FCC SAR Test Report

APPLICANT : Motorola Mobility LLC

EQUIPMENT : Mobile Cellular Phone

BRAND NAME : Motorola MODEL NAME : XT1952-2

FCC ID : IHDT56XR3

STANDARD : FCC 47 CFR Part 2 (2.1093)

ANSI/IEEE C95.1-1992

Report No. : FA8D2701

IEEE 1528-2013

We, Sporton International (Kunshan) Inc., would like to declare that the tested sample has been evaluated in accordance with the procedures and had been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (Kunshan) Inc., the test report shall not be reproduced except in full.

Approved by: Mark Qu / Manager

Mark Qu

Sporton International (Kunshan) Inc.

No. 1098, Pengxi North Road, Kunshan Economic Development Zone, Jiangsu Province 215335, China

NVLAP LAB CODE 600155-0

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Jan. 25, 2019 Form version.: 170509 FCC ID: IHDT56XR3 Page 1 of 35

Table of Contents

Report No. : FA8D2701

	Statement of Compliance	
	Administration Data	
3.	Guidance Applied	(
	Equipment Under Test (EUT) Information	
	4.1 General Information	
	4.2 General LTE SAR Test and Reporting Considerations	7
5.	Proximity Sensor Triggering Test	9
	5.1 Proximity sensor triggering distances(Per KDB616217§6.2)	9
6.	RF Exposure Limits	1
	6.1 Uncontrolled Environment	
	6.2 Controlled Environment	
7.	Specific Absorption Rate (SAR)	
	7.1 Introduction	
	7.2 SAR Definition	16
8.	System Description and Setup	17
	8.1 E-Field Probe	
	8.2 Data Acquisition Electronics (DAE)	
	8.3 Phantom	
	8.4 Device Holder	20
9.	Measurement Procedures	
	9.1 Spatial Peak SAR Evaluation	2
	9.2 Power Reference Measurement	22
	9.3 Area Scan	22
	9.4 Zoom Scan	
	9.5 Volume Scan Procedures	
	9.6 Power Drift Monitoring	
	. Test Equipment List	
11	. System Verification	
	11.1 Tissue Simulating Liquids	25
	11.2 Tissue Verification	
	11.3 System Performance Check Results	
12	RF Exposure Positions	28
	12.1 Ear and handset reference point	28
	12.2 Definition of the cheek position	29
	12.3 Definition of the tilt position	
	12.4 Body Worn Accessory	
40	12.5 Wireless Router	
13	SAR Test Results	
	13.1 Head SAR	
	13.2 Hotspot SAR	
1.4	. Uncertainty Assessment	3
	. Uncertainty Assessment	
	ppendix A. Plots of System Performance Check	3
	opendix B. Plots of High SAR Measurement	
	opendix C. DASY Calibration Certificate	
-	opendix D. Test Setup Photos	
~	pendix D. Test setup Filotos	

Issued Date : Jan. 25, 2019 Form version. : 170509

Revision History

Report No. : FA8D2701

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FA8D2701	Rev. 01	Initial issue of report	Jan. 25, 2019

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date : Jan. 25, 2019 Form version. : 170509 FCC ID: IHDT56XR3 Page 3 of 35

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for Motorola Mobility LLC, Mobile Cellular Phone, XT1952-2, are as follows.

Report No. : FA8D2701

			Highest SAR Summary								
Equipment		Frequency	Head	Body-worn							
Class		Band	(Separation 0mm)	(Separation 5mm)	(Separation 5mm)						
			1g SAR (W/kg)								
	WCDMA	Band IV		1.19	1.23						
Licensed	LTE	Band 5		0.48	0.48						
	LIC	Band 7		0.94	0.98						
DTS	WLAN	2.4GHz WLAN	0.46								
	Date of Te	esting:	2018/11/23 ~ 2018/11/24								

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg for Partial-Body 1g SAR) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and FCC KDB publications.

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Jan. 25, 2019 FCC ID: IHDT56XR3 Page 4 of 35 Form version.: 170509

2. Administration Data

	Testing Laboratory											
Test Site Sporton International (Kunshan) Inc.												
Test Site Location	No. 1098, Pengxi North Road, Kunshan Economic Development Zone, Jiangsu Province 215335, China TEL: +86-512-57900158 FAX: +86-512-57900958											

Report No. : FA8D2701

Applicant									
Company Name	Motorola Mobility LLC								
Address	222 W, Merchandise Mart Plaza, Chicago IL 60654 USA								

Manufacturer Manufacturer									
Company Name	Motorola Mobility LLC								
Address	222 W, Merchandise Mart Plaza, Chicago IL 60654 USA								

3. Guidance Applied

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

- FCC 47 CFR Part 2 (2.1093)
- ANSI/IEEE C95.1-1992
- IEEE 1528-2013
- FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- FCC KDB 865664 D02 SAR Reporting v01r02
- FCC KDB 447498 D01 General RF Exposure Guidance v06
- FCC KDB 648474 D04 SAR Evaluation Considerations for Wireless Handsets v01r03
- FCC KDB 248227 D01 802.11 Wi-Fi SAR v02r02
- FCC KDB 616217 D04 SAR for laptop and tablets v01r02
- FCC KDB 941225 D01 3G SAR Procedures v03r01
- FCC KDB 941225 D05 SAR for LTE Devices v02r05
- FCC KDB 941225 D06 Hotspot Mode SAR v02r01

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 / FAX: +86-512-57900958 Issued Date: Jan. 25, 2019

FCC ID : IHDT56XR3 Page 5 of 35 Form version. : 170509

4. Equipment Under Test (EUT) Information

4.1 General Information

	Product Feature & Specification
Equipment Name	Mobile Cellular Phone
Brand Name	Motorola
Model Name	XT1952-2
FCC ID	IHDT56XR3
IMEI Code	SIM1: 352173100015998 SIM2: 352173100016004
Wireless Technology and Frequency Range	GSM850: 824.2 MHz ~ 848.8 MHz GSM1900: 1850.2 MHz ~ 1909.8 MHz WCDMA Band II: 1852.4 MHz ~ 1907.6 MHz WCDMA Band IV: 1712.4 MHz ~ 1752.6 MHz WCDMA Band V: 826.4 MHz ~ 846.6 MHz LTE Band 2: 1850.7 MHz ~ 1909.3 MHz LTE Band 4: 1710.7 MHz ~ 1754.3 MHz LTE Band 5: 824.7 MHz ~ 848.3 MHz LTE Band 7: 2502.5 MHz ~ 2567.5 MHz LTE Band 66: 1710.7 MHz ~ 1779.3 MHz WLAN 2.4GHz Band: 2412 MHz ~ 2462 MHz Bluetooth: 2402 MHz ~ 2480 MHz
Mode	GSM/GPRS/EGPRS RMC/AMR 12.2Kbps HSDPA HSUPA DC-HSDPA HSPA+(16QAM uplink is not supported) LTE: QPSK, 16QAM, 64QAM WLAN 2.4GHz 802.11b/g/n HT20 Bluetooth BR/EDR/LE
HW Version	DVT 2
SW Version	PPY29.13
GSM / (E)GPRS Transfer mode	Class B – EUT cannot support Packet Switched and Circuit Switched Network simultaneously but can automatically switch between Packet and Circuit Switched Network.
EUT Stage	Production Unit
Remark:	

Report No.: FA8D2701

- This device supports VoIP in GPRS, EGPRS, WCDMA and LTE (e.g. for 3rd-party VoIP), LTE supports VoLTE operation.
- This device 2.4GHz WLAN support hotspot operation and Bluetooth supports BT tethering.
- This device does not support DTM operation and supports GRPS/EGRPS mode up to multi-slot class 12.
- 4. For dual SIM card mobile has two SIM slots and supports dual SIM dual standby. The WWAN radio transmission will be enabled by either one SIM at a time (single active). After pre-scan two SIM cards power, we found test result of the SIM1 was the worse, so we chose SIM1 slot to perform all tests.
- The device employs proximity sensors that detect the presence of the user's body at the front or back faces of the device. When front or back body worn condition is detected, GSM1900, WCDMA band II/IV, LTE band 2/4/7/66 reduced power will be active. (P-sensor can't work at detecting presence of the user's body at the four edges of the device.)
- When hotspot mode is enabled, power reduction will be activated to limit the maximum power of GSM1900, WCDMA band II/IV, LTE band 2/4/7/66.
- For P-sensor reduced power level is higher than hotspot reduced power, so for front/back P-sensor SAR can represent Conservatively for front/back hotspot SAR.
- There are two type headsets, headset 1 and headset 2 which are all performed body worn SAR testing.
- This is a variant report for XT1952-2. For model change note, please refer the product equality declaration exhibit submitted. Based on the similarity between two models, only updated proximity sensor triggering test and verified the worse cases from reference report(Sporton Report Number FA890510-01) were verified for difference.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 / FAX: +86-512-57900958 Issued Date: Jan. 25, 2019

Form version.: 170509 FCC ID: IHDT56XR3 Page 6 of 35

4.2 General LTE SAR Test and Reporting Considerations

Summariz	ed necessary it	ems addre	essed in k	(DB 9412	225 D05 v0)2r05							
FCC ID	IHDT56XR3												
Equipment Name	Mobile Cellular I	Phone											
Operating Frequency Range of each LTE transmission band	LTE Band 2: 18! LTE Band 4: 17 ⁻ LTE Band 5: 82 ⁴ LTE Band 7: 250 LTE Band 66: 1	10.7 MHz ^ 4.7 MHz ~ 02.5 MHz ~ 710.7 MHz	~ 1754.3 M 848.3 MH: ~ 2567.5 M : ~ 1779.3	1Hz z 1Hz MHz									
Channel Bandwidth	LTE Band 2:1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz LTE Band 4:1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz LTE Band 5:1.4MHz, 3MHz, 5MHz, 10MHz LTE Band 7: 5MHz, 10MHz, 15MHz, 20MHz LTE Band 66:1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz												
uplink modulations used	QPSK / 16QAM / 64QAM												
LTE Voice / Data requirements Voice and Data													
LTE Release Version R10, Cat5													
CA Support Not Supported													
LTE MPR permanently built-in by design	Modulation QPSK 16 QAM 16 QAM 64 QAM 64 QAM 256 QAM	1.4 MHz > 5 ≤ 5 > 5 ≤ 5 > 5	3.0 MHz > 4 ≤ 4 > 4 ≤ 4 > 4	vidth / Tra 5 MHz > 8 ≤ 8 > 8 ≤ 8 > 8	nsmission 10 MHz > 12 ≤ 12 > 12 ≤ 12 > 12 ≤ 12 > 12	bandwidth 15 MHz > 16 ≤ 16 > 16 ≤ 16 > 16	(NRB) 20 MHz > 18 ≤ 18 > 18 ≤ 18 > 18	MPR (dB) ≤ 1 ≤ 1 ≤ 2 ≤ 2 ≤ 2 ≤ 3 ≤ 5					
LTE A-MPR	A-MPR during S TTI)	SAR testing	g and the l	TE SAR	tests was	transmittin	g on all TT	o NS_01 to disabl Il frames (Maximur					
Spectrum plots for RB configuration	therefore, spect SAR report.							ower measuremen e not included in th					
Power reduction applied to satisfy SAR compliance	front or bac band 2/4/7 the user's l	ck faces of /66 reduce body at the pot mode i	the device d power we four edge s enabled	e. When f ill be acti es of the o	ront or bac ve. (P-sen device.)	k body wo sor can't w	rn conditio ork at dete	ser's body at the n is detected, LTE ecting presence of the maximum					

Report No. : FA8D2701

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date : Jan. 25, 2019 Form version. : 170509 FCC ID: IHDT56XR3 Page 7 of 35

Transmission (H, M, L) channel numbers and frequencies in each LTE band LTE Band 2 Bandwidth 10 MHz Bandwidth 1.4 MHz Bandwidth 3 MHz Bandwidth 5 MHz Bandwidth 15 MHz Bandwidth 20 MHz Freq. Freq. Freq. Freq. Freq. Freq. Ch. # Ch. # Ch. # Ch. # Ch. # Ch # (MHz) (MHz) (MHz) (MHz) (MHz) (MHz) 18607 1850.7 18615 1851.5 18625 1852.5 18650 1855 18675 1857.5 18700 1860 Μ 18900 1880 18900 1880 18900 1880 18900 1880 18900 1880 18900 1880 Н 19193 1909.3 1905 19125 1902.5 19100 19185 1908.5 19175 1907.5 19150 1900 LTE Band 4 Bandwidth 3 MHz Bandwidth 1.4 MHz Bandwidth 5 MHz Bandwidth 10 MHz Bandwidth 15 MHz Bandwidth 20 MHz Freq. Freq. Freq. Freq. Ch. # Ch. # Ch. # Ch. # Ch. # Ch. # (MHz) (MHz) (MHz) (MHz) (MHz) (MHz) 19957 19965 19975 20025 1710.7 1712.5 20000 1717.5 20050 1720 1711.5 1715 Μ 20175 1732.5 20175 1732.5 20175 1732.5 20175 1732.5 20175 1732.5 20175 1732.5 Н 20393 1754.3 20385 1753.5 20375 1752.5 20350 1750 20325 1747.5 20300 1745 LTE Band 5 Bandwidth 1.4 MHz Bandwidth 3 MHz Bandwidth 5 MHz Bandwidth 10 MHz Ch. # Freq. (MHz) Ch. # Freq. (MHz) Ch. # Freq. (MHz) Ch. # Freq. (MHz) 20407 824.7 20415 825.5 20425 826.5 20450 829 Μ 20525 836.5 20525 836.5 20525 836.5 20525 836.5 847.5 Н 20643 848.3 20635 20625 846.5 20600 844 LTE Band 7 Bandwidth 5 MHz Bandwidth 10 MHz Bandwidth 15 MHz Bandwidth 20 MHz Ch. # Freq. (MHz) Ch. # Freq. (MHz) Ch. # Freq. (MHz) Ch. # Freq. (MHz) 20775 2502.5 20800 2505 20825 2507.5 20850 2510 М 21100 2535 21100 21100 2535 21100 2535 2535 Н 21425 2567.5 21400 2562.5 2565 21375 21350 2560 LTE Band 66 Bandwidth 1.4 MHz Bandwidth 3 MHz Bandwidth 5 MHz Bandwidth 10 MHz Bandwidth 15 MHz Bandwidth 20 MHz Freq. Freq. Frea. Frea. Frea. Frea Ch. # Ch. # Ch. # Ch. # Ch. # Ch. # (MHz) (MHz) (MHz) (MHz) (MHz) (MHz) 131987 1712.5 132047 131979 1710.7 1711.5 131997 132022 1715 1717.5 132072 1720

Report No.: FA8D2701

M

Н

132322

132665

1745

1779.3

132322

132657

1745

1778.5

132322

132647

1745

1777.5

132322

132622

1745

1775

132322

132597

1745

1772.5

132322

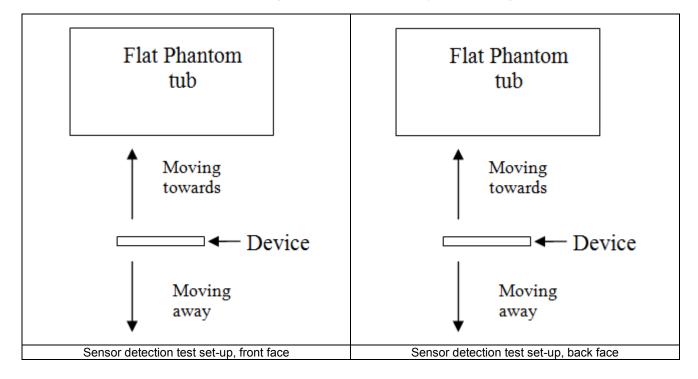
132572

1745

1770

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Jan. 25, 2019 Form version.: 170509 FCC ID: IHDT56XR3 Page 8 of 35


5. Proximity Sensor Triggering Test

5.1 Proximity sensor triggering distances(Per KDB616217§6.2)

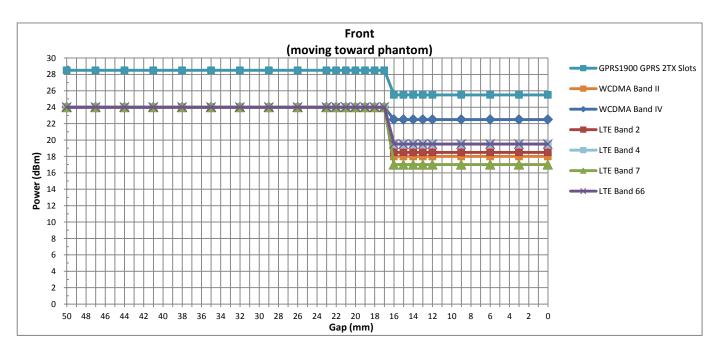
1. Proximity sensor triggering distance testing was performed according to the procedures outlined in KDB 616217 D04 section 6.2, and EUT moving further away from the flat phantom and EUT moving toward the flat phantom were both assessed and the tissue-equivalent medium for highest frequency (2600MHz) and lowest (1750MHz) frequency was used for proximity sensor triggering testing.

Report No.: FA8D2701

- Capacitive proximity sensor placed coincident with antenna elements at the bottom end of the phone are utilized to determine when the device comes in proximity of the user's body at the front or back side surface of the device. There is no need to do sensor coverage testing for the proximity sensor is designed to support sufficient detection range and sensitivity to cover regions of the sensors in all applicable directions since the proximity sensor entirely covers the antenna.
- The device employs proximity sensors that detect the presence of the user's body at the front or back faces of the device. When front or back body worn condition is detected, GSM1900, WCDMA band II/IV, LTE band 2/4/7/66 reduced power will be active. (P-sensor can't work at detecting presence of the user's body at the four edges of the device.)

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Jan. 25, 2019 Form version.: 170509 FCC ID: IHDT56XR3 Page 9 of 35

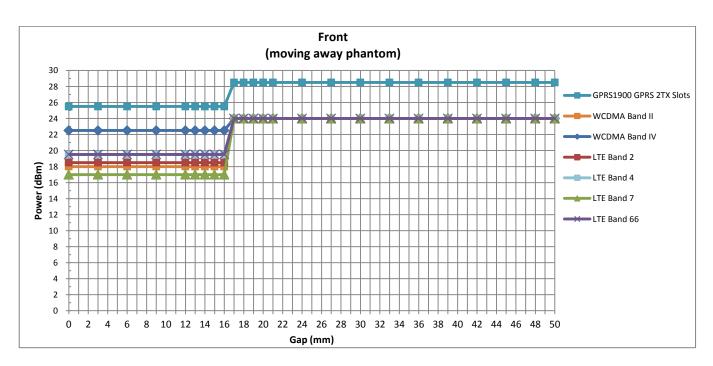

Proximity Sensor Triggering Distance (mm) and Power (dBm)													
Position	Fre	ont	Back										
Position	Moving towards	Moving away	Moving towards	Moving away									
Minimum	16	16	17	18									

	Proximity Sensor Triggering Power (dBm)											
	Full	Reduced										
TX. Band	max. tune up limit (dBm)	max. tune up limit(dBm)	power reduction (dB)									
GSM1900 GPRS 2 Tx slots	28.5	25.5	3.0									
WCDMA II	24	18	6.0									
WCDMA IV	24	22.5	1.5									
LTE Band2	24	18.5	5.5									
LTE Band4	24	19.5	4.5									
LTE Band7	24	17	7.0									
LTE Band66	24	19.5	4.5									

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date : Jan. 25, 2019 Form version. : 170509 FCC ID: IHDT56XR3 Page 10 of 35

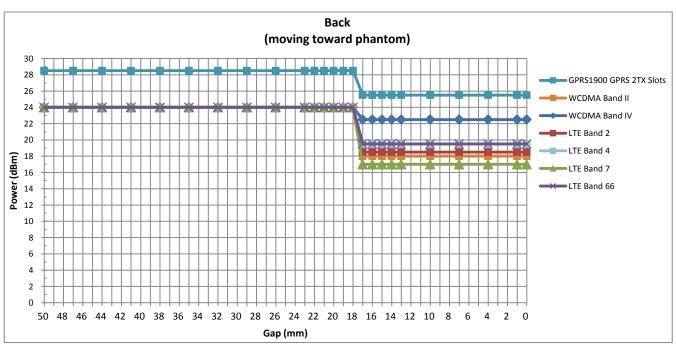
							Pro	ximity	Sensor	Trigge	ring Dis	stance ((mm) a	nd Trig	gering F	ower ((dBm)								
	Front																								
Distance	50	47	44	41	38	35	32	29	26	23	20	19	18	17	16	15	14	13	12	11	10	7	4	1	0
GSM1900 GPRS 2 Tx slots	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5	25.5	25.5	25.5	25.5	25.5	25.5	25.5	25.5	25.5	25.5	25.5
WCDMA Band II	24	24	24	24	24	24	24	24	24	24	24	24	24	24	18	18	18	18	18	18	18	18	18	18	18
WCDMA Band IV	24	24	24	24	24	24	24	24	24	24	24	24	24	24	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5
LTE Band2	24	24	24	24	24	24	24	24	24	24	24	24	24	24	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5
LTE Band4	24	24	24	24	24	24	24	24	24	24	24	24	24	24	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5
LTE Band7	24	24	24	24	24	24	24	24	24	24	24	24	24	24	17	17	17	17	17	17	17	17	17	17	17
LTE Band66	24	24	24	24	24	24	24	24	24	24	24	24	24	24	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5



TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date : Jan. 25, 2019 Form version. : 170509 FCC ID: IHDT56XR3 Page 11 of 35

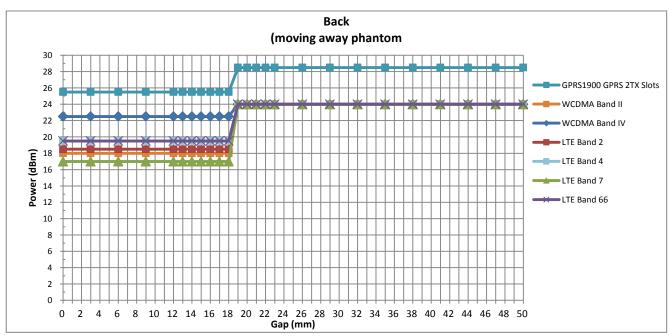
							Pro	ximity	Sensor	Trigge	ring Dis	stance ((mm) a	nd Trig	gering I	ower (dBm)								
	Front																								
Distance	50	47	44	41	38	35	32	29	26	23	20	19	18	17	16	15	14	13	12	11	10	7	4	1	0
GSM1900 GPRS 2 Tx slots	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5	25.5	25.5	25.5	25.5	25.5	25.5	25.5	25.5	25.5	25.5	25.5
WCDMA Band II	24	24	24	24	24	24	24	24	24	24	24	24	24	24	18	18	18	18	18	18	18	18	18	18	18
WCDMA Band IV	24	24	24	24	24	24	24	24	24	24	24	24	24	24	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5
LTE Band2	24	24	24	24	24	24	24	24	24	24	24	24	24	24	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5
LTE Band4	24	24	24	24	24	24	24	24	24	24	24	24	24	24	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5
LTE Band7	24	24	24	24	24	24	24	24	24	24	24	24	24	24	17	17	17	17	17	17	17	17	17	17	17
LTE Band66	24	24	24	24	24	24	24	24	24	24	24	24	24	24	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5



TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date : Jan. 25, 2019 Form version. : 170509 FCC ID: IHDT56XR3 Page 12 of 35

							Pro	ximity	Sensor	Trigge	ring Dis	stance	(mm) aı	nd Trig	gering F	Power (dBm)								
	Back																								
Distance	50	47	44	41	38	35	32	29	26	23	20	19	18	17	16	15	14	13	12	11	10	7	4	1	0
GSM1900 GPRS 2 Tx slots	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5	25.5	25.5	25.5	25.5	25.5	25.5	25.5	25.5	25.5	25.5	25.5	25.5
WCDMA Band II	24	24	24	24	24	24	24	24	24	24	24	24	24	18	18	18	18	18	18	18	18	18	18	18	18
WCDMA Band IV	24	24	24	24	24	24	24	24	24	24	24	24	24	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5
LTE Band2	24	24	24	24	24	24	24	24	24	24	24	24	24	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5
LTE Band4	24	24	24	24	24	24	24	24	24	24	24	24	24	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5
LTE Band7	24	24	24	24	24	24	24	24	24	24	24	24	24	17	17	17	17	17	17	17	17	17	17	17	17
LTE Band66	24	24	24	24	24	24	24	24	24	24	24	24	24	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5



TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date : Jan. 25, 2019 Form version. : 170509 FCC ID: IHDT56XR3 Page 13 of 35

							Pro	ximity	Sensor	Trigge	ring Dis	stance ((mm) a	nd Trig	gering I	ower (dBm)								
	Back																								
Distance	50	47	44	41	38	35	32	29	26	23	20	19	18	17	16	15	14	13	12	11	10	7	4	1	0
GSM1900 GPRS 2 Tx slots	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5	25.5	25.5	25.5	25.5	25.5	25.5	25.5	25.5	25.5	25.5	25.5	25.5	25.5
WCDMA Band II	24	24	24	24	24	24	24	24	24	24	24	24	18	18	18	18	18	18	18	18	18	18	18	18	18
WCDMA Band IV	24	24	24	24	24	24	24	24	24	24	24	24	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5
LTE Band2	24	24	24	24	24	24	24	24	24	24	24	24	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5
LTE Band4	24	24	24	24	24	24	24	24	24	24	24	24	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5
LTE Band7	24	24	24	24	24	24	24	24	24	24	24	24	17	17	17	17	17	17	17	17	17	17	17	17	17
LTE Band66	24	24	24	24	24	24	24	24	24	24	24	24	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date : Jan. 25, 2019 Form version.: 170509 FCC ID: IHDT56XR3 Page 14 of 35

6. RF Exposure Limits

6.1 Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Report No.: FA8D2701

6.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8,0	20.0

Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

TEL: +86-512-57900158 / FAX: +86-512-57900958 Issued Date: Jan. 25, 2019

FCC ID : IHDT56XR3 Page 15 of 35 Form version. : 170509

7. Specific Absorption Rate (SAR)

7.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

Report No. : FA8D2701

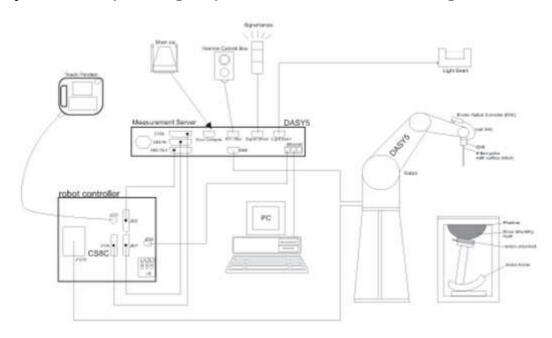
7.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

$$SAR = \frac{\sigma |E|^2}{\rho}$$


Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Jan. 25, 2019 Form version.: 170509 FCC ID: IHDT56XR3 Page 16 of 35

8. System Description and Setup

The DASY system used for performing compliance tests consists of the following items:

Report No.: FA8D2701

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Jan. 25, 2019 Page 17 of 35 Form version.: 170509 FCC ID: IHDT56XR3

8.1 E-Field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

<ES3DV3 Probe>

Construction	Symmetric design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)						
Formula	10 MHz – 4 GHz;						
Frequency	Linearity: ±0.2 dB (30 MHz – 4 GHz)						
Directivity	±0.2 dB in TSL (rotation around probe axis)						
Directivity	±0.3 dB in TSL (rotation normal to probe axis)						
Dynamic Range	5 μW/g – >100 mW/g;						
Dynamic Range	Linearity: ±0.2 dB						
	Overall length: 337 mm (tip: 20 mm)						
Dimensions	Tip diameter: 3.9 mm (body: 12 mm)						
	Distance from probe tip to dipole centers: 3.0 mm						

Report No. : FA8D2701

8.2 Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

Photo of DAE

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Jan. 25, 2019 Form version.: 170509 FCC ID: IHDT56XR3 Page 18 of 35

8.3 Phantom

<SAM Twin Phantom>

TOAIN I WIII I Halltoille		
Shell Thickness	2 ± 0.2 mm; Center ear point: 6 ± 0.2 mm	345
Filling Volume	Approx. 25 liters	
Dimensions	Length: 1000 mm; Width: 500 mm; Height: adjustable feet	7 5
Measurement Areas	Left Hand, Right Hand, Flat Phantom	

Report No.: FA8D2701

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

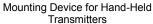
<ELI Phantom>

Shell Thickness	2 ± 0.2 mm (sagging: <1%)	
Filling Volume	Approx. 30 liters	
Dimensions	Major ellipse axis: 600 mm Minor axis: 400 mm	

The ELI phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 / FAX: +86-512-57900958 Issued Date: Jan. 25, 2019


FCC ID : IHDT56XR3 Page 19 of 35 Form version. : 170509

8.4 Device Holder

<Mounting Device for Hand-Held Transmitter>

In combination with the Twin SAM V5.0/V5.0c or ELI phantoms, the Mounting Device for Hand-Held Transmitters enables rotation of the mounted transmitter device to specified spherical coordinates. At the heads, the rotation axis is at the ear opening. Transmitter devices can be easily and accurately positioned according to IEC 62209-1, IEEE 1528, FCC, or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). And upgrade kit to Mounting Device to enable easy mounting of wider devices like big smart-phones, e-books, small tablets, etc. It holds devices with width up to 140 mm.

Report No.: FA8D2701

Mounting Device Adaptor for Wide-Phones

<Mounting Device for Laptops and other Body-Worn Transmitters>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms.

Mounting Device for Laptops

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Jan. 25, 2019 Form version.: 170509 FCC ID: IHDT56XR3 Page 20 of 35

9. Measurement Procedures

The measurement procedures are as follows:

<Conducted power measurement>

- (a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band.
- (b) Read the WWAN RF power level from the base station simulator.
- (c) For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band

Report No.: FA8D2701

(d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power

<SAR measurement>

- (a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel.
- (b) Place the EUT in the positions as Appendix D demonstrates.
- (c) Set scan area, grid size and other setting on the DASY software.
- (d) Measure SAR results for the highest power channel on each testing position.
- (e) Find out the largest SAR result on these testing positions of each band
- (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

9.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

TEL: +86-512-57900158 / FAX: +86-512-57900958 Issued Date: Jan. 25, 2019

FCC ID : IHDT56XR3 Page 21 of 35 Form version. : 170509

9.2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Report No. : FA8D2701

9.3 Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz.

	≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°
	\leq 2 GHz: \leq 15 mm 2 – 3 GHz: \leq 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of measurement plane orientation the measurement resolution is x or y dimension of the test of measurement point on the test	on, is smaller than the above, must be ≤ the corresponding levice with at least one

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Jan. 25, 2019 Form version.: 170509 FCC ID: IHDT56XR3 Page 22 of 35

9.4 Zoom Scan

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Report No.: FA8D2701

Zoom scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz.

			≤ 3 GHz	> 3 GHz
Maximum zoom scan s	spatial reso	lution: Δx_{Zoom} , Δy_{Zoom}	\leq 2 GHz: \leq 8 mm 2 - 3 GHz: \leq 5 mm*	$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$
	uniform	grid: Δz _{Zoom} (n)	≤ 5 mm	$3 - 4 \text{ GHz: } \le 4 \text{ mm}$ $4 - 5 \text{ GHz: } \le 3 \text{ mm}$ $5 - 6 \text{ GHz: } \le 2 \text{ mm}$
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
	grid	Δz _{Zoom} (n>1): between subsequent points	≤ 1.5·Δz	Zoom(n-1)
Minimum zoom scan volume	x, y, z		≥ 30 mm	$3 - 4 \text{ GHz:} \ge 28 \text{ mm}$ $4 - 5 \text{ GHz:} \ge 25 \text{ mm}$ $5 - 6 \text{ GHz:} \ge 22 \text{ mm}$

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

9.5 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

9.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 / FAX: +86-512-57900958 Issued Date: Jan. 25, 2019

FCC ID : IHDT56XR3 Page 23 of 35 Form version. : 170509

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is $\leq 1.4 \text{ W/kg}$, $\leq 8 \text{ mm}$, $\leq 7 \text{ mm}$ and $\leq 5 \text{ mm}$ zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

10. Test Equipment List

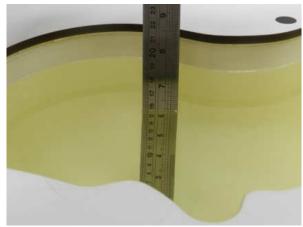
Manufacture	Name of Employment	To us a /Blandal	Carriel Namehan	Calib	ration
Manufacturer	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date
SPEAG	835MHz System Validation Kit	D835V2	4d091	2017/12/5	2018/12/4
SPEAG	1750MHz System Validation Kit	D1750V2	1069	2017/12/5	2018/12/4
SPEAG	2450MHz System Validation Kit	D2450V2	840	2017/12/7	2018/12/6
SPEAG	2600MHz System Validation Kit	D2600V2	1061	2017/12/7	2018/12/6
SPEAG	Data Acquisition Electronics	DAE4	1358	2018/4/19	2019/4/18
SPEAG	Dosimetric E-Field Probe	ES3DV3	3293	2018/10/25	2019/10/24
SPEAG	SAM Twin Phantom	QD 000 P40 CB	TP-1503	NCR	NCR
SPEAG	SAM Twin Phantom	QD 000 P40 CB	TP-1842	NCR	NCR
SPEAG	SAM Twin Phantom	QD 000 P40 CB	TP-1644	NCR	NCR
SPEAG	Phone Positioner	N/A	N/A	NCR	NCR
Anritsu	Radio communication analyzer	MT8820C	6201563900	2018/1/26	2019/1/25
Agilent	Wireless Communication Test Set	E5515C	MY52102706	2018/4/17	2019/4/16
Agilent	ENA Series Network Analyzer	E5071C	MY46111157	2018/4/17	2019/4/16
SPEAG	Dielectric Probe Kit	DAK-3.5	1138	2017/11/28	2018/11/27
Anritsu	Vector Signal Generator	MG3710A	6201682672	2018/2/6	2019/2/5
R&S	Power Meter	NRVD	102081	2018/8/20	2019/8/19
R&S	Power Sensor	NRV-Z5	100538	2018/8/20	2019/8/19
Anritsu	Power Meter	ML2495A	1419002	2018/5/14	2019/5/13
Anritsu	Power Sensor	MA2411B	1339124	2018/5/14	2019/5/13
R&S	CBT BLUETOOTH TESTER	CBT	101246	2018/1/26	2019/1/25
EXA	Spectrum Analyzer	FSV7	101742	2018/1/19	2019/1/18
Testo	Hygrometer	608-H1	1241332126	2018/8/21	2019/8/20
FLUKE	DIGITAC THERMOMETER	51II	97240029	2018/8/8	2019/8/7
ARRA	Power Divider	A3200-2	N/A	No	ote
MCL	Attenuation1	BW-S10W5+	N/A	No	ote
MCL	Attenuation2	BW-S10W5+	N/A	Note	
MCL	Attenuation3	BW-S10W5+	N/A	No	ote
BONN	POWER AMPLIFIER	BLMA 0830-3	087193A	No	ote
BONN	POWER AMPLIFIER	BLMA 2060-2	087193B	No	ote
Agilent	Dual Directional Coupler	778D	20500	No	ote
Agilent	Dual Directional Coupler	11691D	MY48151020	No	ote

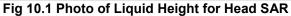
Report No. : FA8D2701

Note:

Prior to system verification and validation, the path loss from the signal generator to the system check source and the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the network analyzer. The reading of the power meter was offset by the path loss difference between the path to the power meter and the path to the system check source to monitor the actual power level fed to the system check source.

Sporton International (Kunshan) Inc.


TEL: +86-512-57900158 / FAX: +86-512-57900958 Issued Date: Jan. 25, 2019


FCC ID : IHDT56XR3 Page 24 of 35 Form version. : 170509

11. System Verification

11.1 Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 10.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 10.2.

Report No. : FA8D2701

Fig 10.2 Photo of Liquid Height for Body SAR

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Jan. 25, 2019 FCC ID: IHDT56XR3 Form version.: 170509 Page 25 of 35

11.2 Tissue Verification

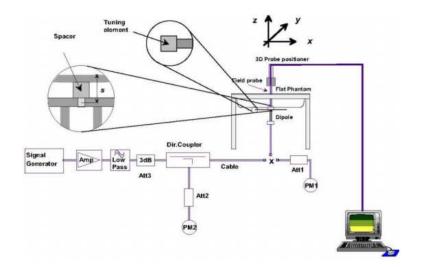
The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Report No. : FA8D2701

Frequency (MHz)	Water (%)	Sugar (%)	Cellulose (%)	Salt (%)	Preventol (%)	DGBE (%)	Conductivity (σ)	Permittivity (εr)
				For Head				
2450	55.0	0	0	0	0	45.0	1.80	39.2
				For Body				
835	50.8	48.2	0	0.9	0.1	0	0.97	55.2
2600	68.1	0	0	0.1	0	31.8	2.16	52.5

<Tissue Dielectric Parameter Check Results>

Frequency (MHz)	Tissue Type	Liquid Temp. (℃)	Conductivity (σ)	Permittivity (ε _r)	Conductivity Target (σ)	Permittivity Target (ε _r)	Delta (σ) (%)	Delta (ε _r) (%)	Limit (%)	Date
2450	Head	22.6	1.846	39.011	1.80	39.20	2.56	-0.48	±5	2018/11/24
835	Body	22.7	0.990	55.273	0.97	55.20	2.06	0.13	±5	2018/11/23
1750	Body	22.8	1.444	54.472	1.49	53.40	-3.09	2.01	±5	2018/11/24
2600	Body	22.6	2.217	52.515	2.16	52.50	2.64	0.03	±5	2018/11/24


TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Jan. 25, 2019 FCC ID: IHDT56XR3 Page 26 of 35 Form version. : 170509

11.3 System Performance Check Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

Date	Frequency (MHz)	Tissue Type	Input Power (mW)	Dipole S/N	Probe S/N	DAE S/N	Measured 1g SAR (W/kg)	Targeted 1g SAR (W/kg)	Normalized 1g SAR (W/kg)	Deviation (%)
2018/11/24	2450	Head	250	840	3293	1358	12.70	52.60	50.8	-3.42
2018/11/23	835	Body	250	4d091	3293	1358	2.36	9.72	9.44	-2.88
2018/11/24	1750	Body	250	1069	3293	1358	8.92	38.00	35.68	-6.11
2018/11/24	2600	Body	250	1061	3293	1358	13.20	56.40	52.8	-6.38

Report No. : FA8D2701

Fig 10.3.1 System Performance Check Setup

Fig 10.3.2 Setup Photo

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Jan. 25, 2019 FCC ID: IHDT56XR3 Page 27 of 35 Form version.: 170509

12. RF Exposure Positions

12.1 Ear and handset reference point

Figure 9.1.1 shows the front, back, and side views of the SAM phantom. The center-of-mouth reference point is labeled "M," the left ear reference point (ERP) is marked "LE," and the right ERP is marked "RE." Each ERP is 15 mm along the B-M (back-mouth) line behind the entrance-to-ear-canal (EEC) point, as shown in Figure 9.1.2 The Reference Plane is defined as passing through the two ear reference points and point M. The line N-F (neck-front), also called the reference pivoting line, is normal to the Reference Plane and perpendicular to both a line passing through RE and LE and the B-M line (see Figure 9.1.3). Both N-F and B-M lines should be marked on the exterior of the phantom shell to facilitate handset positioning. Posterior to the N-F line the ear shape is a flat surface with 6 mm thickness at each ERP, and forward of the N-F line the ear is truncated, as illustrated in Figure 9.1.2. The ear truncation is introduced to preclude the ear lobe from interfering with handset tilt, which could lead to unstable positioning at the cheek.

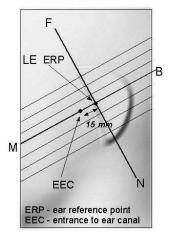
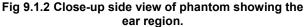
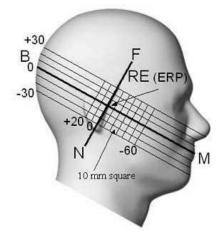





Fig 9.1.1 Front, back, and side views of SAM twin phantom

Report No.: FA8D2701

Fig 9.1.3 Side view of the phantom showing relevant markings and seven cross-sectional plane locations

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Jan. 25, 2019 Form version.: 170509 FCC ID: IHDT56XR3 Page 28 of 35

12.2 Definition of the cheek position

- Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece (flip cover), open the cover. If the handset can transmit with the cover closed, both configurations must be tested.
- Define two imaginary lines on the handset—the vertical centerline and the horizontal line. The vertical centerline passes through two points on the front side of the handset—the midpoint of the width wt of the handset at the level of the acoustic output (point A in Figure 9.2.1 and Figure 9.2.2), and the midpoint of the width wb of the bottom of the handset (point B). The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output (see Figure 9.2.1). The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset (see Figure 9.2.2), especially for clamshell handsets, handsets with flip covers, and other irregularly-shaped handsets.
- Position the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 9.2.3), such that the plane defined by the vertical centerline and the horizontal line of the handset is approximately parallel to the sagittal plane of the phantom.
- Translate the handset towards the phantom along the line passing through RE and LE until handset point A touches the pinna at the ERP.
- While maintaining the handset in this plane, rotate it around the LE-RE line until the vertical centerline is in the plane normal to the plane containing B-M and N-F lines, i.e., the Reference Plane.
- Rotate the handset around the vertical centerline until the handset (horizontal line) is parallel to the N-F line. 6.
- While maintaining the vertical centerline in the Reference Plane, keeping point A on the line passing through RE and LE, and maintaining the handset contact with the pinna, rotate the handset about the N-F line until any point on the handset is in contact with a phantom point below the pinna on the cheek. See Figure 9.2.3. The actual rotation angles should be documented in the test report.

Fig 9.2.1 Handset vertical and horizontal reference lines—"fixed case

Fig 9.2.2 Handset vertical and horizontal reference lines-"clam-shell case"

output

Report No.: FA8D2701

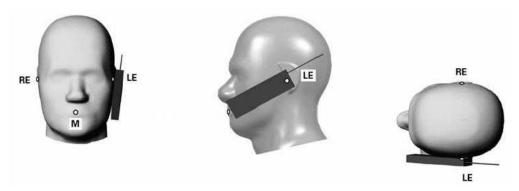
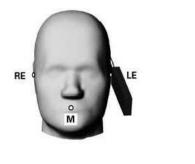
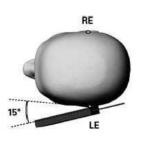


Fig 9.2.3 cheek or touch position. The reference points for the right ear (RE), left ear (LE), and mouth (M), which establish the Reference Plane for handset positioning, are indicated.


Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 / FAX: +86-512-57900958 Issued Date: Jan. 25, 2019


Form version.: 170509 FCC ID: IHDT56XR3 Page 29 of 35

12.3 Definition of the tilt position

- Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece (flip cover), open the cover. If the handset can transmit with the cover closed, both configurations must be tested.
- While maintaining the orientation of the handset, move the handset away from the pinna along the line passing through RE and LE far enough to allow a rotation of the handset away from the cheek by 15°.
- Rotate the handset around the horizontal line by 15°.
- While maintaining the orientation of the handset, move the handset towards the phantom on the line passing through RE and LE until any part of the handset touches the ear. The tilt position is obtained when the contact point is on the pinna. See Figure 9.3.1. If contact occurs at any location other than the pinna, e.g., the antenna at the back of the phantom head, the angle of the handset should be reduced. In this case, the tilt position is obtained if any point on the handset is in contact with the pinna and a second point

Report No. : FA8D2701

Fig 9.3.1 Tilt position. The reference points for the right ear (RE), left ear (LE), and mouth (M), which define the Reference Plane for handset positioning, are indicated.

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Jan. 25, 2019 Form version.: 170509 FCC ID: IHDT56XR3 Page 30 of 35

12.4 Body Worn Accessory

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 9.4). Per KDB648474 D04v01r03, body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB 447498 D01v06 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for body-worn accessory, measured without a headset connected to the handset is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a handset attached to the handset.

Report No.: FA8D2701

Accessories for body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are test with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-chip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.



Fig 9.4 Body Worn Position

12.5 Wireless Router

Some battery-operated handsets have the capability to transmit and receive user through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06 v02r01 where SAR test considerations for handsets (L x W ≥ 9 cm x 5 cm) are based on a composite test separation distance of 10mm from the front, back and edges of the device containing transmitting antennas within 2.5cm of their edges, determined form general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v06 publication procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Jan. 25, 2019 Form version.: 170509 FCC ID: IHDT56XR3 Page 31 of 35

13. SAR Test Results

General Note:

For the verified SAR value is smaller than the original data which can represent this application, so testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g SAR \geq 0.8 W/kg. About co-located SAR is not required too for smaller reported SAR compared to original application.

Report No. : FA8D2701

13.1 **Head SAR**

<WLAN 2.4GHz SAR>

 Plot No.	Band	Mode	Test Position		Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Duty Cycle %	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
01	WLAN2.4GHz	802.11b 1Mbps	Left Cheek	11	2462	16.59	17.50	1.233	97.68	1.024	-0.12	0.366	<mark>0.462</mark>

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 / FAX: +86-512-57900958 Issued Date: Jan. 25, 2019

FCC ID: IHDT56XR3 Page 32 of 35 Form version.: 170509

13.2 Hotspot SAR

<WCDMA SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Power Mode	Ch.	Freq. (MHz)	Average Power (dBm)	Limit			Measured 1g SAR (W/kg)	
02	WCDMA Band IV	RMC 12.2Kbps	Bottom Side	5	Hotspot On	1312	1712.4	19.87	20.50	1.156	-0.01	1.030	1.191

Report No. : FA8D2701

<FDD LTE SAR>

Plot No.		BW (MHz)	Modulation	RB Size	RB Offset	Test Position	Gap (mm)	Power Mode		Freq. (MHz)	Power		Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
03	LTE Band 5	10M	QPSK	1	49	Back	5	Full	20525	836.5	23.57	24.00	1.104	-0.16	0.433	<mark>0.478</mark>
04	LTE Band 7	20M	QPSK	1	49	Bottom Side	5	Hotspot On	21350	2560	14.92	15.00	1.019	-0.02	0.919	0.936

13.3 Body Worn Accessory SAR

<WCDMA SAR>

	Plot No.	Band	Mode	Test Position	Gap (mm)	Headset	Power Mode	Ch.	rieq.	POWER	Tune-Up Limit (dBm)	Scaling	Drift	Measured 1g SAR (W/kg)	1g SAR
(05	WCDMA Band IV	RMC 12.2Kbps	Front	5	Headset 1	P-Sensor On	1312	1712.4	21.95	22.50	1.135	-0.1	1.080	<mark>1.226</mark>

<FDD LTE SAR>

Plot No.	Band	BW (MHz)	Modulation	RB Size	RB Offset	Test Position	Gap (mm)	Headset	Power Mode	u n	Freq. (MHz)	Power		Tune-up Scaling Factor		Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
06	LTE Band 5	10M	QPSK	1	49	Back	5	1	Full	20525	836.5	23.57	24.00	1.104	-0.16	0.433	<mark>0.478</mark>
07	LTE Band 7	20M	QPSK	50	0	Back	5	-	P-Sensor On	21100	2535	16.81	17.00	1.045	0.15	0.937	0.979

Test Engineer: Nick Hu

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 / FAX: +86-512-57900958 Issued Date: Jan. 25, 2019

FCC ID : IHDT56XR3 Page 33 of 35 Form version. : 170509

14. Uncertainty Assessment

Per KDB 865664 D01 SAR measurement 100MHz to 6GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be \le 30%, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. For this device, the highest measured 1-g SAR is less 1.5W/kg and highest measured 10-g SAR is less 3.75W/kg. Therefore, the measurement uncertainty table is not required in this report.

Report No. : FA8D2701

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 / FAX: +86-512-57900958 Issued Date: Jan. 25, 2019

FCC ID : IHDT56XR3 Page 34 of 35 Form version. : 170509

15. References

[1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"

Report No. : FA8D2701

- [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992
- [3] IEEE Std. 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", Sep 2013
- [4] SPEAG DASY System Handbook
- [5] FCC KDB 865664 D01 v01r04, "SAR Measurement Requirements for 100 MHz to 6 GHz", Aug 2015.
- [6] FCC KDB 865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations" Oct 2015.
- [7] FCC KDB 447498 D01 v06, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Oct 2015
- [8] FCC KDB 648474 D04 v01r03, "SAR Evaluation Considerations for Wireless Handsets", Oct 2015.
- [9] FCC KDB 248227 D01 v02r02, "SAR Guidance for IEEE 802.11 (WiFi) Transmitters", Oct 2015.
- [10] FCC KDB 616217 D04 v01r02, "SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers", Oct 2015
- [11] FCC KDB 941225 D01 v03r01, "3G SAR MEAUREMENT PROCEDURES", Oct 2015
- [12] FCC KDB 941225 D05 v02r05, "SAR Evaluation Considerations for LTE Devices", Dec 2015
- [13] FCC KDB 941225 D06 v02r01, "SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities", Oct 2015.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 / FAX: +86-512-57900958 Issued Date: Jan. 25, 2019

FCC ID : IHDT56XR3 Page 35 of 35 Form version. : 170509

Appendix A. Plots of System Performance Check

Report No. : FA8D2701

The plots are shown as follows.

Sporton International (Kunshan) Inc.

System Check_Head_2450MHz

DUT: D2450V2 - SN:840

Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL_2450 Medium parameters used: f = 2450 MHz; $\sigma = 1.846$ S/m; $\varepsilon_r = 39.011$; $\rho = 1000$

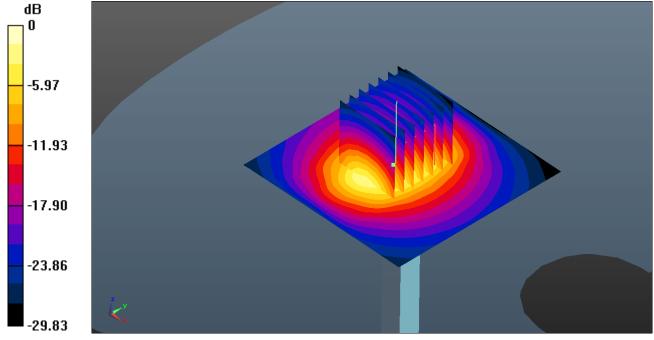
Date: 2018.11.24

 kg/m^3

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.6 °C

DASY5 Configuration:

- Probe: ES3DV3 SN3293; ConvF(4.53, 4.53, 4.53); Calibrated: 2018.10.25;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2018.4.19
- Phantom: SAM1; Type: SAM; Serial: TP-1842
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)


Pin=250mW/Area Scan (71x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximumvalue of SAR (interpolated) = 17.1 W/kg

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 90.00 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 25.9 W/kg

SAR(1 g) = 12.7 W/kg; SAR(10 g) = 6.04 W/kg

Maximum value of SAR (measured) = 16.8 W/kg

0 dB = 17.1 W/kg = 12.33 dBW/kg

System Check_MSL_835MHz

DUT: D835V2 - SN:4d091

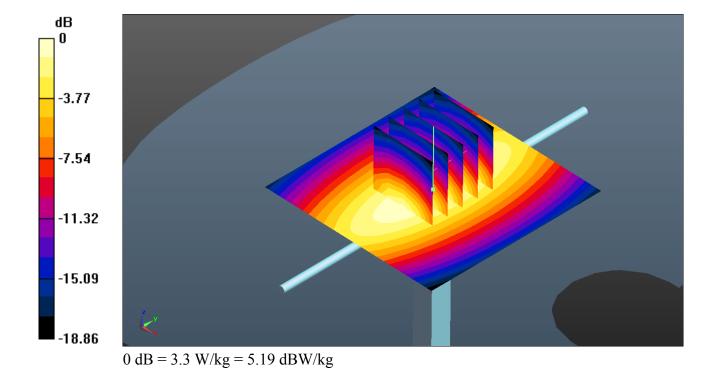
Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL_850 Medium parameters used: f = 835 MHz; $\sigma = 0.99$ S/m; $\varepsilon_r = 55.273$; $\rho = 1000$

Date: 2018.11.23

 kg/m^3

Ambient Temperature: 23.4 °C; Liquid Temperature: 22.7 °C


DASY5 Configuration:

- Probe: ES3DV3 SN3293; ConvF(6.24, 6.24, 6.24); Calibrated: 2018.10.25;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2018.4.19
- Phantom: SAM2; Type: SAM: Serial: TP-1503
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 3.36 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 54.11 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 3.95 W/kg

SAR(1 g) = 2.36 W/kg; SAR(10 g) = 1.53 W/kgMaximum value of SAR (measured) = 3.3 W/kg

System Check_Body_1750MHz

DUT: D1750V2 - 1069

Communication System: UID 0, CW (0); Frequency: 1750 MHz; Duty Cycle: 1:1

Medium: MSL_1750 Medium parameters used: f = 1750 MHz; $\sigma = 1.444$ S/m; $\varepsilon_r = 54.472$; $\rho = 1000$

Date: 2018.11.24

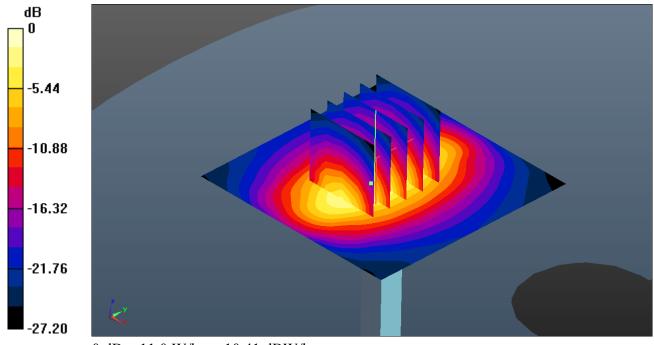
 kg/m^3

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.8 °C

DASY5 Configuration:

- Probe: ES3DV3 SN3293; ConvF(5.01, 5.01, 5.01); Calibrated: 2018.10.25;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2018.4.19
- Phantom: SAM1; Type: SAM; Serial: TP-1644
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 11.0 W/kg


Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 81.83 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 12.3 W/kg

SAR(1 g) = 8.92 W/kg; SAR(10 g) = 4.88 W/kg

Maximum value of SAR (measured) = 11.0 W/kg

0 dB = 11.0 W/kg = 10.41 dBW/kg

System Check_Body_2600MHz

DUT: D2600V2 - SN:1061

Communication System: UID 0, CW (0); Frequency: 2600 MHz; Duty Cycle: 1:1

Medium: MSL_2600 Medium parameters used: f = 2600 MHz; $\sigma = 2.217$ S/m; $\varepsilon_r = 52.515$; $\rho = 1000$

Date: 2018.11.24

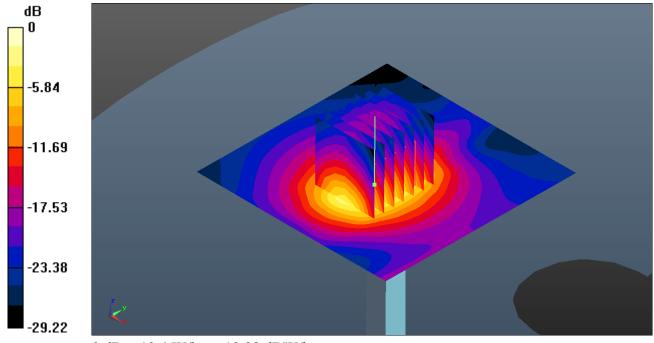
 kg/m^3

Ambient Temperature: 23.4°C; Liquid Temperature: 22.6°C

DASY5 Configuration:

- Probe: ES3DV3 SN3293; ConvF(4.28, 4.28, 4.28); Calibrated: 2018.10.25;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2018.4.19
- Phantom: SAM1; Type: SAM; Serial: TP-1842
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

Pin=250mW/Area Scan (81x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 19.4 W/kg


Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 81.97 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 22.6 W/kg

SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.29 W/kg

Maximum value of SAR (measured) = 19.1 W/kg

0 dB = 19.4 W/kg = 12.88 dBW/kg

Appendix B. Plots of High SAR Measurement

Report No. : FA8D2701

The plots are shown as follows.

Sporton International (Kunshan) Inc.

01_WLAN2.4GHz_802.11b 1Mbps_Left Cheek_0mm_Ch11

Communication System: UID 0, WIFI (0); Frequency: 2462 MHz; Duty Cycle: 1:1.024

Medium: HSL_2450 Medium parameters used: f = 2462 MHz; $\sigma = 1.86$ S/m; $\varepsilon_r = 38.953$; $\rho = 1000$

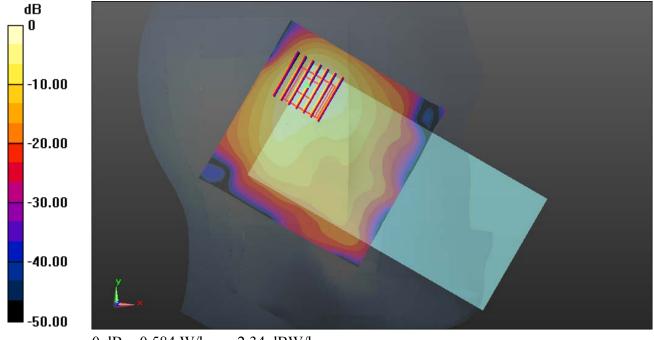
Date: 2018.11.24

 kg/m^3

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.6 °C

DASY5 Configuration:

- Probe: ES3DV3 SN3293; ConvF(4.53, 4.53, 4.53); Calibrated: 2018.10.25;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2018.4.19
- Phantom: SAM1; Type: SAM; Serial: TP-1842
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)


Ch11/Area Scan (91x91x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.584 W/kg

Ch11/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 17.57 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.955 W/kg

SAR(1 g) = 0.366 W/kg; SAR(10 g) = 0.173 W/kg

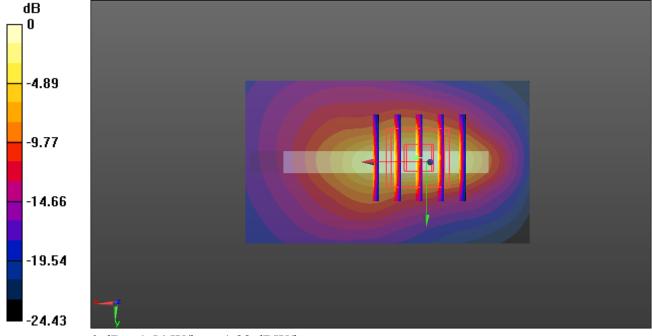
Maximum value of SAR (measured) = 0.511 W/kg

0 dB = 0.584 W/kg = -2.34 dBW/kg

02_WCDMA IV_RMC 12.2Kbps_Bottom Side_5mm_Ch1312

Communication System: UID 0, UMTS (0); Frequency: 1712.4 MHz; Duty Cycle: 1:1 Medium: MSL_1750 Medium parameters used: f = 1712.4 MHz; $\sigma = 1.404$ S/m; $\epsilon_r = 54.601$; $\rho = 1000$ kg/m³

Date: 2018.11.24


Ambient Temperature : 23.3 °C; Liquid Temperature : 22.8 °C

DASY5 Configuration:

- Probe: ES3DV3 SN3293; ConvF(5.01, 5.01, 5.01); Calibrated: 2018.10.25;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2018.4.19
- Phantom: SAM1; Type: SAM; Serial: TP-1644
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

Ch1312/Area Scan (41x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.54 W/kg

Ch1312/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 37.17 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 2.22 W/kg SAR(1 g) = 1.03 W/kg; SAR(10 g) = 0.457 W/kg Maximum value of SAR (measured) = 1.65 W/kg

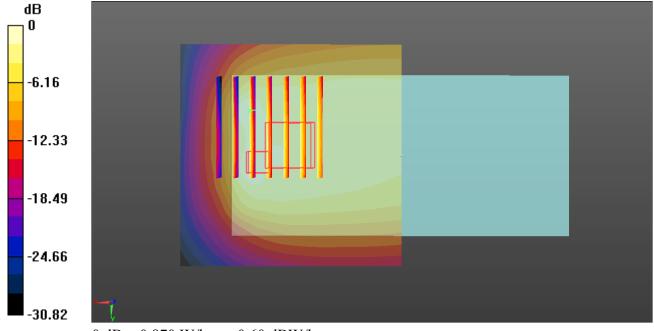
0 dB = 1.54 W/kg = 1.88 dBW/kg

03_LTE Band 5_QPSK_1RB_49Offset_Back_5 mm_Ch20525

Communication System: UID 0, FDD_LTE (0); Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: MSL_850 Medium parameters used: f = 836.5 MHz; $\sigma = 0.991$ S/m; $\epsilon_r = 55.26$; $\rho = 1000$ kg/m³

Date: 2018.11.23

Ambient Temperature: 23.4°C; Liquid Temperature: 22.7°C


DASY5 Configuration:

- Probe: ES3DV3 SN3293; ConvF(6.24, 6.24, 6.24); Calibrated: 2018.10.25;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2018.4.19
- Phantom: SAM2; Type: SAM; Serial: TP-1503
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

Ch20525/Area Scan (71x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.870 W/kg

Ch20525/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 28.92 V/m; Power Drift = -0.16 dB Peak SAR (extrapolated) = 1.45 W/kg SAR(1 g) = 0.433 W/kg; SAR(10 g) = 0.288 W/kg

Maximum value of SAR (measured) = 0.433 W/kg; SAR(10 g) = 0.288 W/kg

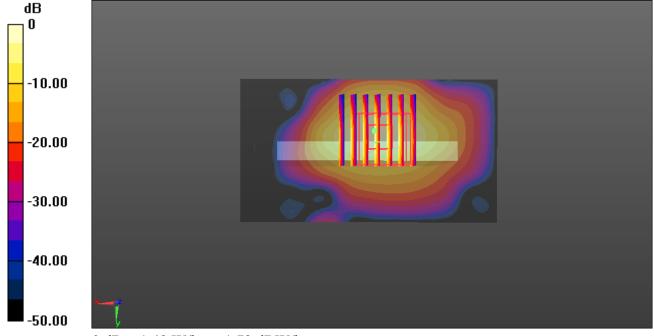
0 dB = 0.870 W/kg = -0.60 dBW/kg

04_LTE Band 7_20M_QPSK_1RB_49Offset_Bottom Side_5mm_Ch21350

Communication System: UID 0, FDD_LTE (0); Frequency: 2560 MHz; Duty Cycle: 1:1 Medium: MSL_2600 Medium parameters used: f = 2560 MHz; $\sigma = 2.159$ S/m; $\epsilon_r = 52.664$; $\rho = 1000$ kg/m³

Date: 2018.11.24

Ambient Temperature : 23.4 °C; Liquid Temperature : 22.6 °C


DASY5 Configuration:

- Probe: ES3DV3 SN3293; ConvF(4.28, 4.28, 4.28); Calibrated: 2018.10.25;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2018.4.19
- Phantom: SAM1; Type: SAM; Serial: TP-1842
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

Ch21350/Area Scan (51x91x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 1.49 W/kg

Ch21350/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 28.40 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 2.22 W/kg SAR(1 g) = 0.919 W/kg; SAR(10 g) = 0.363 W/kg

Maximum value of SAR (measured) = 0.363 W/kg

0 dB = 1.49 W/kg = 1.73 dBW/kg

05_WCDMA IV_RMC 12.2Kbps_Front_5mm_Headset_Ch1312

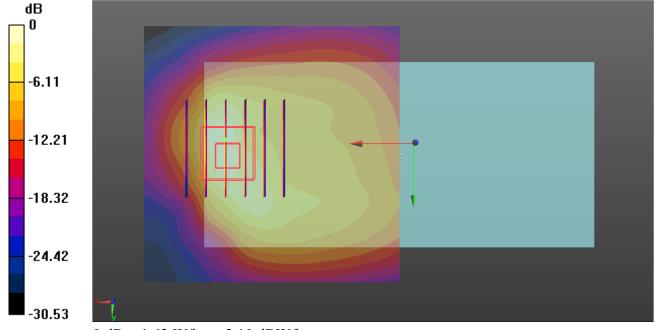
Communication System: UID 0, UMTS (0); Frequency: 1712.4 MHz; Duty Cycle: 1:1 Medium: MSL_1750 Medium parameters used: f = 1712.4 MHz; σ = 1.404 S/m; ϵ_r = 54.601; ρ =

Date: 2018.11.24

 1000 kg/m^3

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.8 °C

DASY5 Configuration:


- Probe: ES3DV3 SN3293; ConvF(5.01, 5.01, 5.01); Calibrated: 2018.10.25;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2018.4.19
- Phantom: SAM1; Type: SAM; Serial: TP-1644
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

Ch1312/Area Scan (71x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.62 W/kg

Ch1312/Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 37.30 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 2.10 W/kg

SAR(1 g) = 1.08 W/kg; SAR(10 g) = 0.539 W/kgMaximum value of SAR (measured) = 1.58 W/kg

0 dB = 1.62 W/kg = 2.10 dBW/kg

06_LTE Band 5_QPSK_1RB_49Offset_Back_5 mm_Ch20525

Communication System: UID 0, FDD_LTE (0); Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: MSL_850 Medium parameters used: f = 836.5 MHz; $\sigma = 0.991$ S/m; $\epsilon_r = 55.26$; $\rho = 1000$ kg/m³

Date: 2018.11.23

Ambient Temperature : 23.4 °C; Liquid Temperature : 22.7 °C

DASY5 Configuration:

- Probe: ES3DV3 SN3293; ConvF(6.24, 6.24, 6.24); Calibrated: 2018.10.25;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2018.4.19
- Phantom: SAM2; Type: SAM; Serial: TP-1503
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

Ch20525/Area Scan (71x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.870 W/kg

Ch20525/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 28.92 V/m; Power Drift = -0.16 dB Peak SAR (extrapolated) = 1.45 W/kg SAR(1 g) = 0.433 W/kg; SAR(10 g) = 0.288 W/kg Maximum value of SAR (measured) = 0.693 W/kg

-6.16
-12.33
-18.49
-24.66
-30.82

0 dB = 0.870 W/kg = -0.60 dBW/kg

07_LTE Band 7_20M_QPSK_1RB_49Offset_Back_5mm_Ch21100

Communication System: UID 0, FDD_LTE (0); Frequency: 2535 MHz;Duty Cycle: 1:1

Medium: MSL_2600 Medium parameters used: f = 2535 MHz; $\sigma = 2.124$ S/m; $\varepsilon_r = 52.767$; $\rho = 1000$

Date: 2018.11.24

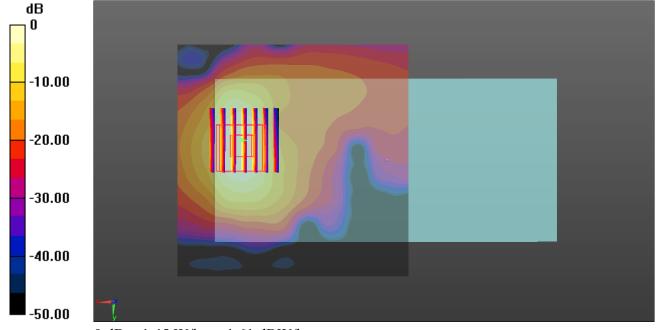
 kg/m^3

Ambient Temperature: 23.4°C; Liquid Temperature: 22.6°C

DASY5 Configuration:

- Probe: ES3DV3 SN3293; ConvF(4.28, 4.28, 4.28); Calibrated: 2018.10.25;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2018.4.19
- Phantom: SAM1; Type: SAM; Serial: TP-1842
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

Ch21100/Area Scan (91x91x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 1.45 W/kg


Ch21100/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 27.89 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 2.01 W/kg

SAR(1 g) = 0.937 W/kg; SAR(10 g) = 0.414 W/kg

Maximum value of SAR (measured) = 1.44 W/kg

0 dB = 1.45 W/kg = 1.61 dBW/kg

Appendix C. **DASY Calibration Certificate**

Report No. : FA8D2701

The DASY calibration certificates are shown as follows.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Jan. 25, 2019 Form version. : 170509 FCC ID: IHDT56XR3 Page C1 of C1

In Collaboration with

CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 http://www.chinattl.cn

Client

Sporton

Certificate No:

Z17-97259

CALIBRATION CERTIFICATE

Object D835V2 - SN: 4d091

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

December 5, 2017

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRVD	102196	02-Mar-17 (CTTL, No.J17X01254)	Mar-18
Power sensor NRV-Z5	100596	02-Mar-17 (CTTL, No.J17X01254)	Mar-18
Reference Probe EX3DV4	SN 3617	23-Jan-17(SPEAG,No.EX3-3617_Jan17)	Jan-18
DAE3	SN 536	09-Oct-17(CTTL-SPEAG,No.Z17-97198)	Oct-18
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	13-Jan-17 (CTTL, No.J17X00286)	Jan-18
Network Analyzer E5071C	MY46110673	13-Jan-17 (CTTL, No.J17X00285)	Jan-18

Name Function Signature Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader

Issued: December 9, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z17-97259 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.0.1446
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.7 ± 6 %	0.88 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		·

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.32 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.48 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.53 mW / g
SAR for nominal Head TSL parameters	normalized to 1VV	6.22 mW /g ± 18.7 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) *C	54.7 ± 6 %	0.96 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C	U ====	

SAR result with Body TSL

Condition	
250 mW input power	2.42 mW / g
normalized to 1W	9.72 mW /g ± 18.8 % (k=2)
Condition	
250 mW input power	1.60 mW / g
normalized to 1W	6.42 mW /g ± 18.7 % (k=2)
	250 mW input power normalized to 1W Condition 250 mW input power

Certificate No: Z17-97259 Page 3 of 8

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.7Ω- 3.69jΩ	
Return Loss	-28.1dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.6Ω- 4.62]Ω	
Return Loss	- 24.5dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.258 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Certificate No: Z17-97259 Page 4 of 8

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d091

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.876$ S/m; $\epsilon_r = 41.67$; $\rho = 1000$ kg/m³

Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: EX3DV4 - SN3617; ConvF(9.73, 9.73, 9.73); Calibrated: 1/23/2017;

Date: 12.04.2017

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn536; Calibrated: 10/9/2017
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

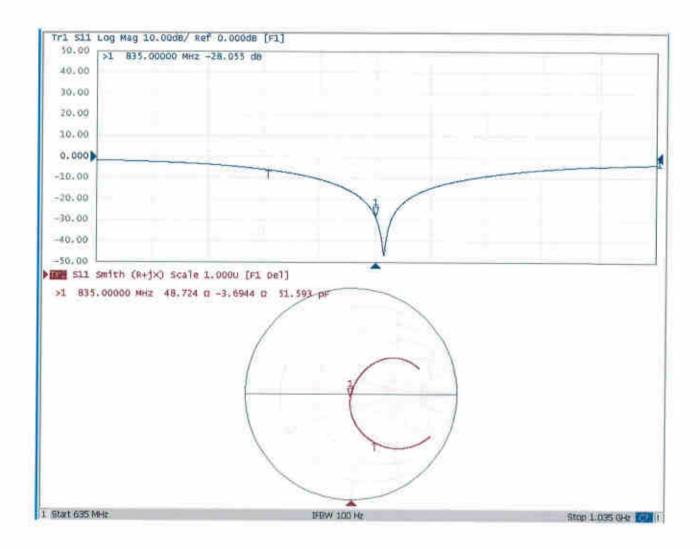
Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 58.89V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 3.48 W/kg

SAR(1 g) = 2.32 W/kg; SAR(10 g) = 1.53 W/kg


Maximum value of SAR (measured) = 3.10 W/kg

0 dB = 3.10 W/kg = 4.91 dBW/kg

Certificate No: Z17-97259 Page 5 of 8

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d091

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.962$ S/m; $\epsilon_r = 54.65$; $\rho = 1000$ kg/m³

Phantom section: Left Section

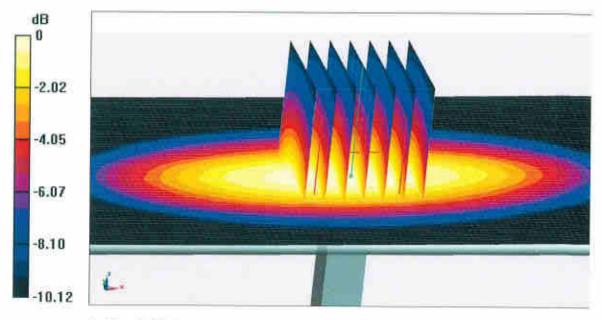
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: EX3DV4 - SN3617; ConvF(9.64, 9.64, 9.64); Calibrated: 1/23/2017;

Date: 12.05.2017

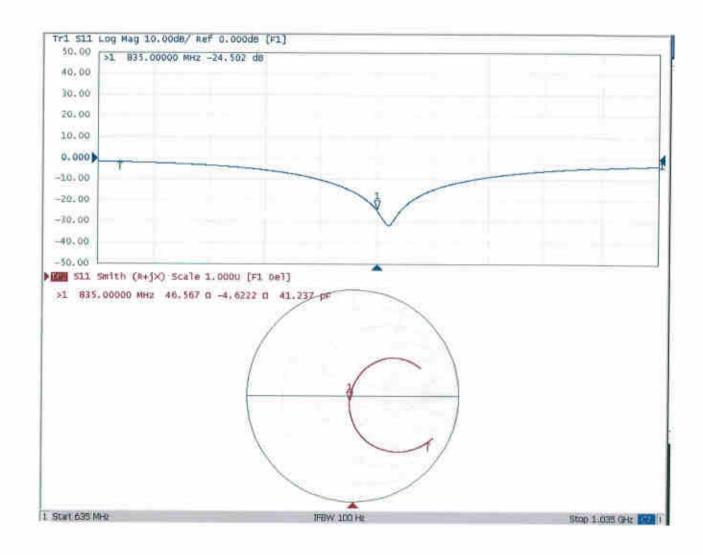
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn536; Calibrated: 10/9/2017
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)


Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.88 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 3.59 W/kg

SAR(1 g) = 2.42 W/kg; SAR(10 g) = 1.6 W/kg


Maximum value of SAR (measured) = 3.20 W/kg

0 dB = 3.20 W/kg = 5.05 dBW/kg

Certificate No: Z17-97259 Page 7 of 8

Impedance Measurement Plot for Body TSL

Page 8 of 8

S D E A G

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Client

Sporton

Certificate No:

Z17-97260

CALIBRATION CERTIFICATE

Object D1750V2 - SN: 1069

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

December 5, 2017

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) ™ and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRVD	102196	02-Mar-17 (CTTL, No.J17X01254)	Mar-18
Power sensor NRV-Z5	100596	02-Mar-17 (CTTL, No.J17X01254)	Mar-18
Reference Probe EX3DV4	SN 3617	23-Jan-17(SPEAG,No.EX3-3617_Jan17)	Jan-18
DAE3	SN 536	09-Oct-17(CTTL-SPEAG,No.Z17-97198)	Oct-18
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	13-Jan-17 (CTTL, No.J17X00286)	Jan-18
Network Analyzer E5071C	MY46110673	13-Jan-17 (CTTL, No.J17X00285)	Jan-18

	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	先生
Reviewed by:	Lin Hao	SAR Test Engineer	献光
Approved by:	Qi Dianyuan	SAR Project Leader	and

Issued: December 9, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z17-97260

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z17-97260 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.0.1446
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	
	The state of the s	

Head TSL parameters

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.5 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	1 200	593

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.31 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	37.0 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	4.96 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	19.8 mW /g ± 18.7 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.8 ± 6 %	1.47 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C	****	222

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.40 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	38.0 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.03 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	20.3 mW /g ± 18.7 % (k=2)

Certificate No: Z17-97260

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.3Ω+ 1.19 jΩ	
Return Loss	- 37.2 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.3Ω+ 0.51 jΩ	
Return Loss	- 26.0 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.084 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
	31 2.13

Page 4 of 8

Certificate No: Z17-97260

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1069

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1750 MHz; $\sigma = 1.378$ S/m; $\epsilon r = 39.46$; $\rho = 1000$ kg/m³

Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

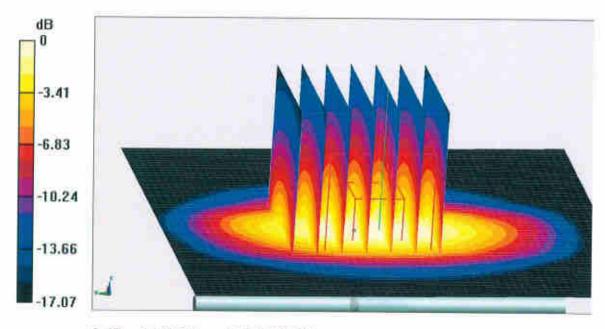
DASY5 Configuration:

Probe: EX3DV4 - SN3617; ConvF(8.49, 8.49, 8.49); Calibrated: 1/23/2017;

Date: 12.05.2017

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn536; Calibrated: 10/9/2017
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

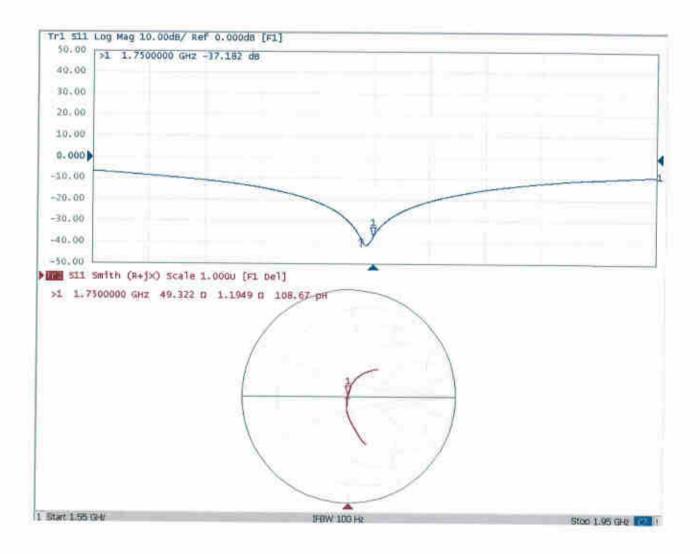
System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 98.28 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 17.2 W/kg

SAR(1 g) = 9.31 W/kg; SAR(10 g) = 4.96 W/kg


Maximum value of SAR (measured) = 14.3 W/kg

0 dB = 14.3 W/kg = 11.55 dBW/kg

Certificate No: Z17-97260 Page 5 of 8

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1069

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle; 1:1

Medium parameters used: f = 1750 MHz; $\sigma = 1.469 \text{ S/m}$; $\epsilon_r = 53.75$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

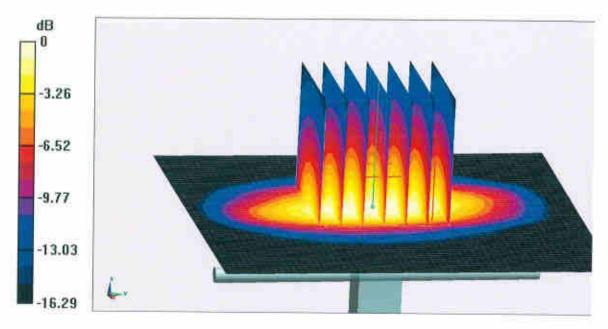
DASY5 Configuration:

Probe: EX3DV4 - SN3617; ConvF(8.21, 8.21, 8.21); Calibrated: 1/23/2017;

Date: 12.05.2017

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn536; Calibrated: 10/9/2017
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

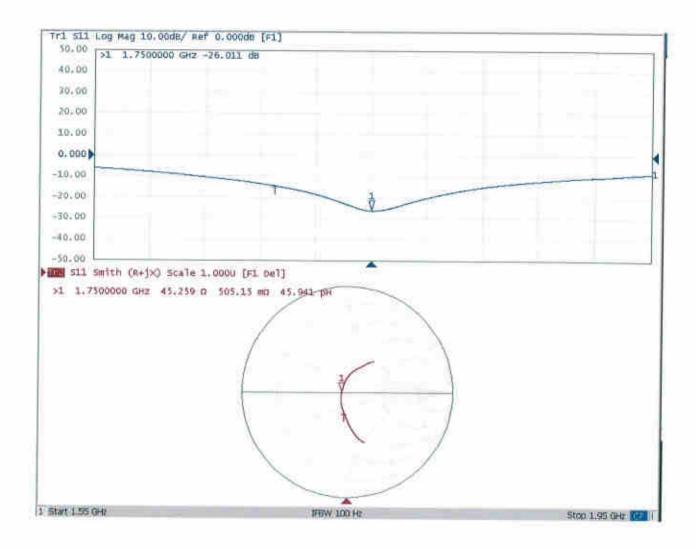
System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.22 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 16.8 W/kg

SAR(1 g) = 9.4 W/kg; SAR(10 g) = 5.03 W/kg


Maximum value of SAR (measured) = 14.3 W/kg

0 dB = 14.3 W/kg = 11.55 dBW/kg

Certificate No: Z17-97260 Page 7 of 8

Impedance Measurement Plot for Body TSL

In Collaboration with

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

Client

Sporton

Certificate No:

Z17-97263

CALIBRATION CERTIFICATE

Tel: +86-10-62304633-2079

E-mail: cttl@chinattl.com

Object D2450V2 - SN: 840

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

December 7, 2017

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRVD	102196	02-Mar-17 (CTTL, No.J17X01254)	Mar-18
Power sensor NRV-Z5	100596	02-Mar-17 (CTTL, No.J17X01254)	Mar-18
Reference Probe EX3DV4	SN 3617	23-Jan-17(SPEAG,No.EX3-3617_Jan17)	Jan-18
DAE3	SN 536	09-Oct-17(CTTL-SPEAG,No.Z17-97198)	Oct-18
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	13-Jan-17 (CTTL, No.J17X00286)	Jan-18
Network Analyzer E5071C	MY46110673	13-Jan-17 (CTTL, No.J17X00285)	Jan-18

STATE TO SW	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	临礼
Reviewed by:	Lin Hao	SAR Test Engineer	林光
Approved by:	Qi Dianyuan	SAR Project Leader	and_

Issued: December 10, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z17-97263

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.0,1446
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

Temperature	Permittivity	Conductivity
22.0 °C	39.2	1.80 mho/m
(22.0 ± 0.2) °C	39.8 ± 6 %	1.83 mho/m ±6 %
<1.0 °C	5,500	
	22.0 °C (22.0 ± 0.2) °C	22.0 °C 39.2 (22.0 ± 0.2) °C 39.8 ± 6 %

SAR result with Head TSL

Condition	
250 mW input power	13.2 mW / g
normalized to 1W	52.6 mW /g ± 18.8 % (k=2)
Condition	
250 mW input power	6.14 mW / g
normalized to 1W	24.5 mW /g ± 18.7 % (k=2)
	250 mW input power normalized to 1W Condition 250 mW input power

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.5 ± 6 %	1.93 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.9 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	51.9 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.99 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	24.0 mW /g ± 18.7 % (k=2)

Certificate No: Z17-97263 Page 3 of 8

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.0Ω+ 4.51jΩ	
Return Loss	- 26.3dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.1Ω+ 5.09jΩ	
Return Loss	- 25.8dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.025 ns
65 72 2007 5005	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: Z17-97263 Page 4 of 8

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 840

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.826 \text{ S/m}$; $\epsilon r = 39.84$; $\rho = 1000 \text{ kg/m}3$

Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

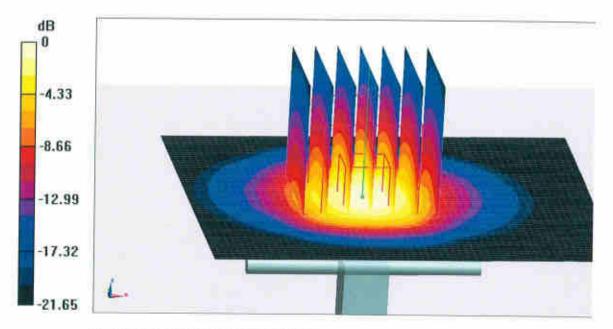
DASY5 Configuration:

Probe: EX3DV4 - SN3617; ConvF(7.74, 7.74, 7.74); Calibrated: 1/23/2017;

Date: 12.06.2017

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn536; Calibrated: 10/9/2017
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,

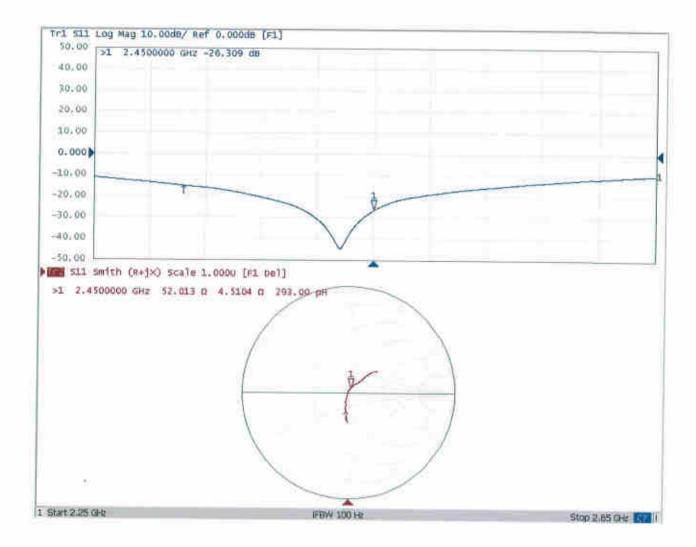

dy=5mm, dz=5mm

Reference Value = 106.0 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 27.3 W/kg

SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.14 W/kg

Maximum value of SAR (measured) = 22.0 W/kg



0 dB = 22.0 W/kg = 13.42 dBW/kg

Certificate No: Z17-97263 Page 5 of 8

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 840

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.926 \text{ S/m}$; $\epsilon_r = 52.48$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

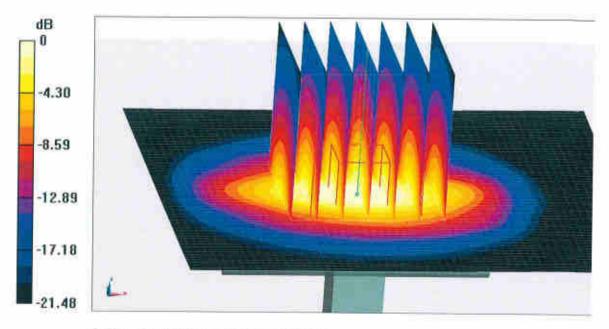
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: EX3DV4 - SN3617; ConvF(7.8, 7.8, 7.8); Calibrated: 1/23/2017;

Date: 12.07.2017

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn536; Calibrated: 10/9/2017
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

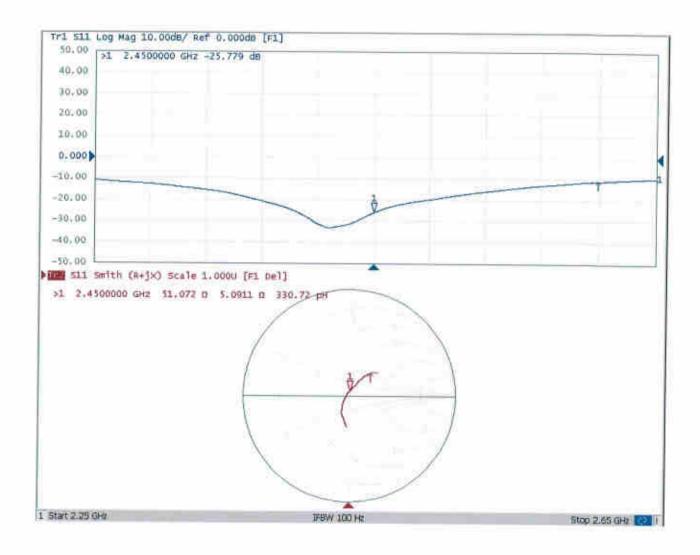

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 99.77 V/m; Power Drift = 0.02 dB

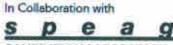
Peak SAR (extrapolated) = 26.8 W/kg

SAR(1 g) = 12.9 W/kg; SAR(10 g) = 5.99 W/kg

Maximum value of SAR (measured) = 21.7 W/kg


0 dB = 21.7 W/kg = 13.36 dBW/kg

Certificate No: Z17-97263 Page 7 of 8



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cm

Client

Sporton

Certificate No:

Z17-97255

CALIBRATION CERTIFICATE

Object D2600V2 - SN: 1061

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

December 7, 2017

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRVD	102196	02-Mar-17 (CTTL, No.J17X01254)	Mar-18
Power sensor NRV-Z5	100596	02-Mar-17 (CTTL, No.J17X01254)	Mar-18
Reference Probe EX3DV4	SN 3617	23-Jan-17(SPEAG,No.EX3-3617_Jan17)	Jan-18
DAE3	SN 536	09-Oct-17(CTTL-SPEAG,No.Z17-97198)	Oct-18
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	13-Jan-17 (CTTL, No.J17X00286)	Jan-18
Network Analyzer E5071C	MY46110673	13-Jan-17 (CTTL, No.J17X00285)	Jan-18

	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	如包
Reviewed by:	Lin Hao	SAR Test Engineer	林北
Approved by:	Qi Dianyuan	SAR Project Leader	50%

Issued: December 10, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Add: No.51 Xueyuan Road, Flaidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z17-97255 Page 2 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.0.1446
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1,96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) *C	39.4 ± 6 %	1.99 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.6 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	58.2 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.50 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	26.0 mW /g ± 18.7 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.6 ± 6 %	2.13 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C	725	1944

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	14.0 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	56.4 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	6.23 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	25.0 mW /g ± 18.7 % (k=2)

Certificate No: Z17-97255 Page 3 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Appendix(Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.4Ω- 6.08jΩ	
Return Loss	- 24.3dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.2Ω- 5.19jΩ	
Return Loss	- 23.5dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.013 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Certificate No: Z17-97255

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1061

Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2600 MHz; $\sigma = 1.985 \text{ S/m}$; $\epsilon r = 39.42$; $\rho = 1000 \text{ kg/m}$

Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

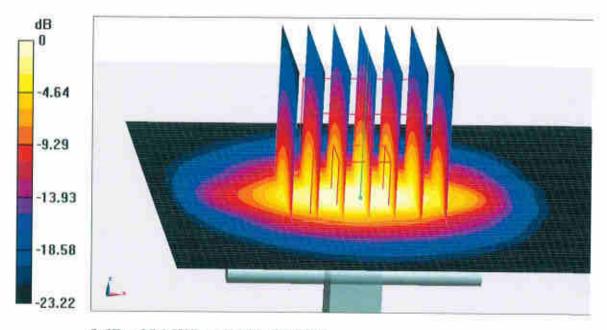
DASY5 Configuration:

Probe: EX3DV4 - SN3617; ConvF(7.3, 7.3, 7.3); Calibrated: 1/23/2017;

Date: 12.07.2017

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn536; Calibrated: 10/9/2017
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,

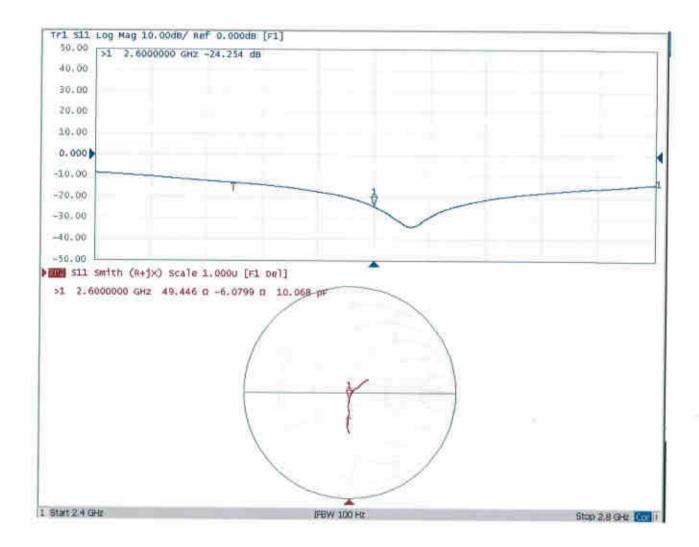

dy=5mm, dz=5mm

Reference Value = 107.7 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 31.5 W/kg

SAR(1 g) = 14.6 W/kg; SAR(10 g) = 6.5 W/kg

Maximum value of SAR (measured) = 25.1 W/kg


0 dB = 25.1 W/kg = 14.00 dBW/kg

Certificate No: Z17-97255 Page 5 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1061

Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2600 MHz; $\sigma = 2.127$ S/m; $\epsilon_r = 52.63$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

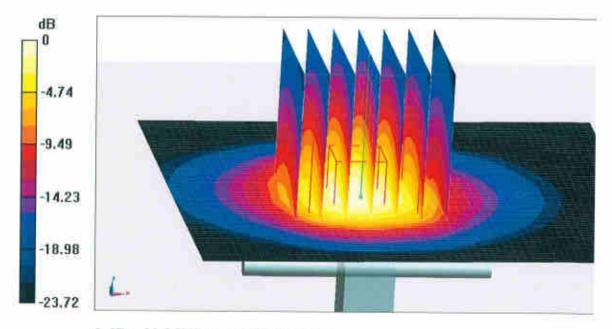
DASY5 Configuration:

Probe: EX3DV4 - SN3617; ConvF(7.48, 7.48, 7.48); Calibrated: 1/23/2017;

Date: 12.07.2017

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn536; Calibrated: 10/9/2017
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

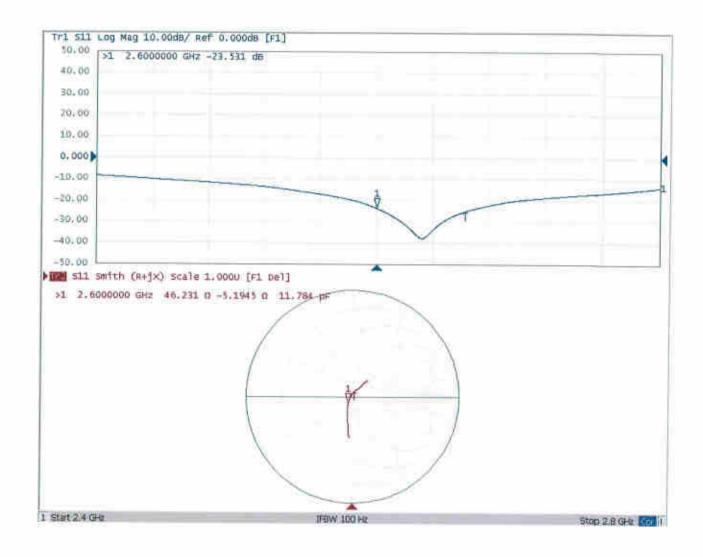

dy Jimi, dz Jimii

Reference Value = 96.43 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 30.0 W/kg

SAR(1 g) = 14 W/kg; SAR(10 g) = 6.23 W/kg

Maximum value of SAR (measured) = 23.8 W/kg



0 dB = 23.8 W/kg = 13.77 dBW/kg

Certificate No: Z17-97255 Page 7 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

IMPORTANT NOTICE

USAGE OF THE DAE 4

The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points:

Battery Exchange: The battery cover of the DAE4 unit is closed using a screw, over tightening the screw may cause the threads inside the DAE to wear out.

Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside.

E-Stop Failures: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements.

Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect.

DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file.

Important Note:

Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer.

Important Note:

Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the E-stop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure.

Important Note:

To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.

Schmid & Partner Engineering

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton (Auden)

Accreditation No.: SCS 0108

Certificate No: DAE4-1358_Apr18

CALIBRATION CERTIFICATE

Object

DAE4 - SD 000 D04 BM - SN: 1358

Calibration procedure(s)

QA CAL-06.v29

Calibration procedure for the data acquisition electronics (DAE)

Calibration date:

April 19, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards Keithley Multimeter Type 2001	ID # SN: 0810278	Cal Date (Certificate No.) 31-Aug-17 (No:21092)	Scheduled Calibration Aug-18
Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1	ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002	Check Date (in house) 04-Jan-18 (in house check) 04-Jan-18 (in house check)	Scheduled Check In house check: Jan-19 In house check: Jan-19

Calibrated by:

Name

Dominique Steffen

Function

Laboratory Technician

. .

Approved by:

Sven Kühn

Deputy Manager

Issued: April 19, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE4-1358_Apr18

Page 1 of 5

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S wiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE

data acquisition electronics

Connector angle

information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range:

1LSB =

 $6.1\mu V$,

full range = -100...+300 mV

Low Range:

1LSB =

61nV,

full range = -1.....+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Υ	Z
High Range	403.426 ± 0.02% (k=2)	403.467 ± 0.02% (k=2)	403.481 ± 0.02% (k=2)
Low Range	3.96147 ± 1.50% (k=2)		3.99345 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	11100110
	114.0 ° ± 1 °

Certificate No: DAE4-1358_Apr18

Page 3 of 5

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range		Reading (μV)	Difference (μV)	Error (%)
Channel X + I	put	200022.51	-15.12	-0.01
Channel X + Ir	put	20005.67	-0.29	-0.00
Channel X - In	put	-20001.45	3.60	-0.02
Channel Y + Ir	put	200028.61	-8.96	-0.00
Channel Y + Ir	put	20003.70	-2.15	-0.01
Channel Y - In	put	-20005.34	-0.21	0.00
Channel Z + In	put	200036.74	-2.95	-0.00
Channel Z + In	put	20004.69	-1.08	-0.01
Channel Z - In	put	-20006.63	-1.39	0.01

Low Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Inpu	ıt 2001.95	-0.02	-0.00
Channel X + Inpu	t 202.26	0.39	0.19
Channel X - Inpu	t -197.53	0.57	-0.29
Channel Y + Inpu	t 2001.73	-0.09	-0.00
Channel Y + Inpu	t 201.25	-0.44	-0.22
Channel Y - Inpu	-198.53	-0.31	0.16
Channel Z + Inpu	t 2001.57	-0.14	-0.01
Channel Z + Inpu	t 200.25	-1.31	-0.65
Channel Z - Input	-199.88	-1.56	0.79

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	22.78	21.22
	- 200	-21.08	-21.67
Channel Y	200	-27.72	-27.73
	- 200	26.84	26.81
Channel Z	200	-11.37	-11.58
	- 200	9.06	8.67

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	-	2.82	-3.28
Channel Y	200	8.32	-	3.73
Channel Z	200	9.31	6.29	-

Certificate No: DAE4-1358_Apr18

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15588	17635
Channel Y	16049	15338
Channel Z	16078	16869

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	-0.57	-1.22	0.63	0.35
Channel Y	-0.93	-2.29	0.11	0.41
Channel Z	-2.14	-2.91	-1.18	0.34

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE4-1358_Apr18 Page 5 of 5

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton

Certificate No: ES3-3293 Oct18

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3293

Calibration procedure(s)

QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes

Calibration date:

October 25, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-18 (No. 217-02682)	Apr-19
Reference Probe ES3DV2	SN: 3013	30-Dec-17 (No. ES3-3013_Dec17)	Dec-18
DAE4	SN: 660	21-Dec-17 (No. DAE4-660_Dec17)	Dec-18
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E44198	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19

Calibrated by:

Signature

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: October 25, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid sensitivity in free space

NORMx,y,z .

sensitivity in TSL / NORMx,y,z

ConvF DCP

diode compression point

CF

crest factor (1/duty_cycle) of the RF signal

A. B. C. D

modulation dependent linearization parameters

Polarization o

o rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle

information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
 b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-
- held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100
- Spherical isotropy (3D deviation from isotropy); in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Probe ES3DV3

SN:3293

Manufactured:

July 6, 2010

Repaired:

October 19,2018

Calibrated:

October 25, 2018

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	1.09	0.90	0.73	± 10.1 %
DCP (mV) ^B	104.3	103.5	107.8	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^b (k=2)
0	CW	X	0.0	0.0	1.0	0.00	175.8	±3.0 %
		Y	0.0	0.0	1.0		175.7	
		Z	0.0	0.0	1.0		187.4	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Numerical linearization parameter: uncertainty not required.

[^] The uncertainties of Norm X,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	6.78	6.78	6.78	0.80	1.20	± 12.0 %
835	41.5	0.90	6.47	6.47	6.47	0.44	1.60	± 12.0 %
900	41.5	0.97	6.34	6.34	6.34	0.80	1.20	± 12.0 %
1750	40.1	1.37	5.40	5.40	5.40	0.76	1.20	± 12.0 %
1900	40.0	1.40	5.19	5.19	5.19	0.59	1.36	± 12.0 %
2000	40.0	1.40	5.17	5.17	5.17	0.60	1.41	± 12.0 %
2300	39.5	1.67	4.83	4.83	4.83	0.72	1.31	± 12.0 %
2450	39.2	1.80	4.53	4.53	4.53	0.80	1.23	± 12.0 %
2600	39.0	1.96	4.44	4.44	4.44	0.80	1.31	± 12.0 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

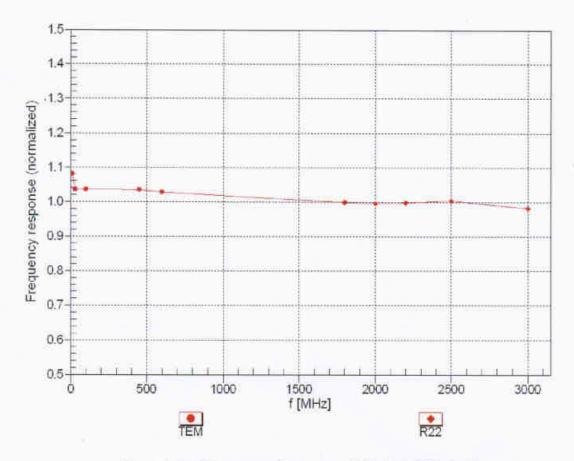
At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	6.34	6.34	6.34	0.80	1.12	± 12.0 %
835	55.2	0.97	6.24	6.24	6.24	0.80	1.18	± 12.0 %
1750	53.4	1.49	5.01	5.01	5.01	0.55	1.54	± 12.0 %
1900	53.3	1.52	4.74	4.74	4.74	0.60	1,44	± 12.0 %
2300	52.9	1.81	4.51	4.51	4.51	0.80	1.28	± 12.0 %
2450	52.7	1.95	4.39	4.39	4.39	0.80	1.22	± 12.0 %
2600	52.5	2.16	4.28	4.28	4.28	0.80	1.20	± 12.0 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

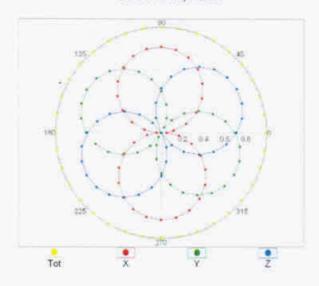

validity can be extended to ± 110 MHz.

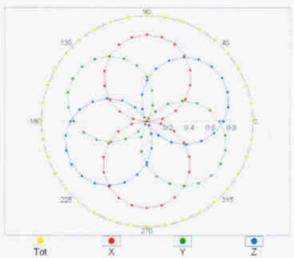
At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

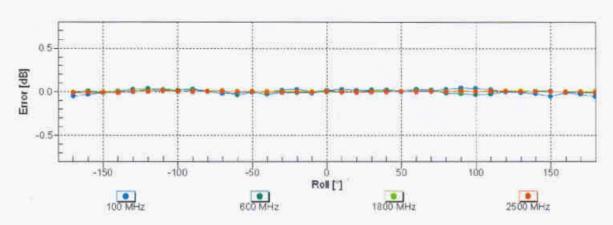
the ConvF uncertainty for indicated target tissue parameters.

Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

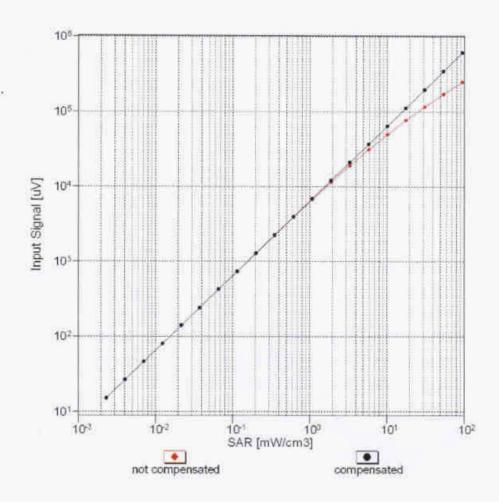
Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

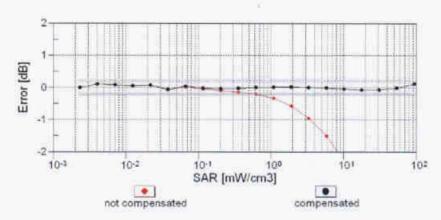



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

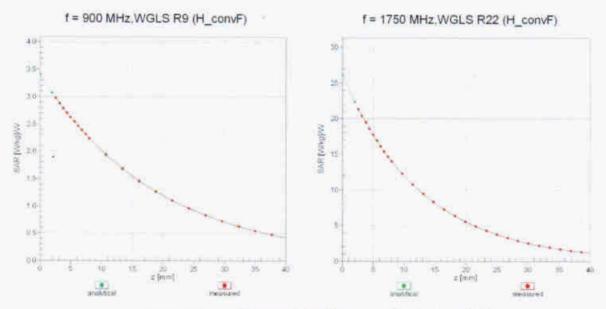

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

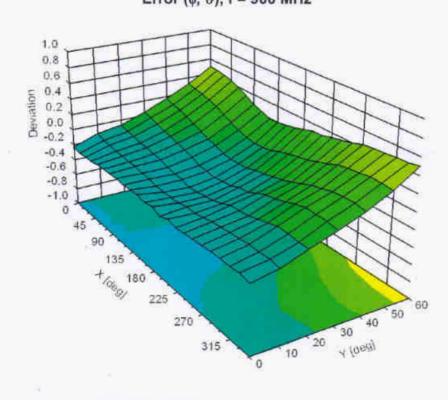
f=1800 MHz,R22





Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

Other Probe Parameters

Sensor Arrangement	Triangular				
Connector Angle (°)	+0.1				
Mechanical Surface Detection Mode	enabled				
Optical Surface Detection Mode	disable				
Probe Overall Length	337 mn				
Probe Body Diameter	10 mm				
Tip Length	10 mm				
Tip Diameter	4 mm				
Probe Tip to Sensor X Calibration Point	2 mm				
Probe Tip to Sensor Y Calibration Point	2 mm				
Probe Tip to Sensor Z Calibration Point	2 mm				
Recommended Measurement Distance from Surface	3 mm				