

MOBILE DEVICES BUSINESS

PRODUCT SAFETY AND COMPLIANCE EMC LABORATORY

EMC TEST REPORT

Test Report Number – 25019-1 NFC

Report Date – July 16, 2012

The test results contained herein relate only to the model(s) identified. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical characteristics.

As the responsible EMC Engineer, I hereby declare that the equipment tested as specified in this report conforms to the requirements indicated.

Signature:

Name: Albert J. Patapack

FCC ID: IHDT56NG7

Title: EMC Engineer Date: July 16, 2012

This report must not be reproduced, except in full, without written approval from this laboratory.

THIS REPORT MUST NOT BE USED TO CLAIM PRODUCT ENDORSEMENT BY UKAS OR ANY AGENCY OF THE U.S. GOVERNMENT.

Test Report Number: 25019-1 NFC 1 of 14 EXHIBIT 6A10

FCC ID: IHDT56NG7

Table of Contents

Description	Page
Test Report Details	3
Applicable Standards	3
Summary of Testing	4
General and Special Conditions	4
Equipment and Cable Configuration	5
Equipment List	5
Measurement Procedures and Data	6

Test Report Number: 25019-1 NFC 2 of 14 EXHIBIT 6A10

Test Report Details

Tests Performed By: ADR Testing Service

Location Code: ADR LV Motorola Mobility LLC

Product Safety and Compliance Group

FCC ID: IHDT56NG7

600 North US Hwy 45 Libertyville, IL 60048

PH (847) 523-6167 Fax (847) 523-4538 FCC Registration Number: 316588 Industry Canada Number: 1090-1

Tests Requested By: Motorola Mobility LLC

600 North US Hwy 45 Libertyville, IL 60048

Product Type: Cellular Phone

Signaling Capability: WCDMA 850/1900, GSM 850/1900,

EDGE 850/1900, HSDPA, HSUPA, GPRS,

Bluetooth LE + EDR, 802.11a/b/g/n

FCC ID: IHDT56NG7

Serial Numbers: LVQV2L0006, LVQV2L0039, LVQVAC0037

All units used for testing are electrically identical.

Testing Complete Date: June 15, 2012

Applicable Standards

All tests and measurements indicated in this document were performed in accordance with the Code of Federal Regulations Title 47:

X Part 15 Subpart C – Intentional Radiators

Applicable Standards: ANSI 63.4 2003, RSS-210 Issue 8

Test Report Number: 25019-1 NFC 3 of 14 EXHIBIT 6A10

Summary of Testing

Test	Test Name	
#		Pass/Fail
1	Field Strength of Spurious Emissions	Pass
	from Intentional Radiators	
2	AC Line Conducted Emissions	Pass
Test	Test Name	Margin with respect
#		to the Limit
1	Field Strength of Spurious Emissions	see results
	from Intentional Radiators	
2	AC Line Conducted Emissions	see results

The margin with respect to the limit is the minimum margin for all modes and bands.

General and Special Conditions

This product utilizes an internal battery that is not removable. When applicable, EMC testing was performed with the internal battery fully charged. Where a battery could not be used due to the need for a controlled variation of input voltage, an external power supply was utilized.

All testing was done in an indoor controlled environment. The temperature and the relative humidity were maintained within the ANSI C63.4 2003 Standard requirements during the entire duration of testing.

Equipment and Cable Configurations

The EUT was tested in a configuration as specified by ANSI C63.4 2003 Standard requirements.

Test Report Number: 25019-1 NFC 4 of 14 EXHIBIT 6A10

Equipment List

Manufacturer	Equipment Type	Model No.	Serial Number	Calibration Due Date
Rohde & Schwarz	Receiver	ESU40	100286	7/13/2012
ETS	Log-Periodic Antenna	3148	1188	12/12/2012
ETS	Biconical Antenna	3110B	3369	12/14/2012
Attenuator	Weinschel	AS-6	6675	NCR
Attenuator	Weinschel	AS-6	6677	NCR
ETS	LISN	3810/2NM	00023630	9/02/2012
ETS	LISN	3810/2NM	2179	9/02/2012
ETS	Loop Antenna	6507	00049471	12/13/2012

FCC ID: IHDT56NG7

All test equipment was within their calibration date during the time of testing. When equipment went out of calibration during testing it was replaced using a similar piece of calibrated equipment. All these equipments are listed in the equipment list. All equipment is on a one-year calibration cycle.

Test Report Number: 25019-1 NFC 5 of 14 EXHIBIT 6A10

Measurement Procedures and Data

FIELD STRENGTH OF EMISSIONS FROM INTENTIONAL RADIATORS

FCC ID: IHDT56NG7

Measurement Procedure

The equipment under test is placed inside the semi-anechoic chamber on a wooden table on the center of the turntable. Initially, for all radiated emissions from 9 kHz to 30 MHz, the turntable is rotated 45 degrees to obtain a maximum reading on the spectrum analyzer using the peak detector function. All final readings are then taken at the worst case EUT orientation. For all radiated emissions from 30 MHz to 1 GHz, the antenna mast is varied from 1 to 4 meters and the turntable is rotated 360 degrees to obtain a maximum reading on the spectrum analyzer using the peak detector function. Below 1000 MHz, the final radiated emissions are then measured using an EMI receiver employing a CISPR quasipeak detector. This is repeated for both horizontal and vertical polarizations of the receive antenna.

The field strength of each radiated emission is calculated by correcting the EMI receiver level for cable loss, amplifier gain and antenna correction factors.

Field Strength (dBuV/m) = EMI Receiver Level (dBuV) + Cable Loss (dB) - Amplifier Gain (dB) + Antenna Correction Factor (1/m)

Test Setup

The EUT and the host equipment were setup according to the procedures in ANSI C63.4-2003. A software application was run on the phone which enables the phone to transmit at all the different modulations and data rates supported for NFC operation.

EUT was tested in all 3 orthogonal planes. The loop antenna was positioned in all 3 orthogonal axes.

Worst case results are reported.

Test Report Number: 25019-1 NFC 6 of 14 EXHIBIT 6A10

FCC ID: IHDT56NG7

Measurement Results

Radiated emissions were measured from 9 kHz to 30 MHz. Notes: Worst Case emissions reported.

FCC Limits

Frequency Range	Limit
MHz	
13.410 - 13.553	90.47 dBuV/m @ 3 m
13.110 - 13.410	80.50 dBuV/m @ 3 m
13.710 - 14.010	80.50 dBuV/m
13.553 – 13.567	124 dBuV/m @ 3m
0.009 - 0.490	2400/F(kHz) uV/m @ 300 m
0.490 - 1.705	24000/F(kHz) uV/m @ 30 m
1.705 - 30.00	69.50 dBuV/m @ 3 m

Frequency	QuasiPeak- MaxHold	Polarization	Corr.	Comment
MHz	$dB\mu V/m$		dB	
13.112000	23.0	V	16.7	Pass
13.150000	22.9	V	16.7	Pass
13.200000	22.9	V	16.7	Pass
13.250000	22.8	V	16.7	Pass
13.300000	22.9	V	16.7	Pass
13.350000	22.8	V	16.7	Pass
13.400000	22.8	V	16.7	Pass
13.450000	22.9	V	16.7	Pass
13.500000	22.9	V	16.7	Pass
13.546000	22.7	V	16.7	Pass
13.548000	22.7	V	16.7	Pass
13.550000	23.7	V	16.7	Pass
13.552000	31.1	V	16.7	Pass
13.554000	39.5	V	16.7	Pass
13.556000	45.7	V	16.7	Pass
13.558000	49.7	V	16.7	Pass
13.560000	51.3	V	16.7	Pass
13.562000	50.6	V	16.7	Pass
13.564000	47.5	V	16.7	Pass
13.566000	42.1	V	16.7	Pass
13.568000	34.7	V	16.7	Pass
13.570000	25.9	V	16.7	Pass
13.572000	22.9	V	16.7	Pass
13.574000	22.7	V	16.7	Pass
13.590000	22.7	V	16.7	Pass
13.592000	22.8	V	16.7	Pass
13.594000	22.7	V	16.7	Pass
13.596000	22.8	V	16.7	Pass
13.598000	22.8	V	16.7	Pass

Test Report Number: 25019-1 NFC 7 of 14 EXHIBIT 6A10

13.600000	22.5	V	16.7	Pass
13.650000	22.7	V	16.7	Pass
13.700000	22.5	V	16.7	Pass
13.750000	22.8	V	16.7	Pass
13.800000	22.7	V	16.7	Pass
13.850000	22.7	V	16.7	Pass
13.900000	22.6	V	16.7	Pass
13.950000	22.6	V	16.7	Pass
14.000000	22.6	V	16.7	Pass
14.002000	22.5	V	16.7	Pass
14.004000	22.6	V	16.7	Pass
14.006000	22.7	V	16.7	Pass
14.008000	22.6	V	16.7	Pass
14.010000	22.5	V	16.7	Pass
27.120200	20.4	V	15.9	Pass

Frequency	QuasiPeak- MaxHold	Polarization	Corr.	Comment
MHz	dBμV/m		dB	
13.110000	23.0	Н	16.7	Pass
13.204500	22.9	Н	16.7	Pass
13.305000	22.9	Н	16.7	Pass
13.431000	23.0	Н	16.7	Pass
13.504500	22.7	Н	16.7	Pass
13.518000	22.9	Н	16.7	Pass
13.519500	23.0	Н	16.7	Pass
13.521000	22.8	Н	16.7	Pass
13.522500	22.9	Н	16.7	Pass
13.524000	23.0	Н	16.7	Pass
13.525500	22.9	Н	16.7	Pass
13.527000	22.7	Н	16.7	Pass
13.528500	22.9	Н	16.7	Pass
13.536000	22.9	Н	16.7	Pass
13.548000	22.9	Н	16.7	Pass
13.558500	26.7	Н	16.7	Pass
13.560000	27.5	Н	16.7	Pass
13.561500	27.1	Н	16.7	Pass
13.563000	26.2	Н	16.7	Pass
13.564500	24.8	Н	16.7	Pass
13.566000	23.3	Н	16.7	Pass
13.611000	22.7	Н	16.7	Pass
13.686000	22.8	Н	16.7	Pass
13.687500	22.9	Н	16.7	Pass
13.705500	22.8	Н	16.7	Pass
13.707000	22.9	Н	16.7	Pass
13.708500	22.9	Н	16.7	Pass
13.815000	22.8	Н	16.7	Pass
13.816500	22.7	Н	16.7	Pass
13.906500	22.6	Н	16.7	Pass
13.908000	22.6	Н	16.7	Pass

Test Report Number: 25019-1 NFC 8 of 14 EXHIBIT 6A10

APPLICANT: MOTOROLA MOBILITY LLC

13.929000	22.5	Н	16.7	Pass
13.930500	22.8	Н	16.7	Pass
13.932000	22.7	Н	16.7	Pass
13.933500	22.6	Н	16.7	Pass
13.935000	22.5	Н	16.7	Pass
13.936500	22.5	Н	16.7	Pass
13.938000	22.7	Н	16.7	Pass
13.939500	22.4	Н	16.7	Pass
13.941000	22.6	Н	16.7	Pass
13.942500	22.7	Н	16.7	Pass
13.944000	22.6	Н	16.7	Pass
13.945500	22.6	Н	16.7	Pass
13.947000	22.5	Н	16.7	Pass
14.002500	22.8	Н	16.7	Pass
14.008500	22.6	Н	16.7	Pass
14.010000	22.6	Н	16.7	Pass
27.120100	21.41	Н	15.9	Pass

<u>30 MHz – 1000 MHz</u>

Frequency	Level	Measured	Transd	Cables	Limit	Margin	Height	Angle	Pol.
MHz	$dB\mu V/m$	dΒμV	dB	dB	$dB\mu V/m$	dB	cm	deg	FOI.
189.44	22.45	-1.01	15.4	8.1	43.5	22.1	150	50	VERT
957.28	34.76	-0.18	23.9	11.0	46	11.2	149	50	HORI

FCC ID: IHDT56NG7

Test Report Number: 25019-1 NFC 9 of 14 EXHIBIT 6A10

FCC ID: IHDT56NG7

FREQUENCY STABILITY

Measurement Procedure

The equipment under test is placed in an environmental chamber. The antenna port of the Equipment Under Test is coupled to the input of the measurement equipment through a coupling antenna. A power supply is attached as the primary voltage supply.

Frequency measurements are made at the extremes of the temperature range -30° C to +60° C and at intervals of 10° C with the primary supply voltage set to the nominal battery operating voltage. A period of time sufficient to stabilize all components of the equipment is allowed at each frequency measurement. The maximum variation of frequency is measured.

At room temperature, the primary supply voltage is reduced to the battery operating endpoint of the equipment under test. The maximum variation of frequency is measured. A battery eliminator was used for the input supply voltage.

Measurement Results

Worst case data attached

Test Report Number: 25019-1 NFC 10 of 14 EXHIBIT 6A10

Temperature	Measured Frequency	Frequency Tolerance	Frequency Deviation	Voltage	Results	
Centigrade	MHz	kHz	Hz	Volts		
-30	13.560700	± 1.35	700	3.8	Pass	
-20	13.560500	± 1.35	500	3.8	Pass	
-10	13.560700	± 1.35	800	3.8	Pass	
0	13.560800	± 1.35	100	3.8	Pass	
10	13.560100	± 1.35	600	3.8	Pass	
20	13.560600	± 1.35	200	3.8	Pass	
30	13.560600	± 1.35	600	3.8	Pass	
40	13.560200	± 1.35	200	3.8	Pass	
50	13.560200	± 1.35	200	3.8	Pass	
60	13.560200	± 1.35	200	3.8	Pass	
	Battery Operating Endpoint					
20	13.560600	± 1.35	600	3.2	Pass	
20	13.560500	± 1.35	500	4.35	Pass	

Test Report Number: 25019-1 NFC 11 of 14 EXHIBIT 6A10

APPLICANT: MOTOROLA MOBILITY LLC

AC LINE CONDUCTED EMISSIONS

Measurement Procedure

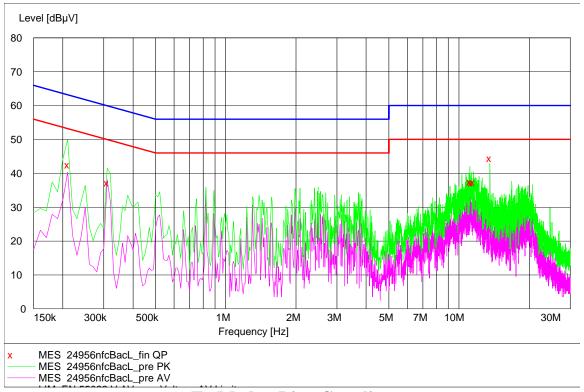
Measured levels of ac power line conducted emission shall be the radio-noise voltage from the line probe or across the 50 Ω LISN port, where permitted, terminated into a 50 Ω noise meter, or where permitted or required, the radio-noise current on the power line sensed by a current probe.

FCC ID: IHDT56NG7

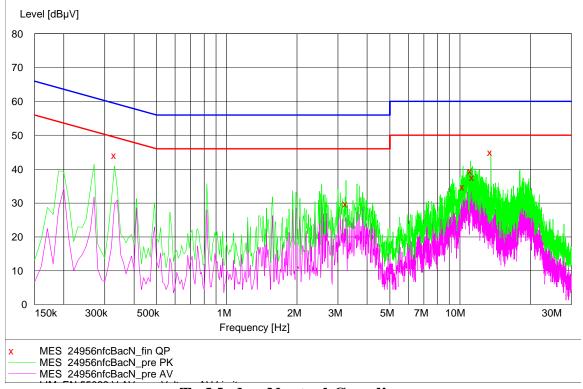
All radio-noise voltage and current measurements shall be made on each current-carrying conductor at the plug end of the EUT power cord or calibrated extension cord by the use of mating plugs and receptacles on the EUT and LISN. Equipment shall be tested with power cords that are normally supplied using a LISN, the 50 Ω measuring port is terminated by a 50 Ω radio-noise meter or a 50 Ω resistive load. All other ports are terminated in 50 Ω .

Detectors - Quasi Peak and Average Detector

Test Setup


The EUT and the host equipment were setup according to the procedures in ANSI C63.4-2003. A software application was run on the phone which enables the phone to transmit at all modulation and data rates supported for NFC operation.

Testing was done with NFC function turned ON in the phone.


Measurement Results

Worst case data attached

Test Report Number: 25019-1 NFC 12 of 14 EXHIBIT 6A10

Tx Mode - Line Coupling

Tx Mode - Neutral Coupling

Test Report Number: 25019-1 NFC 13 of 14 EXHIBIT 6A10

APPLICANT: MOTOROLA MOBILITY LLC FCC ID: IHDT56NG7

End of Test Report

Test Report Number: 25019-1 NFC 14 of 14 EXHIBIT 6A10