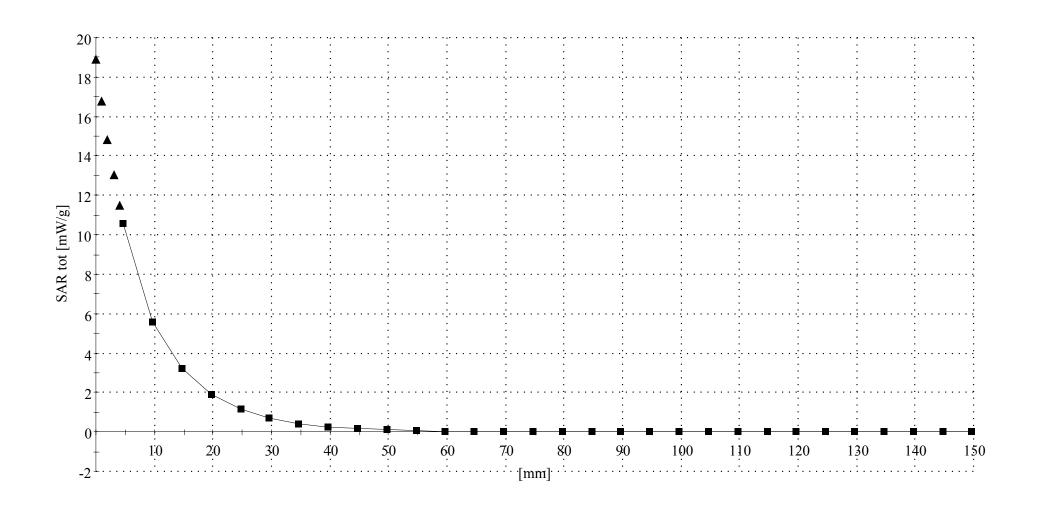
FCC ID: IHDT6DV1

SAR distribution comparison for the system accuracy verification

Dipole 1800 MHz

1800 MHz System Performance Check / Dipole Sn# 273TR

Forward Power = 252 Reflected Power = 23.8


Room Temp at time of measurement = 20 Simulant Temp at time of measurement = 19

R# 2 TP-1235 GLYCOL SAM Expanded (Rev. 2)-9Jan03 Phantom; Section; Position: ; Frequency: 1800 MHz

Probe: ET3DV6 - SN1522 - Validation2; ConvF(3.40,3.40,3.40); Crest factor: 1.0; 1800 MHz VALIDATION: $\sigma = 1.38$ mho/m $\epsilon_r = 39.9$ $\rho = 1.00$ g/cm³

:,()

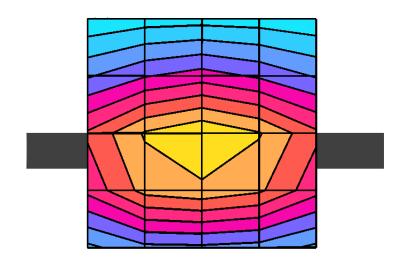
Z-Axis: Dx = 0.0, Dy = 0.0, Dz = 5.0Penetration depth: 8.3 (7.9, 9.2) [mm]

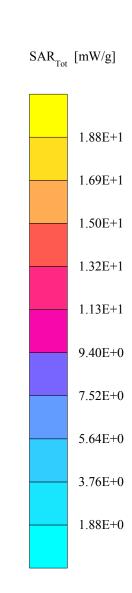
Dipole 1800 MHz

1800 MHz System Performance Check / Dipole Sn# 273TR

Forward Power = 252 Reflected Power = 23.8

Room Temp at time of measurement = 20 Simulant Temp at time of measurement = 19


R# 2 TP-1235 GLYCOL SAM Expanded (Rev. 2)-9Jan03 Phantom; Flat Section; Position: (0°,90°); Frequency: 1800 MHz


Probe: ET3DV6 - SN1522 - Validation2; ConvF(3.40,3.40,3.40); Crest factor: 1.0; 1800 MHz VALIDATION: $\sigma = 1.38$ mho/m $\epsilon_r = 39.9$ $\rho = 1.00$ g/cm³

Cubes (2): SAR (1g): 10.4 $\text{ mW/g} \pm 0.06 \text{ dB}$, SAR (10g): 5.53 $\text{ mW/g} \pm 0.07 \text{ dB}$, (Worst-case extrapolation)

Cube 5x5x7: Dx = 8.0, Dy = 8.0, Dz = 5.0 Penetration depth: 8.4 (8.0, 9.3) [mm]

Powerdrift: 0.00 dB

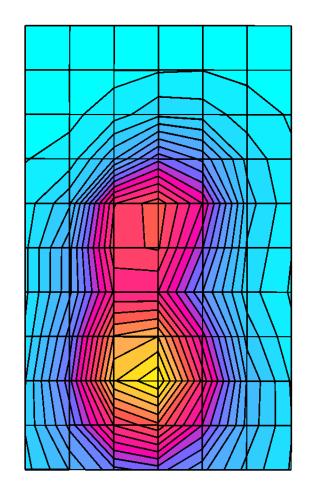
Appendix 2

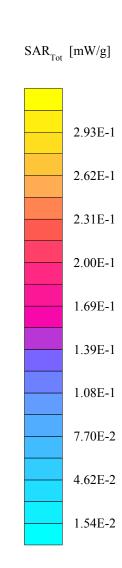
FCC ID: IHDT6DV1

SAR distribution plots for Body Worn Configuration

Ch# 661/ Pwr Step: 0 Antenna Position: Internal Type of Modulation: GSM Battery Model #: Proto 5

Accessory Model #: BACK of phone 15mm from Phantom W/BLUETOOTH ENABLED


R2 Amy Twin Phantom Rev.3 Phantom; section 1 Section; Position: (0°,0°); Frequency: 1880 MHz


Probe: ET3DV6 - SN1522 - FCC Body; ConvF(3.10,3.10,3.10); Crest factor: 8.0; 1880 MHz Head & Body: $\sigma = 1.58$ mho/m $\epsilon_r = 51.3$ $\rho = 1.00$ g/cm³

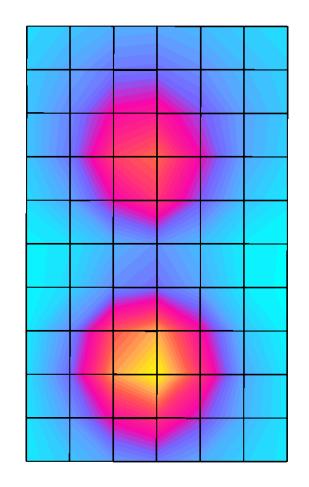
Cube 7x7x7: SAR (1g): 0.317 mW/g, SAR (10g): 0.196 mW/g, (Worst-case extrapolation)

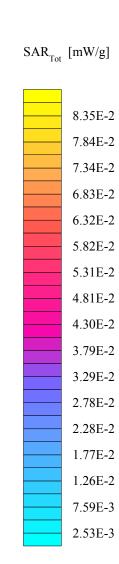
Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0Penetration depth: 10.7 (9.3, 12.8) [mm]

Powerdrift: -0.04 dB

Ch# 661/ Pwr Step: 0 Antenna Position: Internal Type of Modulation: GSM Battery Model #: Proto 5

Accessory Model #: FRONT of phone 15mm from Phantom


R2 Amy Twin Phantom Rev.3 Phantom; section 1 Section; Position: (0°,0°); Frequency: 1880 MHz


Probe: ET3DV6 - SN1522 - FCC Body; ConvF(3.10,3.10,3.10); Crest factor: 8.0; 1880 MHz Head & Body: $\sigma = 1.58$ mho/m $\epsilon_r = 51.3$ $\rho = 1.00$ g/cm³

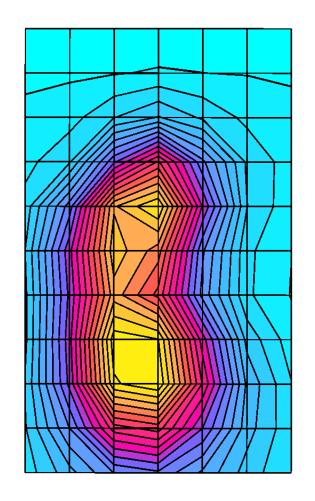
Cube 7x7x7: SAR (1g): 0.0890 mW/g, SAR (10g): 0.0531 mW/g, (Worst-case extrapolation)

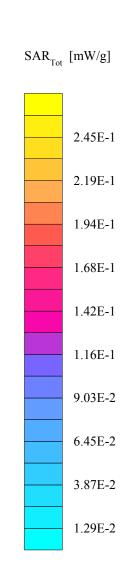
Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0Penetration depth: 10.2 (9.0, 12.0) [mm]

Powerdrift: 0.10 dB

Ch# 661/ Pwr Step: 0 Antenna Position: Internal Type of Modulation: GSM Battery Model #: Proto 5

Accessory Model #: BACK of phone 15mm from Phantom


R2 Amy Twin Phantom Rev.3 Phantom; section 1 Section; Position: (0°,0°); Frequency: 1880 MHz


Probe: ET3DV6 - SN1522 - FCC Body; ConvF(3.10,3.10,3.10); Crest factor: 8.0; 1880 MHz Head & Body: $\sigma = 1.58$ mho/m $\epsilon_r = 51.3$ $\rho = 1.00$ g/cm³

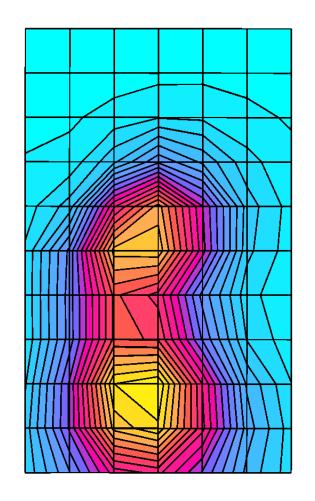
Cube 7x7x7: SAR (1g): 0.283 mW/g, SAR (10g): 0.174 mW/g, (Worst-case extrapolation)

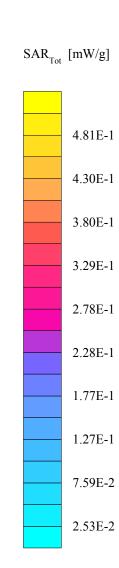
Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0 Penetration depth: 10.6 (9.2, 12.7) [mm]

Powerdrift: -0.02 dB

Ch# 661/ Pwr Step: 0 Antenna Position: Internal Type of Modulation: GPRS Battery Model #: Proto 5

Accessory Model #: BACK of phone 15mm from Phantom


R2 Amy Twin Phantom Rev.3 Phantom; section 1 Section; Position: (0°,0°); Frequency: 1880 MHz


Probe: ET3DV6 - SN1522 - FCC Body; ConvF(3.10,3.10,3.10); Crest factor: 4.0; 1880 MHz Head & Body: $\sigma = 1.58$ mho/m $\epsilon_r = 51.3$ $\rho = 1.00$ g/cm³

Cube 7x7x7: SAR (1g): 0.538 mW/g, SAR (10g): 0.332 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0Penetration depth: 10.5 (9.2, 12.5) [mm]

Powerdrift: -0.05 dB

Appendix 3

FCC ID: IHDT6DV1

Probe Calibration Certificate

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Motorola MRO

CALIBRATION CERTIFICATE

Object(s)

ET3DV6 - SN:1522

Calibration procedure(s)

QA CAL-01.v2

Calibration procedure for dosimetric E-field probes

Calibration date:

March 21, 2003

Condition of the calibrated item

In Tolerance (according to the specific calibration document)

This calibration statement documents traceability of M&TE used in the calibration procedures and conformity of the procedures with the ISO/IEC 17025 international standard.

All calibrations have been conducted in the closed laboratory facility: environment temperature 22 +/- 2 degrees Celsius and humidity < 75%,

Calibration Equipment used (M&TE critical for calibration)

Model Type	ID#	Cal Date	Scheduled Calibration
RF generator HP 8684C	US3642U01700	4-Aug-99 (in house check Aug-02)	In house check: Aug-05
Power sensor E4412A	MY41495277	Mar-02	Mar-03
Power sensor HP 8481A	MY41092180	18-Sep-02	Sep-03
Power meter EPM E4419B	GB41293874	13-Sep-02	Sep-03
Network Analyzer HP 8753E	US38432426	3-May-00	In house check: May 03
Fluke Process Calibrator Type 702	SN: 6295803	3-Sep-01	Sep-03

Calibrated by:

Approved by:

Name Function
Nico Vetterli Technician

Katja Pokovic

Laboratory Director

Date issued: March 21, 2003

D. Vellelle Denic Hat-

This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for Calibration Laboratory of Schmid & Partner Engineering AG is completed.

Probe ET3DV6R

SN:1522

Manufactured:

March 21, 2000

Last calibration:

April 25, 2002

Recalibrated:

March 21, 2003

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

maion 21, 2000

DASY - Parameters of Probe: ET3DV6R SN:1522

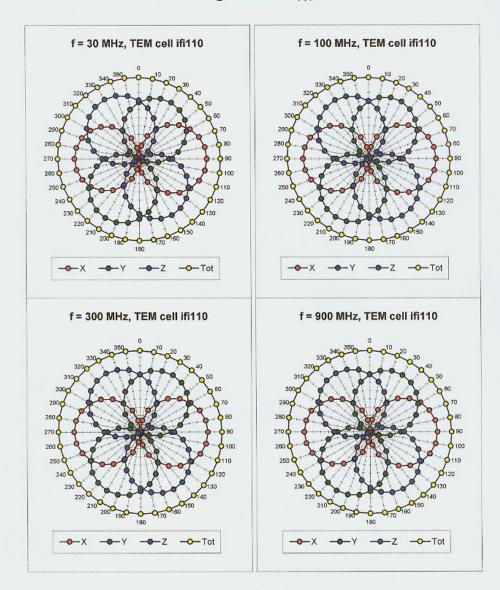
Sensitivity in Free Space

Diode Compression

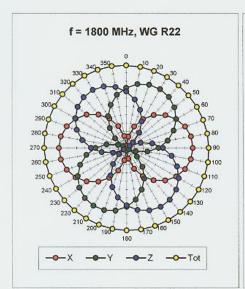
NormX	1.41 μV/(V/m) ²	DCP X	96	mV
NormY	1.23 μV/(V/m) ²	DCP Y	96	mV
NormZ	1.29 μV/(V/m) ²	DCP Z	96	mV

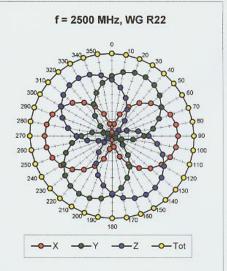
Sensitivity in Tissue Simulating Liquid

900 MHz	$\varepsilon_r = 41.5 \pm 5\%$	$\sigma = 0.97 \pm 5\% \text{ mho/m}$
835 MHz	$\varepsilon_r = 41.5 \pm 5\%$	σ = 0.90 ± 5% mho/m
ConvF X	4.7 ± 9.5% (k=2)	Boundary effect:
ConvF Y	4.7 ± 9.5% (k=2)	Alpha 0.57
ConvF Z	4.7 ± 9.5% (k=2)	Depth 1.94
1800 MHz	ε_r = 40.0 ± 5%	σ = 1.40 ± 5% mho/m
1900 MHz	ε_r = 40.0 ± 5%	σ = 1.40 ± 5% mho/m
ConvF X	3.4 ± 9.5% (k=2)	Boundary effect:
ConvF Y	3.4 ± 9.5% (k=2)	Alpha 0.49
ConvF Z	3.4 ± 9.5% (k=2)	Depth 3.01
	835 MHz ConvF X ConvF Y ConvF Z 1800 MHz 1900 MHz ConvF X ConvF Y	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

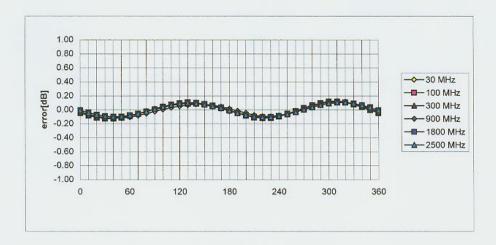

Boundary Effect

Head	900 MH	Iz Typical SAR gradient: 5	% per mm	
	Probe Tip to Bo	undary	1 mm	2 mm
	SAR _{be} [%] Wi	thout Correction Algorithm	9.3	5.1
	SAR _{be} [%] Wi	th Correction Algorithm	0.1	0.2
Head	1800 MH	Iz Typical SAR gradient: 10	0 % per mm	
	Probe Tip to Bo	undary	1 mm	2 mm
	SAR _{be} [%] With	thout Correction Algorithm	16.1	12.0
	SAR _{be} [%] Wi	th Correction Algorithm	0.5	0.5


Sensor Offset

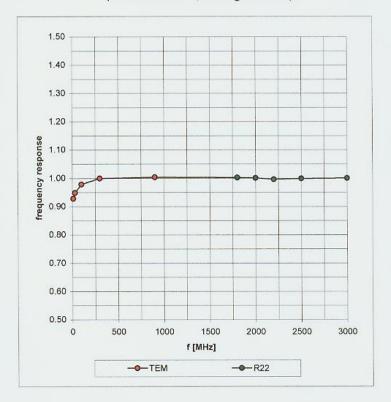

Probe Tip to Sensor Center	2.7	mm

Receiving Pattern (ϕ), θ = 0°



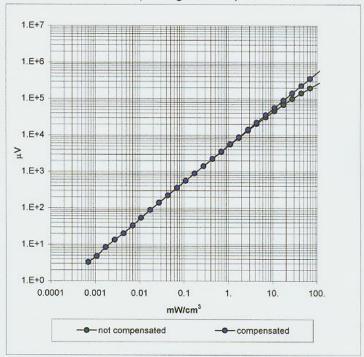
LIGOTON ON IOLE INGIONE I, EUGO

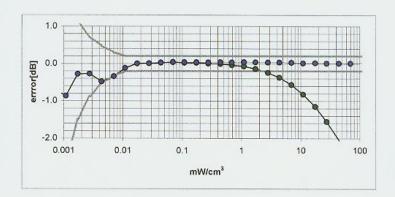
Isotropy Error (ϕ), θ = 0°

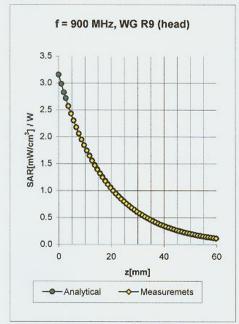


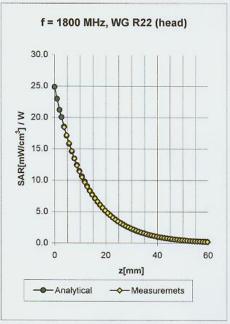
L 1 3D T OIL OIL 1022

Frequency Response of E-Field

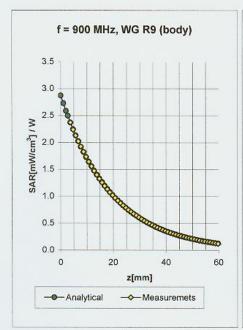

maion 21, 2000

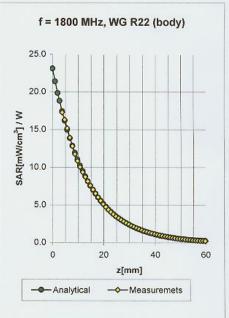

(TEM-Cell:ifi110, Waveguide R22)


Dynamic Range f(SAR_{brain})


(Waveguide R22)

Conversion Factor Assessment

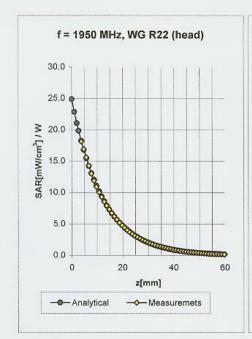


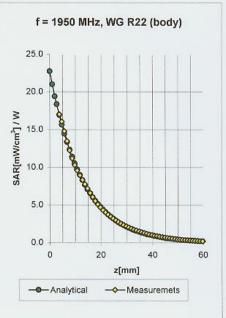


Head	900 MHz	$\varepsilon_{\rm r} = 41.5 \pm 5\%$	σ = 0.97 ± 5% mho/m
Head	835 MHz	$\epsilon_r = 41.5 \pm 5\%$	σ = 0.90 ± 5% mho/m
	ConvF X	4.7 ± 9.5% (k=2)	Boundary effect:
	ConvF Y	4.7 ± 9.5% (k=2)	Alpha 0.57
	ConvF Z	4.7 ± 9.5% (k=2)	Depth 1.94

Head	1800 MHz	$\varepsilon_r = 40.0 \pm 5\%$	σ = 1.40 ± 5% mho/m
Head	1900 MHz	ε_r = 40.0 ± 5%	σ = 1.40 ± 5% mho/m
	ConvF X	3.4 ± 9.5% (k=2)	Boundary effect:
	ConvF Y	3.4 ± 9.5% (k=2)	Alpha 0.49
	ConvF Z	3.4 ± 9.5% (k=2)	Depth 3.01

Conversion Factor Assessment

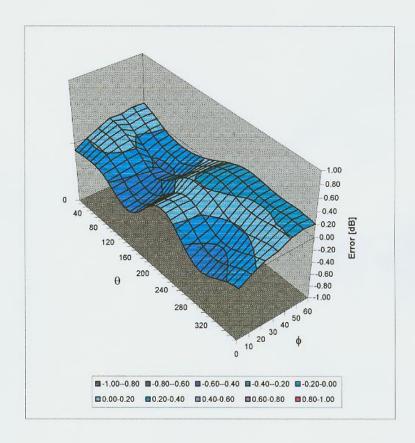




Body	900 MHz	$\varepsilon_{\rm r}$ = 55.0 ± 5%	σ = 1.05 ± 5% mho/m
Body	835 MHz	$\varepsilon_{\rm r}$ = 55.2 ± 5%	σ = 0.97 ± 5% mho/m
	ConvF X	4.4 ± 9.5% (k=2)	Boundary effect:
	ConvF Y	4.4 ± 9.5% (k=2)	Alpha 0.36
	ConvF Z	4.4 ± 9.5% (k=2)	Depth 2.79

Body	1800 MHz	$\varepsilon_{\rm r}$ = 53.3 ± 5%	σ = 1.52 ± 5% mho/m
Body	1900 MHz	ϵ_r = 53.3 ± 5%	σ = 1.52 ± 5% mho/m
	ConvF X	3.1 ± 9.5% (k=2)	Boundary effect:
	ConvF Y	3.1 ± 9.5% (k=2)	Alpha 0.58
	ConvF Z	3.1 ± 9.5% (k=2)	Depth 2.97

Conversion Factor Assessment



Head	1950	MHz	ϵ_r = 40.0 ± 5%	σ = 1.40 ± 5% mh	o/m
	ConvF X	3.2	2 ± 8.9% (k=2)	Boundary effe	ct:
	ConvF Y	3.2	2 ± 8.9% (k=2)	Alpha	0.55
	ConvF Z	3.2	2 ± 8.9% (k=2)	Depth	2.95
Body	1950	MHz	$\epsilon_{\rm r}$ = 53.3 ± 5%	σ = 1.52 ± 5% mh	o/m
	ConvF X	2.7	7 ± 8.9% (k=2)	Boundary effe	ct:
	ConvF Y	2.7	7 ± 8.9% (k=2)	Alpha	0.65
	ConvF Z	2.7	7 ± 8.9% (k=2)	Depth	2.71

Deviation from Isotropy in HSL

Error (θ,ϕ) , f = 900 MHz

Appendix 4

FCC ID: IHDT6DV1

Dipole Calibration Certificate

Certification of System Performance Check Targets Based on APP-0396

-Historical Data-

	835MHz	900MHz	1800MHz	1900MHz	
P1528 Target: Advanced Extrapolation	9.5	10.8	38.1	39.7	(W/kg)
Measurement Uncertainty (k=1):	10.2%	10.2%	10.2%	10.2%	
Measurement Period:	November '02 - June '03	November '02 - June '03	November '02 - June '03	November '02 - June '03	-
# of tests performed:	169	728	868	26	
Grand Average: Worst Case Extrapolation	10.1	11.6	39.7	42.0	(W/kg)
% Delta (Average - P1528 Target)	6.5%	7.7%	4.2%	5.9%	
Is % Delta <= Measurement Uncertainty?	Yes	Yes	Yes	Yes	
Accept/Reject <u>Average</u> as new system performance check target?	ACCEPT	ACCEPT	ACCEPT	ACCEPT	
	Applicable 835MHz Dipole Serial Numbers:	Applicable 900MHz Dipole Serial Numbers:	Applicable <u>1800MHz</u> Dipole Serial Numbers:	Applicable <u>1900Mhz</u> Dipole Serial Numbers:	
	420(TR), 421(TR)	77, 78	246(TR), 250(TR)	514(TR), 518(TR)	
	422(TR), 423(TR)	79, 80	251(TR), 258(TR)	519(TR), 520(TR)	
	424(TR), 425(TR)	91, 92	259(TR), 262(TR)	523(TR), 524(TR)	4
	431(TR), 432(TR)	93, 94 95, 96	263(TR), 271(TR)	526(TR), 527(TR)	-
	433(TR), 434(TR) 436(TR)	95, 96 97	272(TR), 273(TR) 276(TR), 277(TR)	528(TR), 529(TR) 530(TR), 533(TR)	
	750(111)	- 51	279(TR), 280(TR)	330(111), 333(111)	1
			281(TR), 282(TR)		1
			283(TR), 284(TR)]

-New System Performance Check Targets- per APP-0396

(based on analysis of historical data)

Frequency	SAR Target (W/kg)	Permittivity	Conductivity (S/m)
835MHz	10.1	41.5 ± 5%	0.90 ± 5%
900MHz	11.6	41.5 ± 5%	0.97 ± 5%
1800MHz	39.7	40.0 ± 5%	1.40 ± 5%
1900MHz	42.0	40.0 ± 5%	1.40 ± 5%

-Approvals-				
	Submitted by:	Marge Kaunas	Date:	24-Jun-03
	Signed:	Manja Kanna		
	Comments:	spreadsheet detailing all measurements available upon request		
<u>.</u>	Approved by:	Antonio Faraone	Date:	24-Jun-03
	Signed:	Automo Faner-e		
	Comments:	Targets and associated simulant properties are	e derived from the IEEE P152	28 draft standard