FCC SAR Test Report

APPLICANT : Motorola Mobility LLC **EQUIPMENT** : Mobile Cellular Phone

BRAND NAME : Motorola

MODEL NAME : 10714

FCC ID : IHDT56WC6

STANDARD : FCC 47 CFR Part 2 (2.1093)

ANSI/IEEE C95.1-1992

IEEE 1528-2013

We, Sporton International (KunShan) INC., would like to declare that the tested sample has been evaluated in accordance with the procedures and had been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (KunShan) INC., the test report shall not be reproduced except in full.

Prepared by: Mark Qu / Manager

Mark Qu

Approved by: Jones Tsai / Manager

2627

Report No. : FA742708

Sporton International (KunShan) INC. No.3-2, Pingxiang Road, Kunshan Development Zone, Jiangsu, China

TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958

Issued Date: Jul. 07, 2017 Form version.: 160427 FCC ID: IHDT56WC6 Page 1 of 54

Table of Contents

1. Statement of Compliance	
2. Administration Data	
3. Guidance Applied	
4. Equipment Under Test (EUT) Information	
4.1 General Information	
4.2 Specification of Accessory	7
4.3 General LTE SAR Test and Reporting Considerations	
5. RF Exposure Limits	9
5.1 Uncontrolled Environment	
5.2 Controlled Environment	
6. Specific Absorption Rate (SAR)	
6.1 Introduction	
6.2 SAR Definition	
7. System Description and Setup	
7.1 E-Field Probe	
7.2 Data Acquisition Electronics (DAE)	12
7.3 Phantom	
7.4 Device Holder	
8. Measurement Procedures	
8.1 Spatial Peak SAR Evaluation	15
8.2 Power Reference Measurement	
8.3 Area Scan	
8.4 Zoom Scan	
8.5 Volume Scan Procedures	
8.6 Power Drift Monitoring	
9. Test Equipment List	
10. System Verification	
10.1 Tissue Simulating Liquids	
10.2 Tissue Verification	20
10.3 System Performance Check Results	
11. RF Exposure Positions	22
11.1 Ear and handset reference point	
11.2 Definition of the cheek position	
11.3 Definition of the tilt position	
11.4 Body Worn Accessory	
11.5 Wireless Router	
12. Conducted RF Output Power (Unit: dBm)	
13. Bluetooth Exclusions Applied	
14. Antenna Location	
15. SAR Test Results	
15.1 Head SAR	
15.2 Hotspot SAR	
15.3 Body Worn Accessory SAR	
16. Simultaneous Transmission Analysis	
<u>.</u>	
16.2 Hotspot Exposure Conditions	
17. Uncertainty Assessment	
18. References	
Appendix A. Plots of System Performance Check	34
Appendix B. Plots of High SAR Measurement	
Appendix C. DASY Calibration Certificate	
••	
Appendix D. Test Setup Photos	
Appendix E. Product Equality Declaration	
Appendix F. Original Report	

Revision History

Report No.: FA742708

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FA742708	Rev. 01	Initial issue of report	Jul. 07, 2017

TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958

Issued Date: Jul. 07, 2017 Form version. : 160427 FCC ID: IHDT56WC6 Page 3 of 54

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for Motorola Mobility LLC, Mobile Cellular Phone, 10714 are as follows.

Report No. : FA742708

			Hi	Llinkaat			
Equipment Class		equency Band	Head (Separation 0mm)	Hotspot (Separation 10mm)	Body-worn (Separation 10mm)	Highest Simultaneous Transmission 1g SAR (W/kg)	
				1g SAR (W/kg)		ig SAR (W/kg)	
	CSM	GSM850	0.47	1.01	1.01		
	GOIVI	GSM	GSM1900	0.32	0.41	0.41	
	WCDMA	Band V	0.38	0.71	0.71		
Licensed		Band II	0.43	0.56	0.56	1.50	
		Band 5	0.36	0.68	0.68		
	LTE	Band 7	0.37	0.69	0.69		
			Band 38	0.25	0.51	0.46	
DTS	WLAN 2.4GHz WLAN		1.09	0.28	0.28	1.50	
Date of Testing:				2017/4/27	~2017/4/29		

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and FCC KDB publications.

TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958

Issued Date: Jul. 07, 2017 FCC ID: IHDT56WC6 Form version.: 160427 Page 4 of 54

2. Administration Data

Testing Site				
Test Site	Sporton International (KunShan) INC.			
Test Site Location	No.3-2, Pingxiang Road, Kunshan Development Zone, Jiangsu, China TEL: +86-0512-5790-0158 FAX: +86-0512-5790-0958			

Report No. : FA742708

Applicant Applicant		
Company Name	Motorola Mobility LLC	
Address	222 W, Merchandise Mart Plaza, Chicago IL 60654 USA	

Manufacturer		
Company Name	Motorola Mobility LLC	
Address	222 W, Merchandise Mart Plaza, Chicago IL 60654 USA	

3. Guidance Applied

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

- FCC 47 CFR Part 2 (2.1093)
- ANSI/IEEE C95.1-1992
- IEEE 1528-2013
- FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- FCC KDB 865664 D02 SAR Reporting v01r02
- FCC KDB 447498 D01 General RF Exposure Guidance v06
- FCC KDB 648474 D04 SAR Evaluation Considerations for Wireless Handsets v01r03
- FCC KDB 248227 D01 802.11 Wi-Fi SAR v02r02
- FCC KDB 941225 D01 3G SAR Procedures v03r01
- FCC KDB 941225 D05 SAR for LTE Devices v02r05
- FCC KDB 941225 D06 Hotspot Mode SAR v02r01

TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958 Issued Date: Jul. 07, 2017

FCC ID : IHDT56WC6 Page 5 of 54 Form version. : 160427

4. Equipment Under Test (EUT) Information

4.1 General Information

GSM / (E)GPRS Transfer mode Class B – EUT cannot support Packet Switched and Circuit Switched Network simultaneously but can automatically switch between Packet and Circuit Switched Network.	Product Feature & Specification					
Model Name	Equipment Name	Mobile Cellular Phone				
IMEI Code	Brand Name	Motorola				
MEI Code SIM1: 355641080067152 SIM2: 355641080067160 GSM850: 824.2 MHz ~ 848.8 MHz GSM1900: 1850.2 MHz ~ 1909.8 MHz WCDMA Band II: 1852.4 MHz ~ 1907.6 MHz WCDMA Band V: 826.4 MHz ~ 1907.6 MHz WCDMA Band V: 826.4 MHz ~ 846.6 MHz LTE Band 5: 824.7 MHz ~ 848.3 MHz LTE Band 7: 2502.5 MHz ~ 2567.5 MHz LTE Band 38: 2572.5 MHz ~ 2617.5 MHz WLAN 2.4GHz Band: 2412 MHz ~ 2462 MHz Bluetooth: 2402 MHz ~ 2480 MHz GSM/GPRS/EGPRS RMC/AMR 12.2Kbps HSDPA HSUPA HSUPA HSPA+ LTE 802.11b/g/n HT20 Bluetooth v3.0 + EDR, Bluetooth v4.0 LE, Bluetooth v4.1 LE, Bluetooth v4.2 LE HW Version WKGMA1A4-3 SW Version Woods- userdebug 7.0 NMA25.27 314 intcfg,test-keys GSM / (E)GPRS Class B – EUT cannot support Packet Switched and Circuit Switched Network simultaneously but can automatically switch between Packet and Circuit Switched Network Simultaneously but can automatically switch between Packet and Circuit Switched Network Simultaneously but can automatically switch between Packet and Circuit Switched Network Simultaneously but can automatically switch between Packet and Circuit Switched Network Simultaneously but can automatically switch between Packet and Circuit Switched Network Simultaneously but can automatically switch between Packet and Circuit Switched Network Simultaneously but can automatically switch between Packet and Circuit Switched Network Simultaneously but can automatically switch between Packet and Circuit Switched Network Simultaneously but can automatically switch between Packet and Circuit Switched Network Simultaneously but can automatically switch between Packet and Circuit Switched Network Simultaneously but can automatically switch between Packet and Circuit Switched Network Simultaneously but can automatically switched Network Simultaneously but can automatically switched Network Simultaneously but can automatically switched Network Simultaneously switched Network Simultaneously switched Network Simultaneously switched Network	Model Name	10714				
SIM2: 355641080067160	FCC ID	IHDT56WC6				
GSM1900: 1850.2 MHz ~ 1909.8 MHz WCDMA Band II: 1852.4 MHz ~ 1907.6 MHz WCDMA Band V: 826.4 MHz ~ 846.6 MHz LTE Band 5: 824.7 MHz ~ 848.3 MHz LTE Band 5: 824.7 MHz ~ 2567.5 MHz LTE Band 38: 2572.5 MHz ~ 2567.5 MHz WLAN 2.4GHz Band: 2412 MHz ~ 2462 MHz Bluetooth: 2402 MHz ~ 2480 MHz GSM/GPRS/EGPRS RMC/AMR 12.2Kbps HSDPA HSUPA HSUPA HSPA+ LTE 802.11b/g/n HT20 Bluetooth v3.0 + EDR, Bluetooth v4.0 LE, Bluetooth v4.1 LE, Bluetooth v4.2 LE HW Version WKGMA1A4-3 SW Version GSM / (E)GPRS Transfer mode GSM1900: 1850.2 MHz ~ 1907.6 MHz WCDMA Band II: 1852.4 MHz Ve36.6 MHz Ve36.6 MHz Ve36.6 MHz VC36.6 MHz VC36.	IMEI Code					
. RMC/AMR 12.2Kbps . HSDPA . HSUPA DC-HSDPA . HSPA+ . LTE . 802.11b/g/n HT20 . Bluetooth v3.0 + EDR, Bluetooth v4.0 LE, Bluetooth v4.1 LE, Bluetooth v4.2 LE HW Version WKGMA1A4-3 SW Version Woods- userdebug 7.0 NMA25.27 314 intcfg,test-keys GSM / (E)GPRS Transfer mode Class B – EUT cannot support Packet Switched and Circuit Switched Network simultaneously but can automatically switch between Packet and Circuit Switched Network.		GSM1900: 1850.2 MHz ~ 1909.8 MHz WCDMA Band II: 1852.4 MHz ~ 1907.6 MHz WCDMA Band V: 826.4 MHz ~ 846.6 MHz LTE Band 5: 824.7 MHz ~ 848.3 MHz LTE Band 7: 2502.5 MHz ~ 2567.5 MHz LTE Band 38: 2572.5 MHz ~ 2617.5 MHz WLAN 2.4GHz Band: 2412 MHz ~ 2462 MHz				
SW Version woods- userdebug 7.0 NMA25.27 314 intcfg,test-keys GSM / (E)GPRS Class B – EUT cannot support Packet Switched and Circuit Switched Network Transfer mode simultaneously but can automatically switch between Packet and Circuit Switched Network.	Mode	RMC/AMR 12.2Kbps HSDPA HSUPA DC-HSDPA HSPA+ LTE 802.11b/g/n HT20				
GSM / (E)GPRS Transfer mode Class B – EUT cannot support Packet Switched and Circuit Switched Network simultaneously but can automatically switch between Packet and Circuit Switched Network.	HW Version	WKGMA1A4-3				
Transfer mode simultaneously but can automatically switch between Packet and Circuit Switched Network.	SW Version	woods- userdebug 7.0 NMA25.27 314 intcfg,test-keys				
FUT Stage Identical Prototype		Class B – EUT cannot support Packet Switched and Circuit Switched Network simultaneously but can automatically switch between Packet and Circuit Switched Network.				
identical Frototype	EUT Stage	Identical Prototype				

Report No.: FA742708

Remark:

- 1. This device supports VoIP in GPRS, EGPRS, WCDMA and LTE (e.g. for 3rd-party VoIP), LTE supports VoLTE operation.
- 2. 802.11n-HT40 is not supported in 2.4GHz WLAN.
- 3. This device 2.4GHz WLAN support hotspot operation.
- 4. This device does not support DTM operation and support GRPS/EGRPS mode up to multi-slot class 12.
- 5. The dual SIM card mobile has 2 SIM slots and supports dual SIM dual standby. The WWAN radio transmission will be enabled by either one SIM at a time (single active). After pre-scan two SIM cards power, we found test result of the SIM1 was the worse, so we chose dual SIM1 card to perform all tests.
- 6. This is a variant report for 10714. The product equality declaration could be referred to Appendix E. Based on the similarity between current and previous project, only the worse cases from reference report (Sporton Report Number FA711913) were verified for the differences.

TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958 Issued Date: Jul. 07, 2017

FCC ID : IHDT56WC6 Page 6 of 54 Form version. : 160427

4.2 Specification of Accessory

	Specification of Accessory					
AC Adoptor IN	Brand Name	Motorola (Chenyang)	Model Name	C-P45 SPN5982A		
AC Adapter IN	Power Rating	I/P: 100-240 Vac, 130mA,	O/P: 5 Vdc, 1000m	A		
AC Adapter US	Brand Name	Motorola (Chenyang)	Model Name	C-P56 SPN5987A		
AC Adapter 03	Power Rating	I/P: 100-240 Vac, 130mA,	O/P: 5 Vdc, 1000m	A		
AC Adoptor EU	Brand Name	Motorola (Chenyang)	Model Name	C-P57 SPN5985A		
AC Adapter EU	Power Rating	I/P: 100-240 Vac, 130mA,	O/P: 5 Vdc, 1000m	A		
10.1	Brand Name	Motorola (Chenyang)	Model Name	C-P58 SPN5981A		
AC Adapter UK	Power Rating	I/P: 100-240 Vac, 130mA,	O/P: 5 Vdc, 1000m	A		
AC Adoptor All	Brand Name	Motorola (Chenyang)	Model Name	C-P59 SPN5983A		
AC Adapter AU	Power Rating	I/P: 100-240 Vac, 130mA,	O/P: 5 Vdc, 1000m	A		
	Brand Name	Motorola (ATL)	Model Name	GK40		
Battery	Power Rating	3.8Vdc,2685/2800mAh (Min/Typ)	Туре	Li-ion		
Farnhana	Brand Name	Motorola(Tenji)	Model Name	TJ101247P		
Earphone	Signal Line Type	1.3 meter, non-shielded cal	ble, without ferrite core			
1100 0 11	Brand Name	Motorola (LIQI)	Model Name	LQ-02300032		
USB Cable	Signal Line Type	1.0 meter, shielded cable, without ferrite core				

Report No.: FA742708

4.3 General LTE SAR Test and Reporting Considerations

	Summarized necessary items addressed in KDB 941225 D05 v02r05											
		Summa	arized n	ecess	ary items	s addre	essed in KI	DB 94	1225 D05	v02r05		
FC	C ID			IHDT5	6WC6							
Eq	uipment Name)		Mobile Cellular Phone								
On	erating Freque	ency Range of	aach I	LTE Band 5: 824.7 MHz ~ 848.3 MHz								
	E transmission			LTE Band 7: 2502.5 MHz ~ 2567.5 MHz								
							MHz ~ 2617					
Ch	annel Bandwid	dth					MHz, 5MHz MHz, 15MH					
CH		atti					0MHz, 15M					
lqU	link Modulatio	ns Used			and 16C		·····-, ······					
		requirements			and Data	<u> </u>						
					Table	6.2.3-1: I	Maximum Po	wer R	eduction (MF	R) for Po	wer Class	3
				Me	odulation	С	hannel bandw	idth / 1	ransmission	bandwidth	(RB)	MPR (dB)
		manently Built	-in by			1.4	3.0	5	10	15	20	+
De	sign					MHz	MHz	MHz		MHz	MHz	
					QPSK	>5	>4	>8	> 12	> 16	> 18	≤1
					16 QAM 16 QAM	≤ 5 > 5	≤ 4 > 4	≤8 >8	≤ 12 > 12	≤ 16 > 16	≤ 18 > 18	≤ 1 ≤ 2
1 70	E A-MPR											s set to NS_01
LIE	= A-IVIFK			o disable A-MPR during SAR testing and the LTE SAR tests was transmitting on all TTI frames (Maximum TTI)								
								n sin	nulator was	s used for	or the S	AR and power
Spe	ectrum Plots fo	or RB Configura										on and offset
·		<u> </u>					cluded in th					
LTE	E Release Ver	sion		R9, Ca	nt 4							
CA	Support			Not Su	pported							
		Transmissi	ion (H, I	И, L) с	hannel n	umber	s and freq	uenc	ies in each	LTE ba	nd	
					L	_TE Bar	nd 5					
	Bandwidtl	h 1.4 MHz	В	andwic	dth 3 MHz	7	Band	width	5 MHz	B	Bandwidt	th 10 MHz
	Ch. #	Freq. (MHz)	Ch	. #	Freq. (I	MHz)	Ch. #		req. (MHz) C	h. #	Freq. (MHz)
L	20407	824.7	204	15	825	.5	20425		826.5	20	450	829
М	20525	836.5	205	25	836	.5	20525		836.5	20	525	836.5
Н	20643	848.3	206	35	847		20625		846.5	20	600	844
						_TE Bar						
	Bandwid	th 5 MHz	Ba	andwid	th 10 MH				15 MHz	_	Bandwidt	th 20 MHz
	Ch. #	Freq. (MHz)	Ch	. #	Freq. (I	MHz)	Ch. #		req. (MHz) C	h. #	Freq. (MHz)
L	20775	2502.5	208	800	250)5	20825		2507.5		850	2510
М	21100	2535	211		253		21100		2535		100	2535
Н	21425	2567.5	214	00	256		21375		2562.5	21	350	2560
						TE Ban						
		th 5 MHz			th 10 MH				15 MHz			h 20 MHz
	Ch. #	Freq. (MHz)	Ch		Freq. (I	MHz)	Ch. #		req. (MHz		h. #	Freq. (MHz)
L	37775	2572.5	378		257		37825		2577.5		'850	2580
М	38000	2595	380		259		38000		2595		8000	2595
Н	38225	2617.5	382	200	261	5	38175		2612.5	38	3150	2610

Report No. : FA742708

TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958 Issued Date: Jul. 07, 2017

FCC ID : IHDT56WC6 Page 8 of 54 Form version. : 160427

5. <u>RF Exposure Limits</u>

5.1 Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Report No.: FA742708

5.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958 Issued Date: Jul. 07, 2017

FCC ID : IHDT56WC6 Page 9 of 54 Form version. : 160427

6. Specific Absorption Rate (SAR)

6.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

Report No.: FA742708

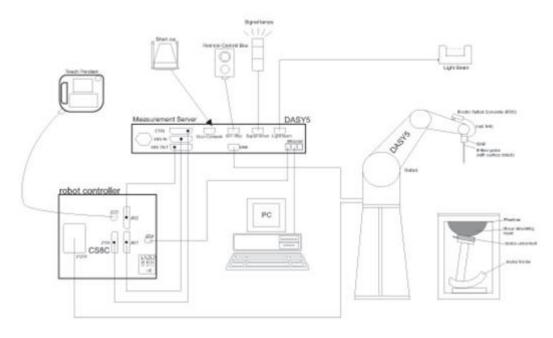
6.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (p). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

$$SAR = \frac{\sigma |E|^2}{\rho}$$


Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958

Issued Date: Jul. 07, 2017 Form version.: 160427 FCC ID: IHDT56WC6 Page 10 of 54

7. System Description and Setup

The DASY system used for performing compliance tests consists of the following items:

Report No. : FA742708

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps.
- The phantom, the device holder and other accessories according to the targeted measurement.

TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958

Issued Date: Jul. 07, 2017 Form version.: 160427 FCC ID: IHDT56WC6 Page 11 of 54

7.1 E-Field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

<EX3DV4 Probe>

Construction	Symmetric design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Frequency	10 MHz - >6 GHz Linearity: ±0.2 dB (30 MHz - 6 GHz)
Directivity	±0.3 dB in TSL (rotation around probe axis) ±0.5 dB in TSL (rotation normal to probe axis)
Dynamic Range	10 μW/g – >100 mW/g Linearity: ±0.2 dB (noise: typically <1 μW/g)
Dimensions	Overall length: 337 mm (tip: 20 mm) Tip diameter: 2.5 mm (body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm

Report No. : FA742708

7.2 <u>Data Acquisition Electronics (DAE)</u>

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

Fig 5.1 Photo of DAE

TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958

Issued Date: Jul. 07, 2017 Form version.: 160427 FCC ID: IHDT56WC6 Page 12 of 54

7.3 Phantom

<SAM Twin Phantom>

407 till 1 Will 1 Halltollis		
Shell Thickness	2 ± 0.2 mm;	
	Center ear point: 6 ± 0.2 mm	
Filling Volume	Approx. 25 liters	
Dimensions	Length: 1000 mm; Width: 500 mm; Height:	
Difficusions	adjustable feet	S
Measurement Areas	Left Hand, Right Hand, Flat Phantom	

Report No. : FA742708

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

<ELI Phantom>

Shell Thickness	2 ± 0.2 mm (sagging: <1%)	
Filling Volume	Approx. 30 liters	
Dimensions	Major ellipse axis: 600 mm Minor axis: 400 mm	

The ELI phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

Sporton International (KunShan) INC.

7.4 Device Holder

<Mounting Device for Hand-Held Transmitter>

In combination with the Twin SAM V5.0/V5.0c or ELI phantoms, the Mounting Device for Hand-Held Transmitters enables rotation of the mounted transmitter device to specified spherical coordinates. At the heads, the rotation axis is at the ear opening. Transmitter devices can be easily and accurately positioned according to IEC 62209-1, IEEE 1528, FCC, or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). And upgrade kit to Mounting Device to enable easy mounting of wider devices like big smart-phones, e-books, small tablets, etc. It holds devices with width up to 140 mm.

Report No.: FA742708

Mounting Device for Hand-Held Transmitters

Mounting Device Adaptor for Wide-Phones

<Mounting Device for Laptops and other Body-Worn Transmitters>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms.

Mounting Device for Laptops

TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958

Issued Date: Jul. 07, 2017 Form version.: 160427 FCC ID: IHDT56WC6 Page 14 of 54

8. Measurement Procedures

The measurement procedures are as follows:

<Conducted power measurement>

(a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band.

Report No.: FA742708

- Read the WWAN RF power level from the base station simulator.
- For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band
- (d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power

<SAR measurement>

- Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power
- Place the EUT in the positions as Appendix D demonstrates.
- (c) Set scan area, grid size and other setting on the DASY software.
- (d) Measure SAR results for the highest power channel on each testing position.
- Find out the largest SAR result on these testing positions of each band (e)
- Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- Power reference measurement (a)
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

Sporton International (KunShan) INC.

8.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- Extraction of the measured data (grid and values) from the Zoom Scan
- Calculation of the SAR value at every measurement point based on all stored data (A/D values and (b) measurement parameters)
- Generation of a high-resolution mesh within the measured volume (c)
- Interpolation of all measured values form the measurement grid to the high-resolution grid (d)
- Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface (e)
- Calculation of the averaged SAR within masses of 1g and 10g

TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958 Issued Date: Jul. 07, 2017

Form version. : 160427 FCC ID: IHDT56WC6 Page 15 of 54

8.2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Report No.: FA742708

8.3 Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz.

	≤ 3 GHz	> 3 GHz			
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$			
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°			
	\leq 2 GHz: \leq 15 mm 2 – 3 GHz: \leq 12 mm	$3 - 4 \text{ GHz: } \le 12 \text{ mm}$ $4 - 6 \text{ GHz: } \le 10 \text{ mm}$			
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.				

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958

Issued Date: Jul. 07, 2017 Form version.: 160427 FCC ID: IHDT56WC6 Page 16 of 54

8.4 Zoom Scan

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Report No.: FA742708

Zoom scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz.

			≤3 GHz	> 3 GHz	
Maximum zoom scan s	spatial reso	lution: Δx _{Zoom} , Δy _{Zoom}	\leq 2 GHz: \leq 8 mm 2 – 3 GHz: \leq 5 mm [*]	$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$	
	uniform	grid: $\Delta z_{Zoom}(n)$	≤ 5 mm	$3 - 4 \text{ GHz: } \le 4 \text{ mm}$ $4 - 5 \text{ GHz: } \le 3 \text{ mm}$ $5 - 6 \text{ GHz: } \le 2 \text{ mm}$	
Maximum zoom scan spatial resolution, normal to phantom surface		Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	$3 - 4 \text{ GHz: } \le 3 \text{ mm}$ $4 - 5 \text{ GHz: } \le 2.5 \text{ mm}$ $5 - 6 \text{ GHz: } \le 2 \text{ mm}$	
	grid	Δz _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$		
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

8.5 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

8.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958 Issued Date: Jul. 07, 2017

FCC ID : IHDT56WC6 Page 17 of 54 Form version. : 160427

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is $\leq 1.4 \text{ W/kg}$, $\leq 8 \text{ mm}$, $\leq 7 \text{ mm}$ and $\leq 5 \text{ mm}$ zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

9. Test Equipment List

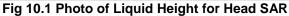
Manufacturer	Name of Environment	Type/Medal	Carial Number	Calib	Calibration			
Manufacturer	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date			
SPEAG	835MHz System Validation Kit	D835V2	4d091	2016/11/22	2017/11/21			
SPEAG	1900MHz System Validation Kit	D1900V2	5d118	2016/11/24	2017/11/23			
SPEAG	2450MHz System Validation Kit	D2450V2	840	2016/11/25	2017/11/24			
SPEAG	2600MHz System Validation Kit	D2600V2	1061	2016/11/24	2017/11/23			
SPEAG	Data Acquisition Electronics	DAE4	1210	2016/5/18	2017/5/17			
SPEAG	Data Acquisition Electronics	DAE4	1437	2016/7/12	2017/7/11			
SPEAG	Dosimetric E-Field Probe	EX3DV4	3857	2016/5/25	2017/5/24			
SPEAG	Dosimetric E-Field Probe	EX3DV4	3954	2016/11/28	2017/11/27			
SPEAG	SAM Twin Phantom	QD 000 P40 CB	TP-1477	NCR	NCR			
SPEAG	SAM Twin Phantom	QD 000 P40 CB	TP-1479	NCR	NCR			
SPEAG	SAM Twin Phantom	QD 000 P40 CB	TP-1164	NCR	NCR			
SPEAG	Phone Positioner	N/A	N/A	NCR	NCR			
Anritsu	Radio communication analyzer	MT8820C	6201300654	2016/8/8	2017/8/7			
Agilent	Wireless Communication Test Set	E5515C	MY52102706	2017/4/18	2018/4/17			
Agilent	ENA Series Network Analyzer	E5071C	MY46111157	2017/4/18	2018/4/17			
SPEAG	DAK Kit	DAK3.5	1144	2016/11/23	2017/11/22			
R&S	Signal Generator	SMR40	100455	2017/1/19	2018/1/18			
Anritsu	Power Senor	MA2411B	1644003	2016/12/23	2017/12/22			
Anritsu	Power Meter	ML2495A	1531197	2016/12/23	2017/12/22			
Anritsu	Power Senor	MA2411B	1644004	2016/12/23	2017/12/22			
Anritsu	Power Meter	ML2495A	1531198	2016/12/23	2017/12/22			
R&S	CBT BLUETOOTH TESTER	СВТ	101137	2016/8/9	2017/8/8			
R&S	Spectrum Analyzer	FSV7	101631	2016/8/8	2017/8/7			
ARRA	Power Divider	A3200-2	N/A	No	te 1			
MCL	Attenuation1	BW-S10W5+	N/A	No	te 1			
MCL	Attenuation2	BW-S10W5+	N/A	No	te 1			
MCL	Attenuation3	BW-S10W5+	N/A	No	te 1			
Agilent	Dual Directional Coupler	778D	50422	No	te 1			
PASTERNACK	Dual Directional Coupler	PE2214-10	N/A	No	te 1			
AR	Amplifier	5S1G4	333096	No	te 1			
mini-circuits	Amplifier	ZVE-3W-83+	162601250	No	te 1			

Report No. : FA742708

General Note:

Prior to system verification and validation, the path loss from the signal generator to the system check source and the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the network analyzer. The reading of the power meter was offset by the path loss difference between the path to the power meter and the path to the system check source to monitor the actual power level fed to the system check source.

TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958


Issued Date: Jul. 07, 2017 FCC ID: IHDT56WC6 Page 18 of 54 Form version.: 160427

10. System Verification

10.1 Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 10.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 10.2.

Report No. : FA742708

Fig 10.2 Photo of Liquid Height for Body SAR

TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958

Issued Date: Jul. 07, 2017 FCC ID: IHDT56WC6 Form version.: 160427 Page 19 of 54

10.2 Tissue Verification

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target

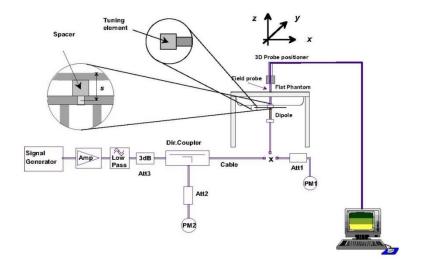
Report No.: FA742708

tissue parameters required for routine SAR evaluation.

Frequency (MHz)	Water (%)	Sugar (%)	Cellulose (%)	Salt (%)	Preventol (%)	DGBE (%)	Conductivity (σ)	Permittivity (εr)
				For Head				
835	40.3	57.9	0.2	1.4	0.2	0	0.90	41.5
1800, 1900, 2000	55.2	0	0	0.3	0	44.5	1.40	40.0
2450	55.0	0	0	0	0	45.0	1.80	39.2
2600	54.8	0	0	0.1	0	45.1	1.96	39.0
				For Body				
835	50.8	48.2	0	0.9	0.1	0	0.97	55.2
1800, 1900, 2000	70.2	0	0	0.4	0	29.4	1.52	53.3
2450	68.6	0	0	0	0	31.4	1.95	52.7
2600	68.1	0	0	0.1	0	31.8	2.16	52.5

<Tissue Dielectric Parameter Check Results>

Frequency (MHz)	Tissue Type	Liquid Temp. (°C)	Conductivity (σ)	Permittivity (ε _r)	Conductivity Target (σ)	Permittivity Target (ε,)	Delta (σ) (%)	Delta (ε _r) (%)	Limit (%)	Date
835	Head	22.7	0.899	41.230	0.90	41.50	-0.11	-0.65	±5	2017.4.27
1900	Head	22.8	1.412	38.400	1.40	40.00	0.86	-4.00	±5	2017.4.28
2450	Head	22.7	1.861	38.654	1.80	39.20	3.39	-1.39	±5	2017.4.29
2600	Head	22.7	2.031	38.040	1.96	1.96 39.00		-2.46	±5	2017.4.29
835	Body	22.8	0.969	53.737	0.97	55.20	-0.10	-2.65	±5	2017.4.27
1900	Body	22.9	1.547	53.133	1.52	53.30	1.78	-0.31	±5	2017.4.28
2450	Body	22.7	2.016	52.654	1.95	52.70	3.38	-0.09	±5	2017.4.29
2600	Body	22.7	2.222	52.054	2.16	52.50	2.87	-0.85	±5	2017.4.29


TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958

Issued Date: Jul. 07, 2017 FCC ID: IHDT56WC6 Form version. : 160427 Page 20 of 54

10.3 System Performance Check Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

Date	Frequency (MHz)	Tissue Type	Input Power (mW)	Dipole S/N	Probe S/N	DAE S/N	Measured 1g SAR (W/kg)	Targeted 1g SAR (W/kg)	Normalized 1g SAR (W/kg)	Deviation (%)
2017.4.27	835	Head	250	4d091	3857	1210	2.28	9.31	9.12	-2.04
2017.4.28	1900	Head	250	5d118	3857	1210	10.85	40.40	43.4	7.43
2017.4.29	2450	Head	250	840	3857	1210	14.18	54.00	56.72	5.04
2017.4.29	2600	Head	250	1061	3857	1210	14.68	56.00	58.72	4.86
2017.4.27	835	Body	250	4d091	3954	1437	2.57	9.68	10.28	6.20
2017.4.28	1900	Body	250	5d118	3857	1210	10.75	40.80	43	5.39
2017.4.29	2450	Body	250	840	3857	1210	13.56	50.90	54.24	6.56
2017.4.29	2600	Body	250	1061	3857	1210	14.80	55.40	59.2	6.86

Report No. : FA742708

Fig 8.3.1 System Performance Check Setup

Fig 8.3.2 Setup Photo

TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958

Issued Date: Jul. 07, 2017 FCC ID: IHDT56WC6 Form version.: 160427 Page 21 of 54

11. RF Exposure Positions

11.1 Ear and handset reference point

Figure 9.1.1 shows the front, back, and side views of the SAM phantom. The center-of-mouth reference point is labeled "M," the left ear reference point (ERP) is marked "LE," and the right ERP is marked "RE." Each ERP is 15 mm along the B-M (back-mouth) line behind the entrance-to-ear-canal (EEC) point, as shown in Figure 9.1.2 The Reference Plane is defined as passing through the two ear reference points and point M. The line N-F (neck-front), also called the reference pivoting line, is normal to the Reference Plane and perpendicular to both a line passing through RE and LE and the B-M line (see Figure 9.1.3). Both N-F and B-M lines should be marked on the exterior of the phantom shell to facilitate handset positioning. Posterior to the N-F line the ear shape is a flat surface with 6 mm thickness at each ERP, and forward of the N-F line the ear is truncated, as illustrated in Figure 9.1.2. The ear truncation is introduced to preclude the ear lobe from interfering with handset tilt, which could lead to unstable positioning at the cheek.

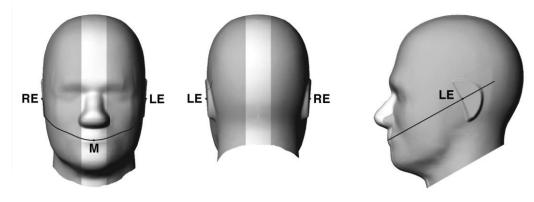


Fig 9.1.1 Front, back, and side views of SAM twin phantom

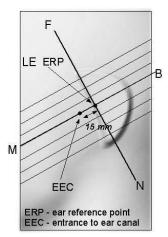
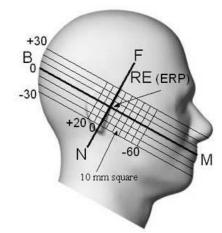



Fig 9.1.2 Close-up side view of phantom showing the ear region.

Report No.: FA742708

Fig 9.1.3 Side view of the phantom showing relevant markings and seven cross-sectional plane locations

TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958

Issued Date: Jul. 07, 2017 Form version.: 160427 FCC ID: IHDT56WC6 Page 22 of 54

11.2 Definition of the cheek position

- Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece (flip cover), open the cover. If the handset can transmit with the cover closed, both configurations must be tested.
- 2. Define two imaginary lines on the handset—the vertical centerline and the horizontal line. The vertical centerline passes through two points on the front side of the handset—the midpoint of the width wt of the handset at the level of the acoustic output (point A in Figure 9.2.1 and Figure 9.2.2), and the midpoint of the width wb of the bottom of the handset (point B). The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output (see Figure 9.2.1). The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset (see Figure 9.2.2), especially for clamshell handsets, handsets with flip covers, and other irregularly-shaped handsets.
- 3. Position the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 9.2.3), such that the plane defined by the vertical centerline and the horizontal line of the handset is approximately parallel to the sagittal plane of the phantom.
- 4. Translate the handset towards the phantom along the line passing through RE and LE until handset point A touches the pinna at the ERP.
- 5. While maintaining the handset in this plane, rotate it around the LE-RE line until the vertical centerline is in the plane normal to the plane containing B-M and N-F lines, i.e., the Reference Plane.
- 6. Rotate the handset around the vertical centerline until the handset (horizontal line) is parallel to the N-F line.
- 7. While maintaining the vertical centerline in the Reference Plane, keeping point A on the line passing through RE and LE, and maintaining the handset contact with the pinna, rotate the handset about the N-F line until any point on the handset is in contact with a phantom point below the pinna on the cheek. See Figure 9.2.3. The actual rotation angles should be documented in the test report.

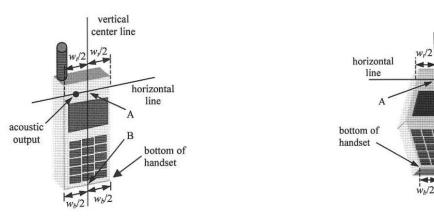


Fig 9.2.1 Handset vertical and horizontal reference lines—"fixed case

Fig 9.2.2 Handset vertical and horizontal reference lines—"clam-shell case"

vertical

center line

acoustic output

Report No.: FA742708

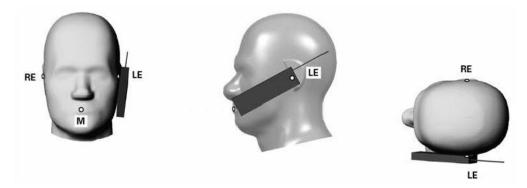


Fig 9.2.3 cheek or touch position. The reference points for the right ear (RE), left ear (LE), and mouth (M), which establish the Reference Plane for handset positioning, are indicated.

 Sporton International (KunShan) INC.

 TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958
 Issued Date: Jul. 07, 2017

11.3 Definition of the tilt position

Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece (flip cover), open the cover. If the handset can transmit with the cover closed, both configurations must be tested.

Report No.: FA742708

- While maintaining the orientation of the handset, move the handset away from the pinna along the line passing through RE and LE far enough to allow a rotation of the handset away from the cheek by 15°.
- Rotate the handset around the horizontal line by 15°.
- 4. While maintaining the orientation of the handset, move the handset towards the phantom on the line passing through RE and LE until any part of the handset touches the ear. The tilt position is obtained when the contact point is on the pinna. See Figure 9.3.1. If contact occurs at any location other than the pinna, e.g., the antenna at the back of the phantom head, the angle of the handset should be reduced. In this case, the tilt position is obtained if any point on the handset is in contact with the pinna and a second point

Fig 9.3.1 Tilt position. The reference points for the right ear (RE), left ear (LE), and mouth (M), which define the Reference Plane for handset positioning, are indicated.

TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958

Issued Date: Jul. 07, 2017 Form version.: 160427 FCC ID: IHDT56WC6 Page 24 of 54

11.4 Body Worn Accessory

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 9.4). Per KDB648474 D04v01r03, body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB 447498 D01v06 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for body-worn accessory, measured without a headset connected to the handset is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a handset attached to the handset.

Report No.: FA742708

Accessories for body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are test with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-chip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

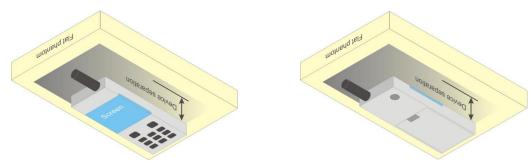


Fig 9.4 Body Worn Position

11.5 Wireless Router

Some battery-operated handsets have the capability to transmit and receive user through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06 v02r01 where SAR test considerations for handsets (L x W \ge 9 cm x 5 cm) are based on a composite test separation distance of 10mm from the front, back and edges of the device containing transmitting antennas within 2.5cm of their edges, determined form general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v06 publication procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958 Issued Date: Jul. 07, 2017

FCC ID : IHDT56WC6 Page 25 of 54 Form version. : 160427

12. Conducted RF Output Power (Unit: dBm)

<GSM Conducted Power>

GSM850	Burst A	verage Powe	er (dBm)	Tune-up	Frame-A	verage Pow	er (dBm)	Tune-up
Tx Channel	128	189	251	Limit	128	189	251	Limit
Frequency (MHz)	824.2	836.4	848.8	(dBm)	824.2	836.4	848.8	(dBm)
GSM 1 Tx slot	33.11	33.13	33.12	33.50	24.11	24.13	24.12	24.50
GPRS 1 Tx slot	33.09	33.12	33.11	33.50	24.09	24.12	24.11	24.50
GPRS 2 Tx slots	32.20	32.23	32.22	32.50	26.20	26.23	26.22	26.50
GPRS 3 Tx slots	29.95	29.37	29.34	30.50	25.69	25.11	25.08	26.24
GPRS 4 Tx slots	28.85	28.86	28.81	29.50	25.85	25.86	25.81	26.50
EDGE 1 Tx slot	26.87	26.85	26.86	27.50	17.87	17.85	17.86	18.50
EDGE 2 Tx slots	25.84	25.83	25.84	26.50	19.84	19.83	19.84	20.50
EDGE 3 Tx slots	23.87	23.85	23.86	24.50	19.61	19.59	19.60	20.24
EDGE 4 Tx slots	22.61	22.60	22.56	23.00	19.61	19.60	19.56	20.00

Report No.: FA742708

Remark: The frame-averaged power is linearly scaled the maximum burst averaged power over 8 time slots.

The calculated method are shown as below:

Frame-averaged power = Maximum burst averaged power (1 Tx Slot) - 9 dB
Frame-averaged power = Maximum burst averaged power (2 Tx Slots) - 6 dB
Frame-averaged power = Maximum burst averaged power (3 Tx Slots) - 4.26 dB
Frame-averaged power = Maximum burst averaged power (4 Tx Slots) - 3 dB

GSM1900	Burst Av	erage Pow	er (dBm)	Tune-up	Frame-A	verage Pov	ver (dBm)	Tune-up
Tx Channel	512	661	810	Limit	512	661	810	Limit
Frequency (MHz)	1850.2	1880	1909.8	(dBm)	1850.2	1880	1909.8	(dBm)
GSM 1 Tx slot	29.61	29.81	<mark>29.96</mark>	30.50	20.61	20.81	20.96	21.50
GPRS 1 Tx slot	29.59	29.79	29.94	30.50	20.59	20.79	20.94	21.50
GPRS 2 Tx slots	28.65	28.84	28.97	29.50	22.65	22.84	22.97	23.50
GPRS 3 Tx slots	26.72	26.88	27.02	27.50	22.46	22.62	22.76	23.24
GPRS 4 Tx slots	25.68	25.87	26.00	26.50	22.68	22.87	23.00	23.50
EDGE 1 Tx slot	25.13	25.27	25.29	25.50	16.13	16.27	16.29	16.50
EDGE 2 Tx slots	23.98	24.13	24.15	24.50	17.98	18.13	18.15	18.50
EDGE 3 Tx slots	21.90	22.02	22.07	22.50	17.64	17.76	17.81	18.24
EDGE 4 Tx slots	20.65	20.72	20.80	21.50	17.65	17.72	17.80	18.50

Remark: The frame-averaged power is linearly scaled the maximum burst averaged power over 8 time slots.

The calculated method are shown as below:

Frame-averaged power = Maximum burst averaged power (1 Tx Slot) - 9 dB Frame-averaged power = Maximum burst averaged power (2 Tx Slots) - 6 dB Frame-averaged power = Maximum burst averaged power (3 Tx Slots) - 4.26 dB Frame-averaged power = Maximum burst averaged power (4 Tx Slots) - 3 dB

Sporton International (KunShan) INC.

<WCDMA Conducted Power>

- 1. The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification.
- 2. The procedures in KDB 941225 D01v03r01 are applied for 3GPP Rel. 6 HSPA to configure the device in the required sub-test mode(s) to determine SAR test exclusion.

Report No.: FA742708

- 3. For HSPA+ devices supporting 16 QAM in the uplink, power measurements procedure is according to the configurations in Table C.11.1.4 of 3GPP TS 34.121-1.
- 4. For DC-HSDPA, the device was configured according to the H-Set 12, Fixed Reference Channel (FRC) configuration in Table C.8.1.12 of 3GPP TS 34.121-1, with the primary and the secondary serving HS-DSCH Cell enabled during the power measurement.

A summary of these settings are illustrated below:

HSDPA Setup Configuration:

Sporton International (KunShan) INC.

- a. The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- b. The RF path losses were compensated into the measurements.
- c. A call was established between EUT and Base Station with following setting:
 - i. Set Gain Factors (β_c and β_d) and parameters were set according to each
 - ii. Specific sub-test in the following table, C10.1.4, quoted from the TS 34.121
 - iii. Set RMC 12.2Kbps + HSDPA mode.
 - iv. Set Cell Power = -86 dBm
 - v. Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK)
 - vi. Select HSDPA Uplink Parameters
 - vii. Set Delta ACK, Delta NACK and Delta CQI = 8
 - viii. Set Ack-Nack Repetition Factor to 3
 - ix. Set CQI Feedback Cycle (k) to 4 ms
 - x. Set CQI Repetition Factor to 2
 - xi. Power Ctrl Mode = All Up bits
- d. The transmitted maximum output power was recorded.

Table C.10.1.4: β values for transmitter characteristics tests with HS-DPCCH

Sub-test	βc	βa	βa	β₀/βd	Внѕ	CM (dB)	MPR (dB)
			(SF)		(Note1,	(Note 3)	(Note 3)
					Note 2)		
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15	15/15	64	12/15	24/15	1.0	0.0
	(Note 4)	(Note 4)		(Note 4)			
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

- Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 30/15$ with $\beta_{hs} = 30/15 * \beta_c$.
- Note 2: For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause 5.13.1AA, \triangle ACK and \triangle NACK = 30/15 with β_{hs} = 30/15 * β_c , and \triangle CQI = 24/15 with β_{hs} = 24/15 * β_c .
- Note 3: CM = 1 for $\beta_{\text{o}}/\beta_{\text{d}}$ =12/15, $\beta_{\text{hs}}/\beta_{\text{e}}$ =24/15. For all other combinations of DPDCH, DPCCH and HSDPCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.
- Note 4: For subtest 2 the β_d/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 11/15 and β_d = 15/15

Setup Configuration

HSUPA Setup Configuration:

- a. The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- b. The RF path losses were compensated into the measurements.
- c. A call was established between EUT and Base Station with following setting *:
 - i. Call Configs = 5.2B, 5.9B, 5.10B, and 5.13.2B with QPSK
 - ii. Set the Gain Factors (β_c and β_d) and parameters (AG Index) were set according to each specific sub-test in the following table, C11.1.3, quoted from the TS 34.121

Report No.: FA742708

- iii. Set Cell Power = -86 dBm
- iv. Set Channel Type = 12.2k + HSPA
- v. Set UE Target Power
- vi. Power Ctrl Mode= Alternating bits
- vii. Set and observe the E-TFCI
- viii. Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1, and other subtest's E-TFCI
- d. The transmitted maximum output power was recorded.

Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH

Sub- test	βς	βa	β _d (SF)	βε/βα	βнs (Note1)	βес	β _{ed} (Note 5) (Note 6)	β _{ed} (SF)	β _{ed} (Codes)	CM (dB) (Note 2)	MPR (dB) (Note 2)	AG Index (Note 6)	E- TFCI
1	11/15 (Note 3)	15/15 (Note 3)	64	11/15 (Note 3)	22/15	209/2 25	1309/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed} 1: 47/15 β _{ed} 2: 47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 (Note 4)	15/15 (Note 4)	64	15/15 (Note 4)	30/15	24/15	134/15	4	1	1.0	0.0	21	81

- Note 1: Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 30/15 with β_{hs} = 30/15 * β_c .
- Note 2: CM = 1 for $\beta_0/\beta_d = 12/15$, $\beta_{1s}/\beta_c = 24/15$. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.
- Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 10/15 and β_d = 15/15.
- Note 4: For subtest 5 the β_d/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 14/15 and β_d = 15/15.
- Note 5: In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to TS25.306 Table 5.1g.
- Note 6: βed can not be set directly, it is set by Absolute Grant Value.

Setup Configuration

 Sporton International (KunShan) INC.

 TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958
 Issued Date: Jul. 07, 2017

FCC ID : IHDT56WC6 Page 28 of 54 Form version. : 160427

DC-HSDPA 3GPP release 8 Setup Configuration:

- The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration below
- The RF path losses were compensated into the measurements.
- c. A call was established between EUT and Base Station with following setting:
 - Set RMC 12.2Kbps + HSDPA mode.
 - ii. Set Cell Power = -25 dBm
 - Set HS-DSCH Configuration Type to FRC (H-set 12, QPSK) iii.
 - Select HSDPA Uplink Parameters iv.
 - Set Gain Factors (β_c and β_d) and parameters were set according to each Specific sub-test in the following table, C10.1.4, quoted from the TS 34.121

Report No.: FA742708

- a). Subtest 1: $\beta_c/\beta_d=2/15$ b). Subtest 2: $\beta_c/\beta_d=12/15$
- c). Subtest 3: $\beta_c/\beta_d=15/8$
- d). Subtest 4: $\beta_c/\beta_d=15/4$
- Set Delta ACK, Delta NACK and Delta CQI = 8 vi.
- vii. Set Ack-Nack Repetition Factor to 3
- Set CQI Feedback Cycle (k) to 4 ms
- Set CQI Repetition Factor to 2 ix.
- Power Ctrl Mode = All Up bits
- The transmitted maximum output power was recorded.

The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification. A summary of these settings are illustrated below:

C.8.1.12 Fixed Reference Channel Definition H-Set 12

Table C.8.1.12: Fixed Reference Channel H-Set 12

Parameter	Unit	Value
Nominal Avg. Inf. Bit Rate	kbps	60
Inter-TTI Distance	TTI's	1
Number of HARQ Processes	Proces	6
	ses	0
Information Bit Payload (N_{INF})	Bits	120
Number Code Blocks	Blocks	1
Binary Channel Bits Per TTI	Bits	960
Total Available SML's in UE	SML's	19200
Number of SML's per HARQ Proc.	SML's	3200
Coding Rate		0.15
Number of Physical Channel Codes	Codes	1
Modulation		QPSK
Note 1: The RMC is intended to be used	for DC-HSD	PA
mode and both cells shall transm	it with identi	ical
parameters as listed in the table.		
Note 2: Maximum number of transmission		
retransmission is not allowed. T		ncy and
constellation version 0 shall be u	sed.	

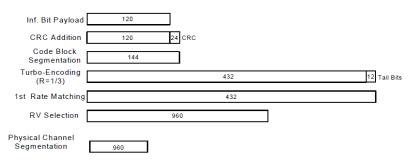


Figure C.8.19: Coding rate for Fixed reference Channel H-Set 12 (QPSK)

Setup Configuration

Form version.: 160427 FCC ID: IHDT56WC6 Page 29 of 54

FCC SAR Test Report

HSPA+ 3GPP release 7 (uplink category 7) 16QAM, Setup Configuration:

- a. The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- b. The RF path losses were compensated into the measurements.
- c. A call was established between EUT and Base Station with following setting *:
 - i. Call Configs = 5.2E:HSPA+:UL with 16QAM
 - ii. Set the Gain Factors (β_c and β_d) and parameters (AG Index) were set according to each specific sub-test in the following table, C11.1.4, quoted from the TS 34.121-1 s5.2E

Report No. : FA742708

- iii. Set Channel Parms
- iv. Set Cell Power = -86 dBm
- v. Set Channel Type = HSPA
- vi. Set UE Target Power =21 dBm
- vii. Power Ctrl Mode= All Up Bits
- viii. Set Manual Uplink DPCH Bc/Bd = Manual
- ix. Set Manual Uplink DPCH Bc and Bd=15,15(for 34.121-1 v8.10.0 table C11.1.4 sub-test 1)
- x. Set HSPA Conn DL Channel Levels
- xi. Set HS-SCCH Configs
- xii. Set RB Test Mode Setup
- xiii. Set Common HSUPA Parameters
- xiv. Set Serving Grant
- xv. Confirm that E-TFCI is equal to the target E-TFCI of 105 for sub-test 1, and other subtest's E-TFCI
- d. The transmitted maximum output power was recorded.

Table C.11.1.4: β values for transmitter characteristics tests with HS-DPCCH and E-DCH with 16QAM

Sub-	βc	βd	β _{HS}	βec	β_{ed}	β_{ed}	CM	MPR	AG	E-TFCI	E-TFCI
test	(Note3)		(Note1)		(2xSF2)	(2xSF4)	(dB)	(dB)		(Note 5)	(boost)
					(Note 4)	(Note 4)	(Note 2)	(Note 2)	(Note 4)		
1	1	0	30/15	30/15	β _{ed} 1: 30/15 β _{ed} 2: 30/15	β _{ed} 3: 24/15 β _{ed} 4: 24/15	3.5	2.5	14	105	105

Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 30/15$ with $\beta_{hs} = 30/15 * \beta_c$.

Note 2: CM = 3.5 and the MPR is based on the relative CM difference, MPR = MAX(CM-1,0).

Note 3: DPDCH is not configured, therefore the β_c is set to 1 and β_d = 0 by default.

Note 4: β_{ed} can not be set directly; it is set by Absolute Grant Value.

Note 5: All the sub-tests require the UE to transmit 2SF2+2SF4 16QAM EDCH and they apply for UE using E-DPDCH category 7. E-DCH TTI is set to 2ms TTI and E-DCH table index = 2. To support these E-DCH configurations DPDCH is not allocated. The UE is signaled to use the extrapolation algorithm.

Setup Configuration

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958 Issued Date: Jul. 07, 2017

FCC ID : IHDT56WC6 Page 30 of 54 Form version. : 160427

< WCDMA Conducted Power>

	Band	W	CDMA Ban	ıd II		W			
	Tx Channel	9262	9400	9538	Tune-up Limit	4132	4182	4233	Tune-up Limit
	Rx Channel	9662	9800	9938	(dBm)	4357	4407	4458	(dBm)
Fre	equency (MHz)	1852.4	1880	1907.6		826.4	836.4	846.6	
3GPP Rel 99	AMR 12.2Kbps	22.91	23.07	23.15	23.50	22.92	22.98	22.90	23.50
3GPP Rel 99	RMC 12.2Kbps	22.93	23.08	23.16	23.50	22.93	<mark>22.99</mark>	22.92	23.50
3GPP Rel 6	HSDPA Subtest-1	21.95	22.16	22.07	22.50	21.77	21.97	21.90	22.50
3GPP Rel 6	HSDPA Subtest-2	21.93	22.19	22.04	22.50	21.78	21.94	21.93	22.50
3GPP Rel 6	HSDPA Subtest-3	21.49	21.72	21.61	22.00	21.31	21.50	21.44	22.00
3GPP Rel 6	HSDPA Subtest-4	21.45	21.68	21.58	22.00	21.31	21.48	21.43	22.00
3GPP Rel 8	DC-HSDPA Subtest-1	21.44	21.56	21.48	22.50	21.23	21.45	21.43	22.50
3GPP Rel 8	DC-HSDPA Subtest-2	21.40	21.55	21.46	22.50	21.20	21.43	21.41	22.50
3GPP Rel 8	DC-HSDPA Subtest-3	20.95	21.23	21.08	22.00	20.85	20.98	20.92	22.00
3GPP Rel 8	DC-HSDPA Subtest-4	20.93	21.21	21.02	22.00	20.81	20.95	20.90	22.00
3GPP Rel 6	HSUPA Subtest-1	19.97	20.17	20.08	20.50	19.73	19.97	19.93	20.50
3GPP Rel 6	HSUPA Subtest-2	19.93	20.22	20.12	20.50	19.88	19.99	19.94	20.50
3GPP Rel 6	HSUPA Subtest-3	20.90	21.20	21.05	21.50	20.91	20.95	20.92	21.50
3GPP Rel 6	HSUPA Subtest-4	19.35	19.63	19.55	20.50	19.21	19.39	19.31	20.50
3GPP Rel 6	HSUPA Subtest-5	21.90	22.10	22.00	22.50	21.80	21.90	21.90	22.50
3GPP Rel 7	HSPA+ (16QAM) Subtest-1	19.62	19.71	19.66	20.50	19.68	19.88	19.79	20.50

Report No.: FA742708

TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958

Issued Date : Jul. 07, 2017 Form version. : 160427 FCC ID: IHDT56WC6 Page 31 of 54

<FDD LTE Conducted Power>

<LTE Band 5>

<lie band<="" th=""><th><u> </u></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></lie>	<u> </u>							
BW [MHz]	Modulation	RB Size	RB Offset	Power Low Ch. / Freq.	Power Middle Ch. / Freq.	Power High Ch. / Freq.	Tune-up limit	MPR
	Cha	nnel		20450	20525	20600	(dBm)	(dB)
	Frequen	cy (MHz)		829	836.5	844		
10	QPSK	1	0	23.44	23.25	23.42		
10	QPSK	1	25	23.27	23.3	23.38	24.5	0
10	QPSK	1	49	23.27	23.29	23.4		
10	QPSK	25	0	22.49	22.35	22.46		
10	QPSK	25	12	22.32	22.31	22.44	22.5	1
10	QPSK	25	25	22.31	22.30	22.41	23.5	ļ.
10	QPSK	50	0	22.47	22.30	22.26		
10	16QAM	1	0	22.48	22.50	22.58		
10	16QAM	1	25	22.54	22.53	22.66	23.5	1
10	16QAM	1	49	22.53	22.54	22.63		
10	16QAM	25	0	22.29	22.31	22.43		
10	16QAM	25	12	22.31	22.32	22.45	22.5	2
10	16QAM	25	25	22.33	22.35	22.45		2
10	16QAM	50	0	21.30	21.32	21.44		
	Cha	nnel		20425	20525	20625	Tune-up	MPR
	Frequen	cy (MHz)		826.5	836.5	846.5	limit (dBm)	(dB)
5	QPSK	1	0	23.24	23.24	23.35		
5	QPSK	1	12	23.24	23.25	23.15	24.5	0
5	QPSK	1	24	23.15	23.27	23.37		
5	QPSK	12	0	22.32	22.29	22.43		
5	QPSK	12	7	22.32	22.32	22.40	22 F	4
5	QPSK	12	13	22.32	22.28	22.40	23.5	1
5	QPSK	25	0	22.28	22.25	22.36		
5	16QAM	1	0	22.46	22.47	22.60		
5	16QAM	1	12	22.51	22.50	22.63	23.5	1
5	16QAM	1	24	22.46	22.40	22.40		
5	16QAM	12	0	21.31	21.34	21.42		
5	16QAM	12	7	21.33	21.32	21.38	22.5	2
5	16QAM	12	13	21.33	21.28	21.36	22.3	2
5	16QAM	25	0	21.30	21.27	21.35		

Report No.: FA742708

TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958

Issued Date : Jul. 07, 2017 Form version. : 160427 FCC ID: IHDT56WC6 Page 32 of 54

SPORTON LAB. FCC SAR Test Report

	Cha	nnel		20415	20525	20635	Tune-up	MPR
	Frequen	cy (MHz)		825.5	836.5	847.5	limit (dBm)	(dB)
3	QPSK	1	0	23.20	23.19	23.24		
3	QPSK	1	8	23.13	23.07	23.05	24.5	0
3	QPSK	1	14	23.06	23.03	23.01		
3	QPSK	8	0	23.02	22.98	23.09		
3	QPSK	8	4	23.29	22.29	22.34	00.5	4
3	QPSK	8	7	22.27	22.22	22.34	23.5	1
3	QPSK	15	0	22.28	22.27	22.39		
3	16QAM	1	0	22.36	22.41	22.42		1
3	16QAM	1	8	22.43	22.43	22.46	23.5	
3	16QAM	1	14	22.42	22.33	22.37		
3	16QAM	8	0	21.35	21.36	21.38		
3	16QAM	8	4	21.35	21.32	21.34	22.5	0
3	16QAM	8	7	21.33	21.27	21.34	22.5	2
3	16QAM	15	0	21.29	21.29	21.36		
	Channel			20407	20525	20643	Tune-up	MPR
	Frequen	cy (MHz)		824.7	836.5	848.3	limit (dBm)	(dB)
1.4	QPSK	1	0	23.21	23.23	23.27		
1.4	QPSK	1	3	23.30	23.27	23.36		
1.4	QPSK	1	5	23.18	23.14	23.27	24.5	0
1.4	QPSK	3	0	23.31	23.31	23.38	24.5	U
1.4	QPSK	3	1	23.27	23.25	23.33		
1.4	QPSK	3	3	23.27	23.22	23.32		
1.4	QPSK	6	0	22.28	22.28	22.37	23.5	1
1.4	16QAM	1	0	22.42	22.50	22.43		
1.4	16QAM	1	3	22.52	22.52	22.56		
1.4	16QAM	1	5	22.43	22.44	22.44	23.5	1
1.4	16QAM	3	0	22.29	22.32	22.31	20.0	
1.4	16QAM	3	1	22.25	22.27	22.27		
1.4	16QAM	3	3	22.24	22.22	22.27		
1.4	16QAM	6	0	21.34	21.35	21.38	22.5	2

Report No.: FA742708

TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958

Issued Date : Jul. 07, 2017 Form version. : 160427 FCC ID: IHDT56WC6 Page 33 of 54

<LTE Band 7>

BW [MHz]	Modulation	RB Size	RB Offset	Power Low Ch. / Freq.	Power Middle Ch. / Freq.	Power High Ch. / Freq.	Tune-up limit	MPR
	Cha	nnel		20850	21100	21350	(dBm)	(dB)
	Frequenc	cy (MHz)		2510	2535	2560		
20	QPSK	1	0	23.35	23.28	23.42		
20	QPSK	1	49	23.22	23.09	23.41	24	0
20	QPSK	1	99	23.12	23.18	23.39		
20	QPSK	50	0	22.33	22.24	22.51		
20	QPSK	50	24	22.29	22.13	22.50	23	1
20	QPSK	50	50	22.25	22.15	22.49	23	'
20	QPSK	100	0	22.29	22.18	22.48		
20	16QAM	1	0	22.48	22.34	22.60		
20	16QAM	1	49	22.39	22.26	22.59	23	1
20	16QAM	1	99	22.36	22.47	22.58		
20	16QAM	50	0	21.27	21.10	21.41		
20	16QAM	50	24	21.22	21.05	21.42	22	2
20	16QAM	50	50	21.18	21.14	21.43	22	2
20	16QAM	100	0	21.20	21.11	21.39		
	Cha	nnel		20825	21100	21375	Tune-up	MPR
	Frequenc	cy (MHz)		2507.5	2535	2562.5	limit (dBm)	(dB)
15	QPSK	1	0	23.31	23.10	23.41		
15	QPSK	1	37	23.24	23.08	23.43	24	0
15	QPSK	1	74	23.17	23.20	23.39		
15	QPSK	36	0	22.37	22.16	22.50		
15	QPSK	36	20	22.31	22.15	22.52	23	1
15	QPSK	36	39	22.28	22.19	22.49	23	'
15	QPSK	75	0	22.32	22.17	22.49		
15	16QAM	1	0	22.45	22.28	22.60		
15	16QAM	1	37	22.42	22.26	22.62	23	1
15	16QAM	1	74	22.35	22.39	22.58		
15	16QAM	36	0	21.24	21.08	21.42		
15	16QAM	36	20	21.21	21.07	21.43	22	2
15	16QAM	36	39	21.18	21.10	21.41	22	2
15	16QAM	75	0	21.22	21.09	21.41		

Report No.: FA742708

TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958

Issued Date : Jul. 07, 2017 Form version. : 160427 FCC ID: IHDT56WC6 Page 34 of 54

SPORTON LAB. FCC SAR Test Report

	Cha	nnel		20800	21100	21400	Tune-up	MPR
	Frequen	cy (MHz)		2505	2535	2565	limit (dBm)	(dB)
10	QPSK	1	0	23.31	23.08	23.40		
10	QPSK	1	25	23.26	23.07	23.39	24	0
10	QPSK	1	49	23.42	23.13	23.50		
10	QPSK	25	0	22.31	22.12	22.45		
10	QPSK	25	12	22.28	22.11	22.45	00	4
10	QPSK	25	25	22.28	22.15	22.43	- 23	1
10	QPSK	50	0	22.34	22.15	22.47		
10	16QAM	1	0	22.43	22.27	22.58		
10	16QAM	1	25	22.39	22.26	22.56	23	1
10	16QAM	1	49	22.34	22.32	22.51		
10	16QAM	25	0	21.23	21.04	21.40		
10	16QAM	25	12	21.19	21.04	21.37	00	2
10	16QAM	25	25	21.19	21.06	21.35	22	2
10	16QAM	50	0	21.23	21.06	21.40		
	Cha	nnel		20775	21100	21425	Tune-up	MPR
	Frequen	cy (MHz)		2502.5	2535	2567.5	limit (dBm)	(dB)
5	QPSK	1	0	23.29	23.06	23.37		
5	QPSK	1	12	23.29	23.39	23.36	24	0
5	QPSK	1	24	23.20	23.19	23.25		
5	QPSK	12	0	22.16	22.10	22.08		
5	QPSK	12	7	22.39	22.08	22.40	23	1
5	QPSK	12	13	22.32	22.10	22.42	23	!
5	QPSK	25	0	22.32	22.08	22.39		
5	16QAM	1	0	22.43	22.23	22.54		
5	16QAM	1	12	22.41	22.23	22.52	23	1
5	16QAM	1	24	22.36	22.26	22.47		
5	16QAM	12	0	21.25	21.05	21.36		
5	16QAM	12	7	21.23	21.02	21.33	22	0
5	16QAM	12	13	21.23	21.02	21.33	22	2
5	16QAM	25	0	21.21	21.01	21.33		

Report No.: FA742708

TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958

Issued Date : Jul. 07, 2017 Form version. : 160427 FCC ID: IHDT56WC6 Page 35 of 54

FCC SAR Test Report

<TDD LTE SAR Measurement>

TDD LTE configuration setup for SAR measurement

SAR was tested with a fixed periodic duty factor according to the highest transmission duty factor implemented for the device and supported by 3GPP.

- a. 3GPP TS 36.211 section 4.2 for Type 2 Frame Structure and Table 4.2-2 for uplink-downlink configurations
- b. "special subframe S" contains both uplink and downlink transmissions, it has been taken into consideration to determine the transmission duty factor according to the worst case uplink and downlink cyclic prefix requirements for UpPTS

Report No.: FA742708

c. Establishing connections with base station simulators ensure a consistent means for testing SAR and recommended for evaluating SAR. The Anritsu MT8820C (firmware: #22.52#004) was used for LTE output power measurements and SAR testing.

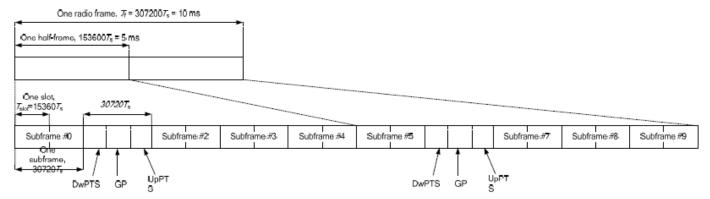


Figure 4.2-1: Frame structure type 2 (for 5 ms switch-point periodicity).

Table 4.2-2: Uplink-downlink configurations.

Uplink-downlink	Downlink-to-Uplink	Subframe number									
configuration	Switch-point periodicity	0	1	2	3	4	5	6	7	8	9
0	5 ms	D	S	U	U	U	D	S	U	U	U
1	5 ms	D	S	U	U	D	D	S	U	U	D
2	5 ms	D	S	U	D	D	D	S	U	D	D
3	10 ms	D	S	U	U	U	D	О	D	D	D
4	10 ms	D	S	U	U	D	D	О	D	D	D
5	10 ms	О	S	U	D	D	D	О	D	D	D
6	5 ms	D	S	U	U	U	D	S	U	U	D

Table 4.2-1: Configuration of special subframe (lengths of DwPTS/GP/UpPTS).

Special subframe	Norma	l cyclic prefix i	n downlink	Extended cyclic prefix in downlink				
configuration	DwPTS	Up	PTS	DwPTS	Up	PTS		
		Normal cyclic prefix in uplink	Extended cyclic prefix in uplink		Normal cyclic prefix in uplink	Extended cyclic prefix in uplink		
0	6592 ⋅ T _s			7680 · T _s				
1	19760 · T _s			20480 · T _s	2192 · T _e	2560 · T _s		
2	21952 · T _s	$2192 \cdot T_s$	2560 · T _s	23040 · T _s	2192·1 _s	2500·1 _s		
3	24144 · T _s			25600 · T _s				
4	26336·T _s		,	7680 · T _s				
5	6592 · T _s			20480 · T _s	4384 · T _c	5120 · T₂		
6	19760 ⋅ <i>T</i> _s			23040 · T _s	4364.1 _s	3120.1 _s		
7	21952 · T _s	$4384 \cdot T_s$	5120 ⋅ <i>T</i> _s	12800 · T _s				
8	24144 · T _s			-	-	-		
9	13168 · T _s			-	-	-		

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958 Issued Date: Jul. 07, 2017

Form version.: 160427 FCC ID: IHDT56WC6 Page 36 of 54

Special subframe (30720⋅T₅): Normal cyclic prefix in downlink (UpPTS)											
Special subframe Normal cyclic prefix in Extended cyclic prefix in configuration uplink uplink											
Uplink duty factor in one	0~4	7.13%	8.33%								
special subframe	5~9	14.3%	16.7%								

Report No. : FA742708

Special subframe(30720·T _s): Extended cyclic prefix in downlink (UpPTS)										
Special subframe Normal cyclic prefix in Extended cyclic prefix in configuration uplink uplink										
Uplink duty factor in one	0~3	7.13%	8.33%							
special subframe	4~7	14.3%	16.7%							

The highest duty factor is resulted from:

- i. Uplink-downlink configuration: 0. In a half-frame consisted of 5 subfames, uplink operation is in 3 uplink subframes and 1 special subframe.
- ii. special subframe configuration: 5-9 for normal cyclic prefix in downlink, 4-7 for extended cyclic prefix in downlink
- iii. for special subframe with extended cyclic prefix in uplink, the total uplink duty factor in one half-frame is: (3+0.167)/5 = 63.3%
- iv. for special subframe with normal cyclic prefix in uplink, the total uplink duty factor in one half-frame is: (3+0.143)/5 = 62.9%
- v. For TDD LTE SAR measurement, the duty cycle 1:1.59 (62.9 %) was used perform testing and considering the theoretical duty cycle of 63.3% for extended cyclic prefix in the uplink, and the theoretical duty cycle of 62.9% for normal cyclic prefix in uplink, a scaling factor of extended cyclic prefix 63.3%/62.9% = 1.006 is applied to scale-up the measured SAR result. The scaled TDD LTE SAR = measured SAR (W/kg)* Tune-up Scaling Factor* scaling factor for extended cyclic prefix.

TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958 Issued Date: Jul. 07, 2017

FCC ID : IHDT56WC6 Page 37 of 54 Form version. : 160427

SPORTON LAB. FCC SAR Test Report

<LTE Band 38>

<pre><lie 38="" band=""></lie></pre>												
BW [MHz]	Modulation	RB Size	RB Offset	Power Low Ch. / Freq.	Power Middle Ch. / Freq.	Power High Ch. / Freq.	Tune-up limit	MPR (dB)				
	Cha	nnel		37850	38000	38150	(dBm)					
	Frequen	cy (MHz)		2580	2595	2610						
20	QPSK	1	0	23.05	22.77	22.80						
20	QPSK	1	49	22.85	22.55	22.68	23.5	0				
20	QPSK	1	99	22.73	21.96	22.69						
20	QPSK	50	0	22.04	21.99	21.75						
20	QPSK	50	24	21.85	21.58	21.73	22.5	1				
20	QPSK	50	50	21.81	21.59	21.68	22.5					
20	QPSK	100	0	21.86	21.61	21.71						
20	16QAM	1	0	22.11	21.83	21.72						
20	16QAM	1	49	21.90	21.60	21.76	22.5	1				
20	16QAM	1	99	21.80	21.72	21.87						
20	16QAM	50	0	20.99	20.74	20.73						
20	16QAM	50	24	20.91	20.65	20.80	21.5	2				
20	16QAM	50	50	20.86	20.67	20.81	21.5	۷				
20	16QAM	100	0	20.92	20.68	20.77						
	Cha	nnel		37825	38000	38175	Tune-up	MPR				
	Frequen	cy (MHz)		2577.5	2595	2612.5	limit (dBm)	(dB)				
15	QPSK	1	0	23.06	22.75	22.72						
15	QPSK	1	37	22.95	22.58	22.75	23.5	0				
15	QPSK	1	74	22.83	22.66	22.82						
15	QPSK	36	0	22.01	21.70	21.72						
15	QPSK	36	20	21.96	21.60	21.77	00.5	4				
15	QPSK	36	39	21.88	21.56	21.80	22.5	1				
15	QPSK	75	0	21.92	21.62	21.76						
15	16QAM	1	0	22.05	21.78	21.71						
15	16QAM	1	37	21.94	21.60	21.79	22.5	1				
15	16QAM	1	74	21.85	21.67	21.89						
15	16QAM	36	0	20.95	20.68	20.72						
15	16QAM	36	20	20.90	20.61	20.77	24.5	0				
15	16QAM	36	39	20.86	20.59	20.79	21.5	2				
15	16QAM	75	0	20.96	20.68	20.82						

Report No.: FA742708

TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958

Issued Date : Jul. 07, 2017 Form version. : 160427 FCC ID: IHDT56WC6 Page 38 of 54

SPORTON LAB. FCC SAR Test Report

	Cha	ınnel		37800	38000	38200	Tune-up	MPR
	Frequen	cy (MHz)		2575	2595	2615	limit (dBm)	(dB)
10	QPSK	1	0	22.96	22.66	22.72		
10	QPSK	1	25	22.95	22.59	22.78	23.5	0
10	QPSK	1	49	22.89	22.71	22.79		
10	QPSK	25	0	21.95	21.59	21.72		
10	QPSK	25	12	21.94	21.51	21.77		
10	QPSK	25	25	21.91	21.52	21.80	22.5	1
10	QPSK	50	0	21.92	21.58	21.77		
10	16QAM	1	0	22.03	21.71	21.78		
10	16QAM	1	25	21.96	21.68	21.82	22.5	1
10	16QAM	1	49	21.91	21.58	21.86		
10	16QAM	25	0	20.95	20.65	20.81		
10	16QAM	25	12	20.94	20.58	20.83		
10	16QAM 25 16QAM 25		25	20.90	20.61	20.84	21.5	2
10	16QAM	50	0	20.93	20.66	20.83	-	
	Cha	nnel		37775	38000	38225	Tune-up	MPR
	Frequen	cy (MHz)		2572.5	2595	2617.5	limit (dBm)	(dB)
5	QPSK	1	0	22.67	22.57	22.77		
5	QPSK	1	12	22.78	22.59	22.81	23.5	0
5	QPSK	1	24	22.68	22.56	22.59		
5	QPSK	12	0	21.96	21.67	21.89		
5	QPSK	12	7	21.98	21.53	21.81		4
5	QPSK	12	13	21.96	21.54	21.82	22.5	1
5	QPSK	25	0	21.95	21.53	21.79		
5	16QAM	1	0	21.98	21.61	21.80		
5	16QAM	1	12	21.99	21.58	21.89	22.5	1
5	16QAM	1	24	21.87	21.52	21.92		
5	16QAM	12	0	20.93	20.59	20.85		2
5	16QAM	12	7	20.90	20.54	20.82	21.5	
5	16QAM	12	13	20.92	20.56	20.85		_
5	16QAM	25	0	20.95	20.58	20.85		

Report No.: FA742708

TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958

Issued Date : Jul. 07, 2017 Form version. : 160427 FCC ID: IHDT56WC6 Page 39 of 54

<WLAN Conducted Power>

<2.4GHz WLAN>

	Mode	Channel	Frequency (MHz)	Data Rate	Average power (dBm)	Tune-Up Limit	Duty Cycle %	
		CH 1	2412		15.38	16.00		
	802.11b	CH 6	2437	1Mbps	<mark>17.64</mark>	18.50	100.00	
2.4GHz		CH 11	2462		15.95	17.00		
WLAN		CH 1	2412		11.76	13.00		
	802.11g	CH 6	2437	6Mbps	12.72	14.00	97.46	
		CH 11	2462		11.65	13.00		
		CH 1	2412		11.77	13.00		
	802.11n-HT20	CH 6	2437	MCS0	12.76	14.00	97.30	
		CH 11	2462		12.20	14.00		

Report No.: FA742708

TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958

Issued Date : Jul. 07, 2017 Form version. : 160427 FCC ID: IHDT56WC6 Page 40 of 54

13. Bluetooth Exclusions Applied

Mode Rand	Average power(dBm)							
Mode Band	Bluetooth v3.0+EDR	Bluetooth v4.0/4.1/4.2 LE						
2.4GHz Bluetooth	7.0	7.0						

Report No. : FA742708

Note:

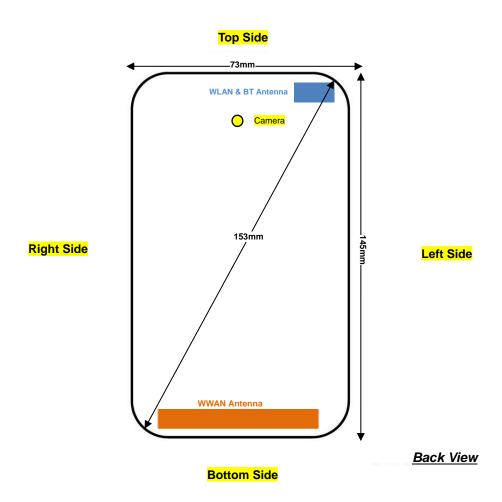
Per KDB 447498 D01v06, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

Bluetooth Max Power (dBm)	Separation Distance (mm)	Frequency (GHz)	Exclusion Thresholds
7.0	10	2.48	0.8

Note:


Per KDB 447498 D01v06, the test exclusion threshold is 0.8 which is <= 3, SAR testing is not required.

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958 Issued Date: Jul. 07, 2017

FCC ID: IHDT56WC6 Form version.: 160427 Page 41 of 54

14. Antenna Location

Report No. : FA742708

Distance of the Antenna to the EUT surface/edge												
Antennas Back Front Top Side Bottom Side Right Side Left Side												
WWAN Antenna	≤ 25mm	≤ 25mm	>25mm	≤ 25mm	≤ 25mm	≤ 25mm						
WLAN & Bluetooth	WLAN & Bluetooth ≤ 25mm ≤ 25mm >25mm >25mm ≤ 25mm											

Positions for SAR tests; Hotspot mode											
Antennas Back Front Top Side Bottom Side Right Side Left Side											
WWAN Antenna	Yes	Yes	No	Yes	Yes	Yes					
WLAN & Bluetooth	Yes	Yes	Yes	No	No	Yes					

General Note:

Referring to KDB 941225 D06 v02r01, when the overall device length and width are ≥ 9cm*5cm, the test distance is 10 mm. SAR must be measured for all sides and surfaces with a transmitting antenna located within 25mm from that surface or edge.

TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958

Issued Date: Jul. 07, 2017 FCC ID: IHDT56WC6 Form version. : 160427 Page 42 of 54

15. SAR Test Results

General Note:

- 1. Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
 - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.

Report No.: FA742708

- b. For SAR testing of WLAN signal with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)"
- c. For WWAN: Reported SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor
- d. For WLAN: Reported SAR(W/kg)= Measured SAR(W/kg)* Duty Cycle scaling factor * Tune-up scaling factor
- e. For TDD LTE SAR measurement, the duty cycle 1:1.59 (62.9 %) was used perform testing and considering the theoretical duty cycle of 63.3% for extended cyclic prefix in the uplink, and the theoretical duty cycle of 62.9% for normal cyclic prefix in uplink, a scaling factor of extended cyclic prefix 63.3%/62.9% = 1.006 is applied to scale-up the measured SAR result. The Reported TDD LTE SAR = measured SAR (W/kg)* Tune-up Scaling Factor* scaling factor for extended cyclic prefix.
- 2. Per KDB 447498 D01v06, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the *reported* 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - · ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
 - · ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
 - · ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz
- 3. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg.

Sporton International (KunShan) INC.

15.1 Head SAR

<GSM SAR>

Plot No.	Band	Mode	Test Position	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
01	GSM850	GPRS 4 Tx slots	Left Cheek	189	836.4	28.86	29.50	1.159	0.01	0.408	0.473
02	GSM1900	GPRS 4 Tx slots	Right Cheek	810	1909.8	26.00	26.50	1.122	0.09	0.283	<mark>0.318</mark>

Report No. : FA742708

<WCDMA SAR>

Plot No.	Band	Mode	Test Position	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
03	WCDMA Band V	RMC 12.2Kbps	Left Cheek	4182	836.4	22.99	23.50	1.125	0.08	0.341	0.383
04	WCDMA Band II	RMC 12.2Kbps	Right Cheek	9538	1907.6	23.16	23.50	1.081	0.12	0.400	0.433

<FDD LTE SAR>

Plot No.	Band	BW (MHz)	Mode	RB Size	RB Offset	Test Position	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
05	LTE Band 5	10M	QPSK	1	0	Left Cheek	20525	836.5	23.25	24.50	1.334	0.01	0.269	<mark>0.359</mark>
06	LTE Band 7	20M	QPSK	1	0	Left Cheek	21350	2560	23.42	24.00	1.143	0.03	0.327	0.374

<TDD LTE SAR>

	Plot No.	Band	BW (MHz)	Mode	RB Size	RB offset	Test Position	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Duty Cycle %	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
•	07	LTE Band 38	20M	QPSK	1	0	Left Cheek	38000	2595	22.77	23.50	1.183	62.9	1.006	0.03	0.209	0.249

<WLAN SAR>

Plot No.	Band	Mode	Test Position	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Duty Cycle %	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
08	WLAN 2.4GHz	802.11b 1Mbps	Right Tilted	6	2437	17.64	18.50	1.219	100	1.000	-0.08	0.894	1.090
	WLAN 2.4GHz	802.11b 1Mbps	Right Tilted	11	2462	15.95	17.00	1.274	100	1.000	0.03	0.568	0.723

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958

Issued Date : Jul. 07, 2017 Form version. : 160427 FCC ID: IHDT56WC6 Page 44 of 54

15.2 Hotspot SAR

<GSM SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
09	GSM850	GPRS 4 Tx slots	Back	10	128	824.2	28.85	29.5	1.161	0.01	0.873	<mark>1.014</mark>
	GSM850	GPRS 4 Tx slots	Back	10	189	836.4	28.86	29.5	1.159	-0.02	0.824	0.955
	GSM850	GPRS 4 Tx slots	Back	10	251	848.8	28.81	29.5	1.172	-0.01	0.779	0.913
10	GSM1900	GPRS 4 Tx slots	Back	10	810	1909.8	26.00	26.5	1.122	-0.01	0.368	0.413

Report No. : FA742708

<WCDMA SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
11	WCDMA Band V	RMC 12.2Kbps	Back	10	4182	836.4	22.99	23.5	1.125	-0.09	0.629	<mark>0.707</mark>
12	WCDMA Band II	RMC 12.2Kbps	Back	10	9538	1907.6	23.16	23.5	1.081	0.05	0.519	0.561

<FDD LTE SAR>

Plot No.	Band	BW (MHz)	Mode	RB Size	RB Offset	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
13	LTE Band 5	10M	QPSK	1	0	Back	10	20525	836.5	23.25	24.5	1.334	0.01	0.511	<mark>0.681</mark>
14	LTE Band 7	20M	QPSK	1	0	Front	10	21350	2560	23.42	24	1.143	-0.16	0.603	0.689

<TDD LTE SAR>

Plot No.	Band	BW (MHz)	Mode	RB Size	RB Offset	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Duty Cycle %	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	LTE Band 38	20M	QPSK	1	0	Front	10	38000	2595	22.77	23.5	1.183	62.9	1.006	-0.06	0.388	0.462
15	LTE Band 38	20M	QPSK	1	0	Bottom Side	10	38000	2595	22.77	23.5	1.183	62.9	1.006	0.04	0.428	<mark>0.509</mark>

<WLAN SAR>

Plc No	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Duty Cycle %	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
16	WLAN 2.4GHz	802.11b 1Mbps	Back	10	6	2437	17.64	18.50	1.219	100	1.000	0.08	0.233	<mark>0.284</mark>

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958 Issued Date: Jul. 07, 2017

FCC ID : IHDT56WC6 Page 45 of 54 Form version. : 160427

15.3 Body Worn Accessory SAR

<GSM SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
09	GSM850	GPRS 4 Tx slots	Back	10	128	824.2	28.85	29.5	1.161	0.01	0.873	1.014
	GSM850	GPRS 4 Tx slots	Back	10	189	836.4	28.86	29.5	1.159	-0.02	0.824	0.955
	GSM850	GPRS 4 Tx slots	Back	10	251	848.8	28.81	29.5	1.172	-0.01	0.779	0.913
10	GSM1900	GPRS 4 Tx slots	Back	10	810	1909.8	26	26.5	1.122	-0.01	0.368	0.413

Report No. : FA742708

<WCDMA SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
11	WCDMA Band V	RMC 12.2Kbps	Back	10	4182	836.4	22.99	23.5	1.125	-0.09	0.629	<mark>0.707</mark>
12	WCDMA Band II	RMC 12.2Kbps	Back	10	9538	1907.6	23.16	23.5	1.081	0.05	0.519	<mark>0.561</mark>

<FDD LTE SAR>

Plot No.	Band	BW (MHz)	Mode	RB Size	RB Offset	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
13	LTE Band 5	10M	QPSK	1	0	Back	10	20525	836.5	23.25	24.5	1.334	0.01	0.511	<mark>0.681</mark>
14	LTE Band 7	20M	QPSK	1	0	Front	10	21350	2560	23.42	24	1.143	-0.16	0.603	0.689

<TDD LTE SAR>

Plot No.	Band	BW (MHz)	Mode	RB Size	RB Offset	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Duty Cycle %	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
17	LTE Band 38	20M	QPSK	1	0	Front	10	38000	2595	22.77	23.5	1.183	62.9	1.006	-0.06	0.388	<mark>0.462</mark>

<WLAN SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Duty Cycle %	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
16	WLAN 2.4GHz	802.11b 1Mbps	Back	10	6	2437	17.64	18.50	1.219	100	1.000	0.08	0.233	<mark>0.284</mark>

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958

Issued Date: Jul. 07, 2017 Form version. : 160427 FCC ID: IHDT56WC6 Page 46 of 54

15.4 Repeated SAR Measurement

No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Ratio	Reported 1g SAR (W/kg)
1st	WLAN2.4GHz	802.11b 1Mbps	Right Tilted	0	6	2437	17.64	18.50	1.219	-0.08	0.894	1	1.090
2nd	WLAN2.4GHz	802.11b 1Mbps	Right Tilted	0	6	2437	17.64	18.50	1.219	0.05	0.877	1.019	1.069
1st	GSM850	GPRS 4 Tx slots	Back	10	128	824.2	28.85	29.5	1.161	0.01	0.873	1	1.014
2nd	GSM850	GPRS 4 Tx slots	Back	10	128	824.2	28.85	29.5	1.161	0.02	0.868	1.006	1.008

Report No. : FA742708

General Note:

- 1. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg.
- 2. Per KDB 865664 D01v01r04, if the ratio among the repeated measurement is ≤ 1.2 and the measured SAR <1.45W/kg, only one repeated measurement is required.
- 3. The ratio is the difference in percentage between original and repeated measured SAR.
- 4. All measurement SAR result is scaled-up to account for tune-up tolerance and is compliant.

TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958

Issued Date: Jul. 07, 2017 FCC ID: IHDT56WC6 Form version.: 160427 Page 47 of 54

16. Simultaneous Transmission Analysis

NO.	Simultaneous Transmission	Mob	ile Cellular Pl	Note	
NO.	Configurations	Head	Body-worn	Hotspot	Note
1.	GSM Voice + WLAN2.4GHz	Yes	Yes		
2.	GPRS/EDGE + WLAN2.4GHz	Yes	Yes	Yes	Hotspot
3.	WCDMA + WLAN2.4GHz	Yes	Yes	Yes	Hotspot
4.	LTE + WLAN2.4GHz	Yes	Yes	Yes	Hotspot
5.	GSM Voice + Bluetooth		Yes		
6.	GPRS/EDGE + Bluetooth		Yes		WWAN VoIP
7.	WCDMA + Bluetooth		Yes		WWAN VoIP
8.	LTE + Bluetooth		Yes		WWAN VoIP

General Note:

- For simultaneously transmission SAR analysis, SAR values only considered the worst position which we did perform SAR testing on FA742708, other test results were leverage from the parent model which referred to the test report number FA711913.
- 2. This device supports VoIP in GPRS, EGPRS, WCDMA and LTE (e.g. for 3rd-party VoIP), LTE supports VoLTE operation.
- EUT will choose each GSM, WCDMA and LTE according to the network signal condition; therefore, they will not operate simultaneously at any moment.
- 4. WLAN 2.4GHz and Bluetooth share the same antenna so can't transmit simultaneously.
- 5. Chose the worst zoom scan SAR of WLAN2.4GHz SAR correspondingly for co-located with WWAN analysis.
- 6. The reported SAR summation is calculated based on the same configuration and test position.
- 7. Per KDB 447498 D01v06, simultaneous transmission SAR is compliant if,
 - i) Scalar SAR summation < 1.6W/kg.
 - ii) SPLSR = (SAR1 + SAR2)^1.5 / (min. separation distance, mm), and the peak separation distance is determined from the square root of [(x1-x2)2 + (y1-y2)2 + (z1-z2)2], where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the extrapolated peak SAR locations in the zoom scan.
 - iii) If SPLSR ≤ 0.04, simultaneously transmission SAR measurement is not necessary.
 - iv) Simultaneously transmission SAR measurement, and the reported multi-band SAR < 1.6W/kg.
- 8. For simultaneous transmission analysis, Bluetooth SAR is estimated per KDB 447498 D01v06 based on the formula below
 - i) (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm; where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.
 - ii) When the minimum separation distance is < 5mm, the distance is used 5mm to determine SAR test exclusion.
 - iii) 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm.

Bluetooth	Exposure Position	Body Worn		
Max Power	Test Separation	10 mm		
7.0 dBm	Estimated SAR (W/kg)	0.105 W/kg		

Report No.: FA742708

16.1 Head Exposure Conditions

			1	2		
WWAN Band		Exposure Position	WWAN	2.4GHz WLAN	1+2 Summed 1g SAR (W/kg)	
			1g SAR (W/kg)	1g SAR (W/kg)		
	GSM850	Right Tilted	0.409	1.090	<mark>1.50</mark>	
GSM	GSIVIOSO	Left Cheek	0.473	0.536	1.01	
GSIVI	GSM1900	Right Cheek	0.318	1.016	1.33	
	GSW1900	Right Tilted	0.136	1.090	1.23	
	Band V	Right Tilted	0.196	1.090	1.29	
WCDMA	Danu v	Left Cheek	0.383	0.536	0.92	
VVCDIVIA	Band II	Right Cheek	0.433	1.016	1.45	
		Right Tilted	0.229	1.090	1.32	
	Band 5	Right Tilted	0.287	1.090	1.38	
	Dallu 5	Left Cheek	0.359	0.536	0.90	
LTE	Band 7	Right Tilted	0.286	1.090	1.38	
LIE	Dailu /	Left Cheek	0.374	0.536	0.91	
	Band 38	Right Tilted	0.126	1.090	1.22	
	Da110 30	Left Cheek	0.249	0.536	0.79	

Report No.: FA742708

TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958

Issued Date : Jul. 07, 2017 Form version. : 160427 FCC ID: IHDT56WC6 Page 49 of 54

16.2 Hotspot Exposure Conditions

WW	AN Band	Exposure Position	1 WWAN	2 2.4GHz WLAN	1+2 Summed 1g SAR (W/kg)	
	THE DAMA	Exposure r comon	1g SAR (W/kg)	1g SAR (W/kg)		
GSM	GSM850	Back	1.014	0.284	1.30	
GSIVI	GSM1900 Back		0.413	0.284	0.70	
WCDMA	Band V	Back	0.707	0.284	0.99	
VVCDIVIA	Band II	Back	0.561	0.284	0.85	
	Band 5	Back	0.681	0.284	0.97	
	Band 7	Front	0.689	0.284	0.97	
LTE	Danu /	Back	0.593	0.284	0.88	
LTE		Front	0.462	0.284	0.75	
	Band 38	Back	0.362	0.284	0.65	
		Bottom side	0.509		0.51	

Report No.: FA742708

TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958

Issued Date : Jul. 07, 2017 Form version. : 160427 FCC ID: IHDT56WC6 Page 50 of 54

16.3 <u>Body-Worn Accessory Exposure Conditions</u>

			1	2	3		
WWAN Band		Exposure	WWAN	2.4GHz WLAN	Bluetooth	1+2 Summed	1+3 Summed
		Position	1g SAR (W/kg)	1g SAR (W/kg)	Estimated 1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)
GSM	GSM850	Back	1.014	0.284	0.105	1.30	1.12
GSIVI	GSM1900	Back	0.413	0.284	0.105	0.70	0.52
WCDMA	Band V	Back	0.707	0.284	0.105	0.99	0.81
WCDIVIA	Band II	Back	0.561	0.284	0.105	0.85	0.67
	Band 5	Back	0.681	0.284	0.105	0.97	0.79
	Band 7	Front	0.689	0.284	0.105	0.97	0.79
LTE		Back	0.593	0.284	0.105	0.88	0.70
	Dand 20	Front	0.462	0.284	0.105	0.75	0.57
	Band 38	Back	0.362	0.284	0.105	0.65	0.47

Report No. : FA742708

Test Engineer: Nick Hu

TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958

Issued Date : Jul. 07, 2017 Form version. : 160427 FCC ID: IHDT56WC6 Page 51 of 54

17. Uncertainty Assessment

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

Report No.: FA742708

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience, and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in table below.

Uncertainty Distributions	Normal	Rectangular	Triangular	U-Shape
Multi-plying Factor ^(a)	1/k ^(b)	1/√3	1/√6	1/√2

- (a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity
- (b) κ is the coverage factor

Table 17.1. Standard Uncertainty for Assumed Distribution

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is shown in the following tables.

FCC ID : IHDT56WC6 Page 52 of 54 Form version. : 160427

Error Description	Uncertainty Value (±%)	Probability	Divisor	(Ci) 1g	(Ci) 10g	Standard Uncertainty (1g) (±%)	Standard Uncertainty (10g) (±%)
Measurement System							
Probe Calibration	6.0	N	1	1	1	6.0	6.0
Axial Isotropy	4.7	R	1.732	0.7	0.7	1.9	1.9
Hemispherical Isotropy	9.6	R	1.732	0.7	0.7	3.9	3.9
Boundary Effects	1.0	R	1.732	1	1	0.6	0.6
Linearity	4.7	R	1.732	1	1	2.7	2.7
System Detection Limits	1.0	R	1.732	1	1	0.6	0.6
Modulation Response	3.2	R	1.732	1	1	1.8	1.8
Readout Electronics	0.3	N	1	1	1	0.3	0.3
Response Time	0.0	R	1.732	1	1	0.0	0.0
Integration Time	2.6	R	1.732	1	1	1.5	1.5
RF Ambient Noise	3.0	R	1.732	1	1	1.7	1.7
RF Ambient Reflections	3.0	R	1.732	1	1	1.7	1.7
Probe Positioner	0.4	R	1.732	1	1	0.2	0.2
Probe Positioning	2.9	R	1.732	1	1	1.7	1.7
Max. SAR Eval.	2.0	R	1.732	1	1	1.2	1.2
Test Sample Related							
Device Positioning	3.0	N	1	1	1	3.0	3.0
Device Holder	3.6	N	1	1	1	3.6	3.6
Power Drift	5.0	R	1.732	1	1	2.9	2.9
Power Scaling	0.0	R	1.732	1	1	0.0	0.0
Phantom and Setup							
Phantom Uncertainty	6.1	R	1.732	1	1	3.5	3.5
SAR correction	0.0	R	1.732	1	0.84	0.0	0.0
Liquid Conductivity Repeatability	0.2	N	1	0.78	0.71	0.1	0.1
Liquid Conductivity (target)	5.0	R	1.732	0.78	0.71	2.3	2.0
Liquid Conductivity (mea.)	2.5	R	1.732	0.78	0.71	1.1	1.0
Temp. unc Conductivity	3.4	R	1.732	0.78	0.71	1.5	1.4
Liquid Permittivity Repeatability	0.15	N	1	0.23	0.26	0.0	0.0
Liquid Permittivity (target)	5.0	R	1.732	0.23	0.26	0.7	0.8
Liquid Permittivity (mea.)	2.5	R	1.732	0.23	0.26	0.3	0.4
Temp. unc Permittivity	0.83	R	1.732	0.23	0.26	0.1	0.1
Cor	11.4%	11.4%					
Co	K=2	K=2					
Ехр	22.9%	22.7%					

Report No. : FA742708

Uncertainty Budget for frequency range 300 MHz to 3 GHz Table 17.2.

TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958

Issued Date : Jul. 07, 2017 Form version. : 160427 FCC ID: IHDT56WC6 Page 53 of 54

18. References

[1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"

Report No. : FA742708

- [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992
- [3] IEEE Std. 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", Sep 2013
- [4] SPEAG DASY System Handbook
- [5] FCC KDB 865664 D01 v01r04, "SAR Measurement Requirements for 100 MHz to 6 GHz", Aug 2015.
- [6] FCC KDB 865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations" Oct 2015.
- [7] FCC KDB 447498 D01 v06, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Oct 2015
- [8] FCC KDB 648474 D04 v01r03, "SAR Evaluation Considerations for Wireless Handsets", Oct 2015.
- [9] FCC KDB 248227 D01 v02r02, "SAR Guidance for IEEE 802.11 (WiFi) Transmitters", Oct 2015.
- [10] FCC KDB 941225 D01 v03r01, "3G SAR MEAUREMENT PROCEDURES", Oct 2015
- [11] FCC KDB 941225 D05 v02r05, "SAR Evaluation Considerations for LTE Devices", Dec 2015
- [12] FCC KDB 941225 D06 v02r01, "SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities", Oct 2015.

FCC ID : IHDT56WC6 Page 54 of 54 Form version. : 160427

Appendix A. Plots of System Performance Check

Report No.: FA742708

The plots are shown as follows.

Sporton International (KunShan) INC.

System Check_Head_835MHz

DUT: D835V2 - SN:4d091

Communication System: UID 0, CW (0); Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL 850 Medium parameters used: f = 835 MHz; $\sigma = 0.899$ S/m; $\varepsilon_r = 41.23$; $\rho = 1000$ kg/m³

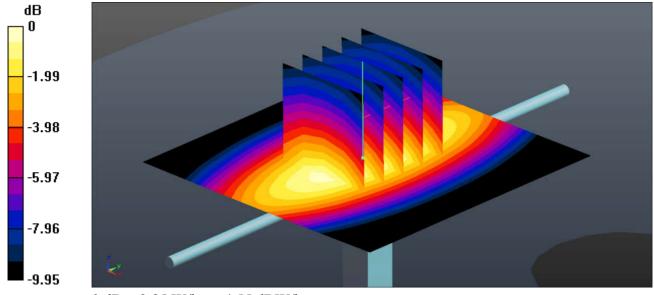
Date: 2017.4.27

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(9.32, 9.32, 9.32); Calibrated: 2016.5.25;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2016.5.18
- Phantom: SAM2; Type: SAM; Serial: TP-1477
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 2.85 W/kg


Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 51.35 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 3.33 W/kg

SAR(1 g) = 2.28 W/kg; SAR(10 g) = 1.53 W/kg

Maximum value of SAR (measured) = 2.85 W/kg

0 dB = 2.85 W/kg = 4.55 dBW/kg

System Check_Head_1900MHz

DUT: D1900V2 - SN:5d118

Communication System: UID 0, CW (0); Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL_1900 Medium parameters used: f = 1900 MHz; $\sigma = 1.412$ S/m; $\varepsilon_r = 38.4$; $\rho = 1000$

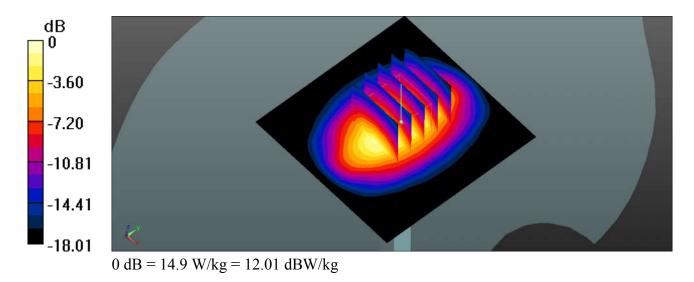
Date: 2017.4.28

 kg/m^3

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.8 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(7.85, 7.85, 7.85); Calibrated: 2016.5.25;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2016.5.18
- Phantom: SAM2; Type: SAM; Serial: TP-1477
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 16.2 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 93.83 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 20.5 W/kg

SAR(1 g) = 10.85 W/kg; SAR(10 g) = 5.31 W/kg

Maximum value of SAR (measured) = 14.9 W/kg

System Check_Head_2450MHz

DUT: D2450V2 - SN:840

Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL_2450 Medium parameters used: f = 2450 MHz; $\sigma = 1.861$ S/m; $\varepsilon_r = 38.654$; ρ

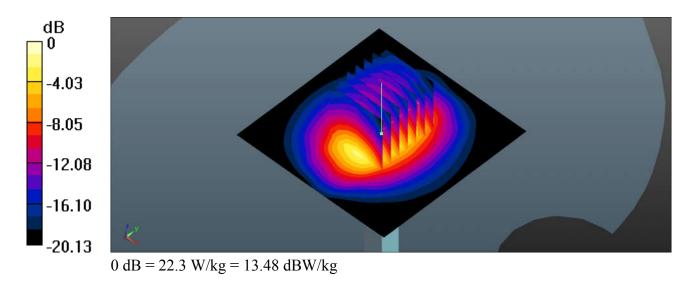
Date: 2017.4.29

 $= 1000 \text{ kg/m}^3$

Ambient Temperature : 23.2 °C; Liquid Temperature : 22.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(7.19, 7.19, 7.19); Calibrated: 2016.5.25;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2016.5.18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Pin=250mW/Area Scan (71x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 22.9 W/kg

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93.58 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 29.7 W/kg

SAR(1 g) = 14.18 W/kg; SAR(10 g) = 6.94 W/kg

Maximum value of SAR (measured) = 22.3 W/kg

System Check_Head 2600MHz

DUT: D2600V2 - SN:1061

Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1

Medium: HSL_2600 Medium parameters used: f = 2600 MHz; $\sigma = 2.031$ S/m; $\varepsilon_r = 38.04$; $\rho = 1000$

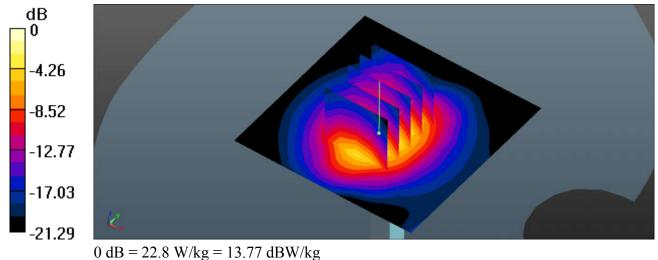
Date: 2017.4.29

 kg/m^3

Ambient Temperature : 23.2 °C; Liquid Temperature : 22.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(7.08, 7.08, 7.08); Calibrated: 2016.5.25;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2016.5.18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 24.3 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 90.26 V/m; Power Drift = -0.36 dB

Peak SAR (extrapolated) = 31.1 W/kg

SAR(1 g) = 14.68 W/kg; SAR(10 g) = 6.89 W/kg

Maximum value of SAR (measured) = 22.8 W/kg

System Check_Body_835MHz

DUT: D835V2 - SN:4d091

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL_850 Medium parameters used: f = 835 MHz; $\sigma = 0.969$ S/m; $\varepsilon_r = 53.737$; $\rho = 1000$

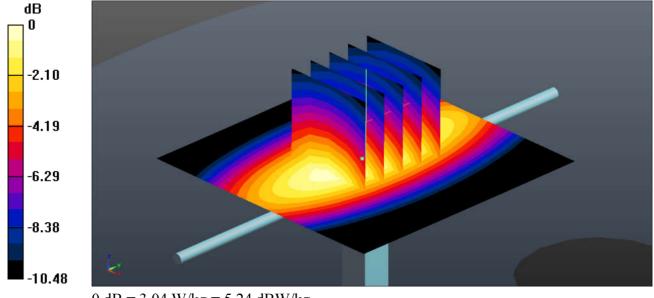
Date: 2017.4.27

 kg/m^3

Ambient Temperature : 23.3 °C; Liquid Temperature : 22.8 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3954; ConvF(10.32, 10.32, 10.32); Calibrated: 2016.11.28;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1437; Calibrated: 2016.7.12
- Phantom: SAM1; Type: SAM; Serial: TP-1164
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 3.37 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 53.48 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 3.87 W/kg

SAR(1 g) = 2.57 W/kg; SAR(10 g) = 1.75 W/kg

Maximum value of SAR (measured) = 3.04 W/kg

0 dB = 3.04 W/kg = 5.24 dBW/kg

System Check_Body_1900MHz

DUT: D1900V2 - SN:5d118

Communication System: UID 0, CW (0); Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL_1900 Medium parameters used: f = 1900 MHz; $\sigma = 1.547$ S/m; $\varepsilon_r = 53.133$; $\rho = 1000$

Date: 2017.4.28

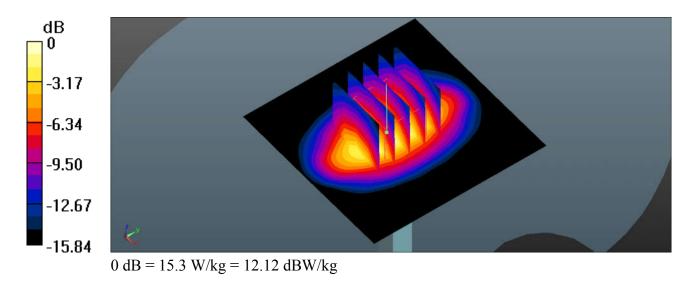
 kg/m^3

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.9 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(7.55, 7.55, 7.55); Calibrated: 2016.5.25;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2016.5.18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 16.4 W/kg


Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 91.26 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 19.8 W/kg

SAR(1 g) = 10.75 W/kg; SAR(10 g) = 5.89 W/kg

Maximum value of SAR (measured) = 15.3 W/kg

System Check_Body_2450MHz

DUT: D2450V2 - SN:840

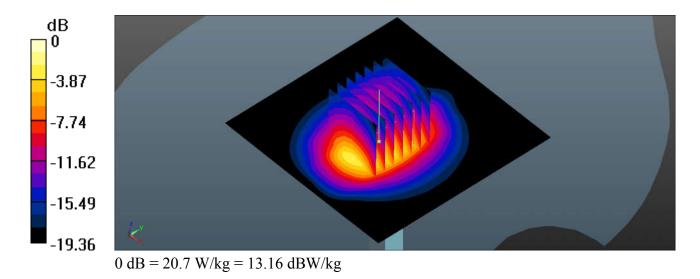
Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL_2450 Medium parameters used: f = 2450 MHz; $\sigma = 2.016$ S/m; $\varepsilon_r = 52.654$; $\rho = 1000$

Date: 2017.4.29

 kg/m^3

Ambient Temperature: 23.4 °C; Liquid Temperature: 22.7 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(7.23, 7.23, 7.23); Calibrated: 2016.5.25;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2016.5.18
- Phantom: SAM2; Type: SAM; Serial: TP-1477
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Pin=250mW/Area Scan (81x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 21.0 W/kg

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 86.08 V/m; Power Drift = -0.19 dB Peak SAR (extrapolated) = 26.8 W/kg

SAR(1 g) = 13.56 W/kg; SAR(10 g) = 6.75 W/kgMaximum value of SAR (measured) = 20.7 W/kg

System Check_Body_2600MHz

DUT: D2450V2 - SN:840

Communication System: UID 0, CW (0); Frequency: 2600 MHz; Duty Cycle: 1:1

Medium: MSL_2600 Medium parameters used: f = 2600 MHz; $\sigma = 2.222$ S/m; $\varepsilon_r = 52.054$; $\rho = 1000$

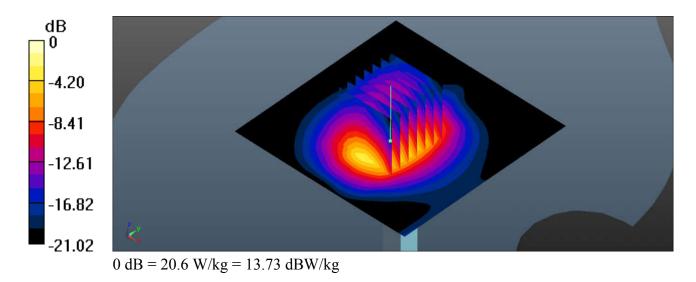
Date: 2017.4.29

 kg/m^3

Ambient Temperature: 23.4 °C; Liquid Temperature: 22.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(7.13, 7.13, 7.13); Calibrated: 2016.5.25;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2016.5.18
- Phantom: SAM2; Type: SAM; Serial: TP-1477
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Pin=250mW/Area Scan (81x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 23.8 W/kg

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 85.19 V/m; Power Drift = -0.28 dB

Peak SAR (extrapolated) = 31.4 W/kg

SAR(1 g) = 14.8 W/kg; SAR(10 g) = 6.94 W/kg

Maximum value of SAR (measured) = 20.6 W/kg

Appendix B. Plots of High SAR Measurement

Report No.: FA742708

The plots are shown as follows.

Sporton International (KunShan) INC.

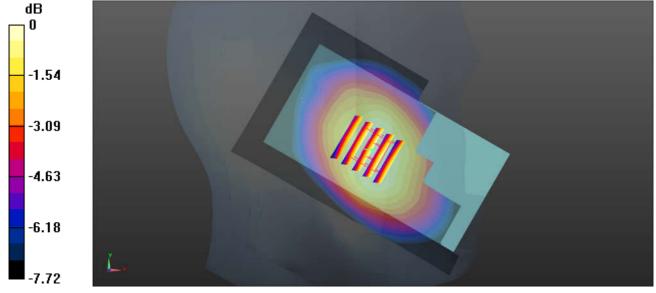
01_GSM850_GPRS 4 Tx slots_Left Cheek_0mm_Ch189

Communication System: UID 0, GPRS/EDGE (4 Tx slots) (0); Frequency: 836.4 MHz; Duty Cycle: 1:2.08

Date: 2017.4.27

Medium: HSL_850 Medium parameters used: f = 836.4 MHz; $\sigma = 0.901$ S/m; $\epsilon_r = 41.215$; $\rho = 1000$

 kg/m^3


Ambient Temperature : 23.3 °C; Liquid Temperature : 22.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(9.32, 9.32, 9.32); Calibrated: 2016.5.25;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2016.5.18
- Phantom: SAM2; Type: SAM; Serial: TP-1477
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch189/Area Scan (71x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.458 W/kg

Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.49 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.477 W/kg SAR(1 g) = 0.408 W/kg; SAR(10 g) = 0.324 W/kg Maximum value of SAR (measured) = 0.452 W/kg

0 dB = 0.452 W/kg = -3.45 dBW/kg

02_GSM1900_GPRS 4 Tx slots_Right Cheek_0mm_Ch810

Communication System: UID 0, GPRS/EDGE (4 Tx slots) (0); Frequency: 1909.8 MHz; Duty Cycle: 1:2.08

Date: 2017.4.28

Medium: HSL_1900 Medium parameters used: f = 1909.8 MHz; σ = 1.423 S/m; ϵ_r = 38.363; ρ = 1000

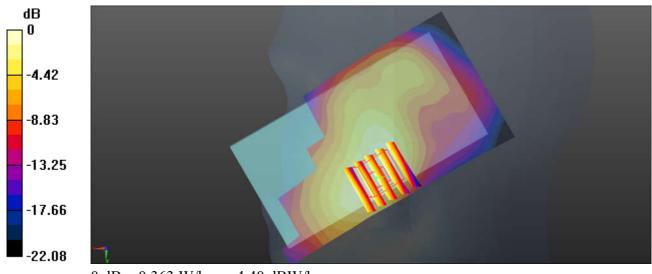
kg/m³

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.8 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(7.85, 7.85, 7.85); Calibrated: 2016.5.25;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2016.5.18
- Phantom: SAM2; Type: SAM; Serial: TP-1477
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch810/Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.390 W/kg


Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.869 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.446 W/kg

SAR(1 g) = 0.283 W/kg; SAR(10 g) = 0.177 W/kg

Maximum value of SAR (measured) = 0.363 W/kg

0 dB = 0.363 W/kg = -4.40 dBW/kg

03_WCDMA Band V_RMC 12.2Kbps_Left Cheek_0mm_Ch4182

Communication System: UID 0, UMTS (0); Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: HSL_850 Medium parameters used: f = 836.4 MHz; $\sigma = 0.901$ S/m; $\varepsilon_r = 41.215$; $\rho = 1000$

Date: 2017.4.27

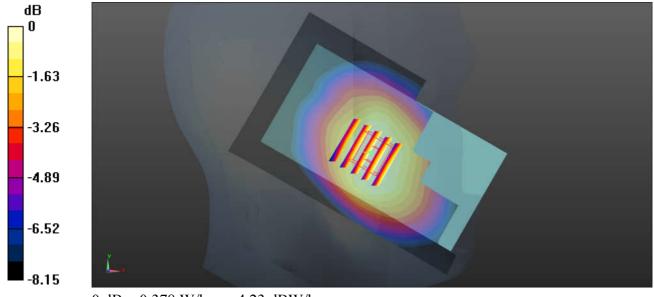
 kg/m^3

Ambient Temperature : 23.3 °C; Liquid Temperature : 22.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(9.32, 9.32, 9.32); Calibrated: 2016.5.25;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2016.5.18
- Phantom: SAM2; Type: SAM; Serial: TP-1477
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch4182/Area Scan (71x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.380 W/kg


Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.176 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.401 W/kg

SAR(1 g) = 0.341 W/kg; SAR(10 g) = 0.272 W/kg

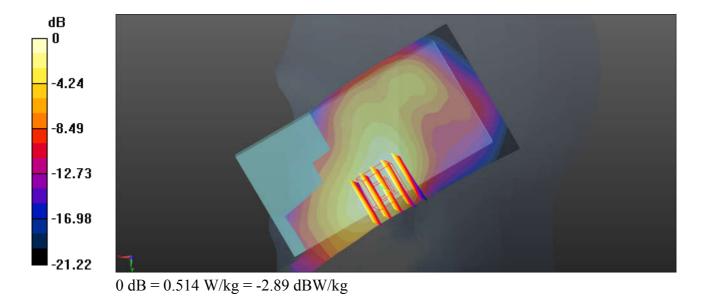
Maximum value of SAR (measured) = 0.378 W/kg

0 dB = 0.378 W/kg = -4.23 dBW/kg

04_WCDMA Band II_RMC 12.2Kbps_Right Cheek_0mm_Ch9538

Communication System: UID 0, UMTS (0); Frequency: 1907.6 MHz; Duty Cycle: 1:1 Medium: HSL_1900 Medium parameters used: f = 1907.6 MHz; $\sigma = 1.42$ S/m; $\epsilon_r = 38.37$; $\rho = 1000$ kg/m³

Date: 2017.4.28


Ambient Temperature: 23.3 °C; Liquid Temperature: 22.8 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(7.85, 7.85, 7.85); Calibrated: 2016.5.25;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2016.5.18
- Phantom: SAM2; Type: SAM; Serial: TP-1477
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch9538/Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.551 W/kg

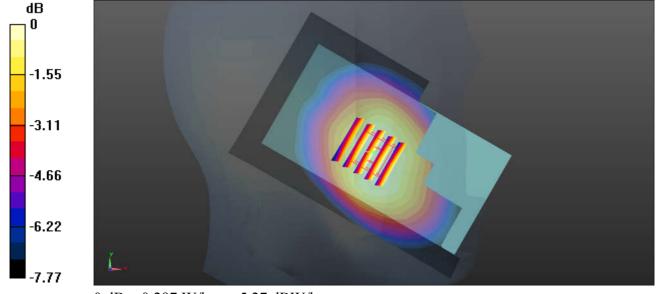
Ch9538/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.052 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 0.626 W/kg SAR(1 g) = 0.400 W/kg; SAR(10 g) = 0.250 W/kg Maximum value of SAR (measured) = 0.514 W/kg

05_LTE Band 5_10M_QPSK_1RB_0Offset_Left Cheek_0mm_Ch20525

Communication System: UID 0, FDD_LTE (0); Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: HSL_850 Medium parameters used: f = 836.5 MHz; $\sigma = 0.901$ S/m; $\varepsilon_r = 41.214$; $\rho = 1000$

Date: 2017.4.27

 kg/m^3


Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(9.32, 9.32, 9.32); Calibrated: 2016.5.25;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2016.5.18
- Phantom: SAM2; Type: SAM; Serial: TP-1477
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch20525/Area Scan (71x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.300 W/kg

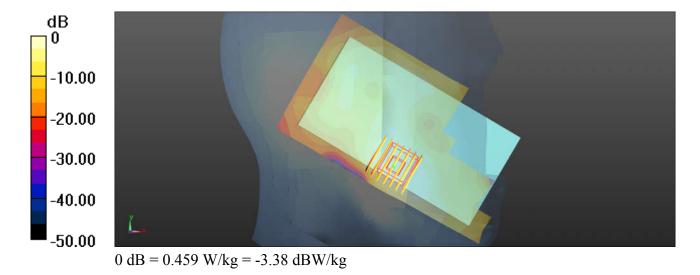
Ch20525/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.392 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.315 W/kg SAR(1 g) = 0.269 W/kg; SAR(10 g) = 0.214 W/kg Maximum value of SAR (measured) = 0.297 W/kg

0 dB = 0.297 W/kg = -5.27 dBW/kg

06 LTE Band 7 20M QPSK 1RB 0Offset Left Cheek 0mm Ch21350

Communication System: UID 0, FDD_LTE (0); Frequency: 2560 MHz; Duty Cycle: 1:1 Medium: HSL_2600 Medium parameters used: f = 2560 MHz; $\sigma = 1.997$ S/m; $\epsilon_r = 37.823$; $\rho = 1000$ kg/m³

Date: 2017.4.29


Ambient Temperature: 23.2 °C; Liquid Temperature: 22.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(7.08, 7.08, 7.08); Calibrated: 2016.5.25;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2016.5.18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

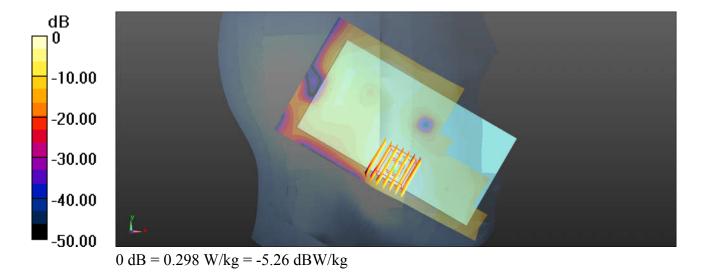
Ch21350/Area Scan (81x141x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.486 W/kg

Ch21350/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.309 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.601 W/kg SAR(1 g) = 0.327 W/kg; SAR(10 g) = 0.174 W/kg Maximum value of SAR (measured) = 0.459 W/kg

07_LTE Band 38_20M_QPSK_1RB_0Offset_Left Cheek_0mm_Ch38000

Communication System: UID 0, TDD_LTE (0); Frequency: 2595 MHz; Duty Cycle: 1:1.59 Medium: HSL_2600 Medium parameters used: f = 2595 MHz; $\sigma = 2.04$ S/m; $\varepsilon_r = 37.688$; $\rho = 1000$ kg/m³

Date: 2017.4.29


Ambient Temperature: 23.2 °C; Liquid Temperature: 22.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(7.08, 7.08, 7.08); Calibrated: 2016.5.25;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2016.5.18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

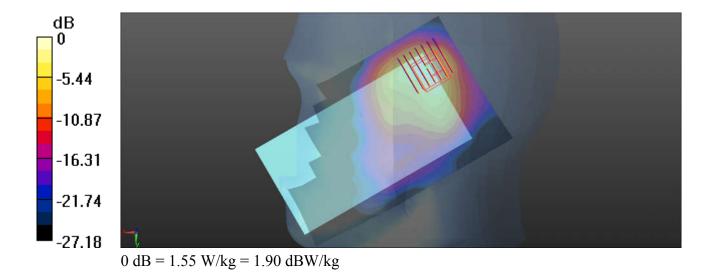
Ch38000/Area Scan (81x141x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.309 W/kg

Ch38000/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.700 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.398 W/kg SAR(1 g) = 0.209 W/kg; SAR(10 g) = 0.109 W/kg Maximum value of SAR (measured) = 0.298 W/kg

08_WLAN2.4GHz_802.11b 1Mbps_Right Cheek_0mm_Ch6

Communication System: UID 0, WIFI (0); Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: HSL_2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.86$ S/m; $\epsilon_r = 38.322$; $\rho = 1000$ kg/m³

Date: 2017.4.29


Ambient Temperature: 23.2 °C; Liquid Temperature: 22.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(7.19, 7.19, 7.19); Calibrated: 2016.5.25;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2016.5.18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch6/Area Scan (91x151x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 1.73 W/kg

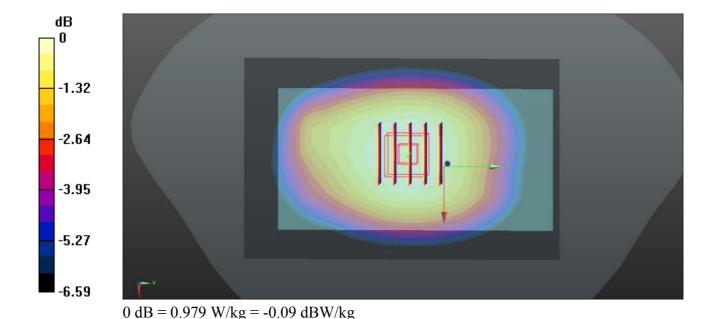
Ch6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 18.04 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 2.22 W/kg SAR(1 g) = 0.894 W/kg; SAR(10 g) = 0.382 W/kg Maximum value of SAR (measured) = 1.55 W/kg

09_GSM850_GPRS 4 Tx slots_Back_10mm_Ch128

Communication System: UID 0, GPRS/EDGE (4 Tx slots) (0); Frequency: 824.2 MHz; Duty Cycle: 1:2.08

Date: 2017.4.27

Medium: MSL_850 Medium parameters used: f = 824.2 MHz; σ = 0.958 S/m; ϵ_r = 53.854; ρ = 1000 kg/m³


Ambient Temperature: 23.3 °C; Liquid Temperature: 22.8 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3954; ConvF(10.32, 10.32, 10.32); Calibrated: 2016.11.28;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1437; Calibrated: 2016.7.12
- Phantom: SAM1; Type: SAM; Serial: TP-1164
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch128/Area Scan (71x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.989 W/kg

Ch128/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 32.45 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 1.07 W/kg SAR(1 g) = 0.873 W/kg; SAR(10 g) = 0.695 W/kg Maximum value of SAR (measured) = 0.979 W/kg

10_GSM1900_GPRS 4 Tx slots_Back_10mm_Ch810

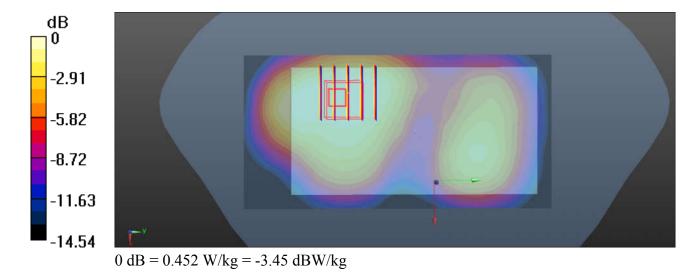
Communication System: UID 0, GPRS/EDGE (4 Tx slots) (0); Frequency: 1909.8 MHz; Duty Cycle: 1:2.08

Date: 2017.4.28

Medium: MSL_1900 Medium parameters used: f = 1909.8 MHz; σ = 1.54 S/m; ϵ_r = 51.987; ρ = 1000

 kg/m^3

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.9 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(7.55, 7.55, 7.55); Calibrated: 2016.5.25;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2016.5.18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch810/Area Scan (61x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.464 W/kg

Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.800 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.542 W/kg

SAR(1 g) = 0.368 W/kg; SAR(10 g) = 0.244 W/kgMaximum value of SAR (measured) = 0.452 W/kg

11_WCDMA Band V_RMC 12.2Kbps_Back_10mm_Ch4182

Communication System: UID 0, UMTS (0); Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: MSL_850 Medium parameters used: f = 836.4 MHz; $\sigma = 0.97$ S/m; $\varepsilon_r = 53.727$; $\rho = 1000$

Date: 2017.4.27

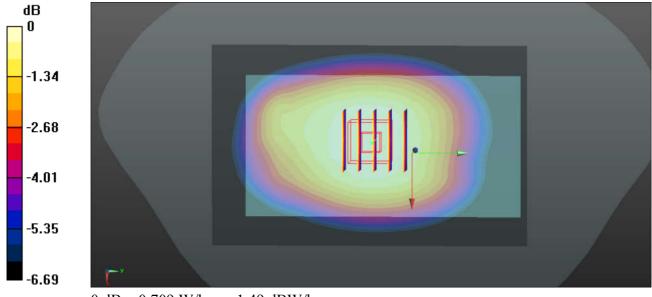
 kg/m^3

Ambient Temperature : 23.3 °C; Liquid Temperature : 22.8 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3954; ConvF(10.32, 10.32, 10.32); Calibrated: 2016.11.28;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1437; Calibrated: 2016.7.12
- Phantom: SAM1; Type: SAM; Serial: TP-1164
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch4182/Area Scan (71x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.712 W/kg


Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.39 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.767 W/kg

SAR(1 g) = 0.629 W/kg; SAR(10 g) = 0.499 W/kg

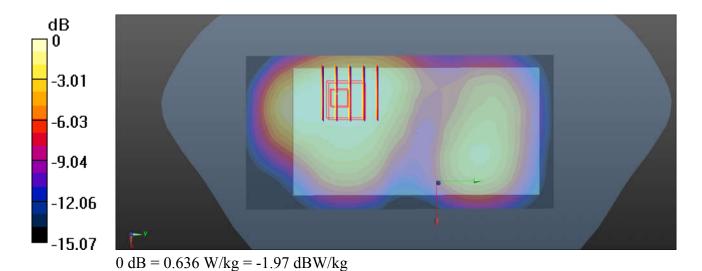
Maximum value of SAR (measured) = 0.709 W/kg

0 dB = 0.709 W/kg = -1.49 dBW/kg

12_WCDMA Band II_RMC 12.2Kbps_Back_10mm_Ch9538

Communication System: UID 0, UMTS (0); Frequency: 1907.6 MHz; Duty Cycle: 1:1 Medium: MSL_1900 Medium parameters used: f = 1907.6 MHz; $\sigma = 1.538$ S/m; $\epsilon_r = 51.989$; $\rho = 1000_{kg/m}^3$

Date: 2017.4.28


Ambient Temperature: 23.3 °C; Liquid Temperature: 22.9 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(7.55, 7.55, 7.55); Calibrated: 2016.5.25;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2016.5.18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch9538/Area Scan (61x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.647 W/kg

Ch9538/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.070 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 0.764 W/kg SAR(1 g) = 0.519 W/kg; SAR(10 g) = 0.344 W/kg Maximum value of SAR (measured) = 0.636 W/kg

13_LTE Band 5_10M_QPSK_1RB_0Offset_Back_10mm_Ch20525

Communication System: UID 0, FDD_LTE (0); Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: MSL_850 Medium parameters used: f = 836.5 MHz; σ = 0.971 S/m; ϵ_r = 53.726; ρ = 1000

Date: 2017.4.27

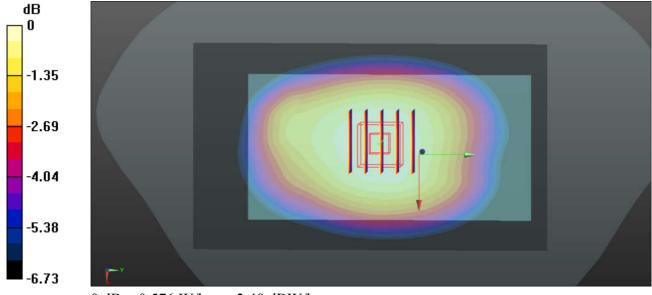
 kg/m^3

Ambient Temperature : 23.3 °C; Liquid Temperature : 22.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3954; ConvF(10.32, 10.32, 10.32); Calibrated: 2016.11.28;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1437; Calibrated: 2016.7.12
- Phantom: SAM1; Type: SAM; Serial: TP-1164
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch20525/Area Scan (71x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.580 W/kg


Ch20525/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.62 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.623 W/kg

SAR(1 g) = 0.511 W/kg; SAR(10 g) = 0.406 W/kg

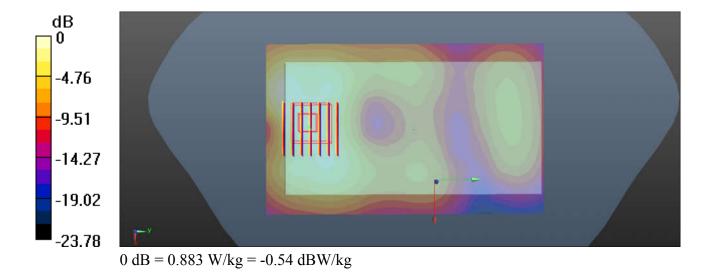
Maximum value of SAR (measured) = 0.576 W/kg

0 dB = 0.576 W/kg = -2.40 dBW/kg

14_LTE Band 7_20M_QPSK_1RB_0Offset_Front_10mm_Ch21350

Communication System: UID 0, FDD_LTE (0); Frequency: 2560 MHz; Duty Cycle: 1:1 Medium: MSL_2600 Medium parameters used: f = 2560 MHz; $\sigma = 2.165$ S/m; $\varepsilon_r = 52.202$; $\rho = 1000$ kg/m³

Date: 2017.4.29


Ambient Temperature: 23.4 °C; Liquid Temperature: 22.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(7.13, 7.13, 7.13); Calibrated: 2016.5.25;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2016.5.18
- Phantom: SAM2; Type: SAM; Serial: TP-1477
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

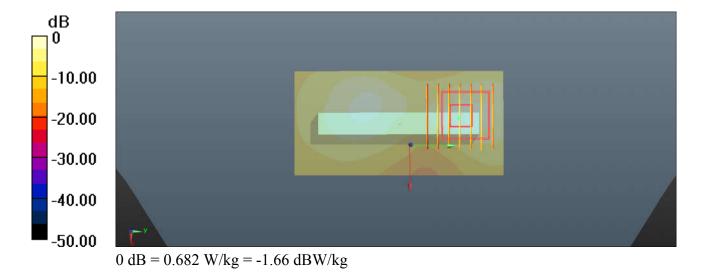
Ch21350/Area Scan (81x131x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.871 W/kg

Ch21350/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.701 V/m; Power Drift = -0.16 dB Peak SAR (extrapolated) = 1.27 W/kg SAR(1 g) = 0.603 W/kg; SAR(10 g) = 0.304 W/kg Maximum value of SAR (measured) = 0.883 W/kg

15_LTE Band 38_20M_QPSK_1RB_0Offset_Bottom Side_10mm_Ch38000

Communication System: UID 0, TDD_LTE (0); Frequency: 2595 MHz; Duty Cycle: 1:1.58964 Medium: MSL_2600 Medium parameters used: f = 2595 MHz; $\sigma = 2.215$ S/m; $\varepsilon_r = 52.069$; $\rho = 1000$ kg/m³

Date: 2017.4.29


Ambient Temperature: 23.4°C; Liquid Temperature: 22.7°C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(7.13, 7.13, 7.13); Calibrated: 2016.5.25;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2016.5.18
- Phantom: SAM2; Type: SAM; Serial: TP-1477
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

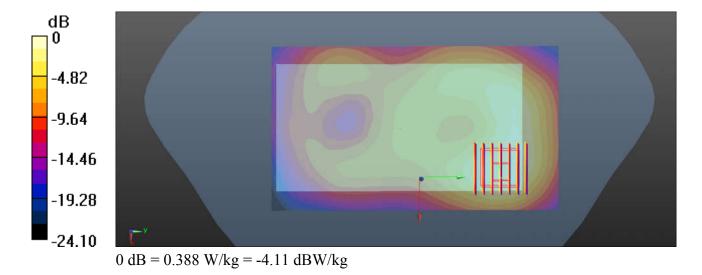
Ch38000/Area Scan (41x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.659 W/kg

Ch38000/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.751 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 0.927 W/kg SAR(1 g) = 0.428 W/kg; SAR(10 g) = 0.175 W/kg Maximum value of SAR (measured) = 0.682 W/kg

16_WLAN2.4GHz_802.11b 1Mbps_Back_10mm_Ch6

Communication System: UID 0, WIFI (0); Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: MSL_2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.998$ S/m; $\varepsilon_r = 52.714$; $\rho = 1000$ kg/m³

Date: 2017.4.29


Ambient Temperature: 23.4 °C; Liquid Temperature: 22.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(7.23, 7.23, 7.23); Calibrated: 2016.5.25;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2016.5.18
- Phantom: SAM2; Type: SAM; Serial: TP-1477
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

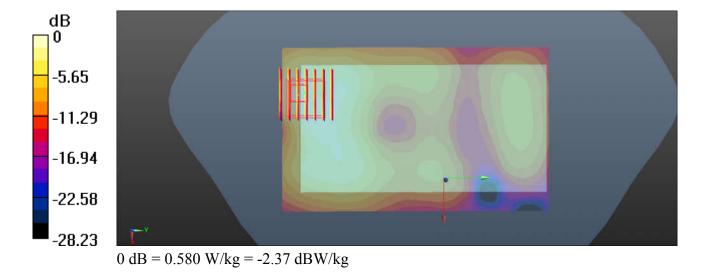
Ch6/Area Scan (81x141x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.382 W/kg

Ch6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.091 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 0.549 W/kg SAR(1 g) = 0.233 W/kg; SAR(10 g) = 0.132 W/kg Maximum value of SAR (measured) = 0.388 W/kg

17 LTE Band 38 20M QPSK 1RB 0Offset Front 10mm Ch38000

Communication System: UID 0, TDD_LTE (0); Frequency: 2595 MHz; Duty Cycle: 1:1.59 Medium: MSL_2600 Medium parameters used: f = 2595 MHz; $\sigma = 2.215$ S/m; $\epsilon_r = 52.069$; $\rho = 1000$ kg/m³

Date: 2017.4.29


Ambient Temperature: 23.4 °C; Liquid Temperature: 22.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(7.13, 7.13, 7.13); Calibrated: 2016.5.25;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2016.5.18
- Phantom: SAM2; Type: SAM; Serial: TP-1477
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch38000/Area Scan (81x131x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.563 W/kg

Ch38000/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.437 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 0.779 W/kg SAR(1 g) = 0.388 W/kg; SAR(10 g) = 0.184 W/kg Maximum value of SAR (measured) = 0.580 W/kg

Appendix C. **DASY Calibration Certificate**

Report No.: FA742708

The DASY calibration certificates are shown as follows.

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958

Issued Date : Jul. 07, 2017 Form version. : 160427 FCC ID: IHDT56WC6 Page C1 of C1

In Collaboration with

CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Client

Sporton-CN

Certificate No:

Z16-97223

CALIBRATION CERTIFICATE

Object

D835V2 - SN: 4d091

Calibration Procedure(s)

FD-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

November 22, 2016

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	27-Jun-16 (CTTL, No.J16X04777)	Jun-17
Power sensor NRP-Z91	101547	27-Jun-16 (CTTL, No.J16X04777)	Jun-17
Reference Probe EX3DV4	SN 7433	26-Sep-16(SPEAG,No.EX3-7433_Sep16)	Sep-17
DAE4	SN 771	02-Feb-16(CTTL-SPEAG,No.Z16-97011)	Feb-17
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	01-Feb-16 (CTTL, No.J16X00893)	Jan-17
Network Analyzer E5071C	MY46110673	26-Jan-16 (CTTL, No.J16X00894)	Jan-17

Name **Function** Signature Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Qi Dianyuan SAR Project Leader Approved by: Lu Bingsong Deputy Director of the laboratory

Issued: November 26, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORMx,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z16-97223