

Exhibit 11: SAR Test Report: IHDT5BB1

Date of test: 03/21/2001-03/26/2001

Motorola Personal Communications Sector Product Safety Laboratory

FCC ID: IHDT5BB1

Laboratory: 2001 N. Division

Room: AS228

Harvard, Illinois 60033

Test Responsible: Steven Hauswirth

Staff Engineer

Accreditation: ISO Guide 25 Accredited Lab, A2LA certificate #1651-01

Motorola declares under its sole responsibility that portable cellular

telephone FCC ID IHDT5BB1 to which this declaration relates, is in conformity with the appropriate RF exposure standards, recommendations and guidelines. It also declares that the product was tested in accordance with the appropriate measurement standards, guidelines and recommended practices. Any deviations from these

standards, guidelines and recommended practices are noted below:

Statement of Compliance:

@Motorola

This test report shall not be reproduced in full, without written approval of the laboratory.

The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report.

Motorola encourages all feedback, both positive and negative, on this test report.

Table of Contents

1)	Introduction	3
2)	Description of the Device Under Test. Antenna description. Device description.	3
3)	Test Results	3
4)	Test Equipment	4
5)	Electrical parameters of the tissue simulating liquid	5
6)	System Accuracy Verification	5
Re	eference Notes	
Ар	pendix 1: SAR distribution comparison for the system accuracy verification	6
Ар	pendix 2: SAR distribution plots for Phantom Head Adjacent Use	7
Ар	pendix 3: SAR distribution plots for Body Worn Configuration	8
Дp	pendix 4: Photographs of the device under test	9

1. Introduction

The Motorola Personal Communications Sector Product Safety Laboratory has performed measurements of the maximum potential exposure to the user of portable cellular phone FCC ID IHDT5BB1. The Specific Absorption Rate (SAR) of this product was measured. The portable cellular phone was tested in accordance with the latest available test guidelines. The SAR values found for the portable cellular phone (FCC ID IHDT5BB1) are below the maximum recommended levels of 1.6 W/kg. Detailed procedures of the test are described in the *Motorola Exhibit 11 Reference SAR Test Report*.

FCC ID: IHDT5BB1

2. Description of the Device Under Test

Antenna description

Туре	Fixed Stub
Location	Top Right Side
Configuration	Helix

Device description

FCC ID Number	IHDT5BB1			
Serial number	249			
Mode(s) of Operation	AMPS800 CDMA800			
Modulation Mode(s)	AMPS CDMA			
Maximum Production Unit Power	27.0 dBm 24.50 dBm			
Duty Cycle	1:1	1:1		
Transmitting Frequency Rang(s)	824-849MHz	824-849MHz		

3. Test Results

The SAR results shown in tables 1 and 2 are maximum SAR values averaged over 1 gram of phantom tissue. Also shown are the measured conducted output powers and the temperature of the test facility during the test.

The test sample was operated in a test mode that allows control of the transmitter without the need to place actual phone calls. For the purposes of this test the unit is commanded to test mode and manually set to the proper channel, transmitter power level and transmit mode of operation. The phone was then placed in the SAR measurement system with a fully charged battery.

A full data set output of two test conditions with the highest SAR values from the DasyTM measurement system is included as appendix 2 and 3. The test conditions included are indicated as bold numbers in the following table. All other test conditions measured lower SAR values than those included. Note that digital mode SAR data was measured only for the test conditions that resulted in the highest analog SAR values. This is because the only difference between analog and digital modes that can impact SAR is the average transmitter power.

Since there is no body worn accessory available for this product, SAR body worn compliance is demonstrated keeping the front and back of the phone separated from the flat phantom by one (1) inch as stated in the user manual.

			SAR, 1g (W/kg)		
f (MHz)	Description	Conducted Output Power (dBm)	Left Head Ant Fixed	Right Head Ant Fixed	
Analag	Channel 991	26.83	1.01	0.835	
Analog 800MHz	Channel 384	27.14	1.47	1.09	
OUUNIIIZ	Channel 799	26.84	1.41	1.11	
Distal	Channel 991	24.62			
Digital 800MHz	Channel 398	24.97	0.87		
OUWITZ	Channel 779	24.94			

Table 1: SAR measurement results for the portable cellular telephone FCC ID IHDT5BB1 at highest possible output power. Measured against the head.

			SAR, 1g (W/kg)			
		Conducted Output	Back of the Phone 1" away from the Phantom	Front of the Phone 1" away from the Phantom		
(MHz)	Description	Power (dBm)	Ant Fixed	Ant Fixed		
A 1	Channel 991	26.83	0.272	0.28		
Analog 800MHz	Channel 384	27.14	0.31	0.35		
OUUVIIIZ	Channel 799	26.84	0.28	0.34		
Disital	Channel 991	24.62				
Digital 800MHz	Channel 398	24.97	0.22	0.22		
OUUVIIIZ	Channel 779	24.94				

Table 2: SAR measurement results for the portable cellular telephone FCC ID IHDT5BB1 at highest possible output power. Measured against the body.

4. Test Equipment Used

4.1 Dosimetric System

The Motorola Personal Communications Sector Product Safety Laboratory utilizes a Dosimetric Assessment System (Dasy3TM) SAR measurement system manufactured by Schmid & Partner Engineering AG (SPEAGTM), of Zurich Switzerland. The overall RSS uncertainty of the measurement system is $\pm 12.0\%$ (K=1).

Dosimetric System used for Head Adjacent Tests

Description	Serial Number	Cal Due Date
DASY3 DAE V1	SN398	08/28/01
E-Field Probe ETDV6	SN1514	11/25/01
Dipole Validation Kit, DV900V2	SN80	10/26/02

Dosimetric System used for Body Worn Tests

= 00				
Description	Serial Number	Cal Due Date		
DASY3 DAE V1	SN376	02/20/02		
E-Field Probe ETDV6	SN1503	10/06/01		
Dipole Validation Kit, DV900V2	SN79	10/26/02		

4.2 Additional Equipment

Additional Equipment used for Head Adjacent Tests

Description	Serial Number	Cal Due Date
Signal Generator HP8648C	3847A04982	01/18/2003
Power Meter E4419B	GB39510961	01/19/2002
Power Sensor 8481A	US39210915	10/09/2001

Additional Equipment used for Body Worn Tests

Description	Serial Number	Cal Due Date
Signal Generator HP8648C	3847A04832	11/15/2001
Power Meter E4419B	GB39511088	06/11/2001
Power Sensor 8481A	US37296471	10/09/2001

5. Electrical parameters of the tissue simulating liquid

Prior to conducting SAR measurements, the relative permittivity, ε_r , and the conductivity, σ , of the tissue simulating liquids were measured with HP85070 Dielectric Probe Kit. These values are shown in the table below. The mass density, ρ , used by the dosimetric system is also given. Recommended limits for maximum permittivity, minimum conductivity and maximum mass density are also shown. These come from the Federal Communication Commission, "Tissue Dielectric Properties" web site at http://www.fcc.gov/fcc-bin/dielec.sh. It is seen that the measured parameters are satisfactory for compliance testing.

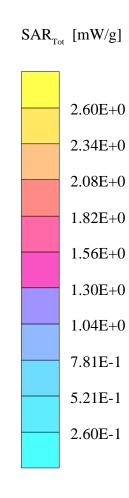
f	Tissue	Limits / Measured	Diele	ctric Para	meters
(MHz)	type	Lillius / Wieasureu	\mathbf{e}_r	s (S/m)	r (g/cm³)
	Head	Measured , 03/21/01	44.06	0.89	1.00
836		Recommended Limits	46.08	0.74	1.03
	Body	Measured , 03/30/01	50.74	1.11	1.00
		Recommended Limits	56.11	0.94	1.04

6. System Accuracy Verification

A system accuracy verification of the DASY3 was performed using the measurement equipment listed in Section 4. The test was conducted on the same day as the measurement of the DUT. The obtained results are displayed in the table below. The distributions of SAR compare well with those of the reference measurements (see Appendix 1).

f		SAR (W/kg),	Dielectric Parameters		
(MHz)	Description	1gram	\mathbf{e}_r	s (S/m)	Temp (°C)
900	Measured, 03/21/01	10.0	41.55	0.85	21.0
900	Recommended Limits	10.2	40.00	0.85	NA
900	Measured, 03/30/01	9.98	41.63	0.87	22.4
900	Recommended Limits	10.2	40.00	0.85	NA

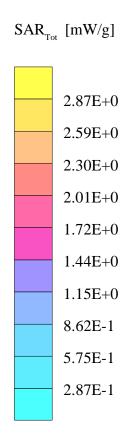
FCC ID: IHDT5BB1


SAR distribution comparison for the system accuracy verification

Dipole 900 MHz

 $900\,\mathrm{MHz}$ Dipole Validation / Dipole Sn# 079 / Forward Power = $250\mathrm{mW}$ / Temp at time of measurement: $22.4\mathrm{C}$ Amy Twin Phantom; Section 2

Probe: ET3DV6 - SN1503 Validation; ConvF(6.46,6.46,6.46); Crest factor: 1.0; Validation 900 MHz: $\sigma = 0.87$ mho/m $\epsilon_r = 41.6$ $\rho = 1.00$ g/cm³ Cubes (2): Peak: 3.94 mW/g \pm 0.01 dB, SAR (1g): 2.54 mW/g \pm 0.01 dB, SAR (10g): 1.65 mW/g \pm 0.02 dB, (Worst-case extrapolation)



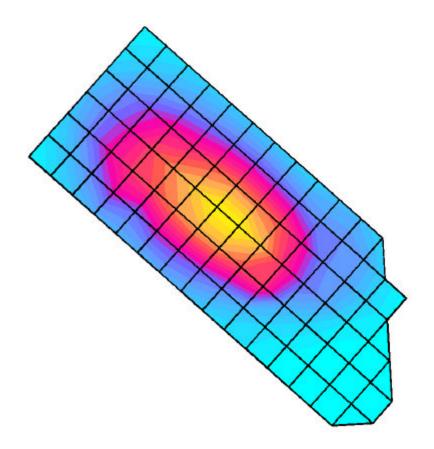
Dipole 900 MHz

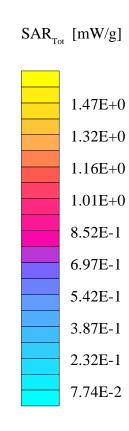
900MHz Dipole Validation / Dipole Sn# 80 / Forward Power =250mW / Temp at time of measurement: 21c Amy Twin Optic OFF; Section 1

Probe: ET3DV6 - SN1514 Validation; ConvF(6.48,6.48,6.48); Crest factor: 1.0; Validation 900 MHz: $\sigma = 0.85$ mho/m $\epsilon_r = 41.5$ $\rho = 1.00$ g/cm³ Cubes (2): Peak: 4.14 mW/g \pm 0.19 dB, SAR (1g): 2.66 mW/g \pm 0.18 dB, SAR (10g): 1.72 mW/g \pm 0.18 dB, (Worst-case extrapolation)

SAR distribution plots for Phantom Head Adjacent Use

Ch#384 / Pwr Step:02


Mork (Left Head) Phantom; Left Head Section; Position: (80°,180°); Frequency: 837 MHz

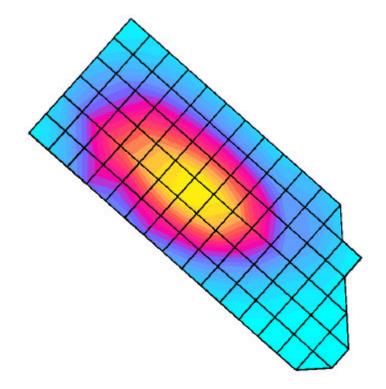

Probe: ET3DV6 - SN1514 Head (Sugar Water); ConvF(6.62,6.62,6.62); Crest factor: 1.0; Head 835 MHz: $\sigma = 0.89$ mho/m $\epsilon_r = 44.1$ $\rho = 1.00$ g/cm³

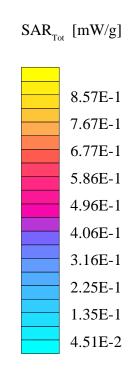
Cube 5x5x7: SAR (1g): 1.47 mW/g, SAR (10g): 1.03 mW/g, (Worst-case extrapolation)

Coarse: Dx = 10.0, Dy = 10.0, Dz = 10.0Penetration depth: 16.4 (15.1, 17.5) [mm]

Powerdrift: 0.40 dB

Ch#398 / Pwr Step:02 / Type of Modulation: 800CDMA


Mork (Left Head) Phantom; Left Head Section; Position: (80°,180°); Frequency: 837 MHz


Probe: ET3DV6 - SN1514 Head (Sugar Water); ConvF(6.62,6.62,6.62); Crest factor: 1.0; Head 835 MHz: $\sigma = 0.89$ mho/m $\epsilon_r = 44.1$ $\rho = 1.00$ g/cm³

Cube 5x5x7: SAR (1g): 0.869 mW/g, SAR (10g): 0.593 mW/g, (Worst-case extrapolation)

Coarse: Dx = 10.0, Dy = 10.0, Dz = 10.0Penetration depth: 15.3 (14.7, 16.2) [mm]

Powerdrift: -0.12 dB

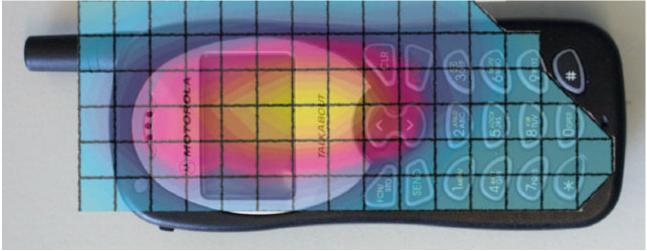


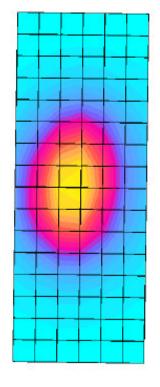
Figure 1. Front of Phone with Typical 800MHz Contour Overlaid.

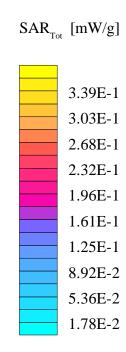
FCC ID: IHDT5BB1

SAR distribution plots for Body Worn Configuration

Ch# 384/ Pwr Step:2

Front part of the phone against the phantom with 1" space


Amy Twin Phantom Phantom; Section 1 Section; Position: (0°,0°); Frequency: 837 MHz


Probe: ET3DV6 - SN1503 - Muscle (Sugar Water); ConvF(6.55,6.55,6.55); Crest factor: 1.0; Muscle 835 MHz: $\sigma = 1.11$ mho/m $\epsilon_r = 50.7$ $\rho = 1.00$ g/cm³

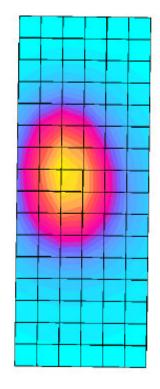
Cube 5x5x7: SAR (1g): 0.349 mW/g, SAR (10g): 0.241 mW/g, (Worst-case extrapolation)

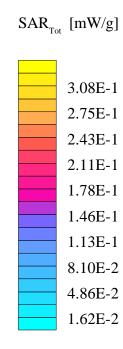
Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0Penetration depth: 14.0 (12.9, 15.3) [mm]

Powerdrift: -0.12 dB

Ch# 384/ Pwr Step:2

Back part of the phone against the phantom with 1" space


Amy Twin Phantom Phantom; Section 1 Section; Position: (0°,0°); Frequency: 837 MHz


Probe: ET3DV6 - SN1503 - Muscle (Sugar Water); ConvF(6.55,6.55,6.55); Crest factor: 1.0; Muscle 835 MHz: $\sigma = 1.11$ mho/m $\epsilon_r = 50.7$ $\rho = 1.00$ g/cm³

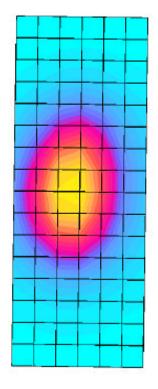
Cube 5x5x7: SAR (1g): 0.311 mW/g, SAR (10g): 0.214 mW/g, (Worst-case extrapolation)

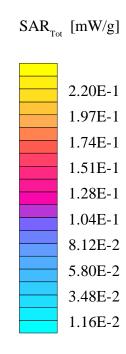
Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0Penetration depth: 13.8 (12.6, 15.1) [mm]

Powerdrift: 0.13 dB

Ch# 398 / Pwr Step: Always Up / Type of Modulation: 800CDMA

Front part of the phone against the phantom with 1" space


Amy Twin Phantom Phantom; Section 1 Section; Position: (0°,0°); Frequency: 837 MHz


Probe: ET3DV6 - SN1503 - Muscle (Sugar Water); ConvF(6.55,6.55,6.55); Crest factor: 1.0; Muscle 835 MHz: $\sigma = 1.13$ mho/m $\epsilon_r = 51.3$ $\rho = 1.00$ g/cm³

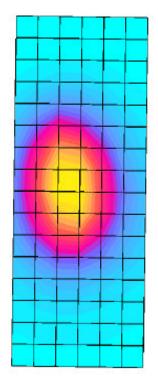
Cube 5x5x7: SAR (1g): 0.223 mW/g, SAR (10g): 0.154 mW/g, (Worst-case extrapolation)

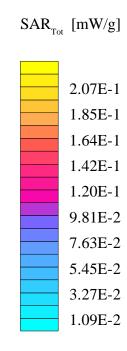
Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0Penetration depth: 14.1 (12.9, 15.4) [mm]

Powerdrift: -0.73 dB

Ch# 398 / Pwr Step: Always Up / Type of Modulation: 800 CDMA

Back part of the phone against the phantom with 1" space


Amy Twin Phantom Phantom; Section 1 Section; Position: (0°,0°); Frequency: 837 MHz


Probe: ET3DV6 - SN1503 - Muscle (Sugar Water); ConvF(6.55,6.55,6.55); Crest factor: 1.0; Muscle 835 MHz: $\sigma = 1.13$ mho/m $\epsilon_r = 51.3$ $\rho = 1.00$ g/cm³

Cube 5x5x7: SAR (1g): 0.218 mW/g, SAR (10g): 0.150 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0Penetration depth: 13.8 (12.6, 15.2) [mm]

Powerdrift: -0.07 dB

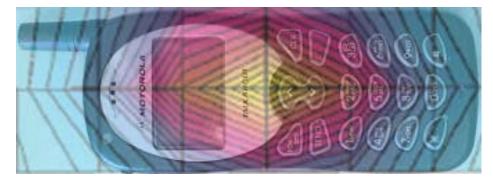


Figure 2. Overlay Contour of Front Part of the Phone 1 inch from the Flat Phantom

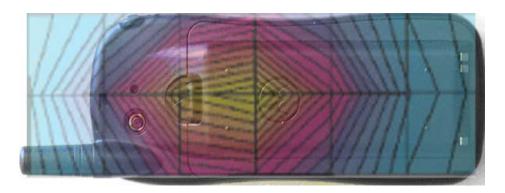


Figure 3. Overlay Contour of Back Part of Phone 1 inch away from the Flat Phantom

Photographs of the device under test

Figure 4. Front of Phone

Figure 5. Side of Phone

Figure 6. Back of Phone

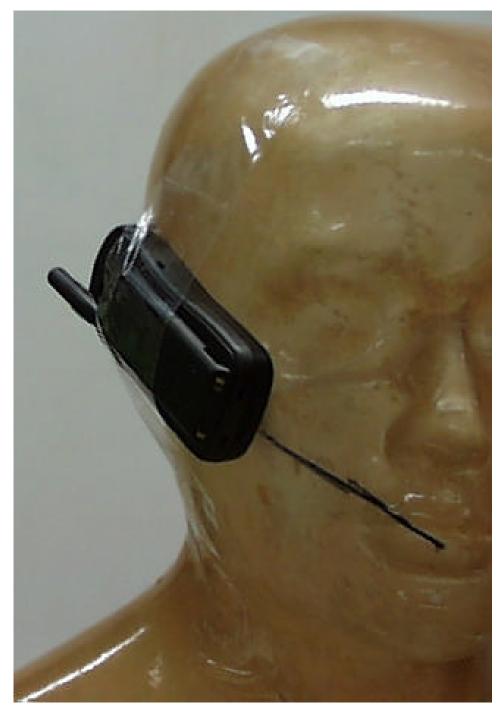


Figure 7. Phone Against the Head Phantom

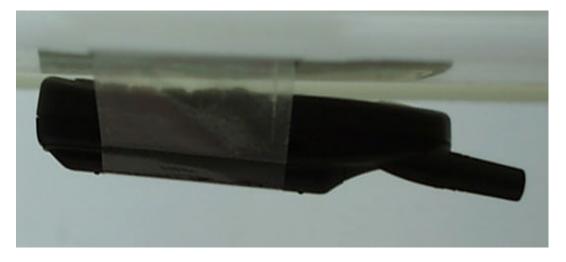


Figure 8. Front Part of the Phone one inch away from the Flat Phantom

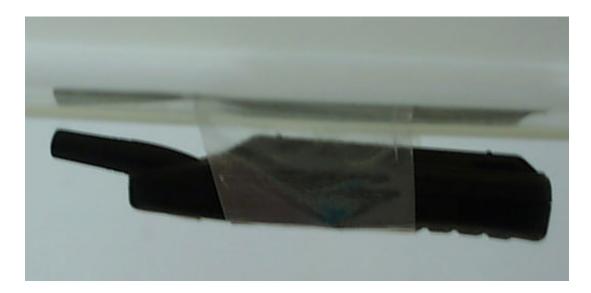


Figure 9. Back Part of the Phone one inch away from the Flat Phantom