bit 11 Report No. : FA450533B

FCC SAR Test Report

APPLICANT : Motorola Mobility LLC

EQUIPMENT: Mobile Cellular Phone

BRAND NAME: Motorola Mobility LLC

MODEL NAME : 4009

FCC ID : IHDT56PH2

STANDARD: FCC 47 CFR Part 2 (2.1093)

ANSI/IEEE C95.1-1992

IEEE 1528-2003

We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the procedures and had been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by: Eric Huang / Deputy Manager

Este man?

Approved by: Jones Tsai / Manager

lac-MRA

SPORTON INTERNATIONAL INC.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

Page 1 of 10

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

FCC ID: IHDT56PH2

Issued Date: Jun. 19, 2014

Form version. : 140422

Table of Contents

1. Administration Data	3
2. Equipment Under Test (EUT)	
2.1 General Information	
3. Specific Absorption Rate (SAR)	
3.1 Introduction	
3.2 SAR Definition	
4. System Description and Setup	6
5. Transmitter power reduction conditions and modes	
6. Test Setup Information, SAR Measurement Results, and Analysis	
7. Uncertainty Assessment	
8. References	
Appendix A Plate of SAP Massurament	

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

FCC ID: IHDT56PH2

Report No.: FA450533B

Revision History

Report No.: FA450533B

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE	
FA450533B	Rev. 01	Initial issue of report	Jun. 06, 2014	
FA450533B	Rev. 02	Correct LTE Band 4 reduced maximum output power on page7.	Jun. 19, 2014	

1. Administration Data

Testing Laboratory						
Test Site SPORTON INTERNATIONAL INC.						
Test Site Location	No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. TEL: +886-3-327-3456 FAX: +886-3-328-4978					

Applicant					
Company Name Motorola Mobility LLC					
Address 222 W Merchandise Mart Plaza, Suite 1800, Chicago, IL 60654, United States					

Manufacturer Manufacturer					
Company Name Motorola Mobility LLC					
Address	222 W Merchandise Mart Plaza, Suite 1800, Chicago, IL 60654, United States				

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 19, 2014 Form version. : 140422 FCC ID: IHDT56PH2 Page 3 of 10

REPORT No.: FA450533B

2. Equipment Under Test (EUT)

2.1 General Information

Product Feature & Specification							
Equipment Name	Mobile Cellular Phone						
Brand Name	Motorola Mobility LLC						
Model Name	4009						
FCC ID	IHDT56PH2						
Serial Number	NDGW370001						
Wireless Technology and Frequency Range	CDMA2000 BC0: 824.7 MHz ~ 848.31 MHz CDMA 2000 BC1: 1851.25 MHz ~ 1908.75 MHz LTE Band 12: 699.7 MHz ~ 715.3 MHz LTE Band 17: 706.5 MHz ~ 713.5 MHz LTE Band 5: 824.7 MHz ~ 848.3 MHz LTE Band 4: 1710.7 MHz ~ 1754.3 MHz WLAN 2.4GHz Band: 2412 MHz ~ 2462 MHz Bluetooth: 2402 MHz ~ 2480 MHz						
Mode	CDMA2000: 1xRTT/1xEv-Do(Rev.0)/1xEv-Do(Rev.A) LTE: QPSK, 16QAM 802.11b/g/n HT20 Bluetooth v3.0+EDR Bluetooth v4.0-LE						
HW Version	P3						
SW Version	peregrine_usc_userdebug_4.4.3_KXB21.14-L1.12_14_intcfg_test-keys_usc_US						
EUT Stage	Production Unit						

Remark:

- 1. This device supported VoIP in CDMA and LTE (e.g. 3rd party VoIP).
- 2. While operating in body-adjacent exposure configurations during a mobile hotspot session, reduced power limits are enforced on the CDMA BC1 and LTE Band 4 transmitter. More detailed information which can be referred to "operational description".

3. Specific Absorption Rate (SAR)

3.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

Report No.: FA450533B

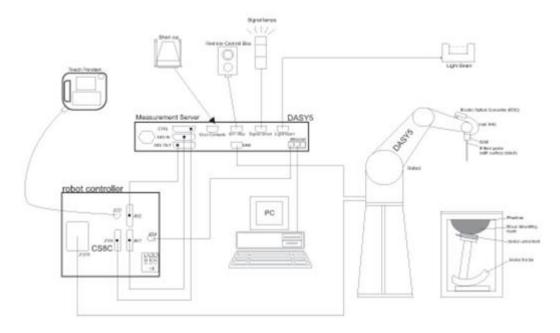
3.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (p). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

$$SAR = \frac{\sigma |E|^2}{\rho}$$


Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

TION LAB. Exhibit 11 Report No. : FA450533B

4. System Description and Setup

The DASY system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

REPORT No.: FA450533B

5. Transmitter power reduction conditions and modes

The phone utilizes reduced limits for the maximum transmit power for its transmitters when operation under the following noted conditions to ensure SAR exposure compliance is maintained. Tables of the reduced limits used for testing are given below. A complete description of this functionality is provided in the Operational Description. The implementation to trigger the reduction in power requires the device to be radiating, which prevents conducted power measurements of this functionality without modification to the unit

While operating in body-adjacent exposure configurations during a mobile hotspot session, reduced power limits are enforced on the CDMA BC1 and LTE Band 4 transmitter. More detailed information which can be referred to "operational description".

Mode(s) of Operation	BC1	LTE Band 4
Frequency Range (MHz)	1851.25 ~ 1908.75	1710.7 ~ 1754.3
Maximum Output Power (dBm)	25.0	24.0
Reduced Maximum Output Power (dBm)	21.0	21.5

6. Test Setup Information, SAR Measurement Results, and Analysis

The following SAR test data is being provided to demonstrate the device's effective utilization of power reduction conditions specified in Operational Description. The values in the table(s) are provided solely for purposes of confirming compliant power reduction operation and do not represent maximum SAR values of the product. For maximum reported SAR compliance values, refer to the Exhibit 11 SAR test report.

The test conditions that produced the highest SAR values for each combination of EUT mode and exposure condition are indicated as bold numbers in the following tables. Plots of these tests are included in Appendix A of this report.

<CDMA BC 1 during a mobile hotspot session>

		Channel f (MHz)	1 g SAR value without Power Reduction		1 g SAR value with Power Reduction		Measured
Configuration Channel	Channel		Maximum Power Limit (dB)	Measured 1g SAR (W/kg)	Maximum Power Limit (dB)	Measured 1g SAR (W/kg)	SAR Reduction (dB)
Bottom Edge of Phone 10 mm from Phantom	1175	1908.75	25.0	1.580	21.0	0.643	3.9

<LTE Band 4 during a mobile hotspot session>

		,	1 g SAR value without Power Reduction		1 g SAR value with Power Reduction		Measured
Configuration	Channel	(MHz)	Maximum Power Limit (dB)	Measured 1g SAR (W/kg)	Maximum Power Limit (dB)	Measured 1g SAR (W/kg)	SAR Reduction (dB)
Bottom Edge of Phone 10 mm from Phantom	20300	1745	24.0	1.240	21.5	0.710	2.4

SPORTON INTERNATIONAL INC.

FCC ID : IHDT56PH2 Page 7 of 10 Form version. : 140422

Report No. : FA450533B

7. Uncertainty Assessment

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience, and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in Table 14.1

Uncertainty Distributions	Normal	Rectangular	Triangular	U-Shape
Multi-plying Factor ^(a)	1/k ^(b)	1/√3	1/√6	1/√2

- (a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity
- (b) κ is the coverage factor

Table 7.1. Standard Uncertainty for Assumed Distribution

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is shown in the following tables.

Uncertainty Standard Standard **Probability** Ci Ci **Divisor Error Description** Value Uncertainty Uncertainty Distribution (1g) (10g) (±%) (10g) (1g)**Measurement System Probe Calibration** 6.0 Normal 1 1 1 ± 6.0 % ± 6.0 % 0.7 Axial Isotropy 4.7 Rectangular √3 0.7 ± 1.9 % ± 1.9 % √3 0.7 0.7 Hemispherical Isotropy 9.6 Rectangular ± 3.9 % ± 3.9 % **Boundary Effects** 1.0 Rectangular √3 1 1 ± 0.6 % ± 0.6 % 4.7 √3 1 1 Linearity Rectangular $\pm 2.7 \%$ $\pm 2.7 \%$ System Detection Limits 1.0 Rectangular 1 1 ± 0.6 % √3 \pm 0.6 % Readout Electronics 0.3 Normal 1 1 1 ± 0.3 % ± 0.3 % 8.0 √3 1 ± 0.5 % ± 0.5 % Response Time Rectangular 1 1 1 Integration Time 2.6 Rectangular √3 ± 1.5 % ± 1.5 % **RF Ambient Noise** 3.0 Rectangular √3 1 1 ± 1.7 % ± 1.7 % **RF Ambient Reflections** 3.0 Rectangular √3 1 1 ± 1.7 % ± 1.7 % Probe Positioner 0.4 ± 0.2 % ± 0.2 % Rectangular 1 1 √3 **Probe Positioning** 2.9 Rectangular √3 1 1 ± 1.7 % ± 1.7 % √3 1 Max. SAR Eval. 1.0 1 Rectangular ± 0.6 % $\pm 0.6 \%$ **Test Sample Related Device Positioning** 2.9 Normal 1 1 1 ± 2.9 % ± 2.9 % Device Holder 3.6 Normal 1 1 1 ± 3.6 % ± 3.6 % Power Drift 5.0 Rectangular √3 1 1 ± 2.9 % ± 2.9 % **Phantom and Setup** Phantom Uncertainty 4.0 Rectangular 1 1 $\pm 2.3 \%$ $\pm 2.3 \%$ √3 Liquid Conductivity (Target) 5.0 0.64 0.43 ± 1.2 % Rectangular √3 ± 1.8 % Liquid Conductivity (Meas.) 2.5 1 0.64 Normal 0.43 ± 1.6 % ± 1.1 % √3 Liquid Permittivity (Target) 5.0 Rectangular 0.6 0.49 ± 1.7 % ± 1.4 % Liquid Permittivity (Meas.) 2.5 Normal 1 0.6 0.49 ± 1.5 % ± 1.2 % **Combined Standard Uncertainty** ± 11.0 % ± 10.8 % Coverage Factor for 95 % K=2

Table 7.2. Uncertainty Budget for frequency range 300 MHz to 3 GHz

Expanded Uncertainty

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

FCC ID: IHDT56PH2 Page 9 of 10

Issued Date: Jun. 19, 2014 Form version.: 140422

± 22.0 %

± 21.5 %

Report No.: FA450533B

8. References

[1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"

Report No.: FA450533B

- [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992
- [3] IEEE Std. 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- [4] SPEAG DASY System Handbook
- [5] FCC KDB 248227 D01 v01r02, "SAR Measurement Procedures for 802.11 a/b/g Transmitters", May 2007
- [6] FCC KDB 447498 D01 v05r02, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Feb 2014
- [7] FCC KDB 648474 D04 v01r02, "SAR Evaluation Considerations for Wireless Handsets", Dec 2013.
- [8] FCC KDB 941225 D01 v02, "SAR Measurement Procedures for 3G Devices CDMA 2000 / Ev-Do / WCDMA / HSDPA / HSPA", October 2007
- [9] FCC KDB 941225 D02 v02r02, "SAR Guidance for HSPA, HSPA+, DC-HSDPA and 1x-Advanced", May 2013.
- [10] FCC KDB 941225 D05 v02r03, "SAR Evaluation Considerations for LTE Devices", Dec 2013
- [11] FCC KDB 941225 D06 v01r01, "SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities", May 2013
- [12] FCC KDB 865664 D01 v01r03, "SAR Measurement Requirements for 100 MHz to 6 GHz", Feb 2014.
- [13] FCC KDB 865664 D02 v01r01, "RF Exposure Compliance Reporting and Documentation Considerations" May 2013.

Appendix A. Plots of SAR Measurement

Report No.: FA450533B

The plots are shown as follows.

SPORTON INTERNATIONAL INC. Page A1 of A1 Issued Date : Jun. 19, 2014

TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Form version. : 140422

FCC ID: IHDT56PH2

CDMA2000 BC1_RTAP 153.6Kbps_Bottom Side_1cm_Ch1175

Communication System: CDMA; Frequency: 1908.75 MHz; Duty Cycle: 1:1

Medium: MSL_1900_140518 Medium parameters used: f = 1909 MHz; σ = 1.525 S/m; ϵ_r = 53.583; ρ

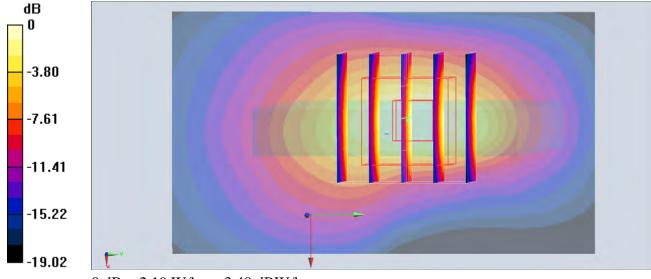
Date: 2014/5/18

 $= 1000 \text{ kg/m}^3$

Ambient Temperature: 23.5 °C; Liquid Temperature: 22.5 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3955; ConvF(8.17, 8.17, 8.17); Calibrated: 2013/12/23;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1399; Calibrated: 2013/11/7
- Phantom: SAM RIGHT; Type: SAM; Serial: 1719
- Measurement SW: DASY52, Version 52.8 (6); SEMCAD X Version 14.6.9 (7117)


Configuration/Ch1175/Area Scan (41x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 2.29 W/kg

Configuration/Ch1175/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 39.584 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 2.71 W/kg

SAR(1 g) = 1.58 W/kg; SAR(10 g) = 0.790 W/kgMaximum value of SAR (measured) = 2.19 W/kg

0 dB = 2.19 W/kg = 3.40 dBW/kg

CDMA2000 BC1_RTAP 153.6Kbps_Bottom Side_1cm_Ch1175

Communication System: CDMA; Frequency: 1908.75 MHz; Duty Cycle: 1:1

 $Medium:\ MSL_1900_140510\ Medium\ parameters\ used:\ f=1909\ MHz;\ \sigma=1.543\ S/m;\ \epsilon_r=51.95;\ \rho=1.543\ S/m$

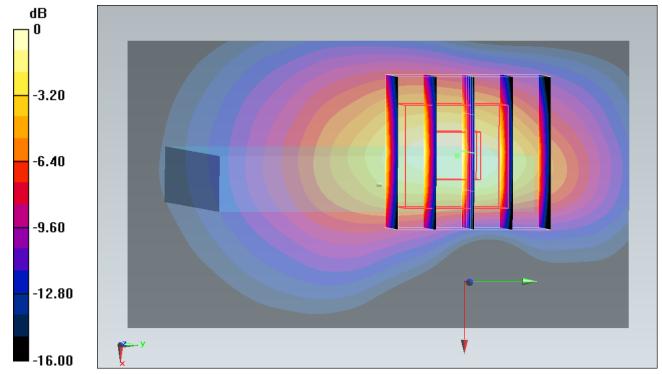
Date: 2014/5/10

 1000 kg/m^3

Ambient Temperature: 23.7 °C; Liquid Temperature: 22.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(7.85, 7.85, 7.85); Calibrated: 2013/11/4;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1338; Calibrated: 2013/11/5
- Phantom: SAM Right; Type: QD000P40CC; Serial: TP:1383
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)


Configuration/Ch1175/Area Scan (41x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.963 W/kg

Configuration/Ch1175/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.934 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 1.16 W/kg

SAR(1 g) = 0.643 W/kg; SAR(10 g) = 0.317 W/kgMaximum value of SAR (measured) = 0.906 W/kg

0 dB = 0.906 W/kg = -0.43 dBW/kg

LTE Band 4 20M QPSK 50RB 49Offset Bottom Side 1cm Ch20300

Communication System: LTE; Frequency: 1745 MHz; Duty Cycle: 1:1

 $Medium: \ \underline{MSL_1750_140518} \ Medium \ parameters \ used: \ f=1745 \ MHz; \ \sigma=1.54 \ S/m; \ \epsilon_r=51.763; \ \rho=1.54 \ S/m; \ \epsilon_r=51.763; \ \rho=1.54 \ S/m; \ \epsilon_r=51.763; \ \rho=1.54 \ S/m; \ \epsilon_r=1.54 \ S/m; \ \delta_r=1.54 \ S/m; \ \delta_r=1.54 \ S/m; \ \delta_r=1.54 \ S/m; \ \delta_r=1.54 \ S/m; \ \delta_r=1.5$

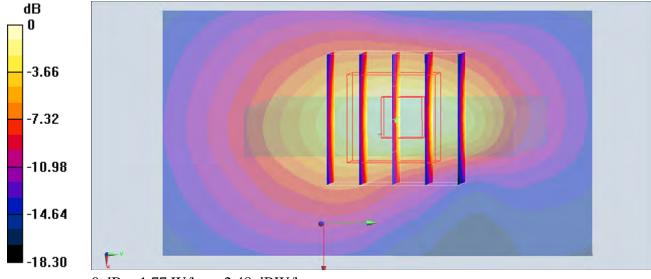
Date: 2014/5/18

 1000 kg/m^3

Ambient Temperature: 23.5 °C; Liquid Temperature: 22.5 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3770; ConvF(7.79, 7.79, 7.79); Calibrated: 2014/4/24;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn914: Calibrated: 2013/12/18
- Phantom: SAM RIGHT; Type: SAM; Serial: 1719
- Measurement SW: DASY52, Version 52.8 (6); SEMCAD X Version 14.6.9 (7117)


Configuration/Ch20300/Area Scan (41x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.88 W/kg

Configuration/Ch20300/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 34.483 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 2.24 W/kg

SAR(1 g) = 1.24 W/kg; SAR(10 g) = 0.638 W/kgMaximum value of SAR (measured) = 1.77 W/kg

0 dB = 1.77 W/kg = 2.48 dBW/kg

LTE Band 4_20M_QPSK_50RB_49Offset_Bottom Side_1cm_Ch20300

Communication System: LTE; Frequency: 1745 MHz; Duty Cycle: 1:1

Medium: MSL_1750_140511 Medium parameters used: f = 1745 MHz; $\sigma = 1.503$ S/m; $\epsilon_r = 52.025$; ρ

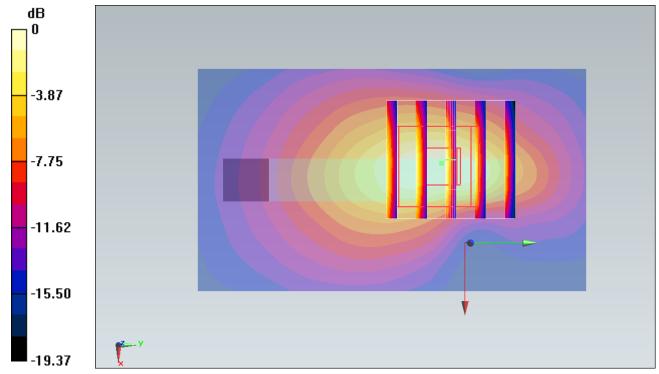
Date: 2014/5/11

 $= 1000 \text{ kg/m}^3$

Ambient Temperature: 23.5 °C; Liquid Temperature: 22.5 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(8.3, 8.3, 8.3); Calibrated: 2013/11/4;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1338: Calibrated: 2013/11/5
- Phantom: SAM Right; Type: QD000P40CC; Serial: TP:1383
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)


Configuration/Ch20300/Area Scan (41x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.02 W/kg

Configuration/Ch20300/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.388 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.28 W/kg

SAR(1 g) = 0.710 W/kg; SAR(10 g) = 0.360 W/kgMaximum value of SAR (measured) = 0.970 W/kg

0 dB = 0.970 W/kg = -0.13 dBW/kg