

Portable Cellular Phone SAR Test Report

Motorola Mobility, Inc.

Tests Requested By: 600 N. US Highway 45

Libertyville, IL 60048

Test Report #: 24966-1F **Date of Report:** May-03-2012

Date of Test: Mar-28-2012 to Apr-20-2012

FCC ID #: IHDT56NH4
Generic Name: M0D68

Motorola Mobility, Inc. - ADR Test Services Laboratory

Test Laboratory: No.1 Wang Jing East Road, Chaoyang District

Beijing, P. R. China, 100102

HaiLiang Tang

Report Author:

Grunden Zonz

RF Engineer

This laboratory is accredited to ISO/IEC 17025-2005 to perform the following tests:

<u>Tests:</u>

Procedures: IEC 62209-1

Electromagnetic Specific Absorption Rate

RSS-102

IEEE 1528 - 2003

FCC OET Bulletin 65 (including Supplement C) Australian Communications Authority Radio Communications (Electromagnetic Radiation –

Human Exposure) Standard 2003

CENELEC EN 50360 ARIB Std. T-56 (2002)

Accreditation:

2404

On the following products or types of products:

Wireless Communications Devices (Examples): Two Way Radios; Portable Phones (including Cellular, Licensed Non-Broadcast and PCS); Low Frequency Readers; and Pagers

Motorola declares under its sole responsibility that the portable cellular telephone model to which this declaration relates, is in conformity with the appropriate General Population/Uncontrolled RF exposure standards, recommendations and guidelines (FCC 47 CFR §2.1093) as well as with CENELEC en50360:2001 and ANSI / IEEE C95.1. It also declares that the product was tested in accordance with IEEE 1528 / CENELEC EN62209-1 (2006), as well as other appropriate measurement standards, guidelines and recommended practices. Any deviations from these standards, guidelines and recommended practices are noted below:

Statement of Compliance:

Motorola's ISO 17025 accreditation scope does not currently include SAR testing in the 5 GHz band. Therefore, SAR testing performed in this band was performed outside of our ISO 17025 accreditation. The general procedures and guidelines provided within; FCC KDB 248227 D01, FCC KDB 648474 D01, FCC KDB 865664 D01 and IEC 62209-2 were utilized for testing.

©Motorola Mobility, Inc. 2012

This test report shall not be reproduced except in full, without written approval of the laboratory. The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report. Motorola encourages all feedback, both positive and negative, on this test report.

Exhibit 11

Appendix 5: Dipole Characterization Certificate

Table of Contents

1. Introduction	
2. Description of the Device Under Test	4
2.1 Device Signaling	4
2.1.1 Power limit reduction for Mobile Hotspot functionality	
3. Test Equipment Used	6
3.1 Dosimetric System	6
3.2 Additional Equipment	6
4. Electrical parameters of the tissue simulating liquid	7
5. System Accuracy Verifications	
6. Test Results	
References	11
Appendix 1: SAR distribution comparisons for System Accuracy Verifications	
Appendix 2: SAR distribution plots for Mobile Hotspot Test Results	
Appendix 3: Measurement Uncertainty Budget	
Appendix 4: Probe Calibration Certificate	

Revision History

Revision Version	Date	Notes
Rev. 0	11-May-2012	Initial report release

FCC ID: IHDT56NH4

1. Introduction

The Motorola Mobility ADR Test Services Laboratory has performed measurements of the maximum potential exposure to the user of the portable cellular phone covered by this test report. The Specific Absorption Rate (SAR) of this product was measured. The portable cellular phone was tested in accordance with [1], [4] and [5]. The SAR values measured for the portable cellular phone are below the maximum recommended levels of 1.6 W/kg in a 1 g average set in [3] and 2.0 W/kg in a 10 g average set in [2].

Per direction of the FCC, the following SAR test data is being provided to demonstrate the device's effective utilization of power reduction conditions specified in Exhibit 12 - Operational Description. The values in the table in Section 6.0 are provided solely for purposes of confirming compliant power reduction operation and do not represent maximum SAR values of the product. For maximum reported SAR compliance values, refer to the Exhibit 11 SAR test report.

2. Description of the Device Under Test

2.1 Device Signaling

Serial Number(s)	352205050010585 (GSM/WCDMA Band V mobile hotspot SAR testing)
(Functional Use)	352206050003182 (WCDMA Band IV mobile hotspot SAR testing)
Production Unit or Identical Prototype (47 CFR §2908)	Identical Prototype
Device Category	Portable (Mobile Station Class B)
RF Exposure Limits	General Population / Uncontrolled

Mode(s) of Operation	Modulation Mode(s)	Maximum Output Power Setting	Duty Cycle	Transmitting Frequency Range(s)
GSM 850	GMSK	33.5 dBm	1:8	824.2 - 848.8 MHz
GSM 1900	GMSK	30.5 dBm	1:8	1850.2 - 1909.8 MHz
WCDMA 850	QPSK	24.0 dBm	1:1	826.4 - 846.6 MHz
WCDMA 1700	QPSK	24.0 dBm	1:1	1712.4 - 1752.6 MHz
Wi-Fi 802.11b/g/n	BPSK	19.26 dBm	1:1	2412.0 - 2462.0 MHz
Bluetooth	GFSK	9.78 dBm	1:1	2402.0 – 2480.0 MHz

GSM Data	GPRS/EDGE Class 12 (4 uplink timeslots; 4 downlink timeslots; 5 total timeslots per frame)
Functionality	Class B (DTM not supported)

Mode(s) of Operation	GPRS/EDGE 850			GPRS/EDGE 1900			0	
Modulation	GMSK			GMSK				
Maximum Output Power Setting (dBm)	33.5	30.5	28.5	27.5	30.5	27.5	25.5	24.5
Time Average Output Power Setting (dBm)	24.5	24.5	24.3	24.5	21.5	21.5	21.3	21.5
Duty Cycle	1:8	2:8	3:8	4:8	1:8	2:8	3:8	4:8
Transmitting Frequency Range(s)	8	824.2 - 848.8 MHz			18	50.2 - 19	909.8 MI	Hz

Mode(s) of Operation	EDGE 850			EDGE 1900				
Modulation	8PSK				8P:	SK		
Maximum Output Power Setting (dBm)	28.1	25.2	23	22.2	27.2	24.2	22.2	21.2
Time Average Output Power Setting (dBm)	19.1	19.2	18.8	19.2	18.2	18.2	18	18.2
Duty Cycle	1:8	2:8	3:8	4:8	1:8	2:8	3:8	4:8
Transmitting Frequency Range(s)	824.2 - 848.8 MHz			18	50.2 - 19	909.8 MI	Hz	

2.1.1 Power limit reduction for Mobile Hotspot functionality

The DUT utilizes reduced limits for the maximum transmit power when the mobile hotspot functionality is enabled. A table of the reduced limits used for testing are given below. A complete description of this functionality is provided in the "Operational Description" contained within Exhibit 12. The implementation to trigger the reduction in power requires the device to be radiating, which prevents conducted power measurements of this functionality without modification to the unit.

Mode(s) of Operation	WCDMA 850	WCDMA 1700
Channel Ranges	4132 - 4233	1312 - 1513
Maximum Output Power Setting (dBm)	24.0	24.0
Reduced Maximum Output Power Setting (dBm)	21.0	18.0

Mode(s) of Operation		GPRS/EDGE 850				GPRS/ED	OGE 1900	
Modulation		GM	ISK			GM	ISK	
Duty Cycle	1:8	2:8	3:8	4:8	1:8	2:8	3:8	4:8
Maximum Output Power Setting (dBm)	33.5	30.5	28.5	27.5	30.5	27.5	25.5	24.5
Time Average Output Power Setting (dBm)	24.5	24.5	24.3	24.5	21.5	21.5	21.3	21.5
Reduced Maximum Output Power Setting (dBm)	30.5	27.5	25.5	24.5	27.5	24.5	22.5	21.5
Reduced Time Average Output Power Setting (dBm)	21.5	21.5	21.3	21.5	18.5	18.5	18.3	18.5

Mode(s) of Operation	EDGE 850				EDGE	E 1900		
Modulation	8PSK 8PSK							
Duty Cycle	1:8	2:8	3:8	4:8	1:8	2:8	3:8	4:8
Maximum Output Power Setting (dBm)	28.1	25.2	23	22.2	27.2	24.2	22.2	21.2
Time Average Output Power Setting (dBm)	19.1	19.2	18.8	19.2	18.2	18.2	18	18.2
Reduced Maximum Output Power Setting (dBm)	25.1	22.2	20	19.2	24.2	21.2	19.2	18.2
Reduced Time Average Output Power Setting (dBm)	16.1	16.2	15.8	16.2	15.2	15.2	15	15.2

3. Test Equipment Used

3.1 Dosimetric System

The Motorola Mobility ADR Test Services Laboratory utilizes a Dosimetric Assessment System (DASY4TM v4.7 or DASY52TM) manufactured by Schmid & Partner Engineering AG (SPEAGTM), of Zurich Switzerland. All the SAR measurements are taken within a shielded enclosure. The overall 10 g RSS uncertainty of the measurement system is $\pm 10.8\%$ (K=1) with an expanded uncertainty of $\pm 21.6\%$ (K=2). The overall 1 g RSS uncertainty of the measurement system is $\pm 11.1\%$ (K=1) with an expanded uncertainty of $\pm 22.2\%$ (K=2). The measurement uncertainty budget is given in Appendix 6. Per IEEE 1528, this uncertainty budget is applicable to the SAR range of 0.4 W/kg to 10 W/kg.

The list of calibrated equipment used for the measurements is shown in the following table.

Description	Serial Number	Cal Date	Cal Due Date
DASY4™ DAE V1	437	Feb-9-2012	Feb-9-2013
E-Field Probe ES3DV3	3178	Jan-11-2012	Jan-11-2013
S.A.M. Phantom used for 800/900 MHz	TP-1407		
S.A.M. Phantom used for 1800/1900/2450 MHz	TP-1160		
Dipole Validation Kit, DV835V2	421TR	Apr-04-2011	Apr-04-2013
Dipole Validation Kit, DV1800V2	2d128	Apr-06-2011	Apr-06-2013
Dipole Validation Kit, DV2450V2	788	Jul-12-2011	Jul-12-2012

3.2 Additional Equipment

Description	Serial Number	Cal Date	Cal Due Date
Power Meter E4419B	GB43310686	Feb-23-2012	Feb-23-2013
Power Meter 437B	3125U09525	Feb-23-2012	Feb-23-2013
Power Sensor - 8481A	MY41096692	Feb-23-2012	Feb-23-2013
Power Meter E4419B	GB43310686	Feb-23-2012	Feb-23-2013
Power Sensor #1 - E9301A	MY41495336	Feb-23-2012	Feb-23-2013
Power Sensor #2 - E9301A	MY41497905	Feb-23-2012	Feb-23-2013
Amplifier - Mini Circuits ZHL42	061906		
3dB Fixed Attenuator 8491A	MY39263438	Jan-28-2012	Jan-28-2013
10dB Fixed Attenuator 8491A	MY39263627	Jan-28-2012	Jan-28-2013
Dual Directional Coupler 778D	20076	Jan-28-2012	Jan-28-2013
Power Supply HP6632B	MY43002724	Feb-24-2012	Feb-24-2013
Signal Generator HP8648C	3847U02385	Feb-21-2012	Feb-21-2013
Network Analyzer E5071B	MY42301800	Jan-28-2012	Jan-28-2013
Dielectric Probe Kit HP85070E	MY44300245		

4. Electrical parameters of the tissue simulating liquid

Prior to conducting SAR measurements, the relative permittivity, ε_r , and the conductivity, σ , of the tissue simulating liquids were measured with a HP85070 Dielectric Probe Kit These values, along with the temperature of the simulated tissue are shown in the table below. The recommended limits for permittivity and conductivity are also shown. A mass density of $\rho = 1$ g/cm^3 was entered into the system in all the cases. It can be seen that the measured parameters are within tolerance of the recommended limits specified in [1] and [5].

E-field probes calibrated at 1810 MHz were used for "1900 MHz" band (1850 MHz - 1910 MHz) SAR measurements. FCC KDB 450824 provides additional requirements on page 3 of 6 for SAR testing that is performed with probe calibration points that are more than 50 MHz removed from the measured bands. The KDB requires; "(2) When nominal tissue dielectric parameters are specified in the probe calibration data, the tissue dielectric parameters measured for routine measurements should be less than the target Er and higher than the target Sigma values to minimize SAR underestimations". The 1900 MHz simulated tissues listed below meet this criteria.

f	Tissue		Dielectric Parameters		
(MHz)	type	Limits / Measured	$\mathbf{\epsilon}_r$	σ (S/m)	Temp (°C)
835		Measured, Apr-19-2012	53.1	0.96	21.8
		Recommended Limits	55.4 ±5%	0.966 ±5%	18-25
1730	Body	Measured, Apr-20-2012	52.9	1.48	21.9
1/30		Recommended Limits	53.5 ±5%	1.48 ±5%	18-25

The list of ingredients and the percent composition used for the simulated tissues are indicated in the table below.

Ingredient	782 / 835 / 900 MHz Head	782 / 835 / 900 MHz Body	1730 MHz Head	1730 MHz Body	1800 MHz / 1900 MHz Head	1800 MHz / 1900 MHz Body	2450 MHz Head	2450 MHz Body
Sugar	57	44.9						
DGBE			47	30.8	47	30.8		30
Diacetin							51	
Water	40.45	53.06	52.5	68.77	52.62	68.8	48.75	70
Salt	1.45	0.94	0.5	0.43	0.38	0.4	0.15	
HEC	1	1						
Bact.	0.1	0.1					0.1	

5. System Accuracy Verifications

A system accuracy verification of the DASY4TM was performed using the measurement equipment listed in Section 3.1. The daily system accuracy verification occurs within the flat section of the SAM phantom.

A SAR measurement was performed to verify the measured SAR was within $\pm 10\%$ from the target SAR indicated in Appendix 7. These frequencies are within $\pm 10\%$ of the compliance test mid-band frequency as required in [1] and [5]. The test was conducted on the same days as the measurement of the DUT. Recommended limits for permittivity and conductivity, specified in [5], are shown in the table below. The obtained results from the system accuracy verification are also displayed in the table below. SAR values are normalized to 1 W forward power delivered to the dipole. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values. The distributions of SAR compare well with those of the reference measurements (see Appendix 1). For frequencies below 3 GHz, the simulated tissue depth was verified to be $15.0 \text{ cm} \pm 0.5 \text{ cm}$. Z-axis scans showing the SAR penetration are also included in Appendix 1.

	System Accuracy Verification Measurements for Body SAR Measurements									
f		SAR (W/kg),	Dielectric P	arameters	Ambient	Tissue				
(MHz)	Description	1 gram	ϵ_r	σ (S/m)	Temp (°C)	Temp (°C)				
835	Measured, Apr-19-2012	9.35	53.1	0.96	21.7	21.8				
633	Recommended Limits	9.77	55.2 ±5%	0.97 ±5%	18-25	18-25				
1800	Measured, Apr-20-2012	39.1	52.7	1.57	21.7	21.9				
1000	Recommended Limits	37.9	53.3 ±5%	1.52 ±5%	18-25	18-25				

The following probe conversion factors were used on the E-Field probe(s) used with the system accuracy verification measurements for body SAR measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe ES3DV3		835	5.70	6 of 11
	3178	1810	4.72	6 of 11
		2450	4.13	6 of 11

6. Test Results

The test sample was operated using an actual transmission through a base station simulator. Wi-Fi testing was conducted using manufacturer test mode software, per guidance given in FCC KDB 248227. The base station simulator or test software was set up for the proper channels, transmitter power levels and transmit modes of operation.

The phone was tested in the configurations stipulated in [1], [4] and [5]. The phone was positioned into these configurations using the device holder supplied with the DASY4TM SAR measurement system. The default settings for the "coarse" and "cube" scans were chosen and used for measurements. The grid spacing of the coarse scan was set to 15 mm or less as shown in the SAR plots included in Appendices 2 through 4. Please refer to the DASY4TM manual for additional information on SAR scanning procedures and algorithms used.

The DUT covered by this report has an integrated battery (p/n SNN5899A – 1780mAH) that is not intended for removal by the end user.

This battery was used to do all of the SAR testing. The phone was placed in the SAR measurement system with a fully charged battery.

The SAR results shown in tables 5 through 6 are maximum SAR values averaged over 1 gram of phantom tissue, to demonstrate compliance to [3] and also over 10 grams of phantom tissue, to demonstrate compliance to [6]. Also shown are the temperature of the simulated tissue after the test, the measured drift and the extrapolated SAR. The exact method of extrapolation is:

Extrapolated SAR = (Measured or Corrected SAR) * $10^{(-drift/10)}$

The SAR reported at the end of the measurement process by the DASY4TM measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test.

The test conditions that produced the highest SAR values in each band are indicated as bold numbers in the following tables and are included in Appendix 3. All other test conditions measured lower SAR values than those included in Appendix 3.

A "flat" phantom was used for the body-worn tests. This "flat" phantom is made out of 1" thick natural High Density Polyethylene with a thickness at the bottom of 2.0 mm. It measures 52.7 cm(long) by 26.7 cm(wide) by 21.2 cm(tall). The simulated tissue depth was verified to be 15.0 cm \pm 0.5 cm.

The simulated tissue depth was verified to be 15.0 cm \pm 0.5 cm for frequencies less than 3 GHz, or $10.0 \text{ cm} \pm 0.5 \text{ cm}$ for frequencies greater than 3 GHz.

The following probe conversion factors were used on the E-Field probe(s) used for the body-worn measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
		835	5.70	6 of 11
E-Field Probe ES3DV3	3178	1810	4.72	6 of 11
		2450	4.13	6 of 11

Per direction of the FCC, the following SAR test data is being provided to demonstrate the device's effective utilization of power reduction conditions specified in Exhibit 12 - Operational Description. The values in the table are provided solely for purposes of confirming compliant power reduction operation and do not represent maximum SAR values of the product. For maximum reported SAR compliance values, refer to the Exhibit 11 SAR test report.

			Mobile	Hotspot, Phon	ne 10 mm from P	Phantom Phantom			
					AR value Reduction		AR value Reduction	Pwr	Measured
F (MHz)	Mode	Test Configuration	Channel	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)	Reduction Specification (dB)	Pwr Reduction (dB)
		Front of Device	128						
	GPRS 850 class 12 (4 Upslots)	10 mm from	190	0.762	0.77	0.426	0.43	-3	-2.5
	Phantom	251							
833	835	Back of Device 10 mm from Phantom	4132						
	WCDMA 800, HSPA Rel 6, Sub 1		4180	0.826	0.83	0.423	0.42	-3	-3
			4233						
		Bottom Edge of	512						
	GPRS 1900 class 12 (4 Upslots)	Device 10 mm	661	1.76	1.76	0.673	0.69	-3	-4.1
1000		from Phantom	810						
1880		Dattam Edan of	1312						
	WCDMA 1700, HSPA Rel 6, Sub 1	Bottom Edge of Device 10 mm	1413	1.88	1.88	0.468	0.47	-6	-6
		from Phantom	1513						

References

- [1] CENELEC, en62209-1:2006 "Human Exposure to Radio Frequency Fields From Hand Held and Body Mounted Wireless Communication Devices Human Models, Instrumentation, and Procedures"
- [2] CENELEC, en50360:2001 "Product standard to demonstrate the compliance of mobile phones with the basic restrictions related to human exposure to electromagnetic fields (300 MHz 3 GHz)".
- [3] ANSI / IEEE, C95.1 1992 Edition "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz"
- [4] FCC OET Bulletin 65 Supplement C 01-01
- [5] IEEE 1528 2003 Edition "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques"
- [6] ICNIRP Guidelines "Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic, and Electromagnetic Fields (up to 300 GHz)"

Appendix 1

SAR distribution comparison for the system accuracy verification

Date/Time: 4/19/2012 7:56:34 AM

Test Laboratory: MOTOROLA - Apr-19-2012 835 MHz Body

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:421TR; FCC ID:IHDT56NH3 Procedure Notes: 835 MHz System Performance Check; Dipole Sn# 421TR; Input Power = 200 mW;

Sim.Temp@meas = 21.8; Sim.Temp@SPC = 21.8; Room Temp @ SPC = 21.7 Communication System: CW - Dipole; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: Validation *BODY Tissue*;

Medium parameters used: f = 835 MHz; $\sigma = 0.96$ mho/m; $\varepsilon_r = 53.1$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3178; ConvF(5.7, 5.7, 5.7); Calibrated: 1/11/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn437; Calibrated: 2/9/2012
- Phantom: R11 Section 1, Amy Twin, Rev3 (3-Feb-10); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Z-Axis Retraction (1x1x31):

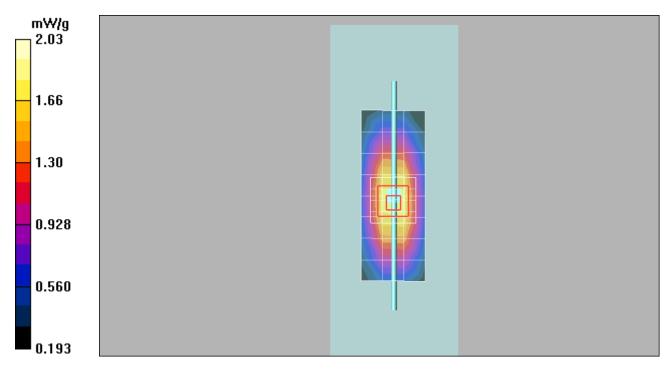
Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 2.04 mW/g

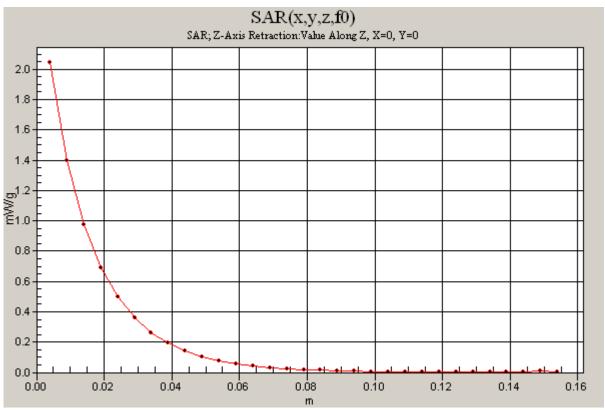
Daily SPC Check/Dipole Area Scan (9x4x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.71 mW/g

Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 46.4 V/m; Power Drift = 0.025 dB

Peak SAR (extrapolated) = 2.74 W/kg

SAR(1 g) = 1.87 mW/g; SAR(10 g) = 1.23 mW/g

Maximum value of SAR (measured) = 2.03 mW/g

Date/Time: 4/20/2012 10:49:16 AM

Test Laboratory: MOTOROLA - Apr-20-2012 1800 MHz Body

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:2d128; FCC ID:IHDT56NH4 Procedure Notes: 1800MHz System Performance Check; Dipole Sn# 2d128; Input Power = 200 mW;

Sim. Temp@meas = 21.9 Sim. Temp@SPC = 21.3 Room Temp @ SPC = 21.7

Communication System: CW - Dipole; Frequency: 1800 MHz; Communication System Channel Number: 8; Duty Cycle: 1:1

Medium: Validation *BODY Tissue*;

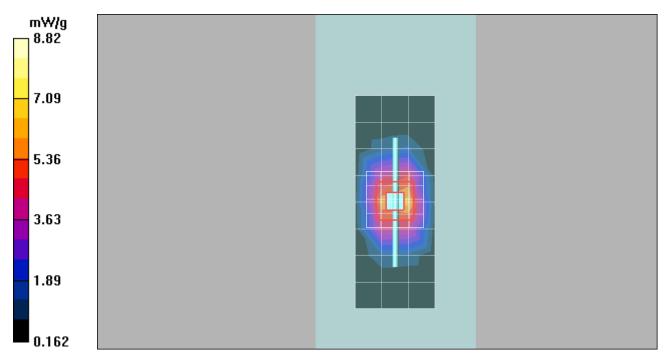
Medium parameters used: f = 1800 MHz; $\sigma = 1.57 \text{ mho/m}$; $\varepsilon_r = 52.7$; $\rho = 1000 \text{ kg/m}^3$

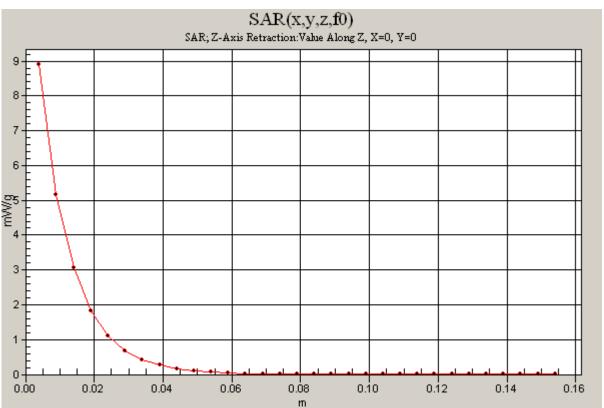
DASY4 Configuration:

- Probe: ES3DV3 SN3178; ConvF(4.72, 4.72, 4.72); Calibrated: 1/11/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn437; Calibrated: 2/9/2012
- Phantom: R11_ Section 2, Amy Twin, Rev3 (3-Feb-10); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 8.90 mW/g


Daily SPC Check/Dipole Area Scan (9x4x1):


Measurement grid: dx=15mm, dy=15mmMaximum value of SAR (measured) = 6.24 mW/g

Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 76.6 V/m; Power Drift = 0.060 dB Peak SAR (extrapolated) = 13.8 W/kg SAR(1 g) = 7.82 mW/g; SAR(10 g) = 4.11 mW/g

Maximum value of SAR (measured) = 8.82 mW/g

Appendix 2

SAR distribution plots for Mobile Hotspot Configuration

Date/Time: 4/19/2012 9:36:37 AM

Test Laboratory: MOTOROLA - GPRS 850 Mobile Hotspot

Serial: 352205050010585; FCC ID:IHDT56NH3

Unit Operating at Non-Reduced Power for Verification of Power Reduction

Procedure Notes: Pwr Step: 05; Antenna Position: Internal; Battery Model #: Internal;

DEVICE POSITION: Body Worn, Front of phone 10mm from phantom

Communication System: GPRS 850 - Class 12; Frequency: 836.6 MHz; Communication System Channel Number: 190; Duty Cycle: 1:2.075

Medium: Low Freq Body;

Medium parameters used: f = 835 MHz; $\sigma = 0.96$ mho/m; $\varepsilon_r = 53.1$; $\rho = 1000$ kg/m³

DASY4 Configuration:

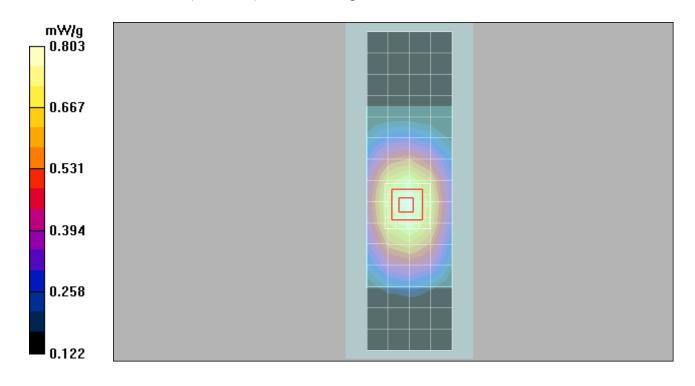
- Probe: ES3DV3 SN3178; ConvF(5.7, 5.7, 5.7); Calibrated: 1/11/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn437; Calibrated: 2/9/2012
- Phantom: R11_ Section 1, Amy Twin, Rev3 (3-Feb-10); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Amy Twin Phone Template/Area Scan - Normal Extended Body (15mm) (16x7x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.795 mW/g

Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 28.9 V/m; Power Drift = -0.023 dB

Peak SAR (extrapolated) = 0.924 W/kg

SAR(1 g) = 0.762 mW/g; SAR(10 g) = 0.582 mW/g

Maximum value of SAR (measured) = 0.803 mW/g

Date/Time: 4/19/2012 9:01:54 AM

Test Laboratory: MOTOROLA - GPRS 850 Mobile Hotspot

Serial: 352205050010585; FCC ID:IHDT56NH3

Procedure Notes: Pwr Step: 05; Antenna Position: Internal; Battery Model #: Internal;

Device Position: Body Worn, Front of Phone 10mm from Phantom Communication System: GPRS 850 - Class 12; Frequency: 836.6 MHz; Communication System Channel Number: 190; Duty Cycle: 1:2.075

Medium: Low Freq Body;

Medium parameters used: f = 835 MHz; $\sigma = 0.96$ mho/m; $\varepsilon_r = 53.1$; $\rho = 1000$ kg/m³

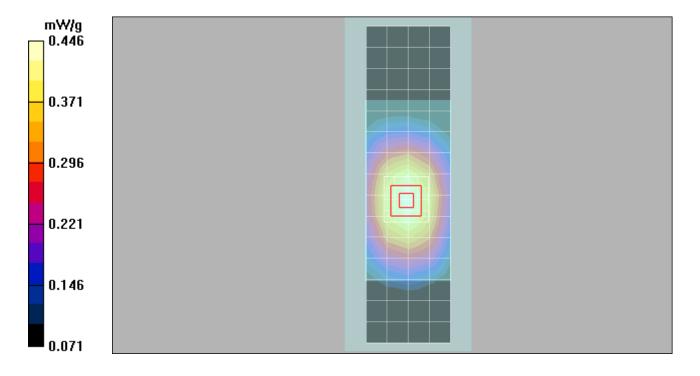
DASY4 Configuration:

- Probe: ES3DV3 SN3178; ConvF(5.7, 5.7, 5.7); Calibrated: 1/11/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn437; Calibrated: 2/9/2012
- Phantom: R11 Section 1, Amy Twin, Rev3 (3-Feb-10); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Amy Twin Phone Template/Area Scan - Normal Extended Body (15mm) (16x7x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.446 mW/g


Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.8 V/m; Power Drift = -0.035 dB

Peak SAR (extrapolated) = 0.517 W/kg

SAR(1 g) = 0.426 mW/g; SAR(10 g) = 0.326 mW/g

Date/Time: 4/19/2012 3:06:00 PM

Test Laboratory: MOTOROLA WCDMA 850 Mobile Hotspot

Serial: 352205050010585; FCC ID:IHDT56NH3

Unit Operating at Non-Reduced Power for Verification of Power Reduction

Procedure Notes: Pwr Step: All Up; Antenna Position: Internal; Battery Model #: Internal;

DEVICE POSITION: Body Worn, Back of phone 10mm from phantom Communication System: 3G-WCDMA 850; Frequency: 836 MHz;

Communication System Channel Number: 4180; Duty Cycle: 1:1

Medium: Low Freq Body;

Medium parameters used: f = 835 MHz; $\sigma = 0.96$ mho/m; $\varepsilon_r = 53.1$; $\rho = 1000$ kg/m³

DASY4 Configuration:

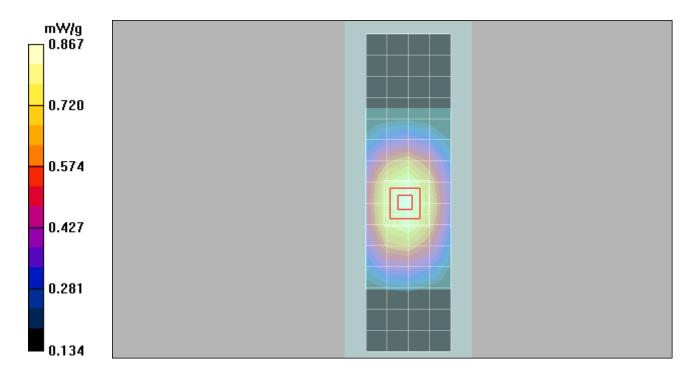
- Probe: ES3DV3 SN3178; ConvF(5.7, 5.7, 5.7); Calibrated: 1/11/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn437; Calibrated: 2/9/2012
- Phantom: R11 Section 1, Amy Twin, Rev3 (3-Feb-10); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Amy Twin Phone Template/Area Scan - Normal Extended Body (15mm) (16x7x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.859 mW/g

Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 29.8 V/m; Power Drift = 0.019 dB

Peak SAR (extrapolated) = 1.01 W/kg

SAR(1 g) = 0.826 mW/g; SAR(10 g) = 0.629 mW/g

Maximum value of SAR (measured) = 0.867 mW/g

Date/Time: 4/19/2012 2:50:54 PM

Test Laboratory: MOTOROLA - WCDMA 850 Mobile Hotspot

Serial: 352206050003182; FCC ID:IHDT56NH3

Procedure Notes: Pwr Step: All up; Antenna Position: Internal; Battery Model #: Internal;

Device Position: Body Worn, Back of Phone 10mm from Phantom Communication System: 3G-WCDMA 850; Frequency: 836 MHz; Communication System Channel Number: 4180; Duty Cycle: 1:1

Medium: Low Freq Body;

Medium parameters used: f = 835 MHz; $\sigma = 0.96$ mho/m; $\varepsilon_r = 53.1$; $\rho = 1000$ kg/m³

DASY4 Configuration:

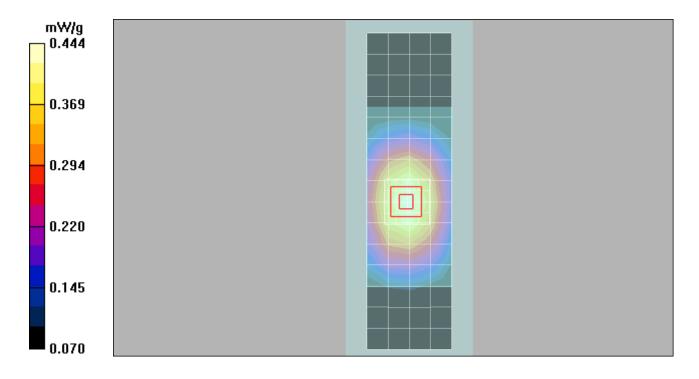
- Probe: ES3DV3 SN3178; ConvF(5.7, 5.7, 5.7); Calibrated: 1/11/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn437; Calibrated: 2/9/2012
- Phantom: R11_ Section 1, Amy Twin, Rev3 (3-Feb-10); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Amy Twin Phone Template/Area Scan - Normal Extended Body (15mm) (16x7x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.438 mW/g

Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.2 V/m; Power Drift = 0.062 dB

Peak SAR (extrapolated) = 0.516 W/kg

SAR(1 g) = 0.423 mW/g; SAR(10 g) = 0.322 mW/g

Maximum value of SAR (measured) = 0.444 mW/g

Date/Time: 4/20/2012 4:49:13 PM

Test Laboratory: MOTOROLA - WCDMA 1700 Mobile Hotspot

Serial: 352206050003182; FCC ID:IHDT56NH4

Unit Operating at Non-Reduced Power for Verification of Power Reduction

Procedure Notes: Pwr Step: All up; Antenna Position: Internal; Battery Model #: Internal;

DEVICE POSITION: Body worn, Bottom edge of phone from phantom 10mm

Communication System: 3G/WCDMA 1700; Frequency: 1732.5 MHz; Communication System Channel Number: 1413; Duty Cycle: 1:1

Medium: 1730 Glycol Body;

Medium parameters used: f = 1730 MHz; $\sigma = 1.48 \text{ mho/m}$; $\varepsilon_r = 52.9$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

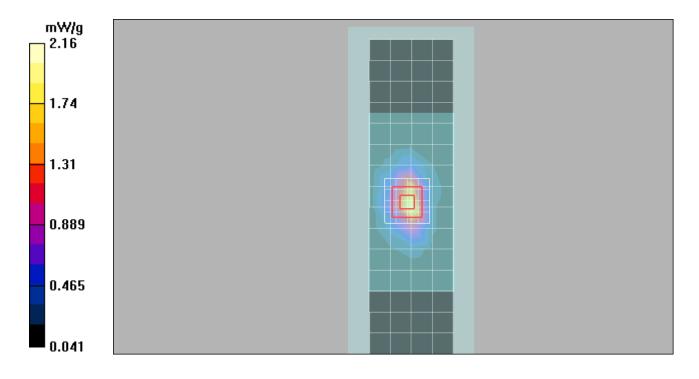
- Probe: ES3DV3 SN3178; ConvF(4.72, 4.72, 4.72); Calibrated: 1/11/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn437; Calibrated: 2/9/2012
- Phantom: R11_ Section 2, Amy Twin, Rev3 (3-Feb-10); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Amy Twin Phone Template/Area Scan - Normal Extended Body (15mm) (16x7x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.97 mW/g

Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 30.2 V/m; Power Drift = -0.008 dB

Peak SAR (extrapolated) = 3.20 W/kg

SAR(1 g) = 1.88 mW/g; SAR(10 g) = 0.980 mW/g

Maximum value of SAR (measured) = 2.16 mW/g

Date/Time: 4/20/2012 11:42:48 AM

Test Laboratory: MOTOROLA - WCDMA 1700 Mobile Hotspot

Serial: 352206050003182; FCC ID:IHDT56NH4

Procedure Notes: Pwr Step: All up; Antenna Position: Internal; Battery Model #: Internal;

DEVICE POSITION: Body worn, Bottom edge of phone from phantom 10mm

Communication System: 3G/WCDMA 1700; Frequency: 1732.5 MHz; Communication System Channel Number: 1413; Duty Cycle: 1:1

Medium: 1730 Glycol Body;

Medium parameters used: f = 1730 MHz; $\sigma = 1.48 \text{ mho/m}$; $\varepsilon_r = 52.9$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

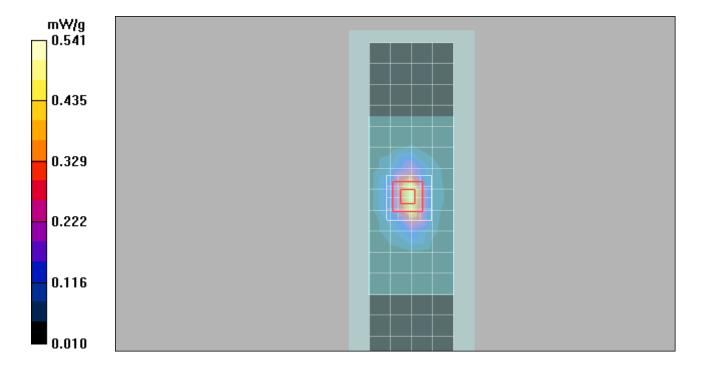
- Probe: ES3DV3 SN3178; ConvF(4.72, 4.72, 4.72); Calibrated: 1/11/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn437; Calibrated: 2/9/2012
- Phantom: R11_ Section 2, Amy Twin, Rev3 (3-Feb-10); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Amy Twin Phone Template/Area Scan - Normal Extended Body (15mm) (16x7x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.484 mW/g

Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.3 V/m; Power Drift = 0.092 dB

Peak SAR (extrapolated) = 0.804 W/kg

SAR(1 g) = 0.468 mW/g; SAR(10 g) = 0.245 mW/g

Maximum value of SAR (measured) = 0.541 mW/g

Date/Time: 4/18/2012 6:22:18 PM

Test Laboratory: MOTOROLA - GPRS 1900 Mobile Hotspot

Serial: 352205050010585; FCC ID:IHDT56NH3

Unit Operating at Non-Reduced Power for Verification of Power Reduction

Procedure Notes: Pwr Step: 00; Antenna Position: Internal; Battery Model #: Internal;

DEVICE POSITION: Body Worn, Bottom Edge of phone 10mm from phantom

Communication System: GPRS 1900 - Class 12; Frequency: 1880 MHz;

Communication System Channel Number: 661; Duty Cycle: 1:2.075

Medium: Regular Glycol Body 1750/1880;

Medium parameters used: f = 1880 MHz; $\sigma = 1.59 \text{ mho/m}$; $\varepsilon_r = 51.1$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ES3DV3 SN3178; ConvF(4.72, 4.72, 4.72); Calibrated: 1/11/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn437; Calibrated: 2/9/2012
- Phantom: R11 Section 1, Amy Twin, Rev3 (3-Feb-10); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Amy Twin Phone Template/Area Scan - Normal Extended Body (15mm) (16x7x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.64 mW/g

Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 28.8 V/m; Power Drift = 0.038 dB

Peak SAR (extrapolated) = 3.11 W/kg

SAR(1 g) = 1.76 mW/g; SAR(10 g) = 0.885 mW/g

Maximum value of SAR (measured) = 2.01 mW/g

Date/Time: 4/18/2012 4:19:59 PM

Test Laboratory: MOTOROLA - GPRS 1900 Mobile Hotspot

Serial: 352205050010585; FCC ID:IHDT56NH3

Procedure Notes: Pwr Step: 00; Antenna Position: Internal; Battery Model #: Internal;

Device Position: Body Worn, Bottom edge of Phone 10mm from Phantom Communication System: GPRS 1900 - Class 12; Frequency: 1880 MHz; Communication System Channel Number: 661; Duty Cycle: 1:2.075

Medium: Regular Glycol Body 1750/1880;

Medium parameters used: f = 1880 MHz; $\sigma = 1.59$ mho/m; $\varepsilon_r = 51.1$; $\rho = 1000$ kg/m³

DASY4 Configuration:

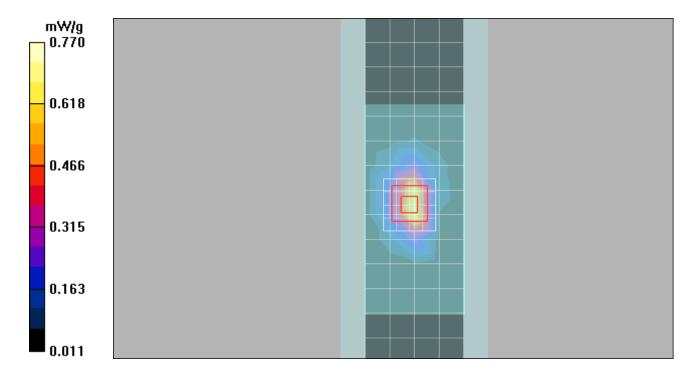
- Probe: ES3DV3 SN3178; ConvF(4.72, 4.72, 4.72); Calibrated: 1/11/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn437; Calibrated: 2/9/2012
- Phantom: R11_ Section 1, Amy Twin, Rev3 (3-Feb-10); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Amy Twin Phone Template/Area Scan - Normal Extended Body (15mm) (16x7x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.664 mW/g

Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.7 V/m; Power Drift = -0.084 dB

Peak SAR (extrapolated) = 1.18 W/kg

SAR(1 g) = 0.673 mW/g; SAR(10 g) = 0.340 mW/g

Maximum value of SAR (measured) = 0.770 mW/g

Appendix 3 Measurement Uncertainty Budget

Uncertainty Budget for Device Under Test, for 735 MHz to 2 GHz

Checitality Budget in	Uncertainty Budget for Device Under Test, for 735 MHz to 2 GHz											
							h =	<i>i</i> =				
				<i>e</i> =			cxf/	cxg/				
а	b	c	d	f(d,k)	f	g	e	e	k			
		Tol.	Prob		c_i	c_i	1 g	10 g				
	Description	(± %)	Dist		(1 g)	(10 g)	\boldsymbol{u}_i	\boldsymbol{u}_i				
Uncertainty Component	IEEE1528(2003) / IEC62209-1(2005)			Div.			(±%)	(±%)	v_i			
Measurement System	1EC02207 1(2003)			21,,			(=70)	(= /0)	71			
Probe Calibration [ES3DV3]	E.2.1 / 7.2.1	5.5	N	1.00	1	1	5.5	5.5	∞			
Axial Isotropy	E.2.2 / 7.2.1.2	4.7	R	1.73	0.707	0.707	1.9	1.9	∞			
Hemispherical Isotropy	E.2.2 / 7.2.1.2	9.6	R	1.73	0.707	0.707	3.9	3.9	<u>∞</u>			
Boundary Effect	E.2.3 / 7.2.1.5	1.0	R	1.73	1	1	0.6	0.6	<u>∞</u>			
Linearity	E.2.4 / 7.2.1.3	4.7	R	1.73	1	1	2.7	2.7	<u> </u>			
System Detection Limits		1.0	R	1.73	1	1	0.6	0.6	8			
Readout Electronics	E.2.5 / 7.2.1.4	0.3	N	1.00	1	1	0.0	0.0	8			
	E.2.6 / 7.2.1.6	1.1	R		1	1	0.5	0.5				
Response Time	E.2.7 / 7.2.1.7			1.73					∞			
Integration Time RF Ambient Conditions -	E.2.8 / 7.2.1.8	1.1	R	1.73	1	1	0.6	0.6	∞			
Noise	E 6 1 / 7 2 2 6	3.0	R	1.73	1	1	1.7	1.7	∞			
RF Ambient Conditions -	E.6.1 / 7.2.3.6	3.0	K	1.73	1	1	1./	1.7	<u> </u>			
Reflections	E.6.1 / 7.2.3.6	3.0	R	1.73	1	1	1.7	1.7	∞			
Probe Positioner Mech.	1.0.1 / 7.2.3.0	3.0		1.75	-	-	1.7	1.7				
Tolerance	E.6.2 / 7.2.2.1	0.4	R	1.73	1	1	0.2	0.2	∞			
Probe Positioning w.r.t												
Phantom	E.6.3 / 7.2.2.3	1.4	R	1.73	1	1	0.8	0.8	∞			
Max. SAR Evaluation (ext.,												
int., avg.)	E.5 / 7.2.4	3.4	R	1.73	1	1	2.0	2.0	∞			
Test sample Related												
Test Sample Positioning	E.4.2 / 7.2.2.4	3.4	N	1.00	1	1	3.4	3.4	79			
Device Holder Uncertainty	E.4.1 / 7.2.2.4.2	4.5	N	1.00	1	1	4.5	4.5	11			
SAR drift	6.6.2 / 7.2.3.5	0.0	R	1.73	1	1	0.0	0.0	8			
Phantom and Tissue												
Parameters												
Phantom Uncertainty	E.3.1 / 7.2.2.2	4.0	R	1.73	1	1	2.3	2.3	8			
Liquid Conductivity (target)	E.3.2 / 7.2.3.3	5.0	R	1.73	0.64	0.43	1.8	1.2	∞			
Liquid Conductivity												
(measurement)	E.3.3 / 7.2.3.3	2.5	N	1.00	0.64	0.43	1.6	1.1	6			
Liquid Permittivity (target)	E.3.2 / 7.2.3.4	5.0	R	1.73	0.6	0.49	1.7	1.4	∞			
Liquid Permittivity				1.00	0.5	0.40	1.4					
(measurement)	E.3.2 / 7.2.3.4	2.3	N	1.00	0.6	0.49	1.4	1.1	6			
Combined Standard Uncertainty			RSS				11	11	338			
Expanded Uncertainty												
(95% CONFIDENCE												
LEVEL)			k=2				22	21				

Appendix 4

Probe Calibration Certificate

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Motorola Beijing

Certificate No: ES3-3178 Jan12

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3178

Calibration procedure(s)

QA CAL-01.v8, QA CAL-23.v4, QA CAL-25.v4 Calibration procedure for dosimetric E-field probes

Calibration date:

January 11, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	31-Mar-11 (No. 217-01372)	Apr-12
Power sensor E4412A	MY41498087	31-Mar-11 (No. 217-01372)	Apr-12
Reference 3 dB Attenuator	SN: S5054 (3c)	29-Mar-11 (No. 217-01369)	Apr-12
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12
Reference 30 dB Attenuator	SN: S5129 (30b)	29-Mar-11 (No. 217-01370)	Apr-12
Reference Probe ES3DV2	SN: 3013	29-Dec-11 (No. ES3-3013_Dec11)	Dec-12
DAE4	SN: 654	3-May-11 (No. DAE4-654_May11)	May-12
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-11)	In house check: Oct-12

Calibrated by:

Signature

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: January 12, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConvF

sensitivity in TSL / NORMx,y,z

DCP

diode compression point

CF A, B, C crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ

 ϕ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe ES3DV3

SN:3178

Manufactured:

January 23, 2008 January 11, 2012

Calibrated:

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3178

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.31	1.24	1.36	± 10.1 %
DCP (mV) ^B	101.4	94.9	101.0	

Modulation Calibration Parameters

UID	Communication System Name	PAR		Α	В	С	VR	Unc
				dB	dB	dB	mV	(k=2)
10000	CW	0.00	Х	0.00	0.00	1.00	111.2	±2.2 %
			Υ	0.00	0.00	1.00	114.8	
			Z	0.00	0.00	1.00	112.7	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

B Numerical linearization parameter: uncertainty not required.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3178

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	41.9	0.89	5.85	5.85	5.85	0.25	2.03	± 12.0 %
835	41.5	0.90	5.65	5.65	5.65	0.27	1.99	± 12.0 %
1810	40.0	1.40	4.88	4.88	4.88	0.80	1.19	± 12.0 %
1950	40.0	1.40	4.69	4.69	4.69	0.73	1.23	± 12.0 %
2450	39.2	1.80	4.29	4.29	4.29	0.80	1.26	± 12.0 %

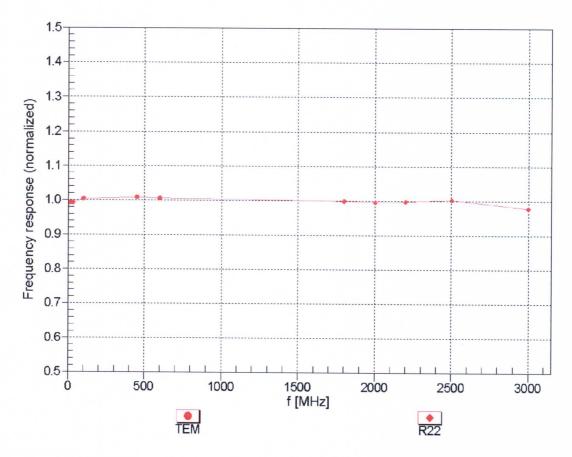
^C Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

^L At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3178

Calibration Parameter Determined in Body Tissue Simulating Media


f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)	
750	55.5	0.96	5.73	5.73	5.73	0.29	1.89	± 12.0 %	
835	55.2	0.97	5.70	5.70	5.70	0.57	1.34	± 12.0 %	
1810	53.3	1.52	4.72	4.72	4.72	0.66	1.53	± 12.0 %	
1950	53.3	1.52	4.64	4.64	4.64	0.46	1.77	± 12.0 %	
2450	52.7	1.95	4.13	4.13	4.13	0.68	1.13	± 12.0 %	

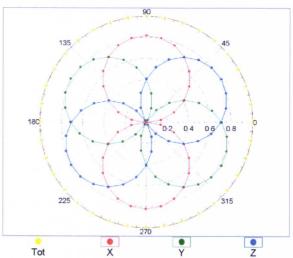
^C Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

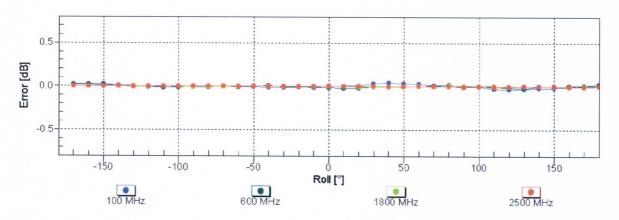
F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

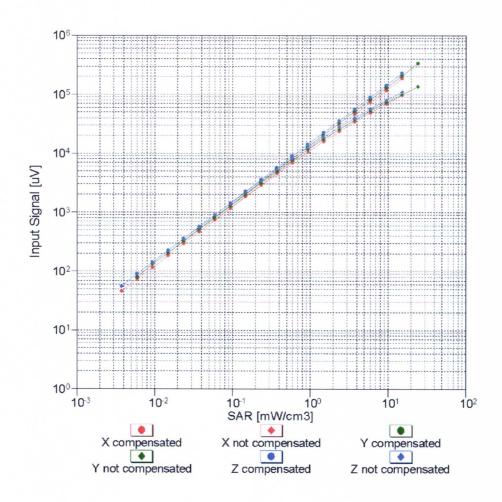


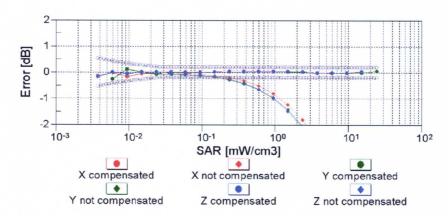

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

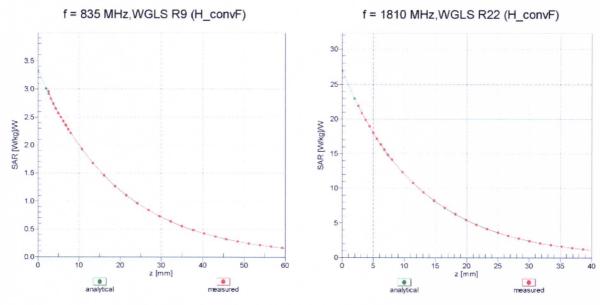
f=600 MHz,TEM

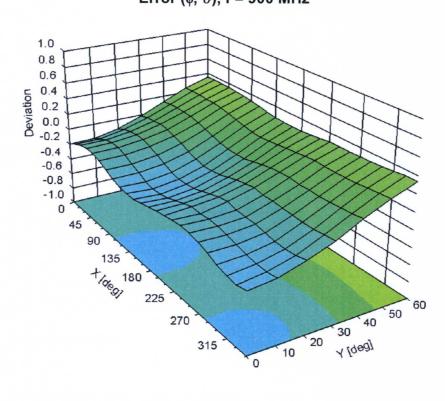
f=1800 MHz,R22

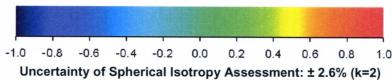




Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)




Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (ϕ, θ) , f = 900 MHz

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3178

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

FCC ID: IHDT56NH4

Appendix 5

Dipole Characterization Certificate

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Motorola Beijing

Certificate No: D835V2-421_Apr11

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object D835V2 - SN: 421

Calibration procedure(s) QA CAL-05.v8

Calibration procedure for dipole validation kits

Calibration date: April 04, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11
Reference 20 dB Attenuator	SN: 5086 (20g)	29-Mar-11 (No. 217-01368)	Apr-12
Type-N mismatch combination	SN: 5047.2 / 06327	29-Mar-11 (No. 217-01371)	Apr-12
Reference Probe ES3DV3	SN: 3205	30-Apr-10 (No. ES3-3205_Apr10)	Apr-11
DAE4	SN: 601	10-Jun-10 (No. DAE4-601_Jun10)	Jun-11
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
		- · · · · · · · · · · · · · · · · · · ·	

Calibrated by:

Name Dimce Iliev

Function

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: April 5, 2011

Signature

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-421_Apr11

Page 1 of 9

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-421_Apr11 Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	VOE.0.2
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	Will Opacer
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.6 ± 6 %	0.88 mho/m ± 6 %
Head TSL temperature during test	(21.7 ± 0.2) °C		3.00 millo/m ± 0 /8

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.31 mW / g
SAR normalized	normalized to 1W	9.24 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.34 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.51 mW / g
SAR normalized	normalized to 1W	6.04 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.10 mW /g ± 16.5 % (k=2)

Certificate No: D835V2-421_Apr11

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.1 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.49 mW / g
SAR normalized	normalized to 1W	10.0 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	9.76 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.63 mW / g
SAR normalized	normalized to 1W	6.52 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	6.43 mW / g ± 16.5 % (k=2)

Certificate No: D835V2-421_Apr11

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.3 Ω + 0.7 jΩ
Return Loss	- 29.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.0 Ω - 1.0 jΩ
Return Loss	- 36.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.424 ns
	L

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Design Modification by End User

The dipole has been modified with Teflon Rings (TR) placed within identified markings close to the end of each dipole arm. Calibration has been performed with TR attached to the dipole.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	August 24, 2000

Certificate No: D835V2-421_Apr11 Page 5 of 9

DASY5 Validation Report for Head TSL

Date/Time: 04.04.2011 10:09:12

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:421

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL900

Medium parameters used: f = 835 MHz; $\sigma = 0.88$ mho/m; $\varepsilon_r = 40.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(6.03, 6.03, 6.03); Calibrated: 30.04.2010

• Sensor-Surface: 3mm (Mechanical Surface Detection)

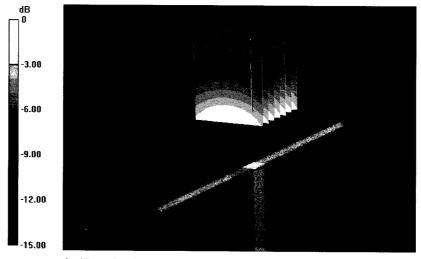
Electronics: DAE4 Sn601; Calibrated: 10.06.2010

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

Measurement SW: DASY52, V52.6.2 Build (424)

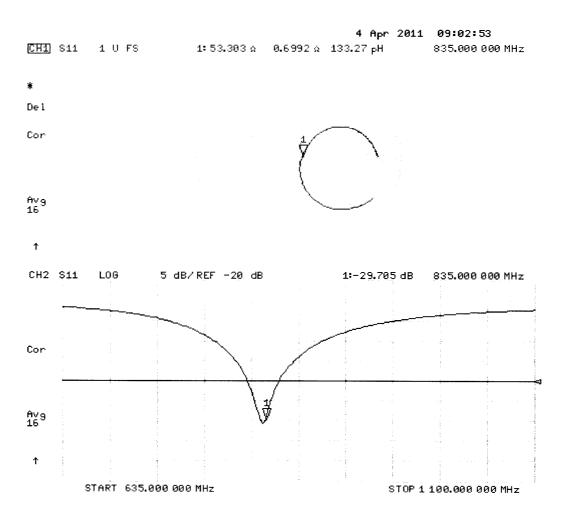
• Postprocessing SW: SEMCAD X, V14.4.4 Build (2829)

Pin=250 mW /d=15mm/Zoom Scan (7x7x7) /Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.966 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 3.449 W/kg


SAR(1 g) = 2.31 mW/g; SAR(10 g) = 1.51 mW/g

Maximum value of SAR (measured) = 2.699 mW/g

0 dB = 2.700 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date/Time: 04.04.2011 13:48:48

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:421

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL900

Medium parameters used: f = 835 MHz; σ = 0.99 mho/m; ϵ_r = 54.1; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(5.86, 5.86, 5.86); Calibrated: 30.04.2010

Sensor-Surface: 3mm (Mechanical Surface Detection)

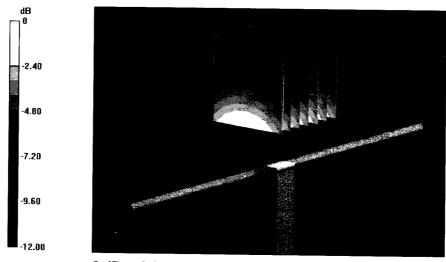
Electronics: DAE4 Sn601; Calibrated: 10.06.2010

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

Measurement SW: DASY52, V52.6.2 Build (424)

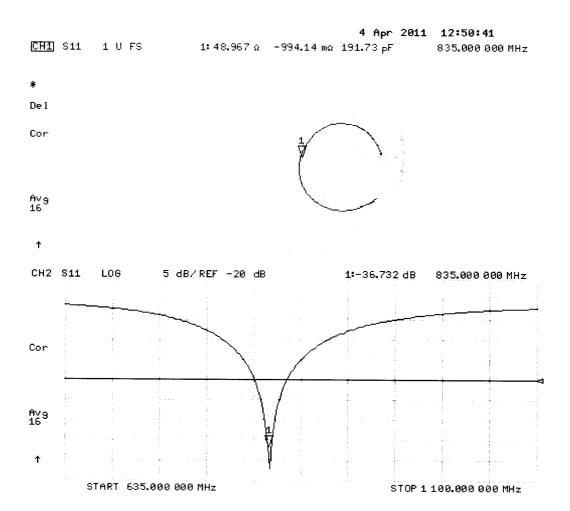
• Postprocessing SW: SEMCAD X, V14.4.4 Build (2829)

Pin=250 mW /d=15mm/Zoom Scan (7x7x7) /Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.878 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.683 W/kg


SAR(1 g) = 2.49 mW/g; SAR(10 g) = 1.63 mW/g

Maximum value of SAR (measured) = 2.902 mW/g

0 dB = 2.900 mW/g

Impedance Measurement Plot for Body TSL

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Motorola Beijing

Certificate No: D1800V2-2d128_Apr11

CALIBRATION C	ERTIFICA	VE	
Object	D1800V2 - S	N: 2d128	
Calibration procedure(s)	QA CAL-05.v Calibration pi	/8 rocedure for dipole validation kits	
Calibration date:	April 6, 2011		
This calibration certificate documents and the unce	ents the traceability to	o national standards, which realize the physic nce probability are given on the following pag	cal units of measurements (SI). les and are part of the certificate.
All calibrations have been conduc	ted in the closed labo	oratory facility: environment temperature (22	± 3)°C and humidity < 70%.
Calibration Equipment used (M&T	E critical for calibrati	on)	
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11
Reference 20 dB Attenuator	SN: 5086 (20g)	29-Mar-11 (No. 217-01368)	Apr-12
Type-N mismatch combination	SN: 5047.2 / 06327	29-Mar-11 (No. 217-01371)	Apr-12 Apr-12
Reference Probe ES3DV3	SN: 3205	30-Apr-10 (No. ES3-3205_Apr10)	Apr-12 Apr-11
DAE4	SN: 601	10-Jun-10 (No. DAE4-601_Jun10)	Αρι-11 Jun-11
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11
Calibrated by:	Name Mike Melli	Function Laboratory Technician	Signature & L Poù li
Approved by:	Katja Pokovic	Technical Manager	

Issued: April 6, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage

Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

N/A

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1800 MHz ± 1 MHz	

Head TSL parametersThe following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.1 ± 6 %	1.36 mho/m ± 6 %
Head TSL temperature during test	(21.5 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.85 mW / g
SAR normalized	normalized to 1W	39.4 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	39.9 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.16 mW / g
SAR normalized	normalized to 1W	20.6 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	20.8 mW /g ± 16.5 % (k=2)

Certificate No: D1800V2-2d128_Apr11

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.3 ± 6 %	1.47 mho/m ± 6 %
Body TSL temperature during test	(21.8 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.58 mW / g
SAR normalized	normalized to 1W	38.3 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	38.8 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.08 mW / g
SAR normalized	normalized to 1W	20.3 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	20.4 mW / g ± 16.5 % (k=2)

Certificate No: D1800V2-2d128_Apr11 Page 4 of 9

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.6 Ω - 2.7 jΩ
Return Loss	- 30.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	44.7 Ω - 3.3 jΩ
Return Loss	- 23.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	
Liectrical Delay (one direction)	1,210 ns
	1.210113

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 27, 2005

DASY5 Validation Report for Head TSL

Date/Time: 05.04.2011 11:30:22

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:2d128

Communication System: CW; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: HSL U12 BB

Medium parameters used: f = 1800 MHz; $\sigma = 1.36$ mho/m; $\epsilon_r = 39.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.05, 5.05, 5.05); Calibrated: 30.04.2010

Sensor-Surface: 3mm (Mechanical Surface Detection)

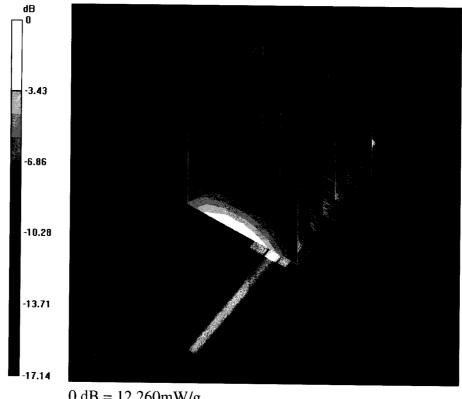
Electronics: DAE4 Sn601; Calibrated: 10.06.2010

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

Measurement SW: DASY52, V52.6.2 Build (424)

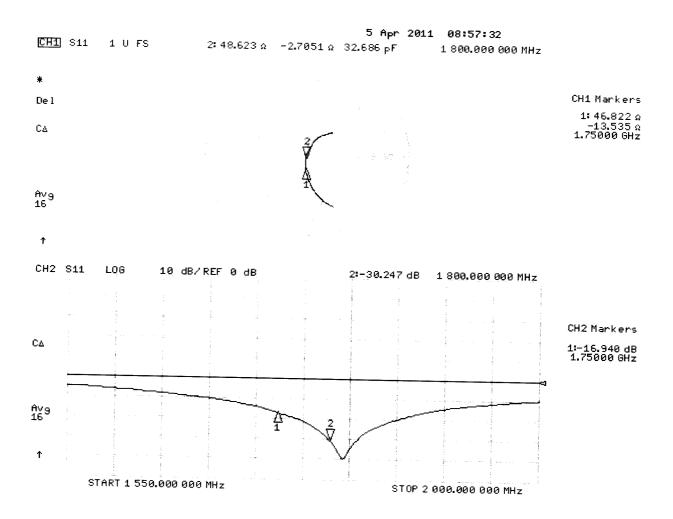
Postprocessing SW: SEMCAD X, V14.4.4 Build (2829)

Head / d=10mm, Pin=250 mW / Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 98.381 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 17.979 W/kg


SAR(1 g) = 9.85 mW/g; SAR(10 g) = 5.16 mW/g

Maximum value of SAR (measured) = 12.263 mW/g

0 dB = 12.260 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date/Time: 06.04.2011 11:16:27

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:2d128

Communication System: CW; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: MSL U12 BB

Medium parameters used: f = 1800 MHz; $\sigma = 1.47$ mho/m; $\varepsilon_r = 51.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(4.74, 4.74, 4.74); Calibrated: 30.04.2010

Sensor-Surface: 3mm (Mechanical Surface Detection)

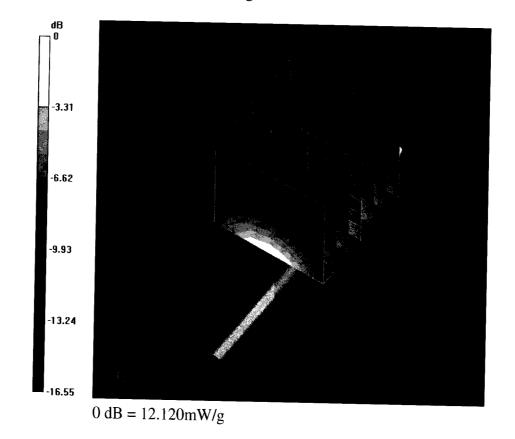
• Electronics: DAE4 Sn601; Calibrated: 10.06.2010

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

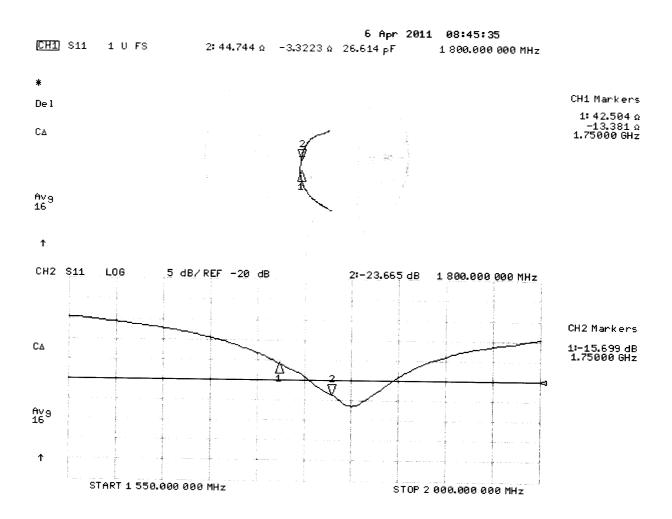
Measurement SW: DASY52, V52.6.2 Build (424)

Postprocessing SW: SEMCAD X, V14.4.4 Build (2829)

Body / d=10mm, Pin=250 mW / Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.624 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 16.489 W/kg

SAR(1 g) = 9.58 mW/g; SAR(10 g) = 5.08 mW/g

Maximum value of SAR (measured) = 12.121 mW/g

Impedance Measurement Plot for Body TSL

END OF REPORT