

Portable Hand-Held Device SAR Test Report

Motorola Mobility, Inc.

600 N. US Highway 45 **Tests Requested By:**

Libertyville, IL 60048

Test Report #: 24358-1F **Date of Report:** Jan-25-2011

Nov-27-2010 to Dec-16-2010 **Date of Test:**

FCC ID #: IHDT56MT1

Generic Name: N/A

Motorola Mobility, Inc. - Product Safety & Compliance Laboratory

Test Laboratory: 600 N. US Highway 45

Libertyville, IL 60048

Steven Hauswirth **Report Author:**

Distinguished Member of the Technical Staff

This laboratory is accredited to ISO/IEC 17025-2005 to perform the following tests:

Accreditation:

Procedures:

Electromagnetic Specific Absorption Rate IEC 62209-1 RSS-102

IEEE 1528 - 2003

FCC OET Bulletin 65 (including Supplement C) Australian Communications Authority Radio

Communications (Electromagnetic Radiation – Human

Exposure) Standard 2003 CENELEC EN 50360 ARIB Std. T-56 (2002)

On the following products or types of products:

Wireless Communications Devices (Examples): Two Way Radios; Portable Phones (including

Cellular, Licensed Non-Broadcast and PCS); Low Frequency Readers; and Pagers

Motorola declares under its sole responsibility that the portable hand-held device model to which this declaration relates, is in conformity with the appropriate General Population/Uncontrolled RF exposure standards, recommendations and guidelines (FCC 47 CFR §2.1093) as well as with CENELEC en50360:2001 and ANSI / IEEE C95.1. It also declares that the product was tested in accordance with IEEE 1528 / CENELEC EN62209-1 (2006), as well as other appropriate measurement standards, guidelines and recommended practices. Any deviations from these standards, guidelines and recommended practices are noted

Statement of **Compliance:**

Motorola's ISO 17025 accreditation scope does not currently include SAR testing in the 5 GHz band. Therefore, SAR testing performed in this band was performed outside of our ISO 17025 accreditation. The general procedures and guidelines provided within; FCC KDB 248227 D01, FCC KDB 648474 D01, FCC KDB 865664 D01 and IEC 62209-2 were utilized for testing.

©Motorola, Inc. 2011

This test report shall not be reproduced except in full, without written approval of the laboratory. The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report. Motorola encourages all feedback, both positive and negative, on this test report.

Table of Contents

1. Introduction	3
2. Description of the Device Under Test	3
2.1 Antenna description	3
2.2 Device description	3
2.3 Evaluation of Wi-Fi 802.11 modes	4
3. Test Equipment Used	6
3.1 Dosimetric System	6
3.2 Additional Equipment	6
4. Electrical parameters of the tissue simulating liquid	7
5. System Accuracy Verification	8
6. Test Results	8
6.1 Body Worn Test Results	9
References	11
Appendix 1: SAR distribution comparison for the system accuracy verification	
Appendix 2: SAR distribution plots for Body Worn Configuration	
Appendix 3: Probe Calibration Certificate	
Appendix 4: Measurement Uncertainty Budget	
Appendix 5: Dipole Characterization Certificate	

1. Introduction

The Motorola Mobility Product Safety & Compliance Laboratory has performed measurements of the maximum potential exposure to the user of the portable hand-held device covered by this test report. The Specific Absorption Rate (SAR) of this product was measured. The portable hand-held device was tested in accordance with [1], [4] and [5]. The SAR values measured for the portable hand-held device are below the maximum recommended levels of 1.6 W/kg in a 1 g average set in [3] and 2.0 W/kg in a 10 g average set in [2].

For ANSI / IEEE C95.1 (1 g), the final stand-alone SAR readings for this hand-held device are 1.33 W/kg for bodyworn use. These measurements were performed using a Dasy4TM v4.7 system manufactured by Schmid & Partner Engineering AG (SPEAG), of Zurich Switzerland.

2. Description of the Device Under Test

2.1 Antenna description

Type	Internal				
Location	Top-Center Rear of Device				
Dimondiana	Width	3 mm			
Dimensions	Length	10 mm			

2.2 Device description

Serial Number(s) (Functional Use)	99000052000875 (Wi-Fi SAR testing) 99000052000852 (Wi-Fi/Bluetooth conducted power measurements)
Production Unit or Identical Prototype (47 CFR §2908)	Identical Prototype
Device Category	Portable
RF Exposure Limits	General Population / Uncontrolled

Mode(s) of Operation	Wi-Fi 802.11b/g/n	Wi-Fi 802.11a/n	Bluetooth	
Modulation Mode(s)	BPSK	BPSK	GFSK	
Maximum Output Power Setting	20.0 dBm	9.0 dBm	10 dBm	
Duty Cycle	1:1	1:1	1:1	
Transmitting Frequency Range(s)	2412.0 - 2462.5 MHz	5180 - 5240, 5745 - 5805, MHz	2402.0 - 2483.5 MHz	

2.3 Evaluation of Wi-Fi 802.11 modes

Per "SAR Measurement Procedures for 802.11 a/b/g Transmitters" (FCC KDB 248227), power measurements were performed for 802.11 operational modes. The conducted power measurements for each mode are shown in the table below. SAR testing for 802.11 modes was performed with the transmitter mode and data rate set to the configurations highlighted in bold below.

Band	Channel	Conducted Power (dBm) for 802.11b Mode Data Rates					
Dana	Channel	1	2	5.5	11		
		Mbps	Mbps	Mbps	Mbps		
Wi-Fi	1	16.83	17.38	17.60	17.67		
2450 MHz	6	17.69	18.19	18.39	18.43		
	11	17.45	18.12	18.19	18.38		

Band	Channel		Conducted Power (dBm) for 802.11g Mode Data Rates								
Danu	Chamiei	6	9	12	18	24	36	48	54		
		Mbps	Mbps	Mbps	Mbps	Mbps	Mbps	Mbps	Mbps		
Wi-Fi	1	11.20	11.17	10.54	10.22	10.28	10.17	10.12	9.31		
2450	6	17.26	17.25	17.21	16.95	14.60	14.76	14.59	14.65		
MHz	11	11.36	11.63	11.57	11.26	11.29	11.19	11.12	11.14		

Dand	Channel		Cond			r 802.11n N 00 ns Guard		Rates	
Band	Chamiei	6.5	13	19.5	26	39	52	58.5	65
		Mbps	Mbps	Mbps	Mbps	Mbps	Mbps	Mbps	Mbps
Wi-Fi	1	11.04	10.51	10.25	10.32	10.27	10.26	10.14	10.22
2450	6	15.54	15.44	15.10	13.57	13.81	13.55	13.59	12.10
MHz	11	11.40	11.47	11.12	11.21	11.15	11.13	11.11	10.80

Dand	Channal		Conducted Power (dBm) for 802.11n Mode Data Rates (20 MHz Channel, 400 ns Guard Interval)								
Band Channel	7.2	14.4	21.6	28.8	43.3	57.7	65	72.2			
		Mbps	Mbps	Mbps	Mbps	Mbps	Mbps	Mbps	Mbps		
Wi-Fi	1	10.65	10.49	10.22	10.25	10.36	10.32	10.18	10.15		
2450	6	15.44	15.63	15.11	13.77	13.76	13.67	13.54	12.09		
MHz	11	11.40	11.25	10.98	11.05	11.12	10.92	10.95	10.90		

D 4	Channel	Conducted Power (dBm) for 802.11a Mode Data Rates									
Band Channel	Channel	6 Mbps	9 Mbps	12 Mbps	18 Mbps	24 Mbps	36 Mbps	48 Mbps	54 Mbps		
	36	7.81	7.97	8.00	7.79	7.72	7.74	7.66	7.60		
Wi-Fi	40	8.49	8.76	7.67	7.57	7.50	7.55	7.53	7.45		
5210 MHz	44	7.78	7.86	7.74	7.55	7.51	7.56	7.50	7.51		
	48	8.93	9.15	7.72	7.37	7.38	7.43	7.42	7.54		
	149	8.27	8.29	8.21	8.17	8.15	8.21	8.19	8.26		
Wi-Fi	153	8.60	8.59	8.55	8.27	8.18	8.19	8.17	8.01		
5775 MHz	157	8.64	8.65	8.62	8.24	8.41	8.27	8.21	8.30		
	161	8.77	8.76	8.70	8.43	8.50	8.45	8.40	8.51		

D d	Channal	Conducted Power (dBm) for 802.11n Mode Data Rates (20 MHz Channel, 800 ns Guard Interval)								
Band Channel	6.5 Mbps	13 Mbps	19.5 Mbps	26 Mbps	39 Mbps	52 Mbps	58.5 Mbps	65 Mbps		
	36	8.41	7.65	7.28	7.55	7.50	7.56	7.67	7.47	
Wi-Fi	40	8.00	8.10	7.75	7.63	7.59	7.85	7.74	7.70	
5210 MHz	44	8.15	7.65	7.49	7.63	7.60	7.61	7.74	7.68	
	48	8.26	8.26	8.07	8.03	8.06	8.05	8.04	7.73	
	149	8.78	8.06	7.73	7.80	7.78	7.78	7.78	7.71	
Wi-Fi	153	7.93	8.07	7.70	7.72	7.90	7.68	7.66	7.68	
5775 MHz	157	8.14	8.08	7.75	7.83	7.88	7.83	7.72	7.74	
	161	8.21	8.29	7.92	8.14	8.01	7.96	7.87	7.85	

Dond	Channal		Conducted Power (dBm) for 802.11n Mode Data Rates (20 MHz Channel, 400 ns Guard Interval)								
Band Channel	7.2 Mbps	14.4 Mbps	21.6 Mbps	28.8 Mbps	43.3 Mbps	57.7 Mbps	65 Mbps	72.2 Mbps			
	36	8.36	8.18	7.60	7.74	7.75	7.75	7.74	7.66		
Wi-Fi	40	7.93	7.95	7.85	7.92	7.90	7.77	7.80	7.79		
5210 MHz	44	8.10	8.02	7.74	7.85	7.89	7.98	7.61	7.98		
	48	8.26	8.18	7.94	8.01	8.02	7.75	7.68	7.64		
	149	8.45	8.51	8.29	8.41	8.38	7.85	7.76	8.14		
Wi-Fi	153	8.53	8.33	8.35	7.61	7.83	7.86	7.76	7.68		
5775 MHz	157	8.05	7.98	7.74	7.89	7.84	7.76	7.86	7.73		
	161	8.29	8.06	7.85	7.98	7.90	8.02	7.90	7.79		

3. Test Equipment Used

3.1 Dosimetric System

The Motorola Mobile Devices Business Product Safety & Compliance Laboratory utilizes a Dosimetric Assessment System (Dasy4TM v4.7) manufactured by Schmid & Partner Engineering AG (SPEAGTM), of Zurich Switzerland. All the SAR measurements are taken within a shielded enclosure. The overall 10 g RSS uncertainty of the measurement system is $\pm 10.8\%$ (K=1) with an expanded uncertainty of $\pm 21.6\%$ (K=2). The overall 1 g RSS uncertainty of the measurement system is $\pm 11.1\%$ (K=1) with an expanded uncertainty of $\pm 22.2\%$ (K=2). The measurement uncertainty budget is given in Appendix 5. Per IEEE 1528, this uncertainty budget is applicable to the SAR range of 0.4 W/kg to 10 W/kg.

The list of calibrated equipment used for the measurements is shown in the following table.

Description	Serial Number	Cal Date	Cal Due Date
DASY4 TM DAE V1	378	Feb-12-2010	Feb-12-2011
E-Field Probe ES3DV3	3124	Aug-11-2010	Aug-11-2011
DASY4 TM DAE V1	376	Jul-13-2010	Jul-13-2011
E-Field Probe EX3DV4	3730	Jul-16-2010	Jul-16-2011
S.A.M. Phantom used for 2450 MHz	TP-1250		
S.A.M. Phantom used for 5210/5775 MHz	TP-1153		
S.A.M. Phantom used for 5210/5775 MHz	TP-1106		
Dipole Validation Kit, DV2450V2	766	Oct-13-2010	Oct-13-2011
Dipole Validation Kit, D5GHzV2	1088	Jul-14-2010	Jul-14-2011

3.2 Additional Equipment

Description	Serial Number	Cal Date	Cal Due Date
Signal Generator HP8648C	3847A04810	Oct-30-2009	Oct-30-2011
Power Meter E4419B	GB39511087	Dec-22-2009	Dec-22-2011
Power Sensor #1 - E9301A	US39211006	Oct-25-2010	Oct-25-2011
Power Sensor #2 - E9301A	US39210934	Oct-25-2010	Oct-25-2011
Signal Generator HP8648C	3429A00286	Nov-23-2009	Nov-23-2011
Power Meter E4419B	US39250622	Dec-22-2009	Dec-22-2011
Power Sensor #1 - E9301A	US39210931	Oct-25-2010	Oct-25-2011
Power Sensor #2 - E9301A	US39210932	Oct-25-2010	Oct-25-2011
Network Analyzer HP8753ES	US39172529	Jun-04-2001	Jun-04-2011
Dielectric Probe Kit HP85070C	US99360070		

4. Electrical parameters of the tissue simulating liquid

Prior to conducting SAR measurements, the relative permittivity, ε_r , and the conductivity, σ , of the tissue simulating liquids were measured with a HP85070 Dielectric Probe Kit These values, along with the temperature of the simulated tissue are shown in the table below. The recommended limits for permittivity and conductivity are also shown. A mass density of $\rho = 1$ $^g/_{cm^3}$ was entered into the system in all the cases. It can be seen that the measured parameters are within tolerance of the recommended limits specified in [1] and [5].

f	Tissue		Dielectric Parameters			
(MHz)	type	Limits / Measured	ϵ_r	σ (S/m)	Temp (°C)	
		Measured, Nov-27-2010	50.4	1.96	20.3	
2450	Body	Measured, Nov-29-2010	50.1	1.92	19.2	
	ľ	Recommended Limits	52.7 ±10%	1.95 ±5%	18-25	
	Body	Measured, Dec-10-2010	45.2	5.72	19.1	
5210		Measured, Dec-16-2010	45.8	5.71	19.8	
5210		Measured, Dec-18-2010	45.7	5.67	19.9	
		Recommended Limits	49.0 ±10%	5.31 ±5%	18-25	
		Measured, Dec-09-2010	44.4	6.54	19.3	
5785	Dody	Measured, Dec-16-2010	44.6	6.54	19.8	
5/65	Body	Measured, Dec-19-2010	44.5	6.49	19.9	
		Recommended Limits	48.2 ±10%	5.98 ±5%	18-25	

The list of ingredients and the percent composition used for the simulated tissues are indicated in the table below.

Ingredient	2450 MHz Body
Sugar	
DGBE	30
Diacetin	
Water	70
Salt	
HEC	
Bact.	

All 5.2 GHz and 5.8 GHz SAR testing for the body-worn configuration was performed using the MSL 3500/5800 tissue simulating liquid from Schmid & Partner Engineering AG. Prior to conducting SAR measurements, the relative permittivity, e_r , and the conductivity, s, of the liquid were measured. In many cases the conductivity of the purchased liquid was determined to be at the high end of the window from the target parameter. This resulted in the 5.2 GHz and 5.8 GHz System Accuracy Verifications measuring slightly above the 19.9% (k=2) window from the dipole validation target. When conductivity is normalized to the target value, the system accuracy verification is within the 19.9% (k=2) window. Because the system accuracy verifications were measured on the conservative side of the target window, all subsequent 5.2 GHz and 5.8 GHz SAR tests were also on the conservative side of the uncertainty window.

5. System Accuracy Verification

A system accuracy verification of the DASY4TM was performed using the measurement equipment listed in Section 3.1. The daily system accuracy verification occurs within the flat section of the SAM phantom.

A SAR measurement was performed to verify the measured SAR was within $\pm 10\%$ from the target SAR indicated in Appendix 7. These frequencies are within $\pm 10\%$ of the compliance test mid-band frequency as required in [1] and [5]. The test was conducted on the same days as the measurement of the DUT. Recommended limits for permittivity and conductivity, specified in [5], are shown in the table below. The obtained results from the system accuracy verification are also displayed in the table below. SAR values are normalized to 1 W forward power delivered to the dipole. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values. The distributions of SAR compare well with those of the reference measurements (see Appendix 1). For frequencies below 3 GHz, the simulated tissue depth was verified to be 15.0 cm \pm 0.5 cm. For frequencies above 3 GHz, the simulated tissue depth was verified to be 10 cm \pm 0.5 cm. Z-axis scans showing the SAR penetration are also included in Appendix 1.

f		SAR (W/kg),	Dielectric F	Parameters	Ambient	Tissue	
(MHz)	Description			σ (S/m)	Temp (°C)	Temp (°C)	
	Measured, Nov-27-2010	56.0	37.3	1.84	20.0	20.6	
2450	Measured, Nov-29-2010	54.5	37.3	1.80	20.2	19.2	
	Recommended Limits	52.2	39.2 ±10%	1.80 ±5%	18-25	18-25	
	Measured, Dec-10-2010	94.1	34.0	4.85	20.0	19.1	
5200	Measured, Dec-16-2010	91.3	34.8	4.89	20.2	19.7	
	Recommended Limits	82.4	36.0 ±10%	4.65 ±5%	18-25	18-25	
	Measured, Dec-09-2010	89.7	33.3	5.53	20.2	19.6	
5800	Measured, Dec-16-2010	95.8	33.6	5.57	20.2	19.7	
	Recommended Limits	82.1	35.4 ±10%	5.27 ±5%	18-25	18-25	

The following probe conversion factors were used on the E-Field probe(s) used for the system accuracy verification measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe ES3DV3	3124	2450	4.35	5 of 11
E-Field Probe	2720	5200	4.67	5 of 11
EX3DV4	3730	5800	4.06	5 of 11

6. Test Results

The DUT was tested in the configurations stipulated in [1], [4] and [5]. The DUT was positioned into these configurations using the device holder supplied with the DASY4TM SAR measurement system. The default settings for the "coarse" and "cube" scans were chosen and used for measurements. The grid spacing of the coarse scan was set to 15 mm or less as shown in the SAR plots included in Appendix 2. Please refer to the DASY4TM manual for additional information on SAR scanning procedures and algorithms used.

The portable hand-held device model covered by this report has an internal battery that is not replaceable by the end user. This battery was used to do all of the SAR testing. The battery was charged prior to each set of three tests.

6.1 Body Worn Test Results

The SAR results shown in tables 1 and 2 are maximum SAR values averaged over 1 gram of phantom tissue, to demonstrate compliance to [3] and also over 10 grams of phantom tissue, to demonstrate compliance to [6]. Also shown are the temperature of the simulated tissue after the test, the measured drift and the extrapolated SAR. The exact method of extrapolation is Extrapolated SAR = Measured SAR * 10^(-drift/10). The SAR reported at the end of the measurement process by the DASY4TM measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test.

The DUT was tested with the back surface of the device facing the phantom for all transmitters requiring test. The DUT was tested along the edges of the device in which a transmitter is located within 25 mm of that edge. Pictorial representation of the transmitter antenna locations and separation distances are given in Exhibit 7d.

The test conditions that produced the highest SAR values in each band are indicated as bold numbers in the following tables and are included in Appendix 2. All other test conditions measured lower SAR values than those included in Appendix 2.

The SAR measurements were performed using the SAM phantoms listed in section 3.1. Since the same phantoms and simulated tissue were used for the system accuracy verification and the device SAR measurements, the Z-axis scans included in Appendix 1 are applicable for verification of simulated tissue depth. The simulated tissue depth was verified to be 15.0 cm \pm 0.5 cm for frequencies less than 3 GHz, or 10.0 cm \pm 0.5 cm for frequencies greater than 3 GHz. The same device holder described in section 6 was used for positioning the DUT.

The following probe conversion factors were used on the E-Field probe(s) used for the body-worn measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe ES3DV3	3124	2450	4.19	6 of 11
E-Field Probe	2720	5200	4.07	6 of 11
EX3DV4	3730	5800	3.53	6 of 11

Body Worn, Back of DUT 0 mm from Phantom									
f			Temp	Drift	10 g SA	R value	1 g SAR value		
(MHz)	Mode	Channel (°C)		(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)	
		1	20.0	0.186	0.470	0.47	1.17	1.17	
	802.11b, 1 Mbps	6	20.0	-0.172	0.407	0.42	1.02	1.06	
		11	20.0	-0.098	0.344	0.35	0.895	0.92	
		1	20.5	0.098	0.515	0.52	1.31	1.31	
	802.11b, 2 Mbps	6	20.5	-0.033	0.413	0.42	1.05	1.06	
2450		11	20.3	-0.125	0.366	0.38	0.93	0.96	
2450		1	20.5	0.046	0.497	0.50	1.26	1.26	
	802.11b, 5.5 Mbps	6	20.3	-0.225	0.408	0.43	1.04	1.10	
		11	20.3	-0.094	0.356	0.36	0.913	0.93	
	802.11b, 11 Mbps	1	19.5	-0.022	0.522	0.52	1.33	1.34	
		6	19.5	-0.151	0.429	0.44	1.08	1.12	
		11	19.5	0.301	0.384	0.38	1.00	1.00	
		36	18.5	-0.207	0.117	0.12	0.351	0.37	
	002.11. (3/1	40	18.5	-0.211	0.136	0.14	0.412	0.43	
	802.11a, 6 Mbps	44	18.2	-0.203	0.135	0.14	0.412	0.43	
5210		48	18.2	-0.344	0.148	0.16	0.449	0.49	
	802.11a, 9 Mbps	40	19.0	-0.260	0.136	0.14	0.418	0.44	
	902 11 7.2 Mb	36	19.3	-0.174	0.069	0.07	0.266	0.28	
	802.11n, 7.2 Mbps	48	19.3	-0.041	0.106	0.11	0.334	0.34	
	902 11a (Mhma	153	18.2	-0.198	0.114	0.12	0.421	0.44	
	802.11a, 6 Mbps	161	18.2	-0.255	0.118	0.13	0.445	0.47	
5785	802.11n, 7.2 Mbps	153	18.5	-0.444	0.128	0.14	0.479	0.53	
5705	ou2.1111, 7.2 Midps	161	19.4	-0.354	0.103	0.11	0.441	0.48	
	802.11n, 6.5 Mbps	149	18.4	-0.050	0.132	0.13	0.471	0.48	

Table 1: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

Body Worn, Top Edge of DUT 0 mm from Phantom										
f w.			Temp	Drift	10 g SA	R value	1 g SA.	1 g SAR value		
(MHz)	Mode	Channel	(°C)	•		Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)		
		1								
2450	802.11b, 1 Mbps	6	20.0	0.267	0.394	0.39	1.04	1.04		
		11								
		36	18.6	0.386	0.231	0.23	0.966	0.97		
	802.11a, 6 Mbps	40	19.7	0.210	0.259	0.26	1.04	1.04		
		44	18.6	0.080	0.318	0.32	1.25	1.25		
5210		48	19.6	0.142	0.264	0.26	1.09	1.09		
	802.11a, 9 Mbps	40	19.3	0.206	0.283	0.28	1.11	1.11		
		36	18.5	-0.440	0.222	0.25	0.926	1.02		
	802.11n, 7.2 Mbps	48	18.2	-0.033	0.198	0.20	0.811	0.82		
	902.11. (MI	153	18.7	0.145	0.289	0.29	1.04	1.04		
	802.11a, 6 Mbps	161	18.2	-0.880	0.299	0.37	1.05	1.29		
5785	902.11 . 7.23.5	153	19.3	0.045	0.258	0.26	0.926	0.93		
	802.11n, 7.2 Mbps	161	19.3	-0.744	0.283	0.34	0.975	1.16		
	802.11n, 6.5 Mbps	149	18.5	0.307	0.286	0.29	1.04	1.04		

Table 2: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

References

- [1] CENELEC, en62209-1:2006 "Human Exposure to Radio Frequency Fields From Hand Held and Body Mounted Wireless Communication Devices Human Models, Instrumentation, and Procedures"
- [2] CENELEC, en50360:2001 "Product standard to demonstrate the compliance of mobile phones with the basic restrictions related to human exposure to electromagnetic fields (300 MHz 3 GHz)".
- [3] ANSI / IEEE, C95.1 1992 Edition "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz"
- [4] FCC OET Bulletin 65 Supplement C 01-01
- [5] IEEE 1528 2003 Edition "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques"
- [6] ICNIRP Guidelines "Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic, and Electromagnetic Fields (up to 300 GHz)"

Appendix 1

SAR distribution comparison for the system accuracy verification

Date/Time: 11/27/2010 9:55:20 AM

Test Laboratory: Motorola - Nov-27-2010 2450 MHz

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 766; FCC ID: IHDP56LU1 Procedure Notes: 2450 MHz System Performance Check; Dipole Sn# 766; Input Power = 200 mW Sim.Temp@meas = 20.6*C; Sim.Temp@SPC = 20.6*C; Room Temp @ SPC = 20.0*C Communication System: CW - Dipole; Frequency: 2450 MHz; Duty Cycle: 1:1

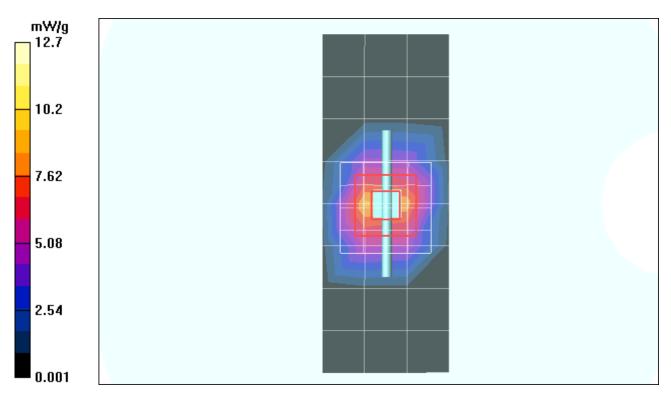
Medium: VALIDATION Only

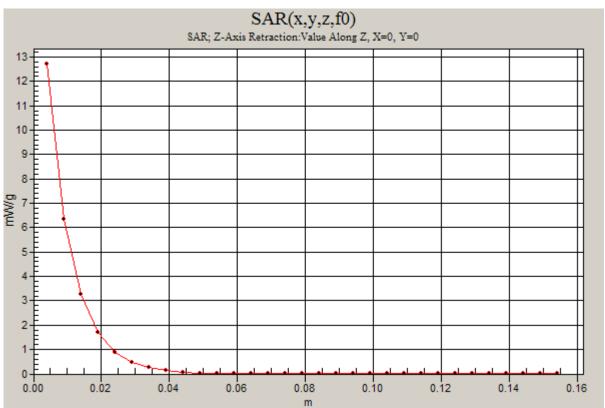
Medium parameters used: f = 2450 MHz; $\sigma = 1.84 \text{ mho/m}$; $\varepsilon_r = 37.3$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(4.35, 4.35, 4.35); Calibrated: 8/11/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn378; Calibrated: 2/12/2010
- Phantom: R#4 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1250;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Dipole Area Scan (4x9x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 8.76 mW/g


Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 84.9 V/m; Power Drift = -0.003 dB; Peak SAR (extrapolated) = 23.0 W/kg SAR(1 g) = 11.2 mW/g; SAR(10 g) = 5.21 mW/g; Maximum value of SAR (measured) = 12.8 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 12.7 mW/g

Date/Time: 11/29/2010 9:11:01 AM

Test Laboratory: Motorola - Nov-29-2010 2450 MHz

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 766; FCC ID: IHDP56LU1 Procedure Notes: 2450MHz System Performance Check; Dipole Sn# 766; Input Power = 200 mW Sim.Temp@meas = 19.2*C; Sim.Temp@SPC = 19.2*C; Room Temp @ SPC = 20.2*C Communication System: CW - Dipole; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: VALIDATION Only

Medium parameters used: f = 2450 MHz; $\sigma = 1.8 \text{ mho/m}$; $\varepsilon_r = 37.3$; $\rho = 1000 \text{ kg/m}^3$

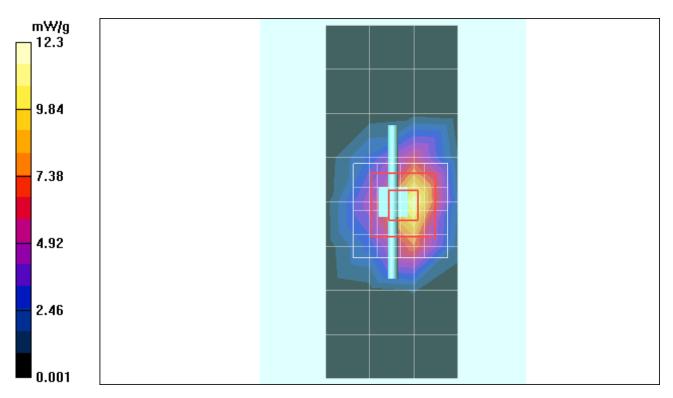
DASY4 Configuration:

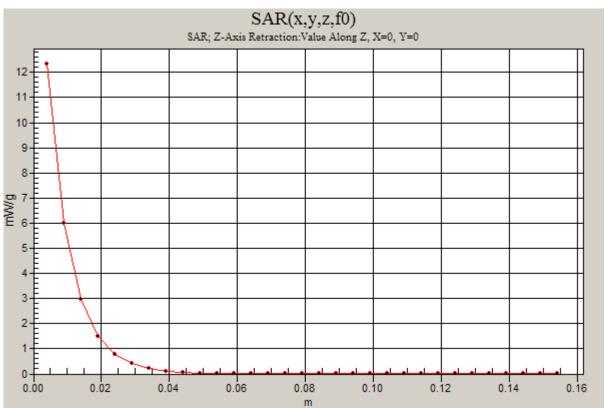
- Probe: ES3DV3 SN3124; ConvF(4.35, 4.35, 4.35); Calibrated: 8/11/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn378; Calibrated: 2/12/2010
- Phantom: R4: Sect.1, Amy Twin, Rev.3 (3-Feb-10); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Dipole Area Scan (4x9x1):

Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 11.5 mW/g

Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 80.6 V/m; Power Drift = -0.008 dB; Peak SAR (extrapolated) = 23.0 W/kg

SAR(1 g) = 10.9 mW/g; SAR(10 g) = 5.02 mW/g; Maximum value of SAR (measured) = 12.1 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 12.3 mW/g

Date/Time: 12/10/2010 8:06:55 AM

Test Laboratory: Motorola - Dec-10-2010 5200 MHz

DUT: Dipole 5-6GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1088; FCC ID: IHDP56LU1 Procedure Notes: 5200 MHz System Performance Check; Dipole Sn# 1088; Input Power = 100 mw Sim.Temp@meas = 19.1*C; Sim.Temp@SPC = 19.1*C; Room Temp @ SPC = 20.0*C Communication System: CW - Dipole; Frequency: 5200 MHz; Duty Cycle: 1:1

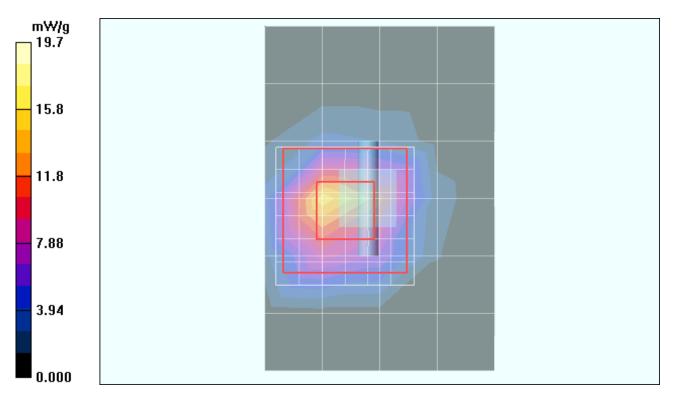
Medium: VALIDATION Only

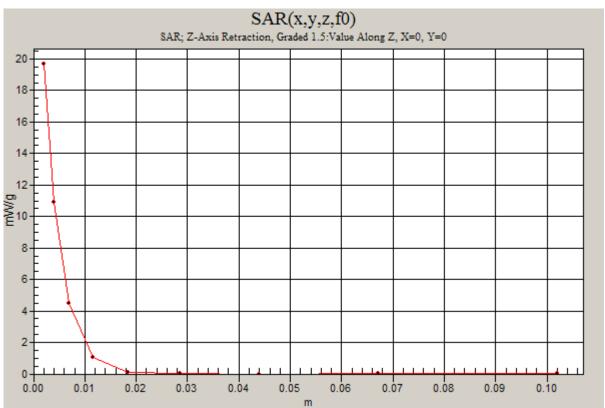
Medium parameters used: f = 5200 MHz; $\sigma = 4.85 \text{ mho/m}$; $\varepsilon_r = 34$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: EX3DV4 SN3730; ConvF(4.67, 4.67, 4.67); Calibrated: 7/16/2010
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 7/13/2010
- Phantom: R3, 5-6GHz SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1153;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Dipole Area Scan (5x7x1):


Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 15.4 mW/g


Daily SPC Check/0-Degree, 7x7x12 Cube (7x7x6)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 59.4 V/m; Power Drift = 0.102 dB; Peak SAR (extrapolated) = 37.4 W/kg SAR(1 g) = 9.41 mW/g; SAR(10 g) = 2.68 mW/g; Maximum value of SAR (measured) = 19.7 mW/g

Daily SPC Check/Z-Axis Retraction, Graded 1.5 (1x1x9):

Measurement grid: dx=20mm, dy=20mm, dz=2mm

Date/Time: 12/16/2010 9:04:38 AM

Test Laboratory: Motorola - Dec-16-2010 5200 MHz

DUT: Dipole 5-6GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1088; FCC ID: IHDP56LU1 Procedure Notes: 5200 MHz System Performance Check; Dipole Sn# 1088; Input Power = 100 mW Sim.Temp@meas = 19.8*C; Sim.Temp@SPC = 19.7*C; Room Temp @ SPC = 20.2*C Communication System: CW - Dipole; Frequency: 5200 MHz; Duty Cycle: 1:1

Medium: VALIDATION Only

Medium parameters used: f = 5200 MHz; $\sigma = 4.89 \text{ mho/m}$; $\varepsilon_r = 34.8$; $\rho = 1000 \text{ kg/m}^3$

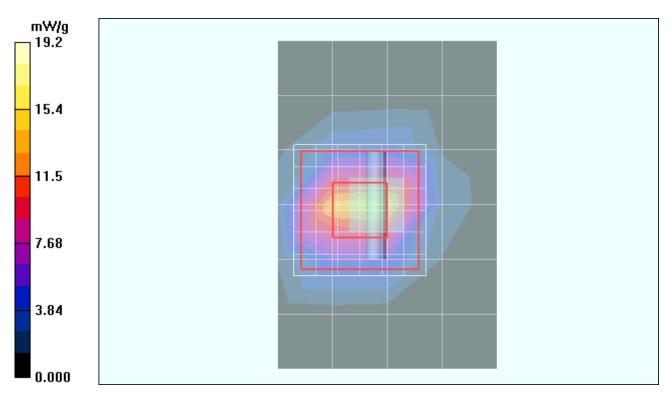
DASY4 Configuration:

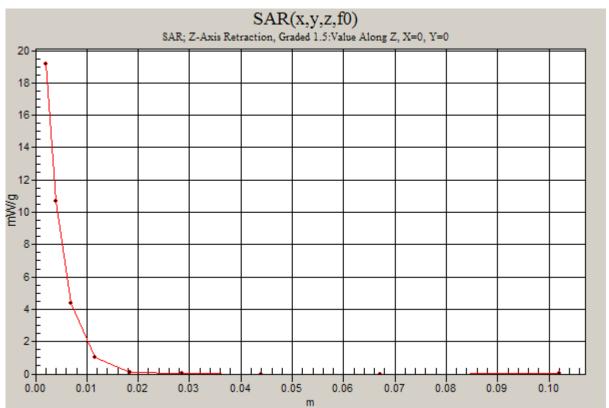
- Probe: EX3DV4 SN3730; ConvF(4.67, 4.67, 4.67); Calibrated: 7/16/2010
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 7/13/2010
- Phantom: R3, 5-6GHz SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1153;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Dipole Area Scan (5x7x1):

Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 14.0 mW/g

Daily SPC Check/0-Degree, 7x7x12 Cube (7x7x6)/Cube 0:


Measurement grid: dx=4mm, dy=4mm, dz=2mm


Reference Value = 64.0 V/m; Power Drift = 0.091 dB; Peak SAR (extrapolated) = 36.6 W/kg

SAR(1 g) = 9.13 mW/g; SAR(10 g) = 2.59 mW/g; Maximum value of SAR (measured) = 19.5 mW/g

Daily SPC Check/Z-Axis Retraction, Graded 1.5 (1x1x9):

Measurement grid: dx=20mm, dy=20mm, dz=2mm; Maximum value of SAR (measured) = 19.2 mW/g

Date/Time: 12/9/2010 8:58:17 AM

Test Laboratory: Motorola - Dec-09-2010 5800 MHz

DUT: Dipole 5-6GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1088; FCC ID: IHDP56LU1 Procedure Notes: 5800 MHz System Performance Check; Dipole Sn# 1088; Input Power = 100 mw Sim.Temp@meas = 19.6*C; Sim.Temp@SPC = 19.6*C; Room Temp @ SPC = 20.2*C Communication System: CW - Dipole; Frequency: 5800 MHz; Duty Cycle: 1:1

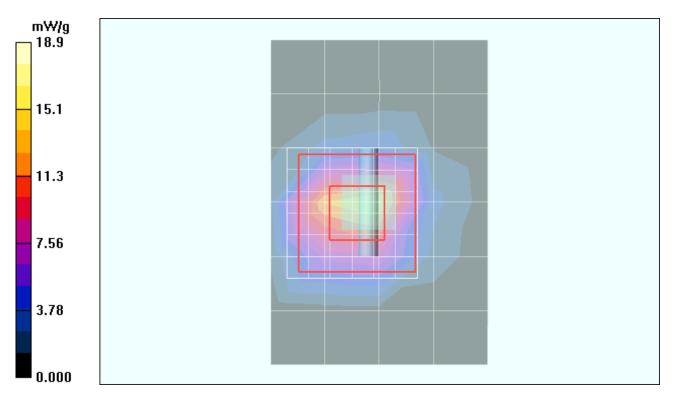
Medium: VALIDATION Only

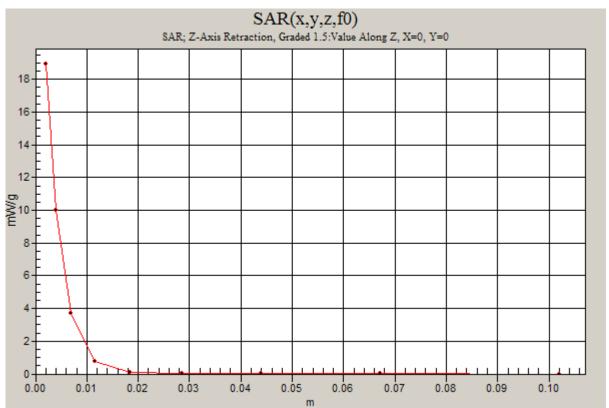
Medium parameters used: f = 5800 MHz; $\sigma = 5.53 \text{ mho/m}$; $\varepsilon_r = 33.3$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: EX3DV4 SN3730; ConvF(4.06, 4.06, 4.06); Calibrated: 7/16/2010
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 7/13/2010
- Phantom: R3, 5-6GHz SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1153;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Dipole Area Scan (5x7x1):


Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 14.3 mW/g


Daily SPC Check/0-Degree, 7x7x12 Cube (7x7x6)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 60.4 V/m; Power Drift = 0.063 dB; Peak SAR (extrapolated) = 37.4 W/kg SAR(1 g) = 8.97 mW/g; SAR(10 g) = 2.58 mW/g; Maximum value of SAR (measured) = 18.9 mW/g

Daily SPC Check/Z-Axis Retraction, Graded 1.5 (1x1x9):

Measurement grid: dx=20mm, dy=20mm, dz=2mm

Date/Time: 12/16/2010 9:36:55 AM

Test Laboratory: Motorola - Dec-16-2010 5800 MHz

DUT: Dipole 5-6GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1088; FCC ID: IHDP56LU1 Procedure Notes: 5800 MHz System Performance Check; Dipole Sn# 1088; Input Power = 100 mW Sim.Temp@meas = 19.8*C; Sim.Temp@SPC = 19.7*C; Room Temp @ SPC = 20.2*C Communication System: CW - Dipole; Frequency: 5800 MHz; Duty Cycle: 1:1

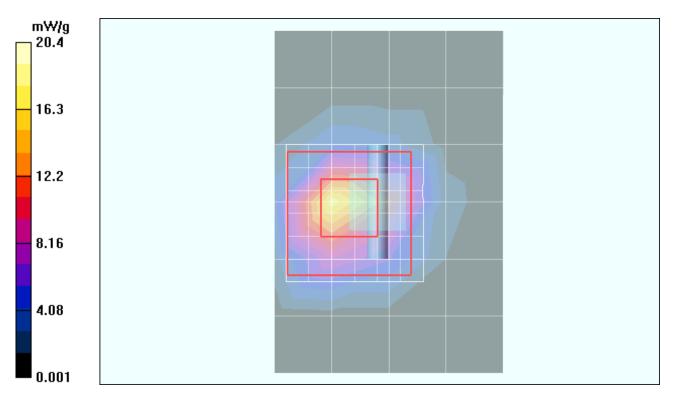
Medium: VALIDATION Only

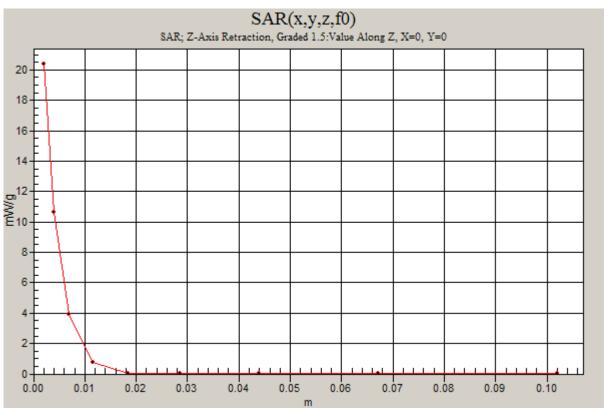
Medium parameters used: f = 5800 MHz; $\sigma = 5.57 \text{ mho/m}$; $\varepsilon_r = 33.6$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: EX3DV4 SN3730; ConvF(4.06, 4.06, 4.06); Calibrated: 7/16/2010
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 7/13/2010
- Phantom: R3, 5-6GHz SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1153;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Dipole Area Scan (5x7x1):


Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 17.2 mW/g


Daily SPC Check/0-Degree, 7x7x12 Cube (7x7x6)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 56.2 V/m; Power Drift = 0.134 dB; Peak SAR (extrapolated) = 39.6 W/kg SAR(1 g) = 9.58 mW/g; SAR(10 g) = 2.72 mW/g; Maximum value of SAR (measured) = 20.1 mW/g

Daily SPC Check/Z-Axis Retraction, Graded 1.5 (1x1x9):

Measurement grid: dx=20mm, dy=20mm, dz=2mm; Maximum value of SAR (measured) = 20.4 mW/g

Appendix 2

SAR distribution plots for Body Worn Configuration

Date/Time: 11/29/2010 9:55:10 AM

Test Laboratory: Motorola - Wi-Fi 2.45 GHz - Back Surface of DUT

Serial: 99000052000875; FCC ID: IHDP56LU1

Procedure Notes: Pwr Step: N/A; Antenna Position: Internal; Battery Model #: Internal

Device Position: Body Worn, Back of DUT 0 mm from Phantom

Device Mode: 802.11b mode, 11 Mbps data rate

Communication System: Wi-Fi 2450; Frequency: 2412 MHz; Channel Number: 1; Duty Cycle: 1:1

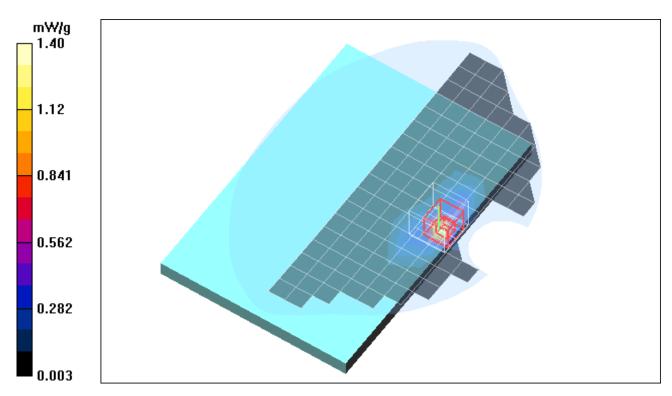
Medium: 2450 Glycol Body

Medium parameters used: f = 2450 MHz; $\sigma = 1.92 \text{ mho/m}$; $\varepsilon_r = 50.1$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(4.19, 4.19, 4.19); Calibrated: 8/11/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn378; Calibrated: 2/12/2010
- Phantom: R#4 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1250;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

SAM DUT Against Flat Section/Area Scan - Normal Body (15mm) (21x9x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 1.43 mW/g

SAM DUT Against Flat Section/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.96 V/m; Power Drift = -0.022 dB; Peak SAR (extrapolated) = 3.37 W/kg

SAR(1 g) = 1.33 mW/g; SAR(10 g) = 0.522 mW/g; Maximum value of SAR (measured) = 1.40 mW/g

Date/Time: 11/27/2010 1:29:55 PM

Test Laboratory: Motorola - Wi-Fi 2.45 GHz - Top Edge of DUT

Serial: 99000052000875; FCC ID: IHDP56LU1

Procedure Notes: Pwr Step: N/A; Antenna Position: Internal; Battery Model #: Internal

Device Position: Body Worn, Top Edge of DUT 0 mm from Phantom

Device Mode: 802.11b mode, 1 Mbps data rate

Communication System: Wi-Fi 2450; Frequency: 2437 MHz; Channel Number: 6; Duty Cycle: 1:1

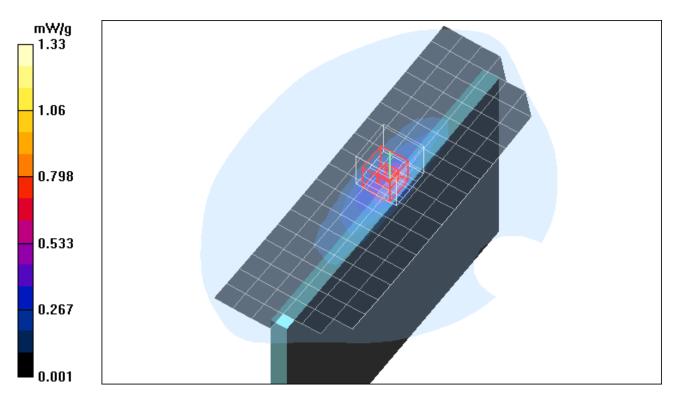
Medium: 2450 Glycol Body

Medium parameters used: f = 2450 MHz; $\sigma = 1.96 \text{ mho/m}$; $\varepsilon_r = 50.4$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(4.19, 4.19, 4.19); Calibrated: 8/11/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn378; Calibrated: 2/12/2010
- Phantom: R#4 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1250;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

SAM DUT Against Flat Section/Area Scan - Normal Body (15mm) (21x7x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.711 mW/g

SAM DUT Against Flat Section/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.3 V/m; Power Drift = 0.267 dB; Peak SAR (extrapolated) = 2.53 W/kg

SAR(1 g) = 1.04 mW/g; SAR(10 g) = 0.394 mW/g; Maximum value of SAR (measured) = 1.33 mW/g

Date/Time: 12/16/2010 9:13:39 PM

Test Laboratory: Motorola - Wi-Fi 5.21 GHz - Back Surface of DUT

Serial: 99000052000875; FCC ID: IHDP56LU1

Procedure Notes: Pwr Step: N/A; Antenna Position: Internal; Battery Model #: Internal

Device Position: Body Worn, Back of DUT 0 mm from Phantom

Device Mode: 802.11a mode, 6 Mbps data rate

Communication System: 5210MHz Band; Frequency: 5240 MHz; Channel Number: 48; Duty Cycle: 1:1

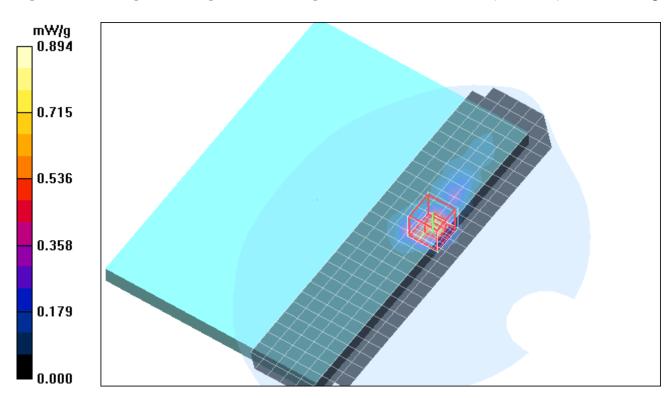
Medium: 5-6 GHz SPEAG Tissue BODY

Medium parameters used: f = 5210 MHz; $\sigma = 5.71 \text{ mho/m}$; $\varepsilon_r = 45.8$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: EX3DV4 SN3730; ConvF(4.07, 4.07, 4.07); Calibrated: 7/16/2010
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376: Calibrated: 7/13/2010
- Phantom: R#3 5Ghz BODY SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1106;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

SAM DUT Against Flat Section/Partial Face Area Scan - Normal Body (10mm) (31x8x1):


Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.635 mW/g

SAM DUT Against Flat Section/7x7x12 Zoom Scan (5-6GHz) (7x7x6)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 13.9 V/m; Power Drift = -0.344 dB; Peak SAR (extrapolated) = 1.83 W/kg

SAR(1 g) = 0.449 mW/g; SAR(10 g) = 0.148 mW/g; Maximum value of SAR (measured) = 0.894 mW/g

Date/Time: 12/10/2010 11:24:07 PM

Test Laboratory: Motorola - Wi-Fi 5.21 GHz - Top Edge of DUT

Serial: 99000052000875; FCC ID: IHDP56LU1

Procedure Notes: Pwr Step: N/A; Antenna Position: Internal; Battery Model #: Internal

Device Position: Body Worn, Top Edge of DUT 0 mm from Phantom

Device Mode: 802.11a mode, 6 Mbps data rate

Communication System: 5210MHz Band; Frequency: 5220 MHz; Channel Number: 44; Duty Cycle: 1:1

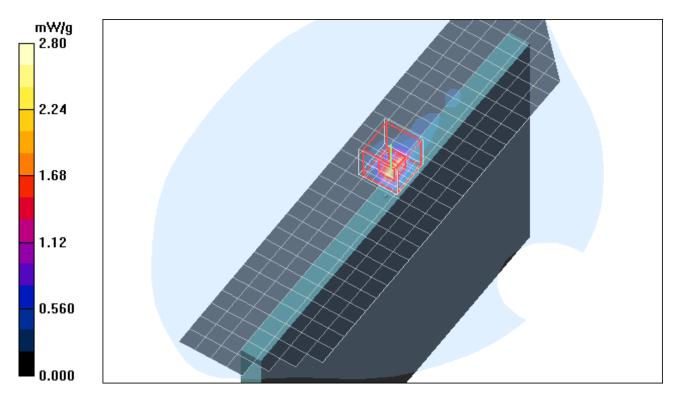
Medium: 5-6 GHz SPEAG Tissue BODY

Medium parameters used: f = 5210 MHz; $\sigma = 5.72$ mho/m; $\varepsilon_r = 45.2$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: EX3DV4 SN3730; ConvF(4.07, 4.07, 4.07); Calibrated: 7/16/2010
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 7/13/2010
- Phantom: R#3 5Ghz BODY SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1106;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

SAM DUT Against Flat Section/Long Edge Area Scan - Body (10mm) (31x8x1):


Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 2.12 mW/g

SAM DUT Against Flat Section/7x7x12 Zoom Scan (5-6GHz) (7x7x6)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 11.3 V/m; Power Drift = 0.080 dB; Peak SAR (extrapolated) = 5.79 W/kg

SAR(1 g) = 1.25 mW/g; SAR(10 g) = 0.318 mW/g; Maximum value of SAR (measured) = 2.80 mW/g

Date/Time: 12/16/2010 11:21:05 PM

Test Laboratory: Motorola - Wi-Fi 5.785 GHZ - Back Surface of DUT

Serial: 99000052000875; FCC ID: IHDP56LU1

Procedure Notes: Pwr Step: N/A; Antenna Position: Internal; Battery Model #: Internal

Device Position: Body Worn, Back of DUT 0 mm from Phantom

Device Mode: 802.11n mode, 7.2 Mbps data rate

Communication System: 5785MHz Band; Frequency: 5765 MHz; Channel Number: 153; Duty Cycle: 1:1

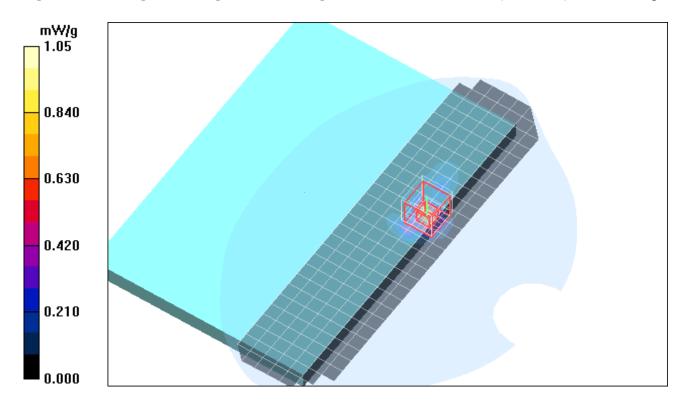
Medium: 5-6 GHz SPEAG Tissue BODY

Medium parameters used: f = 5785 MHz; $\sigma = 6.54$ mho/m; $\varepsilon_r = 44.6$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: EX3DV4 SN3730; ConvF(3.53, 3.53, 3.53); Calibrated: 7/16/2010
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376: Calibrated: 7/13/2010
- Phantom: R#3 5Ghz BODY SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1106;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

SAM DUT Against Flat Section/Partial Face Area Scan - Normal Body (10mm) (31x8x1):


Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.799 mW/g

SAM DUT Against Flat Section/7x7x12 Zoom Scan (5-6GHz) (7x7x6)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 14.9 V/m; Power Drift = -0.444 dB; Peak SAR (extrapolated) = 2.03 W/kg

SAR(1 g) = 0.479 mW/g; SAR(10 g) = 0.128 mW/g; Maximum value of SAR (measured) = 1.05 mW/g

Date/Time: 12/9/2010 6:58:39 PM

Test Laboratory: Motorola - Wi-Fi 5.785 GHz - Top Edge of DUT

Serial: 99000052000875: FCC ID: IHDP56LU1

Procedure Notes: Pwr Step: N/A; Antenna Position: Internal; Battery Model #: Internal

Device Position: Body Worn, Top Edge of DUT 0 mm from Phantom

Device Mode: 802.11a mode, 6 Mbps data rate

Communication System: 5785MHz Band; Frequency: 5805 MHz; Channel Number: 161; Duty Cycle: 1:1

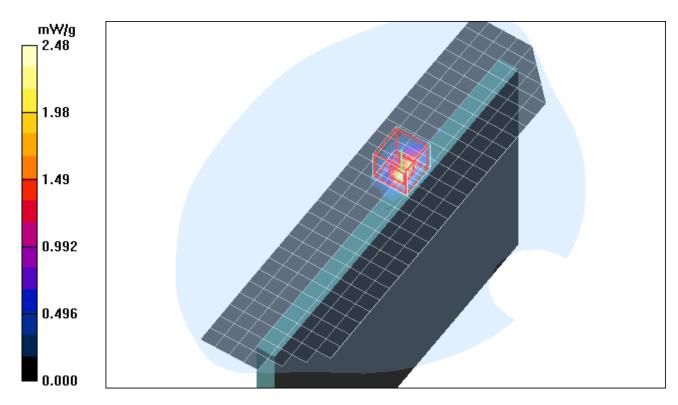
Medium: 5-6 GHz SPEAG Tissue BODY

Medium parameters used: f = 5785 MHz; $\sigma = 6.54$ mho/m; $\varepsilon_r = 44.4$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: EX3DV4 SN3730; ConvF(3.53, 3.53, 3.53); Calibrated: 7/16/2010
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376: Calibrated: 7/13/2010
- Phantom: R#3 5Ghz BODY SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1106;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

SAM DUT Against Flat Section/Long Edge Area Scan - Body (10mm) (31x8x1):


Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 2.41 mW/g

SAM DUT Against Flat Section/7x7x12 Zoom Scan (5-6GHz) (7x7x6)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 15.6 V/m; Power Drift = -0.880 dB; Peak SAR (extrapolated) = 5.25 W/kg

SAR(1 g) = 1.05 mW/g; SAR(10 g) = 0.299 mW/g; Maximum value of SAR (measured) = 2.48 mW/g

FCC ID: IHDT56MT1

Appendix 3 Probe Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

S

C

S

Client

Motorola MDb

Certificate No: ES3-3124_Aug10

CALIBRATION CERTIFICATE Object ES3DV3 - SN:3124 QA CAL-01.v6, QA CAL-23.v3 and QA CAL-25.v2 Calibration procedure(s) Calibration procedure for dosimetric E-field probes August 11, 2010 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) **Primary Standards** ID# Cal Date (Certificate No.) Scheduled Calibration Power meter E4419B GB41293874 1-Apr-10 (No. 217-01136) Apr-11 Power sensor E4412A MY41495277 1-Apr-10 (No. 217-01136) Apr-11 Power sensor E4412A MY41498087 1-Apr-10 (No. 217-01136) Apr-11 Reference 3 dB Attenuator SN: S5054 (3c) 30-Mar-10 (No. 217-01159) Mar-11 Reference 20 dB Attenuator SN: S5086 (20b) 30-Mar-10 (No. 217-01161) Mar-11 Reference 30 dB Attenuator SN: S5129 (30b) Mar-11 30-Mar-10 (No. 217-01160) Reference Probe ES3DV2 SN: 3013 30-Dec-09 (No. ES3-3013_Dec09) Dec-10 DAE4 SN: 660 20-Apr-10 (No. DAE4-660_Apr10) Apr-11 Secondary Standards ID# Check Date (in house) Scheduled Check US3642U01700 RF generator HP 8648C 4-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-09) In house check: Oct10 Name Function Calibrated by: Claudio Leubier Laboratory Technician Katja Pokovic Approved by: Technical Manager Issued: August 14, 2010

Certificate No: ES3-3124_Aug10

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: SCS 108

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ σ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3124_Aug10 Page 2 of 11

ES3DV3 SN:3124 August 11, 2010

Probe ES3DV3

SN:3124

Manufactured: July 11, 2006
Last calibrated: April 21, 2009
Recalibrated: August 11, 2010

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ES3-3124_Aug10 Page 3 of 11

ES3DV3 SN:3124 August 11, 2010

DASY/EASY - Parameters of Probe: ES3DV3 SN:3124

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	1.26	1.33	1.34	± 10.1%
DCP (mV) ⁸	92.9	96.4	96.7	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	С	VR mV	Unc ^E (k=2)
10000	cw	0.00	Х	0.00	0.00	1.00	300.0	± 1.5%
<u> </u>			Y	0.00	0.00	1.00	300.0	
			Z	0.00	0.00	1.00	300.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter; uncertainty not required.

E Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: ES3DV3 SN:3124

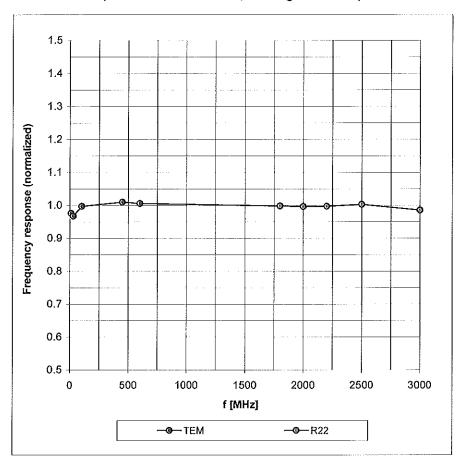
Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Co	nvFY Co	nvF Z	Alpha	Depth Unc (k=2)
835	± 50 / ± 100	41.5 ± 5%	0.90 ± 5%	5.89	5.89	5.89	0.97	1.07 ± 11.0%
1810	± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	4.89	4.89	4.89	0.49	1.54 ± 11.0%
1950	± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	4.68	4.68	4.68	0.50	1.52 ± 11.0%
2450	± 50 / ± 100	39.2 ± 5%	1.80 ± 5%	4.35	4.35	4.35	0.45	1.78 ± 11.0%

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

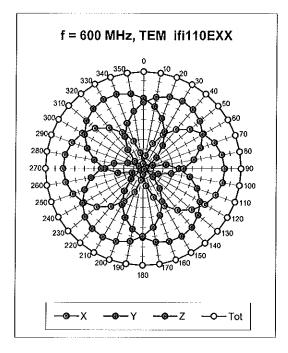
DASY/EASY - Parameters of Probe: ES3DV3 SN:3124

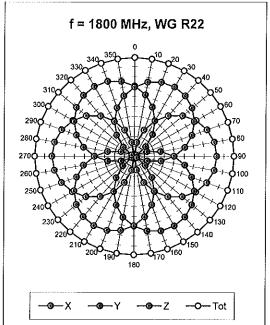
Calibration Parameter Determined in Body Tissue Simulating Media

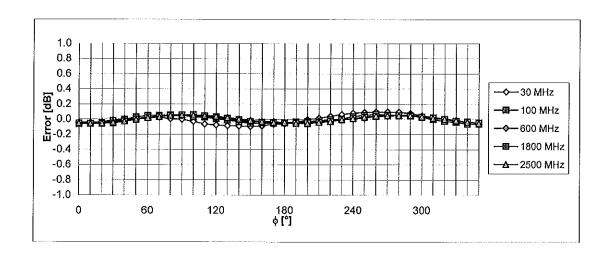

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Co	nvFY C	onvF Z	Alpha	Depth Unc (k=2)
835	± 50 / ± 100	55.2 ± 5%	0.97 ± 5%	5.86	5.86	5.86	0.96	1.11 ± 11.0%
1810	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	4.76	4.76	4.76	0.41	1.84 ± 11.0%
1950	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	4.78	4.78	4.78	0.32	2.33 ± 11.0%
2450	± 50 / ± 100	52.7 ± 5%	1.95 ± 5%	4.19	4.19	4.19	0.69	1.29 ± 11.0%

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: ES3-3124_Aug10 Page 6 of 11

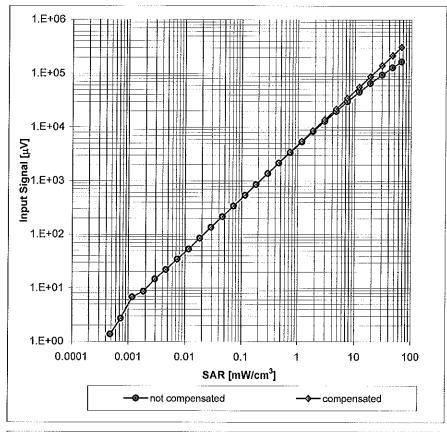

Frequency Response of E-Field

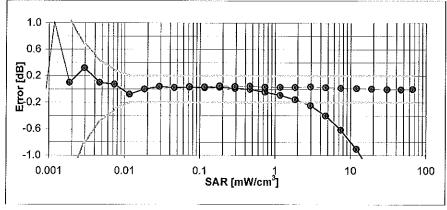

(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

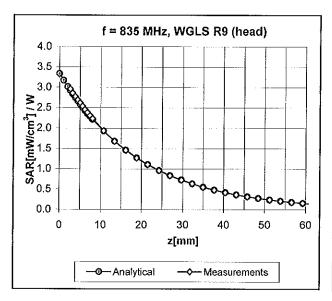
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

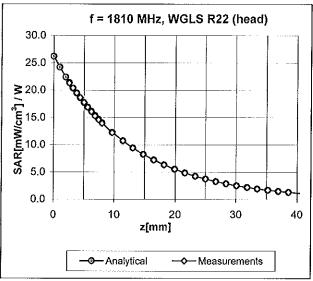




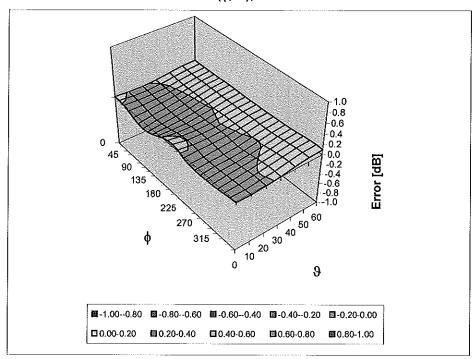
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head})


(Waveguide R22, f = 1800 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Conversion Factor Assessment

Deviation from Isotropy in HSL

Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ES3-3124_Aug10

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4.0 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Issued: September 4, 2010

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: EX3-3730_Jul10/2

Accreditation No.: SCS 108

Client

Motorola MDb

CALIBRATION CERTIFICATE (Replacement of No: EX3-3730 Jul10

Object EX3DV4 - SN:3730

Calibration procedure(s) QA CAL-01.v6, QA CAL-14.v3, QA CAL-23.v3 and QA CAL-25.v2

Calibration procedure for dosimetric E-field probes

Calibration date: July 16, 2010

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	1-Apr-10 (No. 217-01136)	Apr-11
Power sensor E4412A	MY41495277	1-Apr-10 (No. 217-01136)	Apr-11
Power sensor E4412A	MY41498087	1-Apr-10 (No. 217-01136)	Apr-11
Reference 3 dB Attenuator	SN: S5054 (3c)	30-Mar-10 (No. 217-01159)	Mar-11
Reference 20 dB Attenuator	SN: S5086 (20b)	30-Mar-10 (No. 217-01161)	Mar-11
Reference 30 dB Attenuator	SN: S5129 (30b)	30-Mar-10 (No. 217-01160)	Mar-11
Reference Probe ES3DV2	SN: 3013	30-Dec-09 (No. ES3-3013_Dec09)	Dec-10
DAE4	SN: 660	20-Apr-10 (No. DAE4-660_Apr10)	Apr-11
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-09)	In house check: Oct10
	Name	Function	Signature
Calibrated by:	Katja Pokovic	Technical Manager	6611
Approved by:	Niels Kuster	Quality Manager	$\Lambda / / \Lambda = $
, 4010100 03.			
1		•	

Certificate No: EX3-3730_Jul10/2 Page 1 of 11

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom
 exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3730 Jul10/2 Page 2 of 11

Probe EX3DV4

SN:3730

Manufactured: October 19, 2009
Calibrated: July 16, 2010

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: EX3DV4 SN:3730

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.41	0.53	0.50	± 10.1%
DCP (mV) ^B	87.3	92.6	93.4	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	С	VR mV	Unc ^E (k=2)
10000	cw	0.00	Х	0.00	0.00	1.00	300	± 1.5%
			Y	0.00	0.00	1.00	300	
			Z	0.00	0.00	1.00	300	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

⁸ Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value.

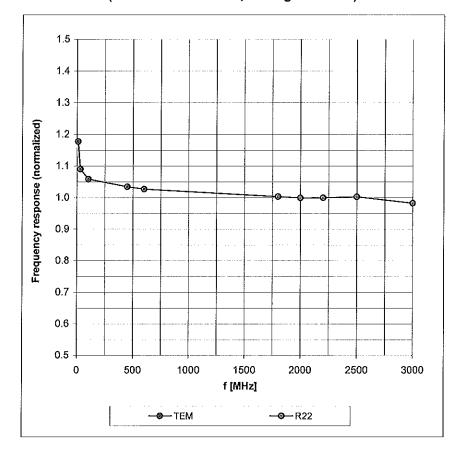
DASY/EASY - Parameters of Probe: EX3DV4 SN:3730

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz]	Validity [MHz] ^c	Permittivity	Conductivity	ConvF X Co	nvFY C	onvF Z	Alpha	Depth Unc (k=2)
5200	± 50 / ± 100	36.0 ± 5%	4.66 ± 5%	4.67	4.67	4.67	0.45	1.80 ± 13.1%
5300	± 50 / ± 100	35.9 ± 5%	4.76 ± 5%	4.38	4.38	4.38	0.45	1.80 ± 13.1%
5600	± 50 / ± 100	35.5 ± 5%	5.07 ± 5%	4.14	4.14	4.14	0.45	1.80 ± 13.1%
5800	± 50 / ± 100	$35.3 \pm 5\%$	5.27 ± 5%	4.06	4.06	4.06	0.50	1.80 ± 13.1%

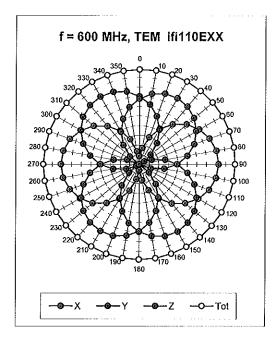
^C The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

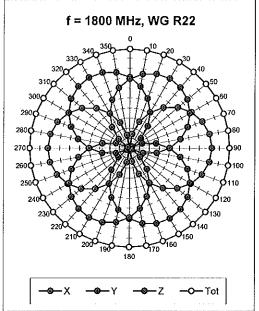
DASY/EASY - Parameters of Probe: EX3DV4 SN:3730

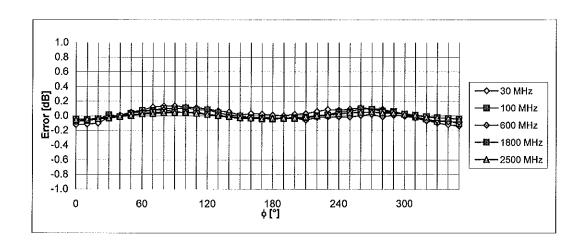

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz]	Validity [MHz] ^c	Permittivity	Conductivity	ConvF X Co	nvFY C	onvF Z	Alpha	Depth Unc (k=2)	
5200	± 50 / ± 100	49.0 ± 5%	5.30 ± 5%	4.07	4.07	4.07	0.50	1.90 ± 13.1%	
5300	± 50 / ± 100	48.9 ± 5%	5.42 ± 5%	3.81	3.81	3.81	0.55	1.90 ± 13.1%	
5600	± 50 / ± 100	48.5 ± 5%	5.77 ± 5%	3.33	3.33	3.33	0.60	1.90 ± 13.1%	
5800	± 50 / ± 100	48.2 ± 5%	6.00 ± 5%	3.53	3.53	3.53	0.60	1.90 ± 13.1%	

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

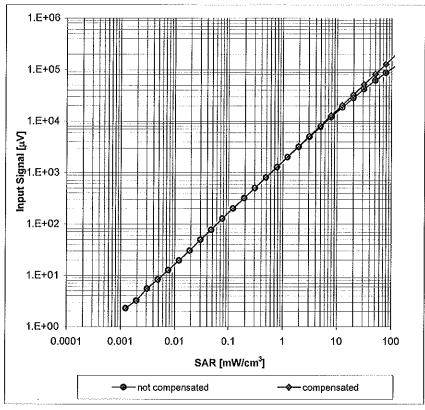

Frequency Response of E-Field

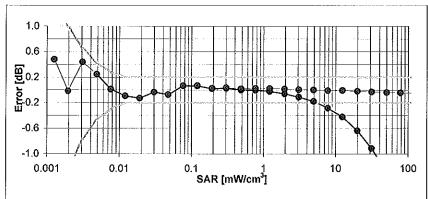

(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

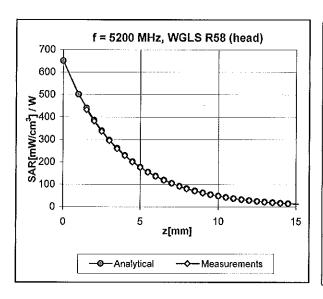
Receiving Pattern (ϕ), ϑ = 0°

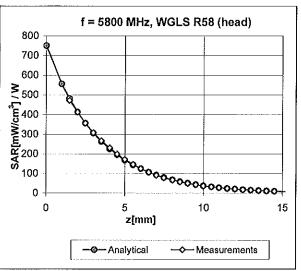




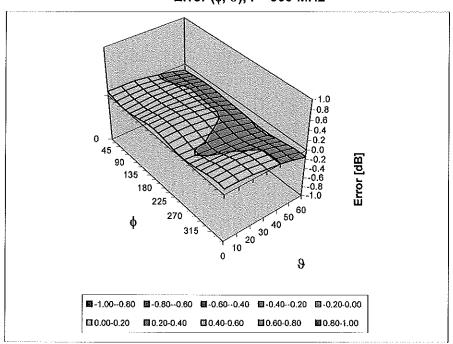
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head})


(Waveguide R22, f = 1800 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Conversion Factor Assessment

Deviation from Isotropy in HSL

Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

FCC ID: IHDT56MT1

Appendix 4 Measurement Uncertainty Budget

				e =			h= cxf	i = c x g	
a a	b	С	d	f(d,k)	f	g	/e	/e	k
	IEEE	Tol.	Prob		Ci	Ci	1 g	10 g	
	1528	(± %)	Dist		(1 g)	(10 g)	u _i	u _i	
Uncertainty Component	section	, ,		Div.	(0,	, ,	(±%)	(±%)	V _i
Measurement System									
Probe Calibration	E.2.1	5.9	N	1.00	1	1	5.9	5.9	8
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	8
Hemispherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	8
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	8
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	8
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	8
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3	8
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	8
Integration Time	E.2.8	1.1	R	1.73	1	1	0.6	0.6	8
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	8
RF Ambient Conditions -									
Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	∞
Probe Positioner Mech.			_	4 = 0				0.0	
Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	∞
Probe Positioning w.r.t Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8	8
Max. SAR Evaluation (ext.,	L.0.5	1.7	11	1.75	'	'	0.0	0.0	8
int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	8
Test sample Related									
Test Sample Positioning	E.4.2	3.2	N	1.00	1	1	3.2	3.2	29
Device Holder Uncertainty	E.4.1	4.0	N	1.00	1	1	4.0	4.0	8
SAR drift	6.6.2	5.0	R	1.73	1	1	2.9	2.9	8
Phantom and Tissue									
Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	∞
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity									
(measurement)	E.3.3	3.3	N	1.00	0.64	0.43	2.1	1.4	8
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	∞
Liquid Permittivity (measurement)	E.3.3	1.9	N	1.00	0.6	0.40	1 1	0.0	~~
Combined Standard	⊏.ა.ა	1.9	IN	1.00	0.6	0.49	1.1	0.9	8
Uncertainty			RSS				11.1	10.8	411
Expanded Uncertainty									
(95% CONFIDENCE LEVEL)			k=2				22.2	21.6	

FCC ID: IHDT56MT1

Appendix 5

Dipole Characterization Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Wiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Motorola MDb

•

Certificate No: D5GHzV2-1088_Jul10

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object D5GHzV2 - SN: 1088

Calibration procedure(s) QA CAL-22.v1

Calibration procedure for dipole validation kits between 3-6 GHz

Calibration date:

July 14, 2010

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-09 (No. 217-01086)	Oct-10
Power sensor HP 8481A	US37292783	06-Oct-09 (No. 217-01086)	Oct-10
Reference 20 dB Attenuator	SN: 5086 (20g)	30-Mar-10 (No. 217-01158)	Mar-11
Type-N mismatch combination	SN: 5047.2 / 06327	30-Mar-10 (No. 217-01162)	Mar-11
Reference Probe EX3DV4	SN: 3503	05-Mar-10 (No. EX3-3503_Mar10)	Mar-11
DAE4	SN: 601	10-Jun-10 (No. DAE4-601_Jun10)	Jun-11
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-09)	In house check: Oct-10

Calibrated by:

Name Jeton Kastrati Function

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: July 15, 2010

Signature

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D5GHzV2-1088_Jul10

Page 1 of 8

Calibration Laboratory of Schmid & Partner

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage

Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC Std 62209 Part 2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", Draft Version 0.9, December 2004
- b) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Area Scan resolution	dx, dy = 10 mm	
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 2.5 mm	
Frequency	5200 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.2 ± 6 %	4.52 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	100 mW input power	8.23 mW / g
SAR normalized	normalized to 1W	82.3 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	82.4 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.34 mW / g
SAR normalized	normalized to 1W	23.4 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	23.4 mW / g ± 19.5 % (k=2)

Page 3 of 8 Certificate No: D5GHzV2-1088_Jul10

Head TSL parameters at 5800 MHz The following parameters and calculations were applied.

, , , , , , , , , , , , , , , , , , ,	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.2 ± 6 %	5.02 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	100 mW input power	8.23 mW / g
SAR normalized	normalized to 1W	82.3 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	82.1 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.32 mW / g
SAR normalized	normalized to 1W	23.2 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	23.1 mW / g ± 19.5 % (k=2)

Page 4 of 8 Certificate No: D5GHzV2-1088_Jul10

Appendix

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	55.7 Ω - 4.2 jΩ
Return Loss	-23.4 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	54.6 Ω - 4.1 jΩ
Return Loss	-24.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.206 ns
, , ,	

After long term use with 40 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 21, 2009

Certificate No: D5GHzV2-1088_Jul10

DASY5 Validation Report for Head TSL

Date/Time: 14.07.2010 15:46:24

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN:1088

Communication System: CW; Frequency: 5200 MHz, Frequency: 5800 MHz; Duty Cycle: 1:1

Medium: HSL 5000

Medium parameters used: f = 5200 MHz; $\sigma = 4.52 \text{ mho/m}$; $\varepsilon_r = 36.2$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters

used: f = 5800 MHz; $\sigma = 5.02 \text{ mho/m}$; $\varepsilon_r = 35.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

• Probe: EX3DV4 - SN3503; ConvF(5.36, 5.36, 5.36), ConvF(4.74, 4.74, 4.74); Calibrated: 05.03.2010

- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163)
- Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685)

D5GHzV2 Dipole (Head)/d=10mm, Pin=100mW, f=5200 MHz/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 16.2 mW/g

D5GHzV2 Dipole (Head)/d=10mm, Pin=100mW, f=5200 MHz/Zoom Scan (4x4x2.5mm), dist=2mm

(8x8x10)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 65.6 V/m; Power Drift = 0.071 dB

Peak SAR (extrapolated) = 31.1 W/kg

SAR(1 g) = 8.23 mW/g; SAR(10 g) = 2.34 mW/g

Maximum value of SAR (measured) = 16.1 mW/g

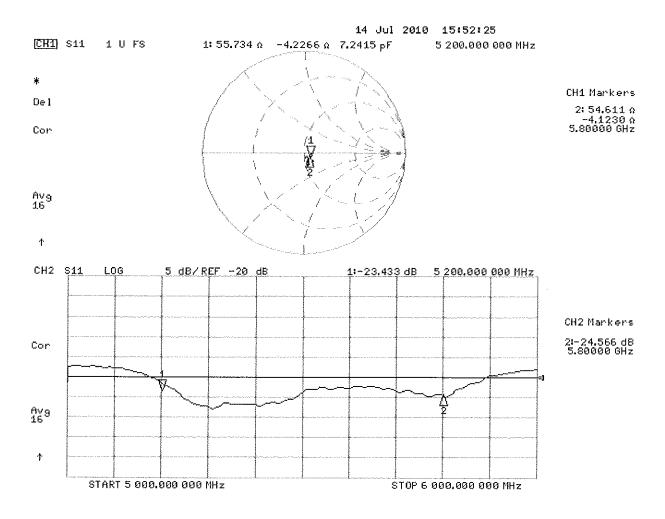
D5GHzV2 Dipole (Head)/d=10mm, Pin=100mW, f=5800 MHz/Zoom Scan (4x4x2.5mm), dist=2mm

(8x8x10)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm


Reference Value = 63.2 V/m; Power Drift = 0.077 dB

Peak SAR (extrapolated) = 34.2 W/kg

SAR(1 g) = 8.23 mW/g; SAR(10 g) = 2.32 mW/g


Maximum value of SAR (measured) = 16.6 mW/g

Certificate No: D5GHzV2-1088_Jul10 Page 6 of 8

0 dB = 16.6 mW/g

Impedance Measurement Plot for Head TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Motorola MDb

Accreditation No.: SCS 108

S

C

S

Certificate No: D2450V2-766_Oct10

CALIBRATION CERTIFICATE

Object D2450V2 - SN: 766

Calibration procedure(s) QA CAL-05.v7

Calibration procedure for dipole validation kits

Calibration date:

October 13, 2010

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

	_		
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11
Reference 20 dB Attenuator	SN: 5086 (20g)	30-Mar-10 (No. 217-01158)	Mar-11
Type-N mismatch combination	SN: 5047.2 / 06327	30-Mar-10 (No. 217-01162)	Mar-11
Reference Probe ES3DV3	SN: 3205	30-Apr-10 (No. ES3-3205_Apr10)	Apr-11
DAE4	SN: 601	10-Jun-10 (No. DAE4-601_Jun10)	Jun-11
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11
	Name	Function	Signature
Calibrated by:	Dimce lilev	Laboratory Technician	Myin
			w. ww
Approved by:	Katja Pokovic	Technical Manager	60160

Issued: October 14, 2010

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-766_Oct10

Page 1 of 6

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D2450V2-766_Oct10 Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

	<u>V</u> 1 0	
DASY Version	DASY5	V52.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39,2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.3 ± 6 %	1.71 mho/m ± 6 %
Head TSL temperature during test	(21.4 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	12.8 mW / g
SAR normalized	normalized to 1W	51.2 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	52.2 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	**************************************
SAR measured	250 mW input power	5.98 mW / g
SAR normalized	normalized to 1W	23.9 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.0 mW /g ± 16.5 % (k=2)

Certificate No: D2450V2-766_Oct10

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.1 Ω + 0.7 jΩ
Return Loss	- 33.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.156 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	August 10, 2004

Certificate No: D2450V2-766_Oct10

DASY5 Validation Report for Head TSL

Date/Time: 13.10.2010 14:19:04

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:766

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL U12 BB

Medium parameters used: f = 2450 MHz; $\sigma = 1.71 \text{ mho/m}$; $\varepsilon_r = 38.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 30.04.2010

• Sensor-Surface: 3mm (Mechanical Surface Detection)

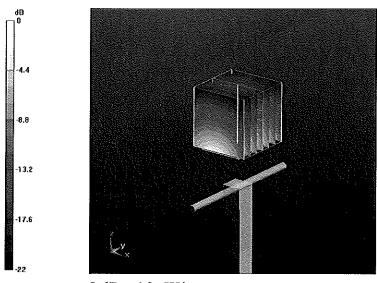
• Electronics: DAE4 Sn601; Calibrated: 10.06,2010

• Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163)

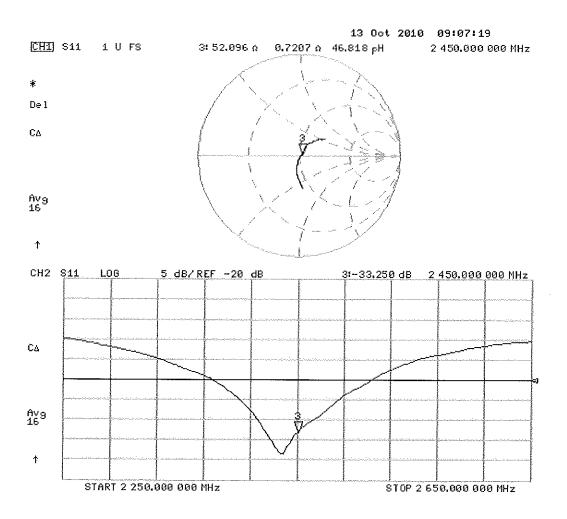
• Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 100.6 V/m; Power Drift = 0.045 dB

Peak SAR (extrapolated) = 26 W/kg


SAR(1 g) = 12.8 mW/g; SAR(10 g) = 5.98 mW/g

Maximum value of SAR (measured) = 16 mW/g

0 dB = 16 mW/g

Impedance Measurement Plot for Head TSL

FCC ID: IHDT56MT1

END OF REPORT