

Portable Cellular Phone SAR Test Report

Motorola Mobility, Inc.

Tests Requested By: 600 N. US Highway 45

Libertyville, IL 60048

Test Report #: 24374-1 **Date of Report:** Mar-03-2011

Date of Test: Feb-16-2011 to Feb-18-2011

FCC ID #: IHDT56MR1

Generic Name: N/A

Motorola Mobility, Inc. - ADR Test Services Laboratory

Test Laboratory: 600 N. US Highway 45

Libertyville, IL 60048

Report Author: Thomas Knipple

Senior RF Engineer

Show Kngel

Accreditation:

This laboratory is accredited to ISO/IEC 17025-2005 to perform the following tests:

Testing Laboratory No. 2404

Tests:

Electromagnetic Specific Absorption Rate

IEC 62209-1 RSS-102

Procedures:

IEEE 1528 - 2003

FCC OET Bulletin 65 (*including Supplement C*) Australian Communications Authority Radio

Communications (Electromagnetic Radiation – Human

Exposure) Standard 2003 CENELEC EN 50360 ARIB Std. T-56 (2002)

On the following products or types of products:

Wireless Communications Devices (Examples): Two Way Radios; Portable Phones (including

Cellular, Licensed Non-Broadcast and PCS); Low Frequency Readers; and Pagers

Motorola declares under its sole responsibility that the portable cellular telephone model to which this declaration relates, is in conformity with the appropriate General Population/Uncontrolled RF exposure standards, recommendations and guidelines (FCC 47 CFR §2.1093) as well as with CENELEC en50360:2001 and ANSI / IEEE C95.1. It also declares that the product was tested in accordance with IEEE 1528 / CENELEC EN62209-1 (2006) / IEC 62209-2 (2010-03), as well as other appropriate measurement standards, guidelines and recommended practices. Any deviations from these standards, guidelines and recommended practices are noted below:

Statement of Compliance:

(none)

©Motorola Mobility, Inc. 2011

This test report shall not be reproduced except in full, without written approval of the laboratory. The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report. Motorola encourages all feedback, both positive and negative, on this test report.

Table of Contents

1. Introduction	3
2. Description of the Device Under Test	4
2.1 Antenna description	4
2.2 Device description	5
2.3 Evaluation of Bluetooth	6
3. Test Equipment Used	7
3.1 Dosimetric System	7
3.2 Additional Equipment	7
4. Electrical parameters of the tissue simulating liquid	8
5. System Accuracy Verification	9
6. Test Results	10
6.1 Head Adjacent Test Results	11
6.2 Dispatch/Push-to-Talk Test Results	14
6.3 Body Worn Test Results	16
References	19
Appendix 1: SAR distribution comparison for the system accuracy verification	
Appendix 2: SAR distribution plots for Phantom Head Adjacent Use	
Appendix 3: SAR distribution plots for Dispatch/Push-to-Talk Use	
Appendix 4: SAR distribution plots for Body Worn Configurations	
Appendix 5: Probe Calibration Certificates	
Appendix 6: Measurement Uncertainty Budget	
Appendix 7: Dipole Characterization Certificates	

1. Introduction

The Motorola Mobility ADR Test Services Laboratory has performed measurements of the maximum potential exposure to the user of the portable cellular phone covered by this test report. The Specific Absorption Rate (SAR) of this product was measured. The portable cellular phone was tested in accordance with [1], [4] and [5]. The SAR values measured for the portable cellular phone are below the maximum recommended levels of 1.6 W/kg in a 1 g average set in [3] and 2.0 W/kg in a 10 g average set in [2].

For ICNIRP (10g), the final stand-alone SAR readings for this phone are 0.53 W/kg for head-adjacent use, 0.10 W/kg for dispatch use, and 0.66 W/kg for body-worn use. For ANSI / IEEE C95.1 (1 g), the final stand-alone SAR readings for this phone are 0.94 W/kg for head-adjacent use, 0.14 W/kg for dispatch use, and 0.90 W/kg for body-worn use. These measurements were performed using a Dasy4TM v4.7 system manufactured by Schmid & Partner Engineering AG (SPEAG), of Zurich Switzerland.

2. Description of the Device Under Test

2.1 Antenna description

Antenna for 800/900 MHz Bands

Type	Internal			
Location	Bottom of Transceiver			
Dimensions	Length	36.14 mm		
	Width	13.24 mm		

Antenna for Bluetooth

Type	Internal			
Location	Bottom-Right	Side of Transceiver		
Dimonsions	Length	13.52 mm		
Dimensions	Width	7.22 mm		

2.2 Device description

Table 1: Information for the Device Under Test

Serial number (Used For)	364VMA3F	11 (All SAR	testing, conduc	cted power mea	asurements)	
Serial number (Used For)	364VMAJF8	84 (Conducte	d power meas	urements)		
Mode(s) of Operation	800 iDEN (Interconnect / Dispatch) 800 iDEN (Packet Data)		900 iDEN (Interconnect/ Dispatch)	900 iDEN (Packet Data)	Bluetooth	
Modulation Mode(s)	M16-QAM	M64-QAM, M16-QAM, QPSK	M16-QAM	M64-QAM, M16-QAM, QPSK	GFSK	
Maximum Output Power Setting	27.89 dBm		27.89 dBm		10.0 dBm	
Duty Cycle	2:6 / 1:6	81:120	2:6 / 1:6	81:120	1:1	
Transmitting Frequency Range(s)	806.0125 – 82	806.0125 – 824.9875 MHz 896.01875 – 901.98125 MHz				
Production Unit or Identical Prototype (47 CFR §2908)	Identical Prototype					
Device Category			Portable			

The Device Under Test (DUT) is a digital multi-service data-capable device that employs time division multiplexing (TDMA) with duty cycles of 16.67% (Dispatch), 16.67% or 33.00% (Interconnect or Circuit Data), and up to 67.50% (Packet Data) operation. Possible modulation formats are QPSK, M16-QAM, or M64-QAM.

All voice modes employ M16-QAM modulation and are interleaved as 1:6 (for Dispatch or Interconnect) or 1:3 (Interconnect only). Split 1:3 Interconnect is operated at 16.67% duty cycle, but because there will be two pulses in each 90 ms frame, the overall interleave is 2:6.

Data transmissions employ QPSK, M16-QAM, or M64-QAM modulations and have a maximum duty cycle of 67.50% (Packet Data). Packet Data operation is possible with and without connection to an external data device (via data cable or Bluetooth link).

All iDEN modes (Interconnect, Dispatch, and Data) are available in both the 800 and 900 MHz SMR bands.

2.3 **Evaluation of Bluetooth**

Per "SAR Evaluation Considerations for Handsets with Multiple Transmitters and Antennas" (FCC KDB 648474), the necessity of stand-alone and simultaneous SAR testing was evaluated for the licensed and unlicensed transmitters of the device under test.

By device design the iDEN transmitter may operate simultaneously with the Bluetooth transmitter. The separation distance between the Bluetooth antenna and the iDEN antenna is 1.07 mm. Pictorial representation of the antenna locations and separation distances are given in Exhibit 7d.

The Bluetooth transmitter of the device under test can be excluded from stand-alone and simultaneous SAR evaluation, per the highlighted requirements from FCC KDB 648474, as follows:

- The highest output conducted power measured for Bluetooth on the device under test is 9.3 mW. $\leq 12 \text{ mW}$
- The separation distance between the Bluetooth antenna and the main antenna is 1.07 mm.
- [< 2.5 cm]The highest 1-g SAR value for the primary transmitter is 0.94 mW/g. [< 1.2 W/kg]

3. Test Equipment Used

3.1 Dosimetric System

The Motorola Mobile Devices Business ADR Test Services Laboratory utilizes a Dosimetric Assessment System (Dasy4TM v4.7) manufactured by Schmid & Partner Engineering AG (SPEAGTM), of Zurich Switzerland. All the SAR measurements are taken within a shielded enclosure. The overall 10 g RSS uncertainty of the measurement system is $\pm 10.8\%$ (K=1) with an expanded uncertainty of $\pm 21.6\%$ (K=2). The overall 1 g RSS uncertainty of the measurement system is $\pm 11.1\%$ (K=1) with an expanded uncertainty of $\pm 22.2\%$ (K=2). The measurement uncertainty budget is given in Appendix 6. Per IEEE 1528, this uncertainty budget is applicable to the SAR range of 0.4 W/kg to 10 W/kg.

The list of calibrated equipment used for the measurements is shown in the following table.

Description	Serial Number	Cal Date	Cal Due Date
DASY4™ DAE V1	434	Jan-13-2011	Jan-13-2012
E-Field Probe ES3DV3	3124	Aug-11-2010	Aug-11-2011
DASY4™ DAE V1	702	May-18-2010	May-18-2011
E-Field Probe ES3DV3	3183	Jul-14-2010	Jul-14-2011
S.A.M. Phantom used for 800/900 MHz	TP-1131		
S.A.M. Phantom used for 800/900 MHz	TP-1156		
Dipole Validation Kit, DV835V2	424TR	Oct-14-2010	Oct-14-2011
Dipole Validation Kit, DV835V2	425TR	Oct-14-2010	Oct-14-2011

3.2 Additional Equipment

Description	Serial Number	Cal Date	Cal Due Date
Signal Generator HP8648C	3847A04822	Apr-22-2009	Apr-22-2011
Power Meter E4419B	GB39511082	Apr-24-2009	Apr-24-2011
Power Sensor #1 - E9301A	US39210917	Oct-25-2010	Oct-25-2011
Power Sensor #2 - E9301A	US39210918	Oct-25-2010	Oct-25-2011
Signal Generator HP8648C	3847A04810	Oct-30-2009	Oct-30-2011
Power Meter E4419B	GB39511087	Dec-22-2009	Dec-22-2011
Power Sensor #1 - E9301A	US39210934	Oct-25-2010	Oct-25-2011
Power Sensor #2 - E9301A	US39211006	Oct-25-2010	Oct-25-2011
Network Analyzer HP8753ES	US39172529	Jun-04-2010	Jun-04-2011
Dielectric Probe Kit HP85070C	US99360070		

4. Electrical parameters of the tissue simulating liquid

Prior to conducting SAR measurements, the relative permittivity, ε_r , and the conductivity, σ , of the tissue simulating liquids were measured with a HP85070 Dielectric Probe Kit These values, along with the temperature of the simulated tissue are shown in the table below. The recommended limits for permittivity and conductivity are also shown. A mass density of $\rho = 1$ $^g/_{cm^3}$ was entered into the system in all the cases. It can be seen that the measured parameters are within tolerance of the recommended limits specified in [1] and [5].

f	Tissue		Diel	ectric Paran	ctric Parameters	
(MHz)	type	Limits / Measured	ϵ_r	σ (S/m)	Temp (°C)	
		Measured Feb-16-2011	41.8	0.89	19.3	
	Head	Measured Feb-18-2011	41.7	0.89	19.3	
815		Recommended Limits	41.6 ±5%	$0.898 \pm 5\%$	18-25	
Ъ	Body	Measured Feb-17-2011	54.8	0.97	19.2	
	Douy	Recommended Limits	55.3 ±5%	$0.968 \pm 5\%$	18-25	
		Measured Feb-15-2011	40.8	0.97	20.5	
	Head	Measured Feb-16-2011	40.6	0.97	19.3	
899		Recommended Limits	41.5 ±5%	$0.97 \pm 5\%$	18-25	
	Body	Measured Feb-17-2011	54.0	1.06	19.2	
	Douy	Recommended Limits	55.0 ±5%	1.05 ±5%	18-25	

The list of ingredients and the percent composition used for the simulated tissues are indicated in the table below.

Ingredient	835 MHz / 900 MHz Head	835 MHz / 900 MHz Body	1800 MHz / 1900 MHz Head	1800 MHz / 1900 MHz Body	2450 MHz Head	2450 MHz Body
Sugar	57	44.9				
DGBE			47	30.8		30
Diacetin					51	
Water	40.45	53.06	52.62	68.8	48.75	70
Salt	1.45	0.94	0.38	0.4	0.15	
HEC	1	1				
Bact.	0.1	0.1			0.1	

5. System Accuracy Verification

A system accuracy verification of the DASY4TM was performed using the measurement equipment listed in Section 3.1. The daily system accuracy verification occurs within the flat section of the SAM phantom.

A SAR measurement was performed to verify the measured SAR was within $\pm 10\%$ from the target SAR indicated in Appendix 7. These frequencies are within $\pm 10\%$ of the compliance test mid-band frequency as required in [1] and [5]. The test was conducted on the same days as the measurement of the DUT. Recommended limits for permittivity and conductivity, specified in [5], are shown in the table below. The obtained results from the system accuracy verification are also displayed in the table below. SAR values are normalized to 1 W forward power delivered to the dipole. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values. The distributions of SAR compare well with those of the reference measurements (see Appendix 1). The tissue stimulant depth was verified to be 15.0 cm \pm 0.5 cm. Z-axis scans showing the SAR penetration are also included in Appendix 1.

f		SAR (W/kg),	Dielectric Parameters		Ambient	Tissue
(MHz)	Description	1 gram	ϵ_r	σ (S/m)	Temp (°C)	Temp (°C)
	Measured, Feb-15-2011	9.80	41.4	0.91	20.3	20.5
	Measured, Feb-16-2011	9.75	40.8	0.90	20.2	20.1
	Measured, Feb-17-2011	9.90	41.6	0.91	19.7	20.0
835	Recommended Limits	9.57	41.5 ±5%	$0.90 \pm 5\%$	18-25	18-25
	Measured, Feb-17-2011	9.50	41.5	0.91	20.0	19.2
	Measured, Feb-18-2011	9.50	41.4	0.91	19.9	19.3
	Recommended Limits	9.49	41.5 ±5%	0.90 ±5%	18-25	18-25

The following probe conversion factors were used on the E-Field probe(s) used for the system accuracy verification measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe ES3DV3	3124	835	5.89	5 of 11
E-Field Probe ES3DV3	3183	835	6.11	5 of 11

6. Test Results

The DUT is capable of operation in a test mode that allows control of the transmitter without the need to place actual phone calls. This guarantees that the unit does not change its transmitter power, and that the resultant measured field values will not be affected by external connections. For the purposes of this testing the unit is commanded to test mode and manually set to the proper channel, transmitter power level and transmit mode of operation. The phone was tested in the configurations stipulated in [1], [4] and [5]. The phone was positioned into these configurations using the device holder supplied with the DASY4TM SAR measurement system. The default settings for the "coarse" and "cube" scans were chosen and used for measurements. The grid spacing of the course scan was set to 15 mm or less as shown in the SAR plots included in Appendices 2, 3, and 4. Please refer to the DASY4TM manual for additional information on SAR scanning procedures and algorithms used.

The Cellular Phone model covered by this report has the following battery options:

Model SNN5819B - 1130 mAH Battery

Model SNN5813B - 910 mAH Battery

Model SNN5804A - 910 mAH Battery

The battery with the highest capacity is the SNN5819B. This battery was used to do most of the SAR testing. The phone was placed in the SAR measurement system with a fully charged battery. The configurations that resulted in the highest SAR values were tested using the other batteries listed above.

6.1 Head Adjacent Test Results

The SAR results shown in tables 1 through 8 are maximum SAR values averaged over 1 gram of phantom tissue, to demonstrate compliance to [3] and also over 10 grams of phantom tissue, to demonstrate compliance to the [6]. Also shown are the measured conducted output power levels, the temperature of the simulated tissue after the test, the extrapolated measured drift and the SAR. The exact method of extrapolation Extrapolated SAR = Measured SAR * $10^{(-drift/10)}$. The SAR reported at the end of the measurement process by the DASY4TM measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test.

The left head and right head SAR contour distributions are similar. Because of this similarity, the cheek/touch and 15° tilt test conditions with the highest SAR values in each band are indicated as bold numbers in the following tables and are included in Appendix 2. All other test conditions measured lower SAR values than those included in Appendix 2.

The SAR measurements were performed using the SAM phantoms listed in section 3.1. Since the same phantoms and simulated tissue were used for the system accuracy verification and the device SAR measurements, the Z-axis scans included in Appendix 1 are applicable for verification of simulated tissue depth to be 15.0 cm \pm 0.5 cm.

The following probe conversion factors were used on the E-Field probe(s) used for head-adjacent measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe ES3DV3	3124	835	5.89	5 of 11
E-Field Probe ES3DV3	3183	835	6.11	5 of 11

Left Head Cheek Position								
Band/	Channel or	Conducted	Temp	Drift	10 g SA	R value	1 g SA	R value
Mode	f (MHz)	Output Power (dBm)	(°C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)
1DEN 000	806.0125	28.07						
iDEN 800 Interconnect 2:6	815.5125	28.09	19.3	0.072	0.267	0.27	0.430	0.43
Interconnect 2:0	824.9875	28.13						
1DEN 000	896.01875	28.11						
iDEN 900 Interconnect 2:6	898.99375	28.13	20.1	-0.093	0.386	0.39	0.613	0.63
Interconnect 2:0	901.98125	28.09						

Table 1: SAR measurement results at the highest possible output power, measured in a head cheek position against the ICNIRP and ANSI SAR Limit.

	Right Head Cheek Position											
Band/ Mode	Output Power		Drift (dB)	ŭ	Measured (W/kg) Extrapolated (W/kg)		R value Extrapolated (W/kg)					
	806.0125	28.07										
iDEN 800 Interconnect 2:6	815.5125	28.09	19.2	0.037	0.325	0.33	0.556	0.56				
Interconnect 2:0	824.9875	28.13										
IDENI 000	896.01875	28.11	19.5	-0.244	0.501	0.53	0.891	0.94				
iDEN 900 Interconnect 2:6	898.99375	28.13	19.1	-0.139	0.504	0.52	0.912	0.94				
interconnect 2:0	901.98125	28.09	19.8	-0.185	0.482	0.50	0.855	0.89				

Table 2: SAR measurement results at the highest possible output power, measured in a head cheek position against the ICNIRP and ANSI SAR Limit.

Highest Noted Head Cheek Position with Battery SNN5813B										
Band/	Channel or	Conducted	Temp	Drift	10 g SA	R value	1 g SA.	R value		
Mode	f (MHz)	Output Power (dBm)	(°C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)		
iDEN 800	806.0125	28.07								
Interconnect 2:6	815.5125	28.09	19.0	-0.002	0.363	0.36	0.638	0.64		
Right Cheek	824.9875	28.13								
iDEN 900	896.01875	28.11								
Interconnect 2:6 Right Cheek	898.99375	28.13	19.1	-0.175	0.497	0.52	0.866	0.90		
	901.98125	28.09								

Table 3: SAR measurement results at the highest possible output power, measured in a head cheek position against the ICNIRP and ANSI SAR Limit.

	Highest Noted Head Cheek Position with Battery SNN5804A										
Band/	Channel or	Conducted	Temp (°C)	Drift	10 g SA	R value	1 g SA	R value			
Mode	f (MHz)	Output Power (dBm)		(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)			
iDEN 800	806.0125	28.07									
Interconnect 2:6	815.5125	28.09	19.0	0.050	0.345	0.35	0.589	0.59			
Right Cheek	824.9875	28.13									
iDEN 900	896.01875	28.11									
Interconnect 2:6	898.99375	28.13	19.1	-0.123	0.412	0.42	0.723	0.74			
Right Cheek	901.98125	28.09									

Table 4: SAR measurement results at the highest possible output power, measured in a head cheek position against the ICNIRP and ANSI SAR Limit.

	Left Head 15° Tilt Position											
Band/	Channel or	Conducted	Power (°C)	Drift (dB)	10 g SA	10 g SAR value		R value				
Mode	f (MHz)	Output Power (dBm)			Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)				
IDEN 000	806.0125	28.07										
iDEN 800 Interconnect 2:6	815.5125	28.09	19.6	-0.018	0.120	0.12	0.164	0.16				
Interconnect 2.0	824.9875	28.13										
'DEN 000	896.01875	28.11										
iDEN 900 Interconnect 2:6	898.99375	28.13	19.2	-0.093	0.153	0.16	0.214	0.22				
Interconnect 2.0	901.98125	28.09										

Table 5: SAR measurement results at the highest possible output power, measured in a head 15° Tilt position against the ICNIRP and ANSI SAR Limit.

	Right Head 15° Tilt Position											
Band/	Channel or	Conducted	Temp (°C)	Drift (dB)	10 g SA	R value	1 g SA	R value				
Mode	f (MHz)	Output Power (dBm)			Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)				
45554.000	806.0125	28.07										
iDEN 800 Interconnect 2:6	815.5125	28.09	19.8	-0.092	0.119	0.12	0.159	0.16				
Interconnect 2.0	824.9875	28.13										
1DEN 000	896.01875	28.11										
iDEN 900 Interconnect 2:6	898.99375	28.13	19.2	-0.090	0.152	0.16	0.208	0.21				
interconnect 2:0	901.98125	28.09										

Table 6: SAR measurement results at the highest possible output power, measured in a head 15° Tilt position against the ICNIRP and ANSI SAR Limit.

	Highest Noted Head 15° Tilt Position with Battery SNN5813B										
Band/	Channel or	Conducted	Temp	Drift	10 g SA	R value	1 g SA	1 g SAR value			
Mode	f (MHz)	Output Power (dBm)	(°C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)			
iDEN 800	806.0125	28.07									
Interconnect 2:6	815.5125	28.09	19.1	-0.103	0.111	0.11	0.148	0.15			
Left Tilt	824.9875	28.13									
iDEN 900	896.01875	28.11									
Interconnect 2:6	898.99375	28.13	19.0	-0.083	0.137	0.14	0.191	0.19			
Left Tilt	901.98125	28.09									

Table 7: SAR measurement results at the highest possible output power, measured in a head 15° Tilt position against the ICNIRP and ANSI SAR Limit.

	Highest Noted Head 15° Tilt Position with Battery SNN5804A										
Band/	Channel or	Conducted	Temp	Drift (dB)	10 g SA	AR value	1 g SA	1 g SAR value			
Mode	f (MHz)	Output Power (dBm)	(°C)		Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)			
iDEN 800	806.0125	28.07									
Interconnect 2:6	815.5125	28.09	19.1	-0.091	0.123	0.13	0.167	0.17			
Left Tilt	824.9875	28.13									
iDEN 900	896.01875	28.11									
Interconnect 2:6	898.99375	28.13	19.0	-0.206	0.133	0.14	0.185	0.19			
Left Tilt	901.98125	28.09									

Table 8: SAR measurement results at the highest possible output power, measured in a head 15° Tilt position against the ICNIRP and ANSI SAR Limit.

6.2 Dispatch/Push-to-Talk Test Results

The SAR results shown in tables 9 through 12 are maximum SAR values averaged over 1 gram of phantom tissue, to demonstrate compliance to [3] and also over 10 grams of phantom tissue, to demonstrate compliance to the [6]. Also shown are the measured conducted output powers, the temperature of the simulated tissue after the test, the extrapolated measured drift and the SAR. The exact method of extrapolation Extrapolated SAR = Measured SAR * $10^{(-drift/10)}$. The SAR reported at the end of the measurement process by the DASY4TM measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test.

A full data set output of one test condition per band with the highest SAR values from the DASYTM measurement system is included as Appendix 3. The test conditions included are indicated as bold numbers in the following tables. All other test conditions measured lower SAR values than those included.

The SAR measurements were performed using the SAM phantoms listed in section 3.1. Since the same phantoms and simulated tissue were used for the system accuracy verification and the device SAR measurements, the Z-axis scans included in Appendix 1 are applicable for verification of simulated tissue depth to be 15.0 cm \pm 0.5 cm.

For the purposes of these tests the DUT is commanded to the proper channel, transmitter power level and transmit mode of operation. The DUT was then placed in the SAR measurement system with a fully charged battery. The DUT was placed with the front of the device positioned at 2.5 cm from the flat portion of the SAM phantom, as per Supplement C 01-01, with flip both open and closed.

The following probe conversion factors were used on the E-Field probe(s) used for the Dispatch/Push-To-Talk measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe ES3DV3	3124	835	5.89	5 of 11

	D	ispatch/Pus	h-To-Ta	lk, Flip (Open, Front of Pl	hone 25 mm from	Phantom	
Band/	Channel or	Conducted	Temp (°C)	Drift (dB)	10 g SA	R value	1 g SAR value	
Mode	f (MHz)	Output Power (dBm)			Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)
:DEN 900	806.0125	28.08						
iDEN 800 Dispatch 1:6	815.5125	28.13	19.2	0.075	0.097	0.10	0.135	0.14
Dispaich 1:0	824.9875	28.15						
1DEN 000	896.01875	28.14						
iDEN 900 Dispatch 1:6	898.99375	28.16	19.7	-0.328	0.068	0.07	0.094	0.10
Disputen 1:0	901.98125	28.14						

Table 9: SAR measurement results at the highest possible output power, measured in a Push-To-Talk position against the ICNIRP and ANSI SAR Limit.

	Dispatch/Push-To-Talk, Flip Closed, Front of Phone 25 mm from Phantom											
Band/	Channel or	Conducted	Temp	Drift	10 g SA	AR value	1 g SA	R value				
Mode	f (MHz)	Output Power (dBm)	(°C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)				
1DEN 000	806.0125	28.08										
iDEN 800 Dispatch 1:6	815.5125	28.13	19.1	0.063	0.033	0.03	0.046	0.05				
Dispaich 1.0	824.9875	28.15										
47777.000	896.01875	28.14										
iDEN 900	898.99375	28.16	19.2	0.042	0.021	0.02	0.031	0.03				
Dispatch 1:6	901.98125	28.14										

Table 10: SAR measurement results at the highest possible output power, measured in a Push-To-Talk position against the ICNIRP and ANSI SAR Limit.

High	Highest Dispatch/Push-To-Talk, Flip Open, Front of Phone 25 mm from Phantom with Battery SNN5813B											
Band/	Channel or	Conducted	Temp	Drift	10 g SA	R value	1 g SA.	R value				
Mode	f (MHz)	Output Power (dBm)	(°C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)				
DEN 000	806.0125	28.08										
iDEN 800 Dispatch 1:6	815.5125	28.13	19.2	-0.143	0.096	0.10	0.130	0.13				
Disputch 1.0	824.9875	28.15										
IDEN 000	896.01875	28.14										
iDEN 900 Dispatch 1:6	898.99375	28.16	19.6	-0.032	0.067	0.07	0.093	0.09				
Бізраісн 1:0	901.98125	28.14										

Table 11: SAR measurement results at the highest possible output power, measured in a Push-To-Talk position against the ICNIRP and ANSI SAR Limit.

High	Highest Dispatch/Push-To-Talk, Flip Open, Front of Phone 25 mm from Phantom with Battery SNN5804B											
Band/	Channel or	Conducted	Temp	Drift	10 g SA	R value	1 g SA.	R value				
Mode	f (MHz)	Output Power (dBm)	(°C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)				
IDEN 000	806.0125	28.08										
iDEN 800 Dispatch 1:6	815.5125	28.13	19.5	0.031	0.092	0.09	0.124	0.12				
Dispatch 1:0	824.9875	28.15										
4D FINE 000	896.01875	28.14										
iDEN 900 Dispatch 1:6	898.99375	28.16	19.5	-0.197	0.061	0.06	0.085	0.09				
Disputen 1:0	901.98125	28.14										

Table 12: SAR measurement results at the highest possible output power, measured in a Push-To-Talk position against the ICNIRP and ANSI SAR Limit.

6.3 Body Worn Test Results

The SAR results shown in tables 13 through 17 are maximum SAR values averaged over 1 gram of phantom tissue, to demonstrate compliance to [3] and also over 10 grams of phantom tissue, to demonstrate compliance to [6]. Also shown are the measured conducted output power levels, the temperature of the test facility during the test, the temperature of the tissue simulate after the test, the measured drift and the extrapolated SAR. The exact method of extrapolation is Extrapolated SAR = Measured SAR * $10^{(-drift/10)}$. The SAR reported at the end of the measurement process by the DASY4TM measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test.

The test conditions that produced the highest SAR values in each band are indicated as bold numbers in the following tables and are included in Appendix 4. All other test conditions measured lower SAR values than those included in Appendix 4.

A "flat" phantom was for the body-worn tests. This "flat" phantom is made out of 1" thick natural High Density Polyethylene with a thickness at the bottom equal to 2.0 mm. It measures 52.7 cm(long) x 26.7 cm(wide) x 21.2 cm(tall). The tissue stimulant depth was verified to be 15.0 cm \pm 0.5 cm. The same device holder described in section 6 was used for positioning the phone.

The device was tested per the Supplement C testing guidelines for devices that do not have body-worn accessories. A separation distance of 25 mm between the device and the flat phantom was used for testing body-worn SAR. The device was tested with the front and back of the device facing the phantom. Both sides of the device were tested for Body SAR for the purpose of including the SAR evaluation for body-worn accessories that support the device with the front side facing the user. The cellular phone was tested with a headset connected to the device for all body-worn SAR measurements.

The cellular phone was also tested in data mode operations. For these tests, a separation distance of 25 mm between the device and the flat phantom was used.

Additional functional accessories were divided into two categories, the ones with metal components and the ones with non-metal components. For non-metallic component accessories, testing was performed on the accessory that displayed the closest proximity to the flat phantom. Each metallic component accessory, if any, was checked for uniqueness of metal component so that each is tested with the device. If multiple accessories shared an identical metal component, only the accessory that dictates the closest spacing to the body was tested.

There is one body-worn accessory available for this phone: A plastic holster and belt clip: Model NNTN9112A

The plastic holster causes closer proximity and does differ in metal components, and thus was used for SAR measurements. The device was tested with the holster in the worst-case allowable SAR position, mode, and channel configuration from the previously described body-worn testing.

The following probe conversion factors were used on the E-Field probe(s) used for the body-worn measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe ES3DV3	3124	835	5.86	5 of 11
E-Field Probe ES3DV3	3183	835	6.15	5 of 11

Body-Worn; Front of Phone 25 mm from Phantom									
Band/ Mode	Channel or f (MHz) Output P	Conducted	Temp (°C)	Drift (dB)	10 g SAR value		1 g SAR value		
		Output Power (dBm)			Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)	
*DEN 000	806.0125	28.07							
iDEN 800 Interconnect 2:6	815.5125	28.09	19.0	0.010	0.076	0.08	0.103	0.10	
Interconnect 2.0	824.9875	28.13							
*DEN 000	806.0125	27.92							
iDEN 800 Packet Data	815.5125	27.97	19.0	-0.286	0.119	0.13	0.165	0.18	
Тискег Биш	824.9875	28.00							
47774000	896.01875	28.11							
iDEN 900 Interconnect 2:6	898.99375	28.13	19.5	-0.049	0.036	0.04	0.052	0.05	
Interconnect 2:0	901.98125	28.09							
iDEN 900 Packet Data	896.01875	27.99							
	898.99375	28.01	20.0	-0.138	0.063	0.06	0.087	0.09	
	901.98125	27.98							

Table 13: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

Body-Worn; Back of Phone 25 mm from Phantom									
Band/	Channal an	Channel or f (MHz) Conducted Output Power (dBm)	Temp (°C)	Drift (dB)	10 g SAR value		1 g SAR value		
Mode	f (MHz)				Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)	
4D 771 000	806.0125	28.07							
iDEN 800 Interconnect 2:6	815.5125	28.09	19.0	0.062	0.132	0.13	0.178	0.18	
Interconnect 2:0	824.9875	28.13							
4D FINA 000	806.0125	27.92							
iDEN 800 Packet Data	815.5125	27.97	19.0	-0.152	0.219	0.23	0.305	0.32	
<i>Гаске</i> і Даіа	824.9875	28.00							
4D FINA 000	896.01875	28.11							
iDEN 900 Interconnect 2:6	898.99375	28.13	20.0	-0.195	0.139	0.15	0.193	0.20	
Interconnect 2:0	901.98125	28.09							
	896.01875	27.99							
iDEN 900 Packet Data	898.99375	28.01	19.6	-0.287	0.238	0.25	0.335	0.36	
Packet Data	901.98125	27.98							

Table 14: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

Body-Worn with Holster NNTN9112A									
	Channel or	Conducted	Temp	Drift (dB)	10 g SAR value		1 g SAR value		
	f (MHz)	Output Power (dBm)	(°C)		Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)	
*DEN 000	806.0125	27.92							
iDEN 800 Packet Data	815.5125	27.97	19.0	-0.106	0.645	0.66	0.876	0.90	
1 искеї Бан	824.9875	28.00							
45 F14 000	896.01875	27.99							
iDEN 900 Packet Data	898.99375	28.01	19.5	-0.225	0.168	0.18	0.253	0.27	
	901.98125	27.98							

Table 15: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

	Highest Body-Worn with Battery SNN5813B									
Band/	Band/ Mode Configuration		Drift	10 g SAR value		1 g SAR value				
Mode			(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)			
iDEN 800 Packet Data	Body-Worn with Holster NNTN9112A, at 815.5125 MHz	18.7	-0.305	0.252	0.27	0.351	0.38			
iDEN 900 Packet Data	Body-Worn, Back of Phone 25 mm from Phantom, at 898.99375 MHz	19.7	-0.286	0.226	0.24	0.308	0.33			

Table 16: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

	Highest Body-Worn with Battery SNN5804A									
Band/	Band/ Mode Configuration		Drift	10 g SAR value		1 g SAR value				
Mode			(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)			
iDEN 800 Packet Data	Body-Worn with Holster NNTN9112A, at 815.5125 MHz	18.7	-0.120	0.193	0.20	0.269	0.28			
iDEN 900 Packet Data	Body-Worn, Back of Phone 25 mm from Phantom, at 898.99375 MHz	19.6	-0.272	0.215	0.23	0.295	0.31			

Table 17: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

References

- [1] CENELEC, en62209-1:2006 "Human Exposure to Radio Frequency Fields From Hand Held and Body Mounted Wireless Communication Devices Human Models, Instrumentation, and Procedures"
- [2] CENELEC, en50360:2001 "Product standard to demonstrate the compliance of mobile phones with the basic restrictions related to human exposure to electromagnetic fields (300 MHz 3 GHz)".
- [3] ANSI / IEEE, C95.1 1999 Edition "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz"
- [4] FCC OET Bulletin 65 Supplement C 01-01
- [5] IEEE 1528 2003 Edition "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques"
- [6] ICNIRP Guidelines "Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic, and Electromagnetic Fields (up to 300 GHz)"
- [7] IEC 62209-2 "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)"

Appendix 1

SAR distribution comparison for the system accuracy verification

Date/Time: 2/15/2011 9:02:43 AM

Test Laboratory: Motorola - Feb-15-2011 835 MHz

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 425TR; FCC ID: IHDT56MR1

Procedure Notes: 835 MHz System Performance Check; Dipole Sn# 425TR; Input Power = 200 mW

Sim.Temp@meas = $20.5\Box C$; Sim.Temp@SPC = $20.5\Box C$; Room Temp @ SPC = $20.3\Box C$

Communication System: CW - Dipole; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: VALIDATION Only

Medium parameters used: f = 835 MHz; $\sigma = 0.91$ mho/m; $\epsilon_r = 41.4$; $\rho = 1000$ kg/m³

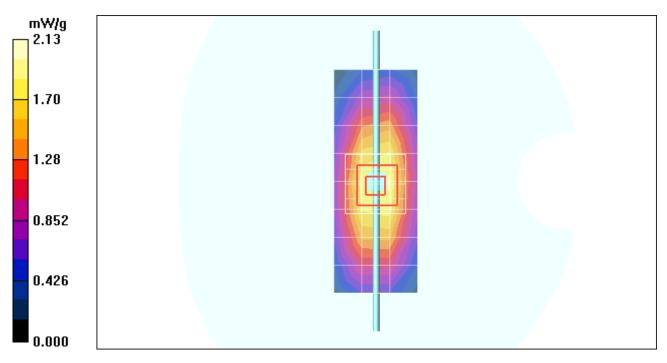
DASY4 Configuration:

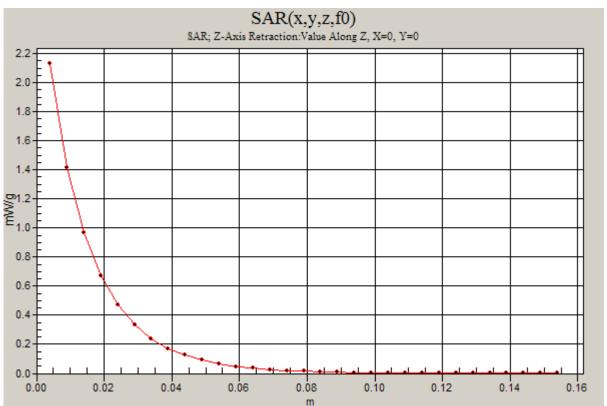
- Probe: ES3DV3 SN3124; ConvF(5.89, 5.89, 5.89); Calibrated: 8/11/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn434; Calibrated: 1/13/2011
- Phantom: R#4 Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1131;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Dipole Area Scan (4x9x1):

Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 1.89 mW/g

Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 49.1 V/m; Power Drift = -0.057 dB; Peak SAR (extrapolated) = 2.95 W/kg

SAR(1 g) = 1.96 mW/g; SAR(10 g) = 1.28 mW/g; Maximum value of SAR (measured) = 2.12 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 2.13 mW/g

Date/Time: 2/16/2011 9:10:55 AM

Test Laboratory: Motorola - Feb-16-2011 835 MHz

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 425TR; FCC ID: IHDT56MR1

Procedure Notes: 835 MHz System Performance Check; Dipole Sn# 425TR; Input Power = 200 mW

Sim.Temp@meas = $20.1 \square C$; Sim.Temp@SPC = $20.1 \square C$; Room Temp @ SPC = $20.2 \square C$

Communication System: CW - Dipole; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: VALIDATION Only

Medium parameters used: f = 835 MHz; $\sigma = 0.9$ mho/m; $\varepsilon_r = 40.8$; $\rho = 1000$ kg/m³

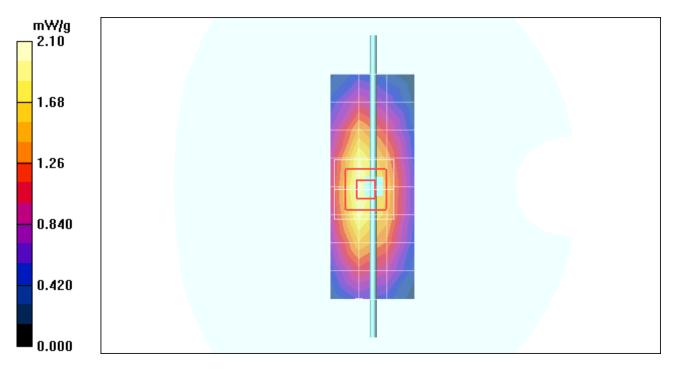
DASY4 Configuration:

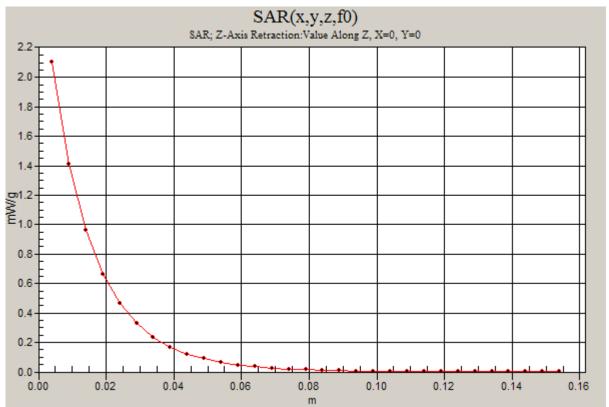
- Probe: ES3DV3 SN3124; ConvF(5.89, 5.89, 5.89); Calibrated: 8/11/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn434; Calibrated: 1/13/2011
- Phantom: R#4 Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1131;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Dipole Area Scan (4x9x1):

Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 2.02 mW/g

Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 48.0 V/m; Power Drift = -0.012 dB; Peak SAR (extrapolated) = 2.91 W/kg

SAR(1 g) = 1.95 mW/g; SAR(10 g) = 1.27 mW/g; Maximum value of SAR (measured) = 2.10 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm

Date/Time: 2/17/2011 4:52:28 PM

Test Laboratory: Motorola - Feb-17-2011 835 MHz

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 425TR; FCC ID: IHDT56MR1 Procedure Notes: 835 MHz System Performance Check; Dipole Sn# 425TR; Input Power = 200 mW

Sim. Temp@meas = 20.0*C; Sim. Temp@SPC = 20.0*C; Room Temp @ SPC = 19.7*C

Communication System: CW - Dipole; Frequency: 835 MHz; Duty Cycle: 1:1

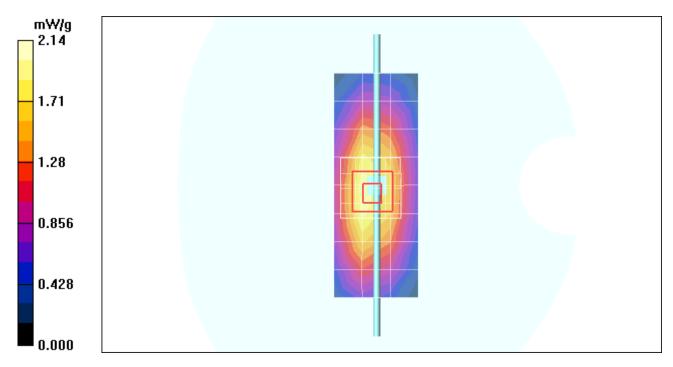
Medium: VALIDATION Only

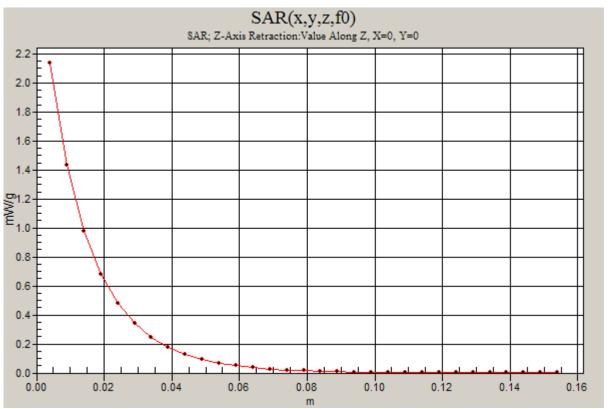
Medium parameters used: f = 835 MHz; $\sigma = 0.91$ mho/m; $\epsilon_r = 41.6$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(5.89, 5.89, 5.89); Calibrated: 8/11/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn434; Calibrated: 1/13/2011
- Phantom: R#4 Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1131;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Dipole Area Scan (4x9x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 1.99 mW/g


Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 48.5 V/m; Power Drift = -0.004 dB; Peak SAR (extrapolated) = 2.96 W/kg SAR(1 g) = 1.98 mW/g; SAR(10 g) = 1.29 mW/g; Maximum value of SAR (measured) = 2.14 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm

Date/Time: 2/17/2011 8:14:12 AM

Test Laboratory: Motorola - Feb-17-2011 835 MHz

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 424TR; FCC ID: IHDT56MR1

Procedure Notes: 835 MHz System Performance Check; Dipole Sn# 424TR; Input Power = 200 mW

Sim.Temp@meas = 19.2*C; Sim.Temp@SPC = 19.2*C; Room Temp @ SPC = 20.0*C

Communication System: CW - Dipole; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: VALIDATION Only

Medium parameters used: f = 835 MHz; $\sigma = 0.91$ mho/m; $\epsilon_r = 41.5$; $\rho = 1000$ kg/m³

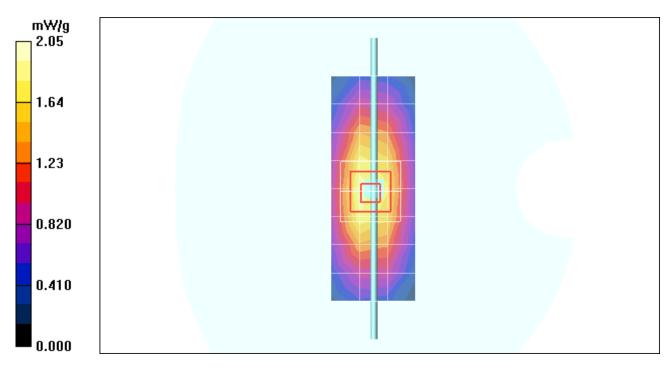
DASY4 Configuration:

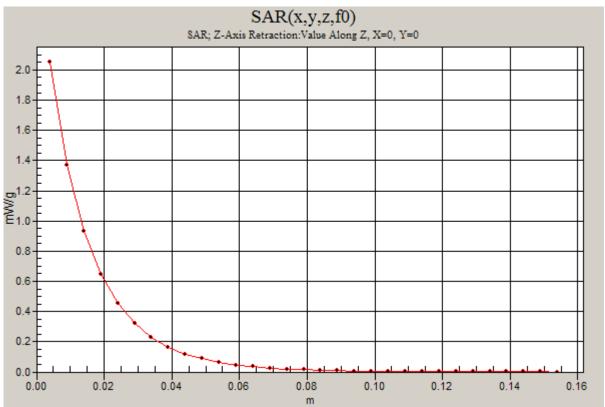
- Probe: ES3DV3 SN3183; ConvF(6.11, 6.11, 6.11); Calibrated: 7/14/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn702; Calibrated: 5/18/2010
- Phantom: R1 Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1156;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Dipole Area Scan (4x9x1):

Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 1.86 mW/g

Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 47.8 V/m; Power Drift = -0.039 dB; Peak SAR (extrapolated) = 2.86 W/kg

SAR(1 g) = 1.9 mW/g; SAR(10 g) = 1.23 mW/g; Maximum value of SAR (measured) = 2.05 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm

Date/Time: 2/18/2011 8:18:13 AM

Test Laboratory: Motorola - Feb-18-2011 835 MHz

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 424TR; FCC ID: IHDT56MR1 Procedure Notes: 835 MHz System Performance Check; Dipole Sn# 424TR; Input Power = 200 mW Sim.Temp@meas = 19.3*C; Sim.Temp@SPC = 19.3*C; Room Temp @ SPC = 19.9*C

Communication System: CW - Dipole; Frequency: 835 MHz; Duty Cycle: 1:1

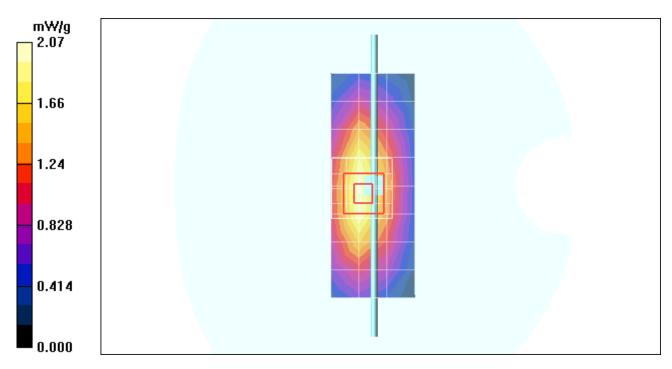
Medium: VALIDATION Only

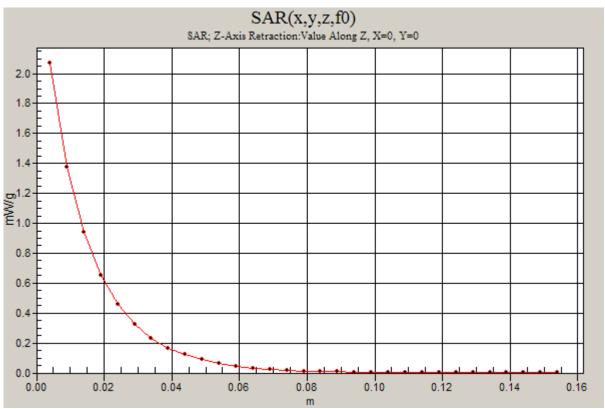
Medium parameters used: f = 835 MHz; $\sigma = 0.91$ mho/m; $\epsilon_r = 41.4$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3183; ConvF(6.11, 6.11, 6.11); Calibrated: 7/14/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn702; Calibrated: 5/18/2010
- Phantom: R1 Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1156;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Dipole Area Scan (4x9x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 2.01 mW/g


Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 46.0 V/m; Power Drift = 0.037 dB; Peak SAR (extrapolated) = 2.86 W/kg SAR(1 g) = 1.9 mW/g; SAR(10 g) = 1.24 mW/g; Maximum value of SAR (measured) = 2.04 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 2.07 mW/g

Appendix 2

SAR distribution plots for Phantom Head Adjacent Use

Date/Time: 2/18/2011 11:32:44 AM

Test Laboratory: Motorola - iDEN 800 Cheek

Serial: 364VMA3F11; FCC ID: IHDT56MR1

Procedure Notes: Pwr Step: N/A; Antenna Position: Internal; Accessory Model #: N/A

Battery Model #: SNN5813B; DEVICE POSITION (cheek or rotated): Cheek Communication System: iDEN 800; Frequency: 815.51 MHz; Duty Cycle: 1:3

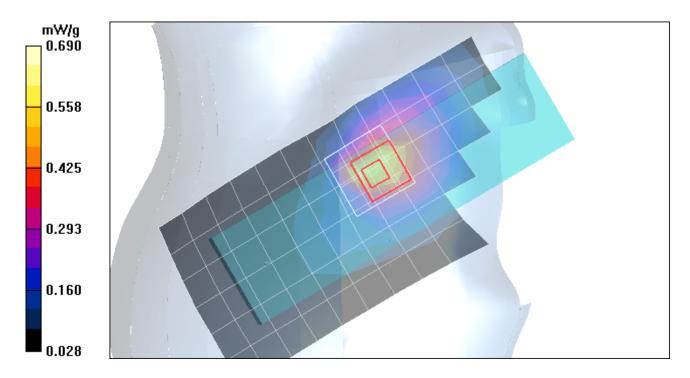
Medium: iDEN Sugar Head

Medium parameters used: f = 815 MHz; $\sigma = 0.89$ mho/m; $\varepsilon_r = 41.7$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3183; ConvF(6.11, 6.11, 6.11); Calibrated: 7/14/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn702; Calibrated: 5/18/2010
- Phantom: R1 Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1156;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Right Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.573 mW/g

Right Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 28.0 V/m; Power Drift = -0.002 dB; Peak SAR (extrapolated) = 1.31 W/kg

SAR(1 g) = 0.638 mW/g; SAR(10 g) = 0.363 mW/g; Maximum value of SAR (measured) = 0.690 mW/g

Date/Time: 2/16/2011 10:28:51 PM

Test Laboratory: Motorola - iDEN 900 Cheek

Serial: 364VMA3F11; FCC ID: IHDT56MR1

Procedure Notes: Pwr Step: N/A; Antenna Position: Internal; Accessory Model #: N/A

Battery Model #: SNN5819B; DEVICE POSITION (cheek or rotated): Cheek

Communication System: iDEN 900, 1:3 or 2:6; Frequency: 896.02 MHz; Duty Cycle: 1:3

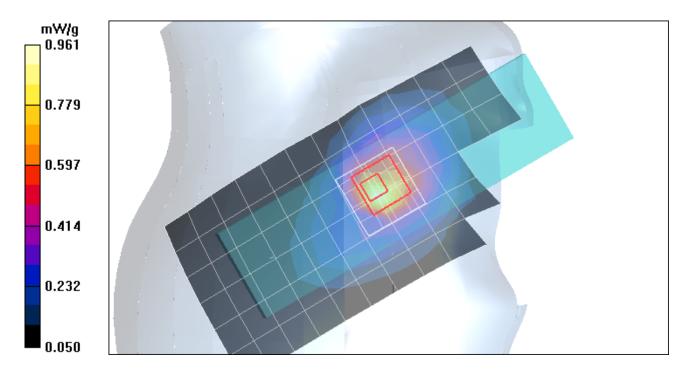
Medium: iDEN Sugar Head

Medium parameters used: f = 899 MHz; $\sigma = 0.97$ mho/m; $\varepsilon_r = 40.6$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(5.89, 5.89, 5.89); Calibrated: 8/11/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn434; Calibrated: 1/13/2011
- Phantom: R#4 Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1131;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Right Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.967 mW/g

Right Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 28.2 V/m; Power Drift = -0.244 dB; Peak SAR (extrapolated) = 1.80 W/kg

SAR(1 g) = 0.891 mW/g; SAR(10 g) = 0.501 mW/g; Maximum value of SAR (measured) = 0.961 mW/g

Date/Time: 2/15/2011 11:18:45 PM

Test Laboratory: Motorola - iDEN 900 Cheek

Serial: 364VMA3F11; FCC ID: IHDT56MR1

Procedure Notes: Pwr Step: N/A; Antenna Position: Internal; Accessory Model #: N/A

Battery Model #: SNN5819B; DEVICE POSITION (cheek or rotated): Cheek Communication System: iDEN 900; Frequency: 898.99 MHz; Duty Cycle: 1:3

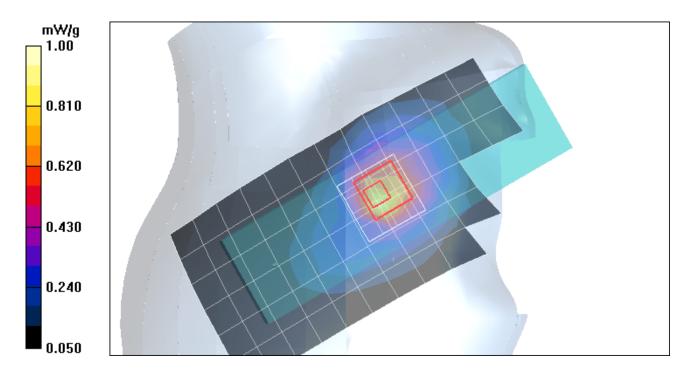
Medium: iDEN Sugar Head

Medium parameters used: f = 899 MHz; $\sigma = 0.97$ mho/m; $\varepsilon_r = 40.8$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(5.89, 5.89, 5.89); Calibrated: 8/11/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn434; Calibrated: 1/13/2011
- Phantom: R#4 Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1131;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Right Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.874 mW/g

Right Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dv=8mm, dz=5mm

Reference Value = 28.7 V/m; Power Drift = -0.139 dB; Peak SAR (extrapolated) = 1.90 W/kg

SAR(1 g) = 0.912 mW/g; SAR(10 g) = 0.504 mW/g; Maximum value of SAR (measured) = 1.00 mW/g

Date/Time: 2/18/2011 12:16:34 PM

Test Laboratory: Motorola - iDEN 800 Tilt

Serial: 364VMA3F11: FCC ID: IHDT56MR1

Procedure Notes: Pwr Step: N/A; Antenna Position: Internal; Accessory Model #: N/A

Battery Model #: SNN5804A; DEVICE POSITION (cheek or rotated): Tilt Communication System: iDEN 800; Frequency: 815.51 MHz; Duty Cycle: 1:3

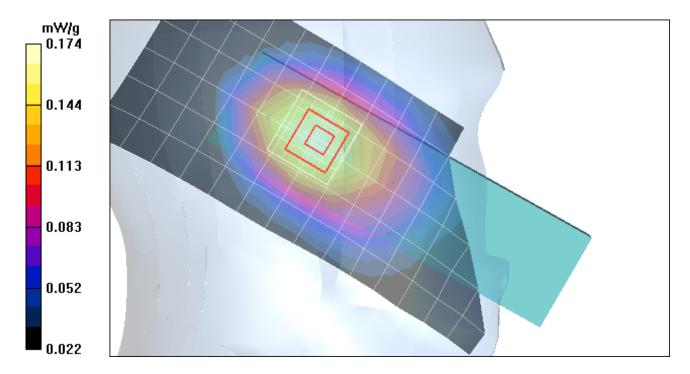
Medium: iDEN Sugar Head

Medium parameters used: f = 815 MHz; $\sigma = 0.89$ mho/m; $\varepsilon_r = 41.7$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3183; ConvF(6.11, 6.11, 6.11); Calibrated: 7/14/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn702; Calibrated: 5/18/2010
- Phantom: R1 Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1156;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Left Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.178 mW/g

Left Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.9 V/m; Power Drift = -0.091 dB; Peak SAR (extrapolated) = 0.220 W/kg

SAR(1 g) = 0.167 mW/g; SAR(10 g) = 0.123 mW/g; Maximum value of SAR (measured) = 0.174 mW/g

Date/Time: 2/16/2011 6:28:52 PM

Test Laboratory: Motorola - iDEN 900 Tilt

Serial: 364VMA3F11; FCC ID: IHDT56MR1

Procedure Notes: Pwr Step: N/A; Antenna Position: Internal; Accessory Model #: N/A

Battery Model #: SNN5819B; DEVICE POSITION (cheek or rotated): Rotated Communication System: iDEN 900; Frequency: 898.99 MHz; Duty Cycle: 1:3

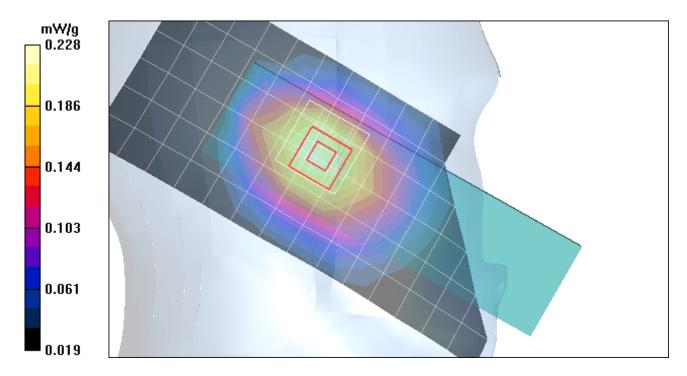
Medium: iDEN Sugar Head

Medium parameters used: f = 899 MHz; $\sigma = 0.97$ mho/m; $\varepsilon_r = 40.6$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(5.89, 5.89, 5.89); Calibrated: 8/11/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn434; Calibrated: 1/13/2011
- Phantom: R#4 Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1131;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Left Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.227 mW/g

Left Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.6 V/m; Power Drift = -0.093 dB; Peak SAR (extrapolated) = 0.288 W/kg

SAR(1 g) = 0.214 mW/g; SAR(10 g) = 0.153 mW/g; Maximum value of SAR (measured) = 0.228 mW/g

Appendix 3

SAR distribution plots for Dispatch/Push-to-Talk Use

Date/Time: 2/17/2011 12:07:55 AM

Test Laboratory: Motorola - iDEN 800 Dispatch/PTT

Serial: 364VMA3F11; FCC ID: IHDT56MR1

Procedure Notes: Pwr Step: N/A; Antenna Position: Internal; Battery Model #: SNN5819B Device Position: Dispatch/Push-to-Talk Position, Front of Phone 25mm from Phantom, Flip Open

Device Mode: iDEN 800 Dispatch mode

Communication System: iDEN 800, 1:6; Frequency: 815.51 MHz; Duty Cycle: 1:6

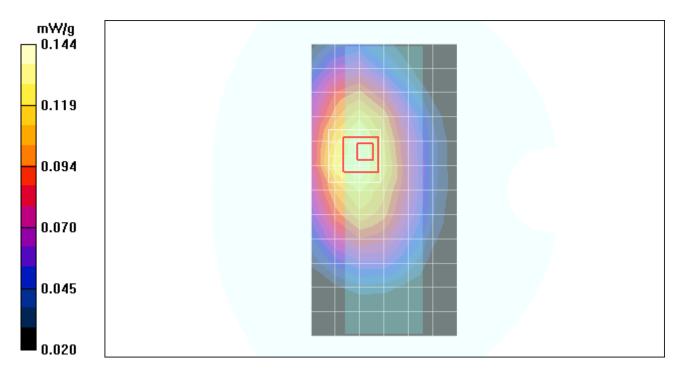
Medium: iDEN Sugar Head

Medium parameters used: f = 815 MHz; $\sigma = 0.89$ mho/m; $\varepsilon_r = 41.8$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(5.89, 5.89, 5.89); Calibrated: 8/11/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn434; Calibrated: 1/13/2011
- Phantom: R#4 Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1131;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

SAM Phone Against Flat Section/Area Scan - Normal Body (15mm) (13x7x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.137 mW/g

SAM Phone Against Flat Section/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.5 V/m; Power Drift = 0.075 dB; Peak SAR (extrapolated) = 0.190 W/kg

SAR(1 g) = 0.135 mW/g; SAR(10 g) = 0.097 mW/g; Maximum value of SAR (measured) = 0.144 mW/g

Date/Time: 2/16/2011 11:38:46 PM

Test Laboratory: Motorola - iDEN 900 Dispatch/PTT

Serial: 364VMA3F11; FCC ID: IHDT56MR1

Procedure Notes: Pwr Step: N/A; Antenna Position: Internal; Accessory Model #: N/A

Device Position: Dispatch/Push-to-Talk Position, Front of Phone 25 mm from Phantom, Flip Open

Device Mode: iDEN 900 Dispatch mode

Communication System: iDEN 900; Frequency: 898.99 MHz; Duty Cycle: 1:6

Medium: iDEN Sugar Head

Medium parameters used: f = 899 MHz; $\sigma = 0.97$ mho/m; $\varepsilon_r = 40.6$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(5.89, 5.89, 5.89); Calibrated: 8/11/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn434; Calibrated: 1/13/2011
- Phantom: R#4 Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1131;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

SAM Phone Against Flat Section/Area Scan - Normal Body (15mm) (13x7x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.098 mW/g

SAM Phone Against Flat Section/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.96 V/m; Power Drift = -0.328 dB; Peak SAR (extrapolated) = 0.128 W/kg

SAR(1 g) = 0.094 mW/g; SAR(10 g) = 0.068 mW/g; Maximum value of SAR (measured) = 0.100 mW/g

Appendix 4

SAR distribution plots for Body Worn Configurations

Date/Time: 2/17/2011 3:13:52 PM

Test Laboratory: Motorola- iDEN 800 Body-Worn

Serial: 364VMA3F11; FCC ID: IHDT56MR1

Procedure Notes: Pwr Step: N/A; Antenna Position: Internal; Battery Model #: SNN5819B Device Position: Body Worn with Holster NNTN9112A (Front of Phone facing Phantom)

Device Mode: iDEN 800 Packet Data mode

Communication System: iDEN 800; Frequency: 815.51 MHz; Duty Cycle: 1:1.5

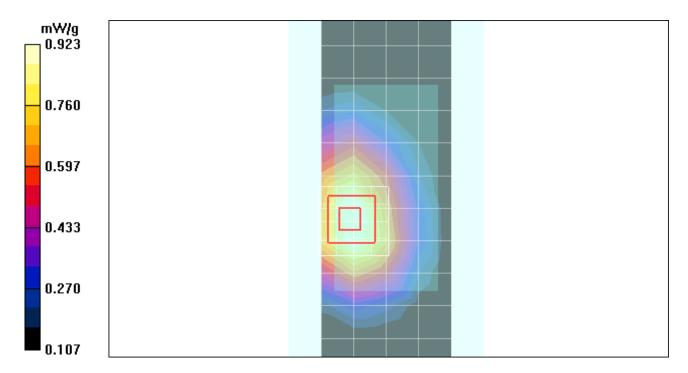
Medium: iDEN Sugar Body

Medium parameters used: f = 815 MHz; $\sigma = 0.97$ mho/m; $\epsilon_r = 54.8$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3183; ConvF(6.15, 6.15, 6.15); Calibrated: 7/14/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn702; Calibrated: 5/18/2010
- Phantom: R1 Section 1, Amy Twin, Rev3 (3-Feb-10); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Amy Twin Phone Template/Area Scan - Normal Extended Body (15mm) (16x7x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.987 mW/g

Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.4 V/m; Power Drift = -0.106 dB; Peak SAR (extrapolated) = 1.08 W/kg

SAR(1 g) = 0.876 mW/g; SAR(10 g) = 0.645 mW/g; Maximum value of SAR (measured) = 0.923 mW/g

Date/Time: 2/17/2011 9:18:28 PM

Test Laboratory: Motorola - iDEN 900 Body-Worn

Serial: 364VMA3F11; FCC ID: IHDT56MR1

Procedure Notes: Pwr Step: N/A; Antenna Position: Internal; Battery Model #: SNN5819B

Device Position: Body Worn, Back of Phone 25 mm from Phantom

Device Mode: iDEN 900 Packet Data mode

Communication System: iDEN 900; Frequency: 898.99 MHz; Duty Cycle: 1:1.5

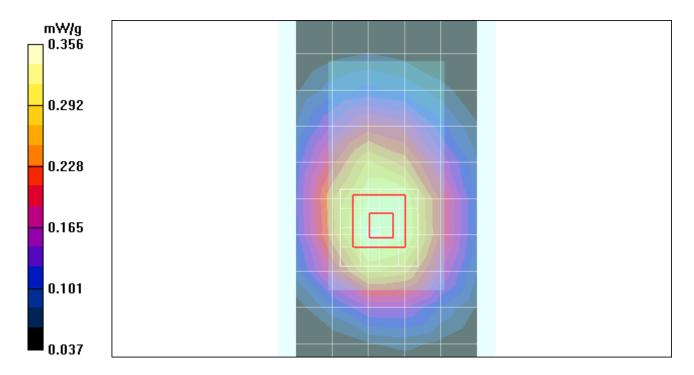
Medium: iDEN Sugar Body

Medium parameters used: f = 899 MHz; $\sigma = 1.06$ mho/m; $\varepsilon_r = 54$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(5.86, 5.86, 5.86); Calibrated: 8/11/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn434; Calibrated: 1/13/2011
- Phantom: R4: Sect.2, Amy Twin, Rev.3 (3-Feb-10); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Amy Twin Phone Template/Area Scan - Full Body (15mm) (18x8x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.344 mW/g

Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.6 V/m; Power Drift = -0.287 dB; Peak SAR (extrapolated) = 0.498 W/kg

SAR(1 g) = 0.335 mW/g; SAR(10 g) = 0.238 mW/g; Maximum value of SAR (measured) = 0.356 mW/g

Appendix 5 Probe Calibration Certificates

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

S

C

S

Client

Motorola MDb

Certificate No: ES3-3124_Aug10

CALIBRATION CERTIFICATE Object ES3DV3 - SN:3124 QA CAL-01.v6, QA CAL-23.v3 and QA CAL-25.v2 Calibration procedure(s) Calibration procedure for dosimetric E-field probes August 11, 2010 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) **Primary Standards** ID# Cal Date (Certificate No.) Scheduled Calibration Power meter E4419B GB41293874 1-Apr-10 (No. 217-01136) Apr-11 Power sensor E4412A MY41495277 1-Apr-10 (No. 217-01136) Apr-11 Power sensor E4412A MY41498087 1-Apr-10 (No. 217-01136) Apr-11 Reference 3 dB Attenuator SN: S5054 (3c) 30-Mar-10 (No. 217-01159) Mar-11 Reference 20 dB Attenuator SN: S5086 (20b) 30-Mar-10 (No. 217-01161) Mar-11 Reference 30 dB Attenuator SN: S5129 (30b) Mar-11 30-Mar-10 (No. 217-01160) Reference Probe ES3DV2 SN: 3013 30-Dec-09 (No. ES3-3013_Dec09) Dec-10 DAE4 SN: 660 20-Apr-10 (No. DAE4-660_Apr10) Apr-11 Secondary Standards ID# Check Date (in house) Scheduled Check US3642U01700 RF generator HP 8648C 4-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-09) In house check: Oct10 Name Function Calibrated by: Claudio Leubler Laboratory Technician Katja Pokovic Approved by: Technical Manager Issued: August 14, 2010

Certificate No: ES3-3124_Aug10

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: SCS 108

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ σ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3124_Aug10 Page 2 of 11

Probe ES3DV3

SN:3124

Manufactured: July 11, 2006
Last calibrated: April 21, 2009
Recalibrated: August 11, 2010

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ES3-3124_Aug10 Page 3 of 11

DASY/EASY - Parameters of Probe: ES3DV3 SN:3124

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.26	1.33	1.34	± 10.1%
DCP (mV) ⁸	92.9	96.4	96.7	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	С	VR mV	Unc ^e (k=2)
10000	cw	0.00	Х	0.00	0.00	1.00	300.0	± 1.5%
			Y	0.00	0.00	1.00	300.0	
			Z	0.00	0.00	1.00	300.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter; uncertainty not required.

E Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: ES3DV3 SN:3124

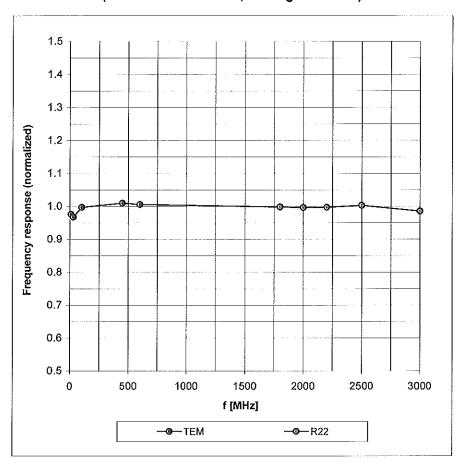
Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Co	nvFY Co	nvF Z	Alpha	Depth Unc (k=2)
835	± 50 / ± 100	41.5 ± 5%	0.90 ± 5%	5.89	5.89	5.89	0.97	1.07 ± 11.0%
1810	± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	4.89	4.89	4.89	0.49	1.54 ± 11.0%
1950	± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	4.68	4.68	4.68	0.50	1.52 ± 11.0%
2450	± 50 / ± 100	39.2 ± 5%	1.80 ± 5%	4.35	4.35	4.35	0.45	1.78 ± 11.0%

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

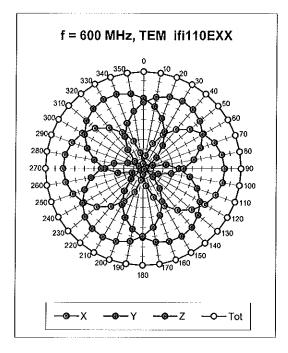
DASY/EASY - Parameters of Probe: ES3DV3 SN:3124

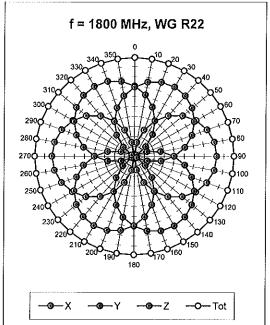
Calibration Parameter Determined in Body Tissue Simulating Media

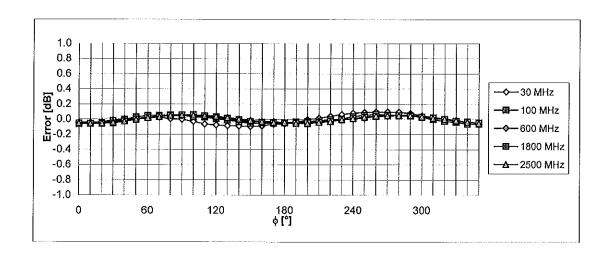

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Co	nvFY C	onvF Z	Alpha	Depth Unc (k=2)
835	± 50 / ± 100	55.2 ± 5%	0.97 ± 5%	5.86	5.86	5.86	0.96	1.11 ± 11.0%
1810	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	4.76	4.76	4.76	0.41	1.84 ± 11.0%
1950	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	4.78	4.78	4.78	0.32	2.33 ± 11.0%
2450	± 50 / ± 100	52.7 ± 5%	1.95 ± 5%	4.19	4.19	4.19	0.69	1.29 ± 11.0%

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: ES3-3124_Aug10 Page 6 of 11

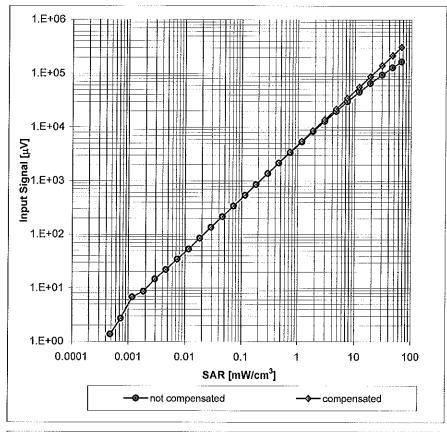

Frequency Response of E-Field

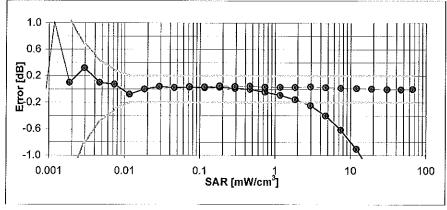

(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

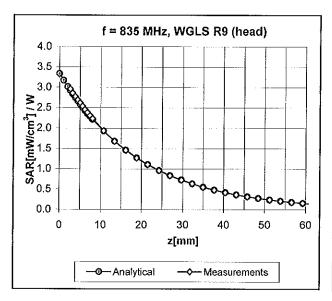
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

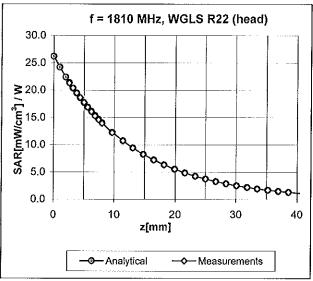




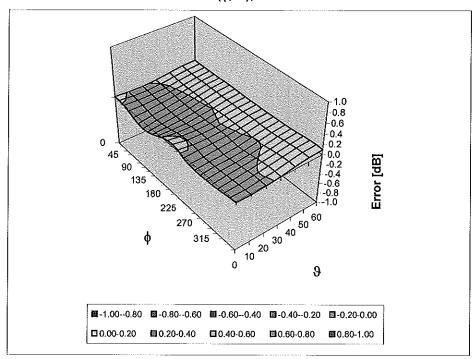
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head})


(Waveguide R22, f = 1800 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Conversion Factor Assessment

Deviation from Isotropy in HSL

Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ES3-3124_Aug10

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4.0 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Motorola MDb

Client

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Certificate No: ES3-3183_Jul10

Accreditation No.: SCS 108

S

C

S

CALIBRATION CERTIFICATE ES3DV3 - SN:3183 Object Calibration procedure(s) QA CAL-01.v6, QA CAL-23.v3 and QA CAL-25.v2 Calibration procedure for dosimetric E-field probes July 14, 2010 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Scheduled Calibration Cal Date (Certificate No.) GB41293874 Power meter E4419B 1-Apr-10 (No. 217-01136) Apr-11 Power sensor E4412A MY41495277 1-Apr-10 (No. 217-01136) Арг-11 Арг-11 Power sensor E4412A MY41498087 1-Apr-10 (No. 217-01136) Reference 3 dB Attenuator SN: S5054 (3c) 30-Mar-10 (No. 217-01159) Mar-11 Reference 20 dB Attenuator SN: S5086 (20b) 30-Mar-10 (No. 217-01161) Mar-11 Reference 30 dB Attenuator SN: S5129 (30b) 30-Mar-10 (No. 217-01160) Mar-11 Reference Probe ES3DV2 SN: 3013 30-Dec-09 (No. ES3-3013_Dec09) Dec-10 DAE4 SN: 660 20-Apr-10 (No. DAE4-660_Apr10) Apr-11 ID# Secondary Standards Check Date (in house) Scheduled Check RF generator HP 8648C US3642U01700 4-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-09) In house check: Oct10 Name Function Signature Jeton Kastrati Calibrated by: Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: July 15, 2010

Certificate No: ES3-3183_Jul10

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3183_Jul10 Page 2 of 11

Probe ES3DV3

SN:3183

Manufactured:

Last calibrated:

Recalibrated:

March 25, 2008

August 17, 2009

July 14, 2010

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ES3-3183_Jul10

Page 3 of 11

DASY/EASY - Parameters of Probe: ES3DV3 SN:3183

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	1.21	1.15	1.07	± 10.1%
DCP (mV) ^B	88.6	86.9	89.5	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	С	VR mV	Unc ^E (k≃2)
10000	cw	0.00	Х	0.00	0.00	1.00	300.0	± 1.5%
			Υ	0.00	0.00	1.00	300.0	
			Z	0.00	0.00	1.00	300.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of NormX, Y, Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter; uncertainty not required.

E Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value.

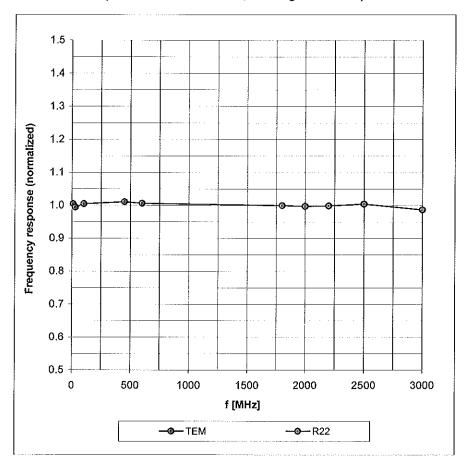
DASY/EASY - Parameters of Probe: ES3DV3 SN:3183

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Co	nvFY (ConvF Z	Alpha	Depth Unc (k=2)
835	±50/±100	41.5 ± 5%	0.90 ± 5%	6.11	6.11	6.11	0.99	1.04 ± 11.0%
1810	± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	5.05	5.05	5.05	0.58	1.33 ± 11.0%
1950	± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	4.82	4.82	4.82	0.54	1.37 ± 11.0%
2450	± 50 / ± 100	39.2 ± 5%	1.80 ± 5%	4.49	4.49	4.49	0.44	1.70 ± 11.0%

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

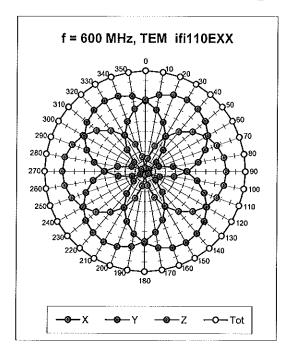
DASY/EASY - Parameters of Probe: ES3DV3 SN:3183

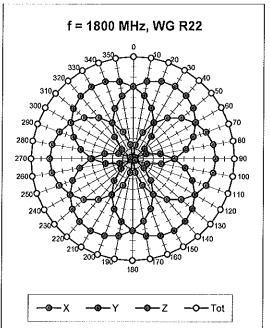

Calibration Parameter Determined in Body Tissue Simulating Media

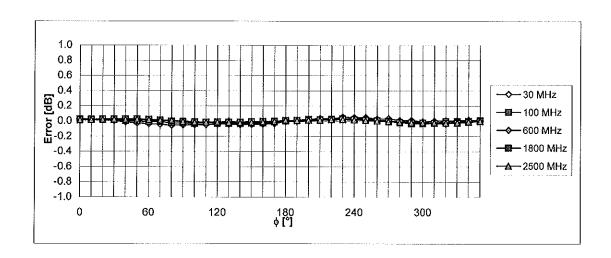
f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Con	nvFY C	onvF Z	Alpha	Depth Unc (k=2)
835	± 50 / ± 100	55.2 ± 5%	0.97 ± 5%	6.15	6.15	6.15	0.95	1.10 ± 11.0%
1810	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	4.84	4.84	4.84	0.39	1.87 ± 11.0%
1950	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	4.86	4.86	4.86	0.28	2.80 ± 11.0%
2450	± 50 / ± 100	52.7 ± 5%	1.95 ± 5%	4.36	4.36	4.36	0.69	1.31 ± 11.0%

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Frequency Response of E-Field

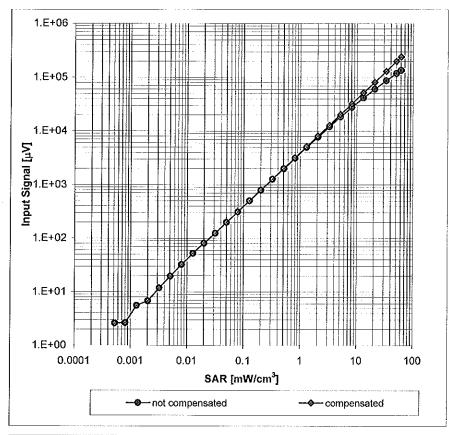

(TEM-Cell:ifi110 EXX, Waveguide: R22)

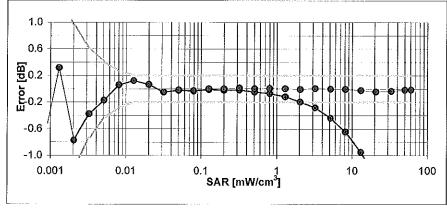



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

ES3DV3 SN:3183

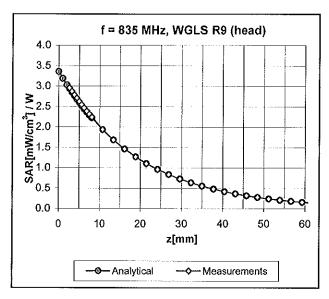
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

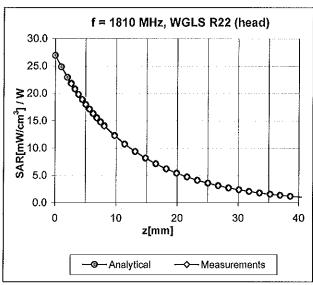


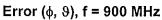


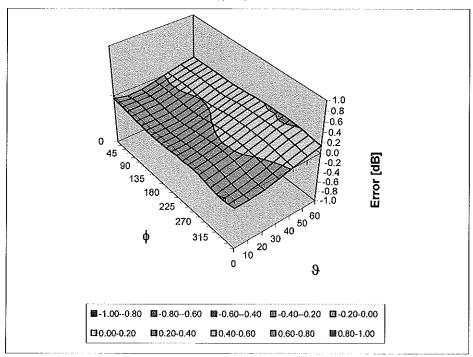
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head})


(Waveguide R22, f = 1800 MHz)




Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Conversion Factor Assessment

Deviation from Isotropy in HSL

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4.0 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Appendix 6 Measurement Uncertainty Budget

				0-			h = c x f	<i>i</i> =	
a a	b	С	d	e = f(d,k)	f	g	/e	cxg /e	k
	IEEE	Tol.	Prob		Ci	Ci	1 g	10 g	
	1528	(± %)	Dist		(1 g)	(10 g)	u _i	u i	
Uncertainty Component	section	, ,		Div.			(±%)	(±%)	V _i
Measurement System									
Probe Calibration	E.2.1	5.9	N	1.00	1	1	5.9	5.9	8
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	8
Hemispherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	8
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	∞
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	8
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	8
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3	8
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	8
Integration Time	E.2.8	1.1	R	1.73	1	1	0.6	0.6	∞
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	∞
RF Ambient Conditions -									
Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	∞
Probe Positioner Mech.									
Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	∞
Probe Positioning w.r.t	- 0.0	4.4	_	4.70			0.0	0.0	
Phantom May SAR Evaluation (avt.	E.6.3	1.4	R	1.73	1	1	8.0	0.8	∞
Max. SAR Evaluation (ext., int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	∞
Test sample Related	L.J	5.4	11	1.75		'	2.0	2.0	8
Test Sample Positioning	E.4.2	3.2	N	1.00	1	1	3.2	3.2	29
Device Holder Uncertainty	E.4.1	4.0	N	1.00	1	1	4.0	4.0	8
SAR drift	6.6.2	5.0	R	1.73	1	1	2.9	2.9	8
Phantom and Tissue	0.0.2	3.0	IX.	1.73	'	'	2.3	2.3	
Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	∞
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	8
Liquid Conductivity			-					·-	-
(measurement)	E.3.3	3.3	N	1.00	0.64	0.43	2.1	1.4	~
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	8
Liquid Permittivity									
(measurement)	E.3.3	1.9	N	1.00	0.6	0.49	1.1	0.9	∞
Combined Standard			DOG				44.4	40.0	444
Uncertainty			RSS				11.1	10.8	411
Expanded Uncertainty			1. 0				00.0	04.0	
(95% CONFIDENCE LEVEL)			<i>k</i> =2				22.2	21.6	

Appendix 7

Dipole Characterization Certificates

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signal

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Motorola MDb

Accreditation No.: SCS 108

Certificate No: D835V2-424_Oct10

CALIBRATION	CERTIFICATE
Object	D835V2 - SN: 424
Calibration procedure(s)	QA CAL-05.v7 Calibration procedure for dipole validation kits
Calibration date:	October 14, 2010

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11
Reference 20 dB Attenuator	SN: 5086 (20g)	30-Mar-10 (No. 217-01158)	Mar-11
Type-N mismatch combination	SN: 5047.2 / 06327	30-Mar-10 (No. 217-01162)	Mar-11
Reference Probe ES3DV3	SN: 3205	30-Apr-10 (No. ES3-3205_Apr10)	Apr-11
DAE4	SN: 601	10-Jun-10 (No. DAE4-601_Jun10)	Jun-11
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	1 / -
Approved by:	Kalla Bataula	Tackulasi Managas	
Approved by.	Katja Pokovic	Technical Manager	XX lly

Issued: October 14, 2010

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-424_Oct10

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: SCS 108

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-424_Oct10 Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	***************************************
Frequency	835 MHz ± 1 MHz	- Lut-1000

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.3 ± 6 %	0.90 mho/m ± 6 %
Head TSL temperature during test	(22.5 ± 0.2) °C		and this will disk

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.36 mW / g
SAR normalized	normalized to 1W	9.44 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.49 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.54 mW / g
SAR normalized	normalized to 1W	6.16 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.18 mW /g ± 16.5 % (k=2)

Certificate No: D835V2-424_Oct10

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$52.9 \Omega + 3.8 j\Omega$		
Return Loss	- 26.6 dB		

General Antenna Parameters and Design

Electrical Delay (one direction)	1.393 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	August 24, 2000

Certificate No: D835V2-424_Oct10

DASY5 Validation Report for Head TSL

Date/Time: 14.10.2010 10:07:31

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:424

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL900

Medium parameters used: f = 835 MHz; $\sigma = 0.9 \text{ mho/m}$; $\varepsilon_r = 42.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.03, 6.03, 6.03); Calibrated: 30.04.2010

• Sensor-Surface: 3mm (Mechanical Surface Detection)

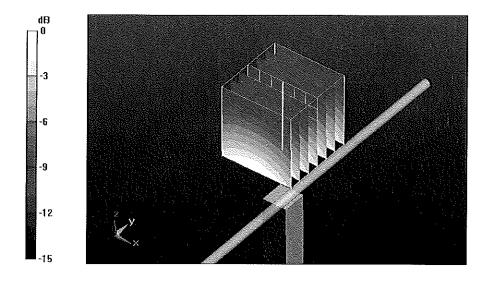
Electronics: DAE4 Sn601; Calibrated: 10.06.2010

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

• Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163)

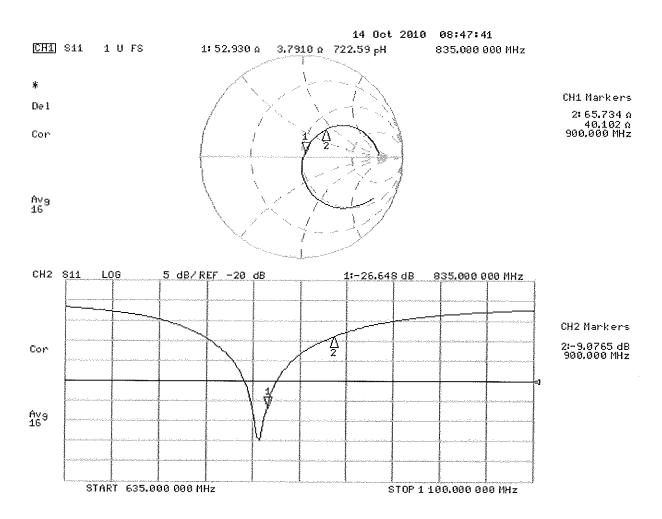
Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685)

Pin=250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.7 V/m; Power Drift = 0.045 dB

Peak SAR (extrapolated) = 3.56 W/kg


SAR(1 g) = 2.36 mW/g; SAR(10 g) = 1.54 mW/g

Maximum value of SAR (measured) = 2.75 mW/g

0 dB = 2.75 mW/g

Impedance Measurement Plot for Head TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service**

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

CALIBRATION CERTIFICATE

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

D835V2 - SN: 425

QA CAL-05.v7

Client

Object

Calibration procedure(s)

Certificate No: D835V2-425_Oct10

Motorola MDb

Certificate No: D835V2-425_Oct10

Calibration procedure for dipole validation kits

October 14, 2010 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration Primary Standards ID# Cal Date (Certificate No.) GB37480704 06-Oct-10 (No. 217-01266) Power meter EPM-442A Oct-11 Power sensor HP 8481A US37292783 06-Oct-10 (No. 217-01266) Oct-11 30-Mar-10 (No. 217-01158) Mar-11 Reference 20 dB Attenuator SN: 5086 (20g) SN: 5047.2 / 06327 30-Mar-10 (No. 217-01162) Type-N mismatch combination Mar-11 Reference Probe ES3DV3 SN: 3205 30-Apr-10 (No. ES3-3205_Apr10) Apr-11 DAE4 SN: 601 10-Jun-10 (No. DAE4-601_Jun10) Jun-11 ID# Scheduled Check Secondary Standards Check Date (in house) Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 100005 In house check: Oct-11 RF generator R&S SMT-06 4-Aug-99 (in house check Oct-09) Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-10) In house check: Oct-11 Signature Name Function Jeton Kastrati Laboratory Technician Calibrated by: Approved by: Katja Pokovic Technical Manager Issued: October 14, 2010 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Page 1 of 6

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-425_Oct10 Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	The state of the s
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.3 ± 6 %	0.90 mho/m ± 6 %
Head TSL temperature during test	(22.5 ± 0.2) °C	₩##	~~~

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.38 mW / g
SAR normalized	normalized to 1W	9.52 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.57 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.55 mW / g
SAR normalized	normalized to 1W	6.20 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.22 mW /g ± 16.5 % (k=2)

Certificate No: D835V2-425_Oct10 Page 3 of 6

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.8 Ω + 3.7 jΩ
Return Loss	- 26.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.396 ns
	The second secon

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	August 24, 2000

Certificate No: D835V2-425_Oct10

DASY5 Validation Report for Head TSL

Date/Time: 14.10.2010 10:27:24

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:425

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL900

Medium parameters used: f = 835 MHz; $\sigma = 0.9$ mho/m; $\varepsilon_r = 42.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.03, 6.03, 6.03); Calibrated: 30.04.2010

Sensor-Surface: 3mm (Mechanical Surface Detection)

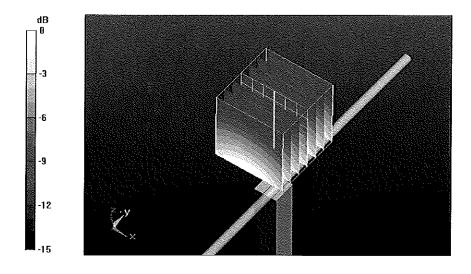
Electronics: DAE4 Sn601; Calibrated: 10.06.2010

• Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163)

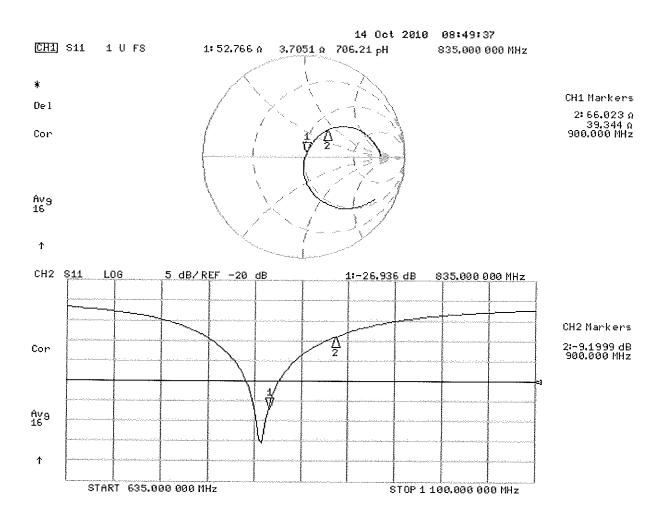
• Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685)

Pin=250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57 V/m; Power Drift = 0.010 dB

Peak SAR (extrapolated) = 3.59 W/kg


SAR(1 g) = 2.38 mW/g; SAR(10 g) = 1.55 mW/g

Maximum value of SAR (measured) = 2.76 mW/g

0 dB = 2.76 mW/g

Impedance Measurement Plot for Head TSL

FCC ID: IHDT56MR1

END OF REPORT