

Portable Cellular Phone Supplemental SAR Test Report

Motorola Mobility, Inc.

Tests Requested By: 600 N. US Highway 45

Libertyville, IL 60048

Test Report #: 25018-1 Supplemental

Date of Report: Aug-02-2012

Date of Test: Jun-08-2012 to Jul-12-2012

FCC ID #: IHDT56NG7 Generic Name: M0D0A

Motorola Mobility, Inc. - ADR Test Services Laboratory

Test Laboratory: 600 N. US Highway 45

Libertyville, IL 60048

Report Author: Ketal Patel

RF Engineer

This laboratory is accredited to ISO/IEC 17025-2005 to perform the following tests:

<u>Tests</u>: <u>Procedures</u>:

helad listed

Electromagnetic Specific Absorption Rate IEC 62209-1 RSS-102

IEEE 1528 - 2003

FCC OET Bulletin 65 (including Supplement C)
Australian Communications Authority Radio

Communications (Electromagnetic Radiation – Human

Exposure) Standard 2003 CENELEC EN 50360 ARIB Std. T-56 (2002)

On the following products or types of products:

Wireless Communications Devices (Examples): Two Way Radios; Portable Phones (including

Cellular, Licensed Non-Broadcast and PCS); Low Frequency Readers; and Pagers

Motorola declares under its sole responsibility that the portable cellular telephone model to which this declaration relates, is in conformity with the appropriate General Population/Uncontrolled RF exposure standards, recommendations and guidelines (FCC 47 CFR §2.1093) as well as with CENELEC en50360:2001 and ANSI / IEEE C95.1. It also declares that the product was tested in accordance with IEEE 1528 / CENELEC EN62209-1 (2006), as well as other appropriate measurement standards, guidelines and recommended practices. Any deviations from these standards, guidelines and recommended practices are noted

(none)

below:

Statement of Compliance:

Accreditation:

2404

©Motorola Mobility, Inc. 2012

This test report shall not be reproduced except in full, without written approval of the laboratory. The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report. Motorola encourages all feedback, both positive and negative, on this test report.

Table of Contents

1. Introduction	3
2. Description of the Device Under Test	3
2.1 Device Signaling	
3. Test Equipment Used	5
3.1 Dosimetric System	5
3.2 Additional Equipment	5
4. Electrical parameters of the tissue simulating liquid	6
5. System Accuracy Verification	7
6. Test Results	8
References	10
Appendix 1: SAR distribution comparison for the system accuracy verification	
Appendix 2: SAR distribution plots for Mobile Hotspot Configuration	
Appendix 3: Measurement Uncertainty Budget	
Appendix 4: Probe Calibration Certificate	
Appendix 5: Dipole Characterization Certificate	

Revision History

Revision Version Date		Notes
Rev. 0	02-Aug-2012	Initial report release

1. Introduction

The Motorola Mobility ADR Test Services Laboratory has performed measurements of the maximum potential exposure to the user of the portable cellular phone covered by this test report. The Specific Absorption Rate (SAR) of this product was measured. The portable cellular phone was tested in accordance with [1], [4] and [5]. The SAR values measured for the portable cellular phone are below the maximum recommended levels of 1.6 W/kg in a 1 g average set in [3] and 2.0 W/kg in a 10 g average set in [2].

Per direction of the FCC, the following SAR test data is being provided to demonstrate the device's effective utilization of power reduction conditions specified in Exhibit 12 - Operational Description. The values in the tables in Section 6.0 are provided solely for the purpose of confirming compliant power reduction operation and do not represent maximum SAR values of the product. For maximum reported SAR compliance values, refer to the Exhibit 11 SAR test report.

2. Description of the Device Under Test

2.1 Device Signaling

Serial Number(s) (Functional Use)	LVUE250086	(GSM/WCDMA conducted power measurements, GSM/WCDMA SAR testing)
Production Unit or Identical Prototype (47 CFR §2908)		Identical Prototype
Device Category		Portable (Mobile Station Class B)
RF Exposure Limits		General Population / Uncontrolled

Mode(s) of Operation	Modulation Mode(s)	Maximum Output Power Setting	Duty Cycle	Transmitting Frequency Range(s)
GSM 850	GMSK	33.5 dBm	1:8	824.2 - 848.8 MHz
GSM 1900	GMSK	30.5 dBm	1:8	1850.2 - 1909.8 MHz
WCDMA 850	QPSK	24.0 dBm	1:1	826.4 - 846.6 MHz
WCDMA 1900	QPSK	24.0 dBm	1:1	1852.4 - 1907.6 MHz
Wi-Fi 802.11b/g/n	BPSK	18.0 dBm	1:1	2412.0 - 2462.0 MHz
Wi-Fi 802.11a/n	BPSK	15.0 dBm	1:1	5180.0 - 5240.0 MHz, 5260.0 - 5320.0 MHz, 5500.0 - 5700.0 MHz, 5745.0 - 5825.0 MHz
Bluetooth	GFSK	9.0 dBm	1:1	2402.0 – 2480.0 MHz

GSM Data	GPRS/EDGE Class 12 (4 uplink timeslots; 4 downlink timeslots; 5 total timeslots per frame)
Functionality	Class B (DTM not supported)

Mode(s) of Operation	(GPRS/E	DGE 850)	GPRS/EDGE 1900		EDGE 850			EDGE 1900						
Modulation		GM	ISK		GMSK			8PSK			8PSK					
Maximum Output Power Setting (dBm)	33.50	31.50	29.50	27.50	30.50	28.50	26.50	24.50	27.50	25.50	23.50	21.50	26.50	24.50	22.50	20.50
Time Average Output Power Setting (dBm)	24.50	25.50	25.24	24.50	21.50	22.50	22.24	21.50	18.50	19.50	19.24	18.50	17.50	18.50	18.24	17.50
Duty Cycle	1:8	2:8	3:8	4:8	1:8	2:8	3:8	4:8	1:8	2:8	3:8	4:8	1:8	2:8	3:8	4:8
Transmitting Frequency Range(s)	8	824.2 - 848.8 MHz		1850.2 - 1909.8 MHz		824.2 - 848.8 MHz			1850.2 - 1909.8 MHz							

2.2.1 Power limit reduction schemes

The DUT utilizes reduced limits for the maximum transmit power for its transmitters when operating under the following noted conditions to ensure SAR exposure compliance is maintained. Tables of the reduced limits used for testing are given below. A complete description of this functionality is provided in the "Operational Description" contained within Exhibit 12. The implementation to trigger the reduction in power requires the device to be radiating, which prevents conducted power measurements of this functionality without modification to the unit.

While operating in body-adjacent exposure configurations during a mobile hotspot session, a reduced maximum power limit is enforced on the GSM 1900 or WCDMA 1900 transmitters. Tables of the reduced limits used for testing are given below.

Mode(s) of Operation	WCDMA 1900
Channel Ranges	9262-9538
Maximum Output Power Setting (dBm)	24
Reduced Maximum Output Power Setting (dBm)	17

Mode(s) of Operation		GPRS	1900		EDGE 1900			
Channel Range		975	-124		975-124			
Modulation		GM.	ISK		8PSK			
Duty Cycle	1:8	2:8	3:8	4:8	1:8	2:8	3:8	4:8
Maximum Output Power Setting (dBm)	30.50	28.50	26.50	24.50	26.50	24.50	22.50	20.50
Time Average Output Power Setting (dBm)	21.50	22.50	22.24	21.50	17.50	18.50	18.24	17.50
Reduced Maximum Output Power Setting (dBm)	26.50	24.50	22.50	20.50	22.50	20.50	18.50	16.50
Reduced Time Average Output Power Setting (dBm)	17.50	18.50	18.24	17.50	13.50	14.50	14.24	13.50

3. Test Equipment Used

3.1 Dosimetric System

The Motorola Mobility ADR Test Services Laboratory utilizes a Dosimetric Assessment System (Dasy4TM v4.7) manufactured by Schmid & Partner Engineering AG (SPEAGTM), of Zurich Switzerland. All the SAR measurements are taken within a shielded enclosure. The overall 10 g RSS uncertainty of the measurement system is $\pm 10.8\%$ (K=1) with an expanded uncertainty of $\pm 21.6\%$ (K=2). The overall 1 g RSS uncertainty of the measurement system is $\pm 11.1\%$ (K=1) with an expanded uncertainty of $\pm 22.2\%$ (K=2). The measurement uncertainty budget is given in Appendix 6. Per IEEE 1528, this uncertainty budget is applicable to the SAR range of 0.4 W/kg to 10 W/kg.

The list of calibrated equipment used for the measurements is shown in the following table.

Description	Serial Number	Cal Date	Cal Due Date
DASY4™ DAE V1	376	Aug-31-2011	Aug-31-2012
E-Field Probe ES3DV3	3124	Aug-23-2011	Aug-23-2012
Dipole Validation Kit, DV1800V2	259TR	Oct-20-2011	Oct-20-2012

3.2 Additional Equipment

Description	Serial Number	Cal Date	Cal Due Date
Signal Generator HP8648C	3847M01245	Aug-23-2011	Aug-23-2013
Power Meter E4419B	GB39511084	Mar-28-2011	Mar-28-2013
Power Sensor #1 - E9301A	US39210931	Jan-19-2012	Jan-19-2013
Power Sensor #2 - E9301A	US39210932	Jan-19-2012	Jan-19-2013
Signal Generator HP8648C	3847A04632	Aug-13-2011	Aug-13-2013
Power Meter E4419B	GB39511086	Nov-04-2011	Nov-04-2013
Power Sensor #1 - E9301A	US39210915	Sep-09-2011	Sep-09-2012
Power Sensor #2 - E9301A	US39210916	Sep-09-2011	Sep-09-2012
Network Analyzer HP8753ES	US39171846	May-19-2011	May-19-2012
Network Analyzer E5071C	MY46212851	May-10-2012	May-10-2013
Dielectric Probe Kit DAK-3.5	1030		

4. Electrical parameters of the tissue simulating liquid

Prior to conducting SAR measurements, the relative permittivity, ε_r , and the conductivity, σ , of the tissue simulating liquids were measured with a HP85070 Dielectric Probe Kit These values, along with the temperature of the simulated tissue are shown in the table below. The recommended limits for permittivity and conductivity are also shown. A mass density of $\rho = 1$ $^g/_{cm^3}$ was entered into the system in all the cases. It can be seen that the measured parameters are within tolerance of the recommended limits specified in [1] and [5].

E-field probes calibrated at 1810 MHz were used for "1900 MHz" band (1850 MHz - 1910 MHz) SAR measurements. FCC KDB 450824 provides additional requirements on page 3 of 6 for SAR testing that is performed with probe calibration points that are more than 50 MHz removed from the measured bands. The KDB requires; "(2) When nominal tissue dielectric parameters are specified in the probe calibration data, the tissue dielectric parameters measured for routine measurements should be less than the target Er and higher than the target Sigma values to minimize SAR underestimations". The 1900 MHz simulated tissues listed below meet this criteria.

f	Tissue		Diel	ectric Param	neters		
(MHz)	type	Limits / Measured	ϵ_r	σ (S/m)	Temp (°C)		
1880 Body		Measured, Jun-09-2012	51.1	1.59	19.3		
	Body	Body	Body	Measured, Jul-12-2012	51.8	1.59	21.0
		Recommended Limits	53.3 ±5%	1.52 ±5%	18-25		

The list of ingredients and the percent composition used for the simulated tissues are indicated in the table below.

Ingredient	782 / 835 / 900 MHz Head	782 / 835 / 900 MHz Body	1800 MHz / 1900 MHz Head	1800 MHz / 1900 MHz Body	2450 MHz Head	2450 MHz Body
Sugar	57	44.9				
DGBE			47	30.8		30
Diacetin					51	
Water	40.45	53.06	52.62	68.8	48.75	70
Salt	1.45	0.94	0.38	0.4	0.15	
HEC	1	1				
Bact.	0.1	0.1			0.1	

5. System Accuracy Verification

A system accuracy verification of the DASY4TM was performed using the measurement equipment listed in Section 3.1. The daily system accuracy verification occurs within the flat section of the SAM phantom.

A SAR measurement was performed to verify the measured SAR was within $\pm 10\%$ from the target SAR indicated in Appendix 7. These frequencies are within $\pm 10\%$ of the compliance test mid-band frequency as required in [1] and [5]. The test was conducted on the same days as the measurement of the DUT. Recommended limits for permittivity and conductivity, specified in [5], are shown in the table below. The obtained results from the system accuracy verification are also displayed in the table below. SAR values are normalized to 1 W forward power delivered to the dipole. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values. The distributions of SAR compare well with those of the reference measurements (see Appendix 1). For frequencies below 3 GHz, the simulated tissue depth was verified to be 15.0 cm \pm 0.5 cm. Z-axis scans showing the SAR penetration are also included in Appendix 1.

	System Accuracy Verification Measurements for Body SAR Measurements						
f			SAR	Dielectric Parameters		Ambient	Tissue
(MHz)	Description	Dipole	(W/kg), 1 gram	$\mathbf{\epsilon}_r$	σ (S/m)	Temp (°C)	Temp (°C)
	Measured, Jun-08-2012		39.35	51.8	1.49	21.1	19.3
1800	Measured, Jul-12-2012	259tr	39.35	52.1	1.49	21.0	21.0
	Recommended Limits		39.1	53.3 ±5%	1.52 ±5%	18-25	18-25

The following probe conversion factors were used on the E-Field probe(s) used with the system accuracy verification measurements for body SAR measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe ES3DV3	3124	835	6.04	6 of 11
E-Field Flobe ESSDVS	3124	1810	4.69	6 of 11

6. Test Results

For GSM and WCDMA modes, the test sample was operated using an actual transmission through a base station simulator. The base station simulator or test software was set up for the proper channels, transmitter power levels and transmit modes of operation.

The phone was tested in configurations specified by the FCC for this device in order to demonstrate the effective utilization of power reduction conditions specified in Exhibit 12. The phone was positioned into these configurations using the device holder supplied with the DASY4TM SAR measurement system. The default settings for the "coarse" and "cube" scans were chosen and used for measurements. The grid spacing of the coarse scan was set to 15 mm or less as shown in the SAR plots included in Appendix 2. Please refer to the DASY4TM manual for additional information on SAR scanning procedures and algorithms used.

The SAR results shown in the tables below are maximum SAR values averaged over 1 gram of phantom tissue. Also shown is the extrapolated SAR to account for drift. The exact method of extrapolation is:

Extrapolated $SAR = (Measured SAR) * 10^{(-drift/10)}$

The SAR reported at the end of the measurement process by the DASY4TM measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test.

The Cellular Phone model covered by this report has the following battery options: Model SNN5915A - 2530 mAH battery

The Model SNN5915A battery is an internally-sealed battery contained within the DUT, and may not be removed by the end-user. This battery was used to do all of the SAR testing. The phone was placed in the SAR measurement system with a fully charged battery.

A SPEAGTM MFP V5.1 C Triple Modular Phantom was used for the body-adjacent (body-worn accessory or mobile hotspot) tests. The triple modular phantom consists of three identical modules that can be installed and removed separately without emptying the liquid. Each module of the triple phantom is constructed of glass-fiber reinforced vinylester (VG-GF) with a thickness at the bottom of 2.0 mm. It measures 29.2 cm(long) by 17.8 cm(wide) by 17.8 cm(tall). The simulated tissue depth was verified to be 15.0 cm \pm 0.5 cm. The same device holder described in section 6 was used for positioning the phone.

The simulated tissue depth was verified to be 15.0 cm \pm 0.5 cm for frequencies below 3 GHz.

The following probe conversion factors were used on the E-Field probe(s) used for the following measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe ES3DV3	3124	835	6.04	6 of 11
E-FIEIG FIODE ESSEVS	3124	1810	4.69	6 of 11

Per direction of the FCC, the following SAR test data is being provided to demonstrate the device's effective utilization of power reduction conditions specified in Exhibit 12 - Operational Description. The values in the table are provided solely for purposes of confirming compliant power reduction operation and do not represent maximum SAR values of the product. For maximum reported SAR compliance values, refer to the Exhibit 11 SAR test report.

	Mobile Hotspot, Bottom Edge of Phone 10 mm from Phantom							
f			1 g SAR value without Power Reduction		1 g SA with Power		Power	Measured Power
(MHz)	Mode	Channel	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)	Reduction Specification (dB)	Reduction (dB)
		512	2.59	2.59	0.965	0.97	-4.0	-4.3
	GPRS 1900, PS Data (2 Upslots)	661	2.23	2.23	0.973	0.97	-4.0	-3.6
1880		810	2.19	2.19	0.955	0.96	-4.0	-3.6
1000		9262	4.39	4.39	0.906	0.91	-7.0	-6.8
	WCDMA 1900, 12.2 kbps RMC	9400	3.99	3.99	0.827	0.83	-7.0	-6.8
	•	9538	4.15	4.15	0.97	0.97	-7.0	-6.3

References

- [1] CENELEC, en62209-1:2006 "Human Exposure to Radio Frequency Fields From Hand Held and Body Mounted Wireless Communication Devices Human Models, Instrumentation, and Procedures"
- [2] CENELEC, en50360:2001 "Product standard to demonstrate the compliance of mobile phones with the basic restrictions related to human exposure to electromagnetic fields (300 MHz 3 GHz)".
- [3] ANSI / IEEE, C95.1 1992 Edition "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz"
- [4] FCC OET Bulletin 65 Supplement C 01-01
- [5] IEEE 1528 2003 Edition "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques"
- [6] ICNIRP Guidelines "Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic, and Electromagnetic Fields (up to 300 GHz)"

Appendix 1

SAR distribution comparison for the system accuracy verification

Date/Time: 6/8/2012 5:20:23 PM

Test Laboratory: Motorola Mobility - 1800MHz System Performance Check

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:259tr;

Procedure Notes: Input Power = 200 mW Refl.Pwr = -19.38 dB Sim.Temp@meas = 19.0 Sim.Temp@SPC = 19.3 Room Temp @ SPC = 21.1

Communication System: CW - Dipole; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: Validation *BODY Tissue* ; Medium parameters used: f = 1800 MHz; $\sigma = 1.49$ mho/m; $\epsilon_r = 51.8$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(4.69, 4.69, 4.69); Calibrated: 8/23/2011;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 8/31/2011
- Phantom: R#-1, Triple Flat Phantom 5.1C (Rev.4); Type: QD 000 P51 CA; Serial: n/a;
- ; SEMCAD X Version 14.6.5 (6469)

DASY5, Triple Flat System Performance Check Template - Rev.3 (19-Sept-11)/Daily SPC

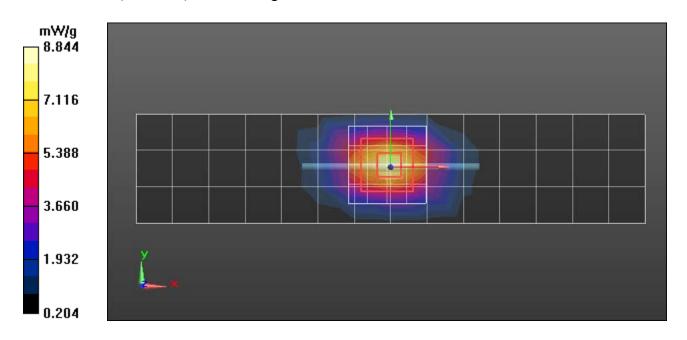
Check/Dipole Area Scan (4x15x1): Measurement grid: dx=15mm, dy=15mm

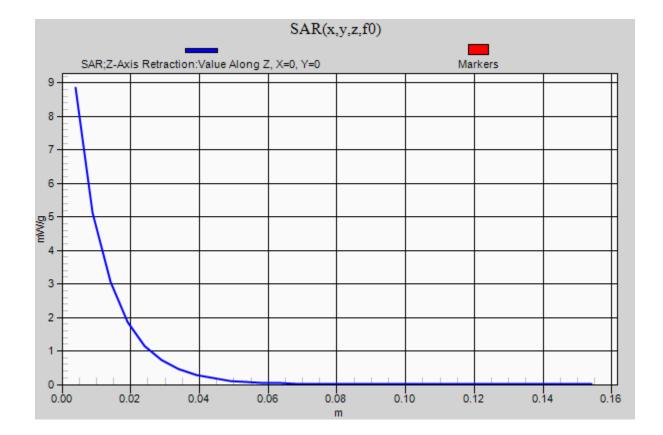
Maximum value of SAR (measured) = 6.96 mW/g

DASY5, Triple Flat System Performance Check Template - Rev.3 (19-Sept-11)/Daily SPC Check/0-

Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 78.402 V/m; Power Drift = -0.03 dB


Peak SAR (extrapolated) = 13.955 mW/g


SAR(1 g) = 7.87 mW/g; SAR(10 g) = 4.19 mW/g

Maximum value of SAR (measured) = 8.84 mW/g

DASY5, Triple Flat System Performance Check Template - Rev.3 (19-Sept-11)/Daily SPC Check/Z-Axis Retraction (1x1x31): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Maximum value of SAR (measured) = 8.85 mW/g

Date/Time: 7/12/2012 4:26:11 PM

Test Laboratory: Motorola Mobility - 1800MHz System Performance Check

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN259TR;

Procedure Notes: Input Power = 200 mW Refl.Pwr = -24.21 dB Sim.Temp@meas = 19.7C Sim.Temp@SPC = 21.0C Room Temp @ SPC = 21.0C

Communication System: CW - Dipole; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: Validation *BODY Tissue*; Medium parameters used: f = 1800 MHz; $\sigma = 1.49$ mho/m; $\epsilon_r = 52.1$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(4.69, 4.69, 4.69); Calibrated: 8/23/2011;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 8/31/2011
- Phantom: R#-1, Triple Flat Phantom 5.1C (Rev.4); Type: QD 000 P51 CA; Serial: n/a;
- ; SEMCAD X Version 14.6.5 (6469)

DASY5, Triple Flat System Performance Check Template - Rev.3 (19-Sept-11)/Daily SPC

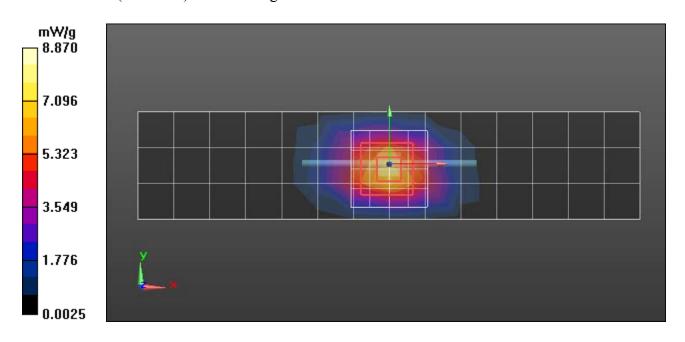
Check/Dipole Area Scan (4x15x1): Measurement grid: dx=15mm, dy=15mm

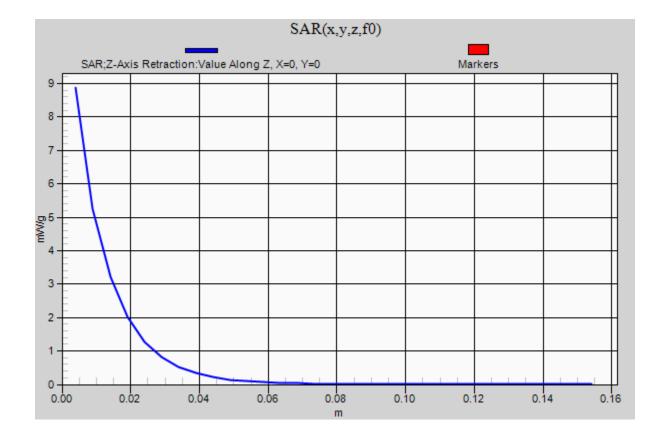
Maximum value of SAR (measured) = 6.84 mW/g

DASY5, Triple Flat System Performance Check Template - Rev.3 (19-Sept-11)/Daily SPC Check/0-

Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 77.743 V/m; Power Drift = 0.01 dB


Peak SAR (extrapolated) = 13.747 mW/g


SAR(1 g) = 7.87 mW/g; SAR(10 g) = 4.24 mW/g

Maximum value of SAR (measured) = 8.85 mW/g

DASY5, Triple Flat System Performance Check Template - Rev.3 (19-Sept-11)/Daily SPC Check/Z-Axis Retraction (1x1x31): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Maximum value of SAR (measured) = 8.87 mW/g

Appendix 2

SAR distribution plots

Date/Time: 6/9/2012 10:24:57 AM

Test Laboratory: Motorola Mobility - GPRS 1900 MHz (Class 10) Mobile Hotspot, No cutback

Serial: LVUE250086; FCC ID: IHDT56NG7

Procedure Notes: Pwr Step: 0, Battery Model #: INTERNAL Device Position = BOTTOM EDGE OF PHONE 10MM AWAY FROM PHANTOM

Communication System: _GPRS Class 10; Frequency: 1850.2 MHz; Communication System Channel Number: 512;

Duty Cycle: 1:4.14954

Medium: Regular Glycol Body 1750/1880; Medium parameters used: f = 1880 MHz; $\sigma = 1.59$ mho/m; $\epsilon_r = 51.1$; $\rho = 1000$ kg/m³

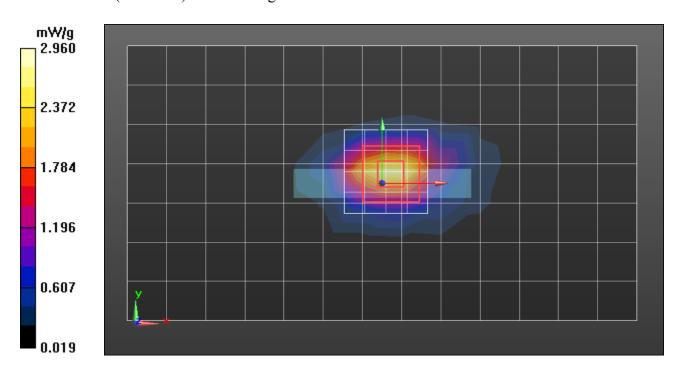
DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(4.69, 4.69, 4.69); Calibrated: 8/23/2011;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 8/31/2011
- Phantom: R#-1, Triple Flat Phantom 5.1C (Rev.4); Type: QD 000 P51 CA; Serial: n/a;
- ; SEMCAD X Version 14.6.5 (6469)

DASY5, Triple Flat Phone Template - Rev.5 (6-April-12)/Triple Flat Phone Template/Area Scan - Normal Body (15mm) (14x8x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 2.60 mW/g

DASY5, Triple Flat Phone Template - Rev.5 (6-April-12)/Triple Flat Phone Template/5x5x7 Zoom


Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 36.051 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 4.684 mW/g

SAR(1 g) = 2.59 mW/g; SAR(10 g) = 1.31 mW/g

Maximum value of SAR (measured) = 2.96 mW/g

Date/Time: 7/12/2012 5:01:50 PM

Test Laboratory: Motorola Mobility - GPRS 1900 MHz (Class 10) Mobile Hotspot w/ cutback

Serial: LVUE250086; FCC ID: IHDT56NG7

Procedure Notes: Pwr Step: 0 Battery Model #: INTERNAL Device Position = BOTTOM EDGE OF PHONE 10MM AWAY FROM PHANTOM

Communication System: _GPRS Class 10; Frequency: 1880 MHz; Communication System Channel Number: 661;

Duty Cycle: 1:4.14954

Medium: Regular Glycol Body 1750/1880; Medium parameters used: f = 1880 MHz; $\sigma = 1.59$ mho/m; $\varepsilon_r = 51.8$; $\rho = 1000$ kg/m³

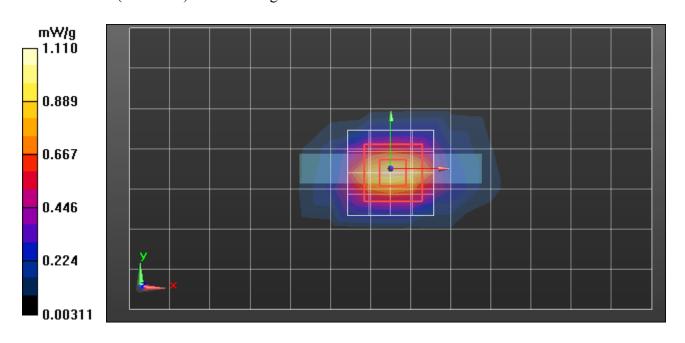
DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(4.69, 4.69, 4.69); Calibrated: 8/23/2011;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 8/31/2011
- Phantom: R#-1, Triple Flat Phantom 5.1C (Rev.4); Type: QD 000 P51 CA; Serial: n/a;
- ; SEMCAD X Version 14.6.5 (6469)

DASY5, Triple Flat Phone Template - Rev.5 (6-April-12)/Triple Flat Phone Template/Area Scan - Normal Body (15mm) (14x8x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.742 mW/g

DASY5, Triple Flat Phone Template - Rev.5 (6-April-12)/Triple Flat Phone Template/5x5x7 Zoom


Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.252 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 1.748 mW/g

SAR(1 g) = 0.973 mW/g; SAR(10 g) = 0.495 mW/g

Maximum value of SAR (measured) = 1.11 mW/g

Date/Time: 6/9/2012 1:40:02 PM

Test Laboratory: Motorola Mobility - WCDMA 1900 MHz Mobile Hotspot, No cutback

Serial: LVUE250086; FCC ID: IHDT56NG7

Procedure Notes: Pwr Step: ALL UP BITS Battery Model #: INTERNAL Device Position = BOTTOM EDGE OF PHONE 10MM AWAY FROM PHANTOM

Communication System: _WCDMA; Frequency: 1852.4 MHz; Communication System Channel Number: 9262; Duty Cycle: 1:1

Medium: Regular Glycol Body 1750/1880; Medium parameters used: f = 1880 MHz; $\sigma = 1.59$ mho/m; $\varepsilon_r = 51.1$; $\rho = 1000 \text{ kg/m}^3$

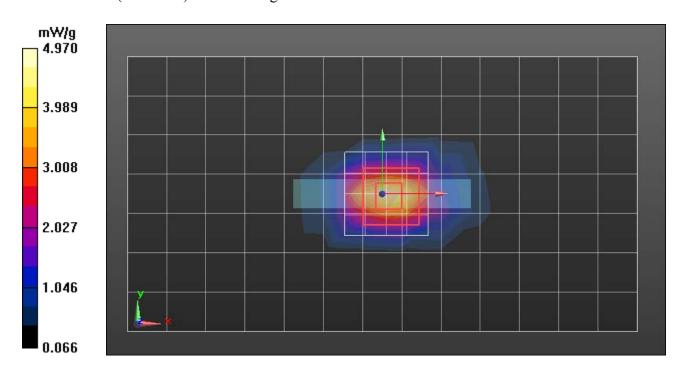
DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(4.69, 4.69, 4.69); Calibrated: 8/23/2011;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 8/31/2011
- Phantom: R#-1, Triple Flat Phantom 5.1C (Rev.4); Type: QD 000 P51 CA; Serial: n/a;
- ; SEMCAD X Version 14.6.5 (6469)

DASY5, Triple Flat Phone Template - Rev.5 (6-April-12)/Triple Flat Phone Template/Area Scan - Normal Body (15mm) (14x8x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 3.31 mW/g

DASY5, Triple Flat Phone Template - Rev.5 (6-April-12)/Triple Flat Phone Template/5x5x7 Zoom


Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 48.473 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 8.072 mW/g

SAR(1 g) = 4.39 mW/g; SAR(10 g) = 2.19 mW/g

Maximum value of SAR (measured) = 4.97 mW/g

Date/Time: 7/12/2012 10:35:20 PM

Test Laboratory: Motorola Mobility - WCDMA 1900 MHz Mobile Hotspot w/ cutback

Serial: LVUE250086; FCC ID: IHDT56NG7

Procedure Notes: Pwr Step: ALL UP BITS Battery Model #: INTERNAL Device Position = BOTTOM EDGE OF PHONE 10MM AWAY FROM PHANTOM

Communication System: _WCDMA; Frequency: 1907.6 MHz; Communication System Channel Number: 9538; Duty

Cycle: 1:1

Medium: Regular Glycol Body 1750/1880; Medium parameters used: f = 1880 MHz; $\sigma = 1.59$ mho/m; $\varepsilon_r = 51.8$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

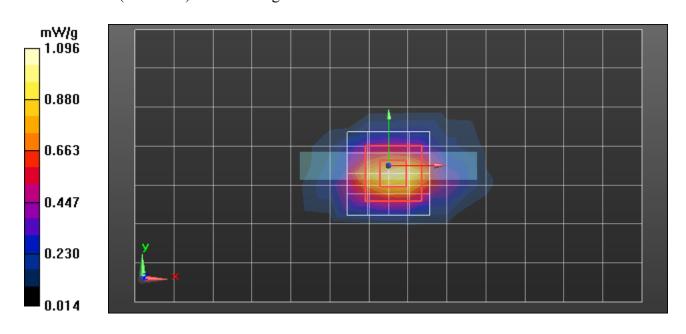
- Probe: ES3DV3 SN3124; ConvF(4.69, 4.69, 4.69); Calibrated: 8/23/2011;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 8/31/2011
- Phantom: R#-1, Triple Flat Phantom 5.1C (Rev.4); Type: QD 000 P51 CA; Serial: n/a;
- ; SEMCAD X Version 14.6.5 (6469)

DASY5, Triple Flat Phone Template - Rev.5 (6-April-12)/Triple Flat Phone Template/Area Scan -

Normal Body (15mm) (14x8x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.933 mW/g

DASY5, Triple Flat Phone Template - Rev.5 (6-April-12)/Triple Flat Phone Template/5x5x7 Zoom


Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.561 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 1.780 mW/g

SAR(1 g) = 0.970 mW/g; SAR(10 g) = 0.487 mW/g

Maximum value of SAR (measured) = 1.10 mW/g

Appendix 3 Measurement Uncertainty Budget

Uncertainty Budget for Device Under Test, for 735 MHz to 2 GHz

Officer taility Dudget IC	n bevice ende		<i>t</i> , 101	755 111		GIIZ			
							h =	<i>i</i> =	
	,		,	e =	C		cxf/	cxg/	
a	<u>b</u>	c	d	f(d,k)	f	g	e	e	k
		Tol.	Prob		c_i	c_i	1 g	10 g	
	Description IEEE1528(2003) /	(± %)	Dist		(1 g)	(10 g)	\boldsymbol{u}_i	\boldsymbol{u}_i	
Uncertainty Component	IEC62209-1(2005)			Div.			(±%)	(±%)	v_i
Measurement System	, ,								
Probe Calibration [ES3DV3]	E.2.1 / 7.2.1	5.5	N	1.00	1	1	5.5	5.5	∞
Axial Isotropy	E.2.2 / 7.2.1.2	4.7	R	1.73	0.707	0.707	1.9	1.9	∞
Hemispherical Isotropy	E.2.2 / 7.2.1.2	9.6	R	1.73	0.707	0.707	3.9	3.9	8
Boundary Effect	E.2.3 / 7.2.1.5	1.0	R	1.73	1	1	0.6	0.6	8
Linearity	E.2.4 / 7.2.1.3	4.7	R	1.73	1	1	2.7	2.7	∞
System Detection Limits	E.2.5 / 7.2.1.4	1.0	R	1.73	1	1	0.6	0.6	8
Readout Electronics	E.2.6 / 7.2.1.6	0.3	N	1.00	1	1	0.3	0.3	∞
Response Time	E.2.7 / 7.2.1.7	1.1	R	1.73	1	1	0.6	0.6	∞
Integration Time	E.2.8 / 7.2.1.8	1.1	R	1.73	1	1	0.6	0.6	∞
RF Ambient Conditions -									
Noise	E.6.1 / 7.2.3.6	3.0	R	1.73	1	1	1.7	1.7	∞
RF Ambient Conditions -									
Reflections	E.6.1 / 7.2.3.6	3.0	R	1.73	1	1	1.7	1.7	∞
Probe Positioner Mech.		0.4	n	1 72	1	1	0.2	0.2	l
Tolerance Probe Positioning w.r.t	E.6.2 / 7.2.2.1	0.4	R	1.73	1	1	0.2	0.2	∞
Phantom	E.6.3 / 7.2.2.3	1.4	R	1.73	1	1	0.8	0.8	∞
Max. SAR Evaluation (ext.,	E.0.5 / 1.2.2.3	1.7	IX	1.75	1	1	0.0	0.0	
int., avg.)	E.5 / 7.2.4	3.4	R	1.73	1	1	2.0	2.0	∞
Test sample Related									
Test Sample Positioning	E.4.2 / 7.2.2.4	3.4	N	1.00	1	1	3.4	3.4	79
Device Holder Uncertainty	E.4.1 / 7.2.2.4.2	4.5	N	1.00	1	1	4.5	4.5	11
SAR drift	6.6.2 / 7.2.3.5	0.0	R	1.73	1	1	0.0	0.0	∞
Phantom and Tissue									
Parameters									
Phantom Uncertainty	E.3.1 / 7.2.2.2	4.0	R	1.73	1	1	2.3	2.3	8
Liquid Conductivity (target)	E.3.2 / 7.2.3.3	5.0	R	1.73	0.64	0.43	1.8	1.2	8
Liquid Conductivity									
(measurement)	E.3.3 / 7.2.3.3	2.5	N	1.00	0.64	0.43	1.6	1.1	6
Liquid Permittivity (target)	E.3.2 / 7.2.3.4	5.0	R	1.73	0.6	0.49	1.7	1.4	∞
Liquid Permittivity		2.2		1.00	0.5	0.40			
(measurement)	E.3.2 / 7.2.3.4	2.3	N	1.00	0.6	0.49	1.4	1.1	6
Combined Standard Uncertainty			RSS				11	11	338
Expanded Uncertainty			CGA				11	11	336
(95% CONFIDENCE									
LEVEL)			k=2				22	21	
. ==/									

Appendix 4 Probe Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Motorola MDb

Accreditation No.: SCS 108

C

S

Certificate No: ES3-3124_Aug11

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3124

Calibration procedure(s)

QA CAL-01.v8, QA CAL-23.v4, QA CAL-25.v4 Calibration procedure for dosimetric E-field probes

Calibration date:

August 23, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	31-Mar-11 (No. 217-01372)	Apr-12
Power sensor E4412A	MY41498087	31-Mar-11 (No. 217-01372)	Apr-12
Reference 3 dB Attenuator	SN: S5054 (3c)	29-Mar-11 (No. 217-01369)	Apr-12
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12
Reference 30 dB Attenuator	SN: S5129 (30b)	29-Mar-11 (No. 217-01370)	Apr-12
Reference Probe ES3DV2	SN: 3013	29-Dec-10 (No. ES3-3013_Dec10)	Dec-11
DAE4	SN: 654	3-May-11 (No. DAE4-654_May11)	May-12
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-10)	In house check: Oct-11

Name Function Signature

Calibrated by: Katja Pokovic Technical Manager

Approved by: Niels Kuster Quality Manager

Issued: August 23, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ES3-3124_Aug11 Page 1 of 11

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

NORMx,y,z ConvF

sensitivity in free space sensitivity in TSL / NORMx,y,z

tissue simulating liquid

DCP diode compression point
CF crest factor (1/duty_cycle) of the RF signal

A, B, C modulation dependent linearization parameters
Polarization φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 iEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 iEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3124_Aug11 Page 2 of 11

August 23, 2011

Probe ES3DV3

SN:3124

Manufactured: July 11, 2006

Calibrated:

August 23, 2011

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3124

Basic Calibration Parameters

AT ATTEMPT AND A	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	1.26	1.30	1.30	± 10.1 %
DCP (mV) ^B	100.9	98.2	100.9	

Modulation Calibration Parameters

UID	Gommunication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
10000	CW	0.00	X	0.00	0.00	1.00	116.0	±2.7 %
			Y	0.00	0.00	1.00	109.7	
			Z	0.00	0.00	1.00	115.4	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

[^] The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
a Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the

ES3DV3- SN:3124 August 23, 2011

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3124

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	41.9	0.89	6.26	6.26	6.26	1.00	1.00	± 12.0 %
835	41.5	0.90	6.08	6.08	6.08	1.00	1.00	± 12.0 %
1810	40.0	1.40	5.03	5.03	5.03	1.00	1.12	± 12.0 %
1950	40.0	1.40	4.83	4.83	4.83	1.00	1.12	± 12.0 %
2450	39.2	1.80	4.40	4.40	4.40	1.00	1.12	± 12.0 %

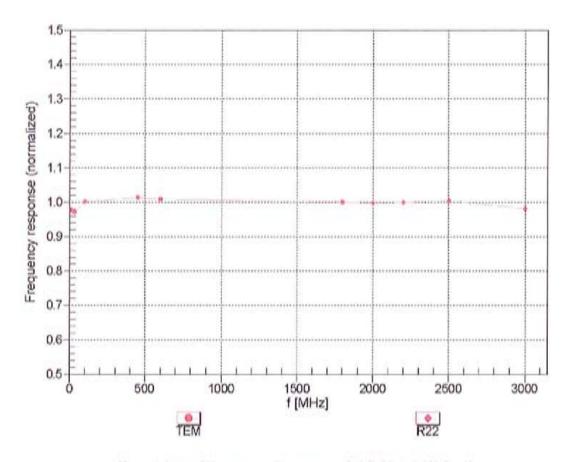
^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

ES3DV3-SN:3124 August 23, 2011

DASY/EASY - Parameters of Probe: ES3DV3- SN:3124

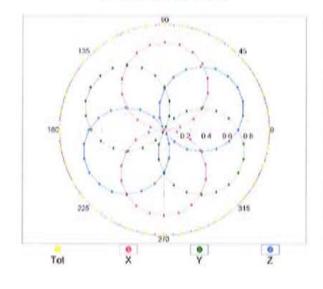

Calibration Parameter Determined in Body Tissue Simulating Media

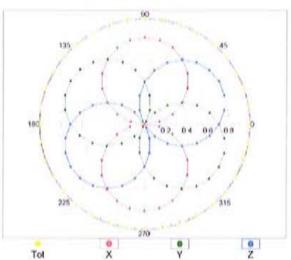
f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	55.5	0.96	6.09	6.09	6.09	1.00	1.00	± 12.0 %
835	55.2	0.97	6.04	6.04	6.04	1.00	1.00	± 12.0 %
1810	53.3	1.52	4.69	4.69	4.69	1.00	1.18	± 12.0 %
1950	53.3	1.52	4.70	4.70	4.70	1.00	1.16	± 12.0 %
2450	52.7	1.95	4.21	4.21	4.21	1.00	1.00	± 12.0 %

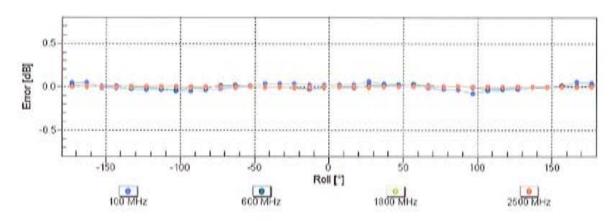
^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

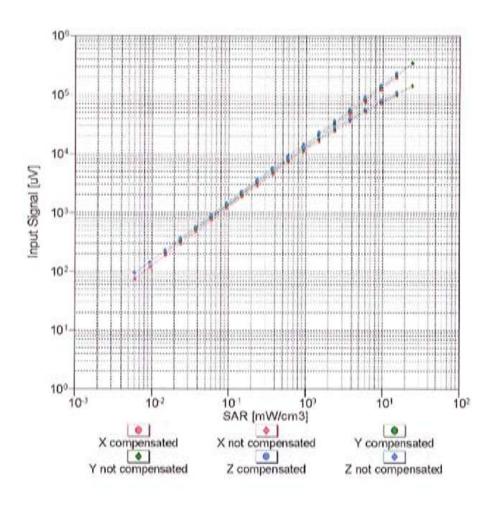


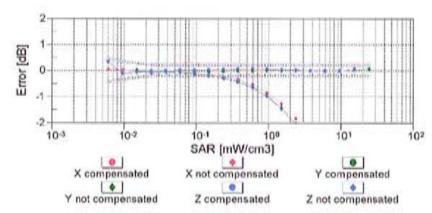

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\theta = 0^{\circ}$

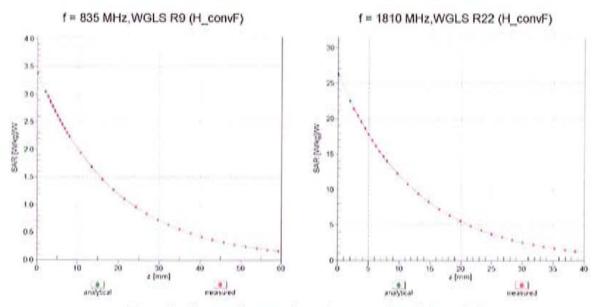
f=600 MHz,TEM

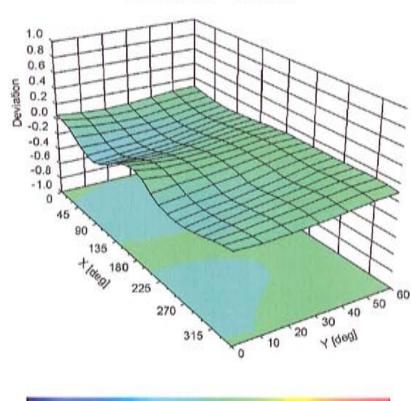
f=1800 MHz,R22





Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3124

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Lerigth	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Appendix 5

Dipole Characterization Certificate

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

C

S

Accreditation No.: SCS 108

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Motorola MDb

Certificate No: D1800V2-259_Oct11

CALIBRATION CERTIFICATE

Object

D1800V2 - SN: 259

Calibration procedure(s)

QA CAL-05.v8

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

October 20, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	05-Oct-11 (No. 217-01451)	Oct-12
Power sensor HP 8481A	US37292783	05-Oct-11 (No. 217-01451)	Oct-12
Reference 20 dB Attenuator	SN: 5086 (20g)	29-Mar-11 (No. 217-01368)	Apr-12
Type-N mismatch combination	SN: 5047.2 / 06327	29-Mar-11 (No. 217-01371)	Apr-12
Reference Probe ES3DV3	SN: 3205	29-Apr-11 (No. ES3-3205_Apr11)	Apr-12
DAE4	SN: 601	04-Jul-11 (No. DAE4-601_Jul11)	Jul-12
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-11)	In house check: Oct-12

Calibrated by:

Function Jeton Kastrati Laboratory Technician

Approved by:

Technical Manager

Issued: October 20, 2011

Signature

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Name

Katja Pokovic

Certificate No: D1800V2-259_Oct11

Page 1 of 8

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1800 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.7 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.46 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	38.1 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.98 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	20.0 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.4 ± 6 %	1.52 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.72 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	39.1 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.14 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	20.6 mW / g ± 16.5 % (k=2)

Certificate No: D1800V2-259_Oct11 Page 3 of 8

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.1 Ω - 5.7 jΩ
Return Loss	- 24.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.2 Ω - 5.7 jΩ	
Return Loss	- 22.1 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.187 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	December 23, 1999	

DASY5 Validation Report for Head TSL

Date: 20.10.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 259

Communication System: CW; Frequency: 1800 MHz

Medium parameters used: f = 1800 MHz; $\sigma = 1.38 \text{ mho/m}$; $\varepsilon_r = 39.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(5.07, 5.07, 5.07); Calibrated: 29.04.2011

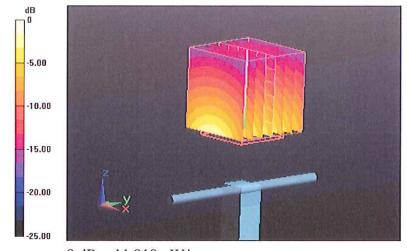
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.07.2011

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

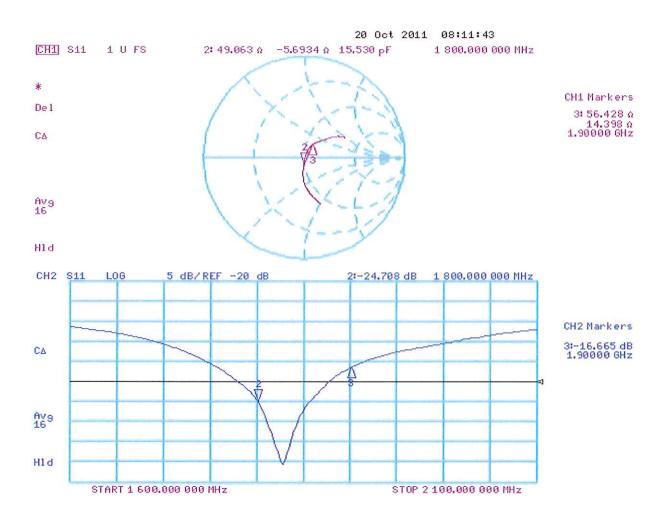
DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.773 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 16.874 W/kg


SAR(1 g) = 9.46 mW/g; SAR(10 g) = 4.98 mW/g

Maximum value of SAR (measured) = 11.912 mW/g

0 dB = 11.910 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 20.10.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 259

Communication System: CW; Frequency: 1800 MHz

Medium parameters used: f = 1800 MHz; $\sigma = 1.52 \text{ mho/m}$; $\varepsilon_r = 54.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(4.74, 4.74, 4.74); Calibrated: 29.04.2011

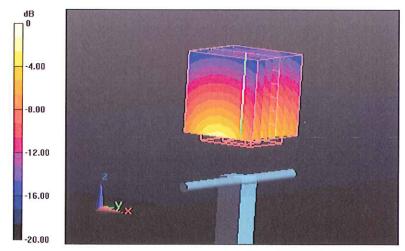
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.07.2011

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

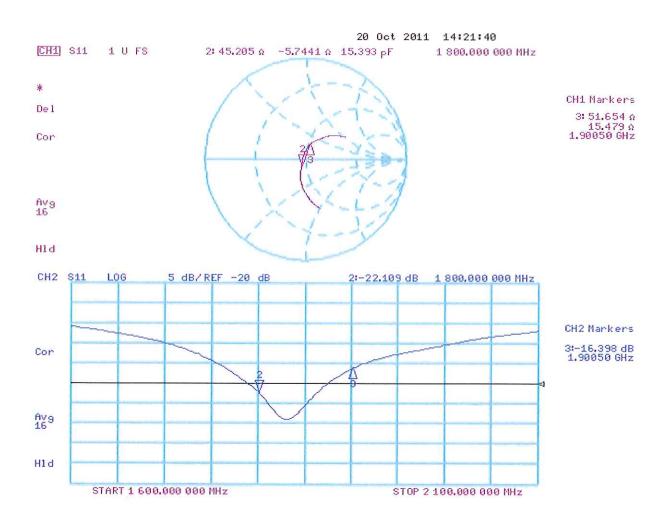
• DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.339 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 17.128 W/kg


SAR(1 g) = 9.72 mW/g; SAR(10 g) = 5.14 mW/g

Maximum value of SAR (measured) = 12.317 mW/g

0 dB = 12.320 mW/g

Impedance Measurement Plot for Body TSL

END OF REPORT