

No. 2010SAR00075

For

Motorola, Inc. (Mobile Devices Business)

GSM/GPRS 850/1900 dual-band mobile phone

WX295

With

Hardware Version: Lot0

Software Version: V568

FCCID: IHDT56LZ2

Issued Date: 2010-08-24

No. DGA-PL-114/01-02

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of TMC Beijing.

Test Laboratory:

TMC Beijing, Telecommunication Metrology Center of MIIT

No. 52, Huayuan Bei Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2079, Fax:+86(0)10-62304793 Email:welcome@emcite.com. www.emcite.com

TABLE OF CONTENT

1 TEST LABORATORY	3
1.1 TESTING LOCATION	
1.4 Signature	
2 CLIENT INFORMATION	
2.1 Applicant Information	
3 EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	
3.1 ABOUT EUT	
3.2 Internal Identification of EUT used during the test 3.3 Internal Identification of AE used during the test	5
4 CHARACTERISTICS OF THE TEST	5
4.1 APPLICABLE LIMIT REGULATIONS	
5 OPERATIONAL CONDITIONS DURING TEST	
5.1 SCHEMATIC TEST CONFIGURATION. 5.2 SAR MEASUREMENT SET-UP. 5.3 DASY4 E-FIELD PROBE SYSTEM. 5.4 E-FIELD PROBE CALIBRATION. 5.5 OTHER TEST EQUIPMENT. 5.6 EQUIVALENT TISSUES. 5.7 SYSTEM SPECIFICATIONS.	
6 LABORATORY ENVIRONMENT	
7 CONDUCTED OUTPUT POWER MEASUREMENT	
7.1 Summary	
8 TEST RESULTS	
8.1 DIELECTRIC PERFORMANCE 8.2 SYSTEM VALIDATION 8.3 EVALUATION OF MULTI-BATTERIES 8.4 SUMMARY OF MEASUREMENT RESULTS 8.5 SUMMARY OF MEASUREMENT RESULTS (BLUETOOTH FUNCTION) 8.6 CONCLUSION	
9 MEASUREMENT UNCERTAINTY	17
10 MAIN TEST INSTRUMENTS	19
ANNEX A MEASUREMENT PROCESS	20
ANNEX B TEST LAYOUT	21
ANNEX C GRAPH RESULTS	26
ANNEX D SYSTEM VALIDATION RESULTS	66
ANNEX E PROBE CALIBRATION CERTIFICATE	70
ANNEX F DIPOLE CALIBRATION CERTIFICATE	79

1 Test Laboratory

1.1 Testing Location

Company Name: TMC Beijing, Telecommunication Metrology Center of MIIT Address: No 52, Huayuan beilu, Haidian District, Beijing,P.R.China

Postal Code: 100191

Telephone: +86-10-62304633 Fax: +86-10-62304793

1.2 Testing Environment

Temperature: $18^{\circ}\text{C}\sim25^{\circ}\text{C}$, Relative humidity: $30\%\sim70\%$ Ground system resistance: $<0.5~\Omega$

Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards.

1.3 Project Data

Project Leader: Qi Dianyuan
Test Engineer: Lin Xiaojun
Testing Start Date: August 18, 2010
Testing End Date: August 19, 2010

1.4 Signature

Lin Xiaojun

(Prepared this test report)

Qi Dianyuan

(Reviewed this test report)

Xiao Li

Deputy Director of the laboratory

(Approved this test report)

2 Client Information

2.1 Applicant Information

Company Name: Motorola, Inc. (Mobile Devices Business)

Address /Post: 600 N. US Highway 45 Libertyville, IL 60048-1286 U.S.A.

City: Libertyville Postal Code: 60048-1286

Country: U.S.A.

Contact Person: Mike Roper (Mr)

Contact Email Mike.roper@motorola.com

Telephone: +44 (0)1926 411371 Fax: +44 (0)1926 411371

2.2 Manufacturer Information

Company Name: TCT Mobile Limited

Address /Post: 4/F, South Building, No. 2966, Jinke Road, Zhangjiang High-Tech Park,

Pudong, Shanghai, 201203, P.R.China

City: Shanghai
Postal Code: 201203
Country: P. R. China
Contact Person: Zhizhou Gong

Contact Email zhizhou.gong@jrdcom.com

Telephone: 0086-21-61460890 Fax: 0086-21-61460602

3 Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1 About EUT

EUT Description: GSM/GPRS 850/1900 dual-band mobile phone

Marketing Name: WX295

GSM Frequency Band: GSM 850 / PCS 1900

GPRS capability Class: B

3.2 Internal Identification of EUT used during the test

EUT ID* SN or IMEI HW Version SW Version
EUT1 012244001743566 Lot0 V568

3.3 Internal Identification of AE used during the test

AE ID*	Description	Model	SN	Manufacturer
AE1	Battery	CAB3130010C1	\	BYD
AE2	Battery	SNN5882A	\	BYD
AE3	Stereo headset	CCB31B0A10C0	\	Shunda/Juwei
AE4	Stereo headset	CCB31B0A11C0	\	Shunda/Juwei

^{*}AE ID: is used to identify the test sample in the lab internally.

4 CHARACTERISTICS OF THE TEST

4.1 Applicable Limit Regulations

EN 50360–2001: Product standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones.

It specifies the maximum exposure limit of **2.0 W/kg** as averaged over any 10 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

ANSI C95.1–1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

4.2 Applicable Measurement Standards

EN 62209-1–2006: Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 1:

^{*}EUT ID: is used to identify the test sample in the lab internally.

Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz).

IEEE 1528–2003: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques.

OET Bulletin 65 (Edition 97-01) and Supplement C(Edition 01-01): Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits.

IEC 62209-1: Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 1:Procedure to determine the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)

KDB648474 D01 SAR Handsets Multi Xmiter and Ant, v01r05: SAR Evaluation Considerations for Handsets with Multiple Transmitters and Antennas.

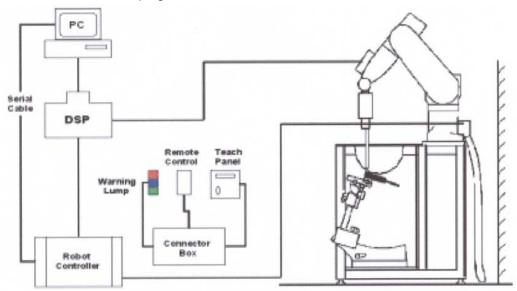
They specify the measurement method for demonstration of compliance with the SAR limits for such equipments.

5 OPERATIONAL CONDITIONS DURING TEST

5.1 Schematic Test Configuration

During SAR test, EUT is in Traffic Mode (Channel Allocated) at Normal Voltage Condition. A communication link is set up with a System Simulator (SS) by air link, and a call is established. The Absolute Radio Frequency Channel Number (ARFCN) is allocated to 128, 190 and 251 respectively in the case of GSM 850 MHz, or to 512, 661 and 810 respectively in the case of PCS 1900 MHz. The EUT is commanded to operate at maximum transmitting power.

The EUT shall use its internal transmitter. The antenna(s), battery and accessories shall be those specified by the manufacturer. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output. If a wireless link is used, the antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the handset. The signal transmitted by the simulator to the antenna feeding point shall be lower than the output power level of the handset by at least 30 dB.


5.2 SAR Measurement Set-up

These measurements were performed with the automated near-field scanning system DASY4 Professional from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision robot (working range greater than 0.9m), which positions the probes with a positional repeatability of better than ± 0.02mm. Special E- and H-field probes have been developed for

measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines (length =300mm) to the data acquisition unit.

A cell controller system contains the power supply, robot controller, teaches pendant (Joystick), and remote control, is used to drive the robot motors. The PC consists of the Micron Pentium III 800 MHz computer with Windows 2000 system and SAR Measurement Software DASY4 Professional, A/D interface card, monitor, mouse, and keyboard. The Stäubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

Picture 2: SAR Lab Test Measurement Set-up

The DAE consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

5.3 Dasy4 E-field Probe System

The SAR measurements were conducted with the dosimetric probe ES3DV3 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the standard procedure with an accuracy of better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB.

ES3DV3 Probe Specification

Construction Symmetrical design with triangular core

Interleaved sensors

Built-in shielding against static charges
PEEK enclosure material (resistant to organic

solvents, e.g., DGBE)

Calibration Basic Broad Band Calibration in air

Conversion Factors (CF) for HSL 900 and HSL

1810

Additional CF for other liquids and frequencies

upon request

Picture 3: ES3DV3 E-field

Frequency 10 MHz to 4 GHz; Linearity: ± 0.2 dB (30 MHz to 4 GHz)

Directivity ± 0.2 dB in HSL (rotation around probe axis)

± 0.3 dB in tissue material (rotation normal to

probe axis)

Dynamic Range 5 μ W/g to > 100 mW/g; Linearity: \pm 0.2 dB

Dimensions Overall length: 330 mm (Tip: 20 mm)

Tip diameter: 3.9 mm (Body: 12 mm)

Distance from probe tip to dipole centers: 2.0 mm

Application General dosimetry up to 4 GHz

Dosimetry in strong gradient fields Compliance tests of mobile phones

Picture4:ES3DV3 E-field probe

5.4 E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\mathbf{SAR} = \mathbf{C} \frac{\Delta T}{\Delta t}$$

Where: $\Delta t = \text{Exposure time (30 seconds)}$,

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF

exposure.

Or

$$SAR = \frac{|E|^2 \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity.

 ρ = Tissue density (kg/m³).

Picture 5: Device Holder

5.5 Other Test Equipment

5.5.1 Device Holder for Transmitters

In combination with the Generic Twin Phantom V3.0, the Mounting Device (POM) enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatable positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

5.5.2 Phantom

The Generic Twin Phantom is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness 2±0. I mm
Filling Volume Approx. 20 liters

Dimensions 810 x 1000 x 500 mm (H x L x W)

Available Special

Picture 6: Generic Twin Phantom

5.6 Equivalent Tissues

The liquid used for the frequency range of 800-2000 MHz consisted of water, sugar, salt and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table 1 and 2 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528.

Table 1. Composition of the Head Tissue Equivalent Matter

MIXTURE %	FREQUENCY 850MHz				
Water	41.45				
Sugar	56.0				
Salt	1.45				
Preventol	0.1				
Cellulose	1.0				
Dielectric Parameters Target Value	f=850MHz ε=41.5 σ =0.90				
MIXTURE %	FREQUENCY 1900MHz				
Water	55.242				
Glycol monobutyl	44.452				
Salt	0.306				
Dielectric Parameters Target Value	f=1900MHz ε=40.0 σ=1.40				

Table 2. Composition of the Body Tissue Equivalent Matter

MIXTURE %	FREQUENCY 850MHz				
Water	52.5				
Sugar	45.0				
Salt	1.4				
Preventol	0.1				
Cellulose	1.0				
Dielectric Parameters Target Value	f=850MHz ε=55.2 σ=0.97				
MIXTURE %	FREQUENCY 1900MHz				
Water	69.91				
Glycol monobutyl	29.96				
Salt	0.13				
Dielectric Parameters Target Value	f=1900MHz ε=53.3 σ=1.52				

5.7 System Specifications

Specifications

Positioner: Stäubli Unimation Corp. Robot Model: RX90L

Repeatability: ±0.02 mm

No. of Axis: 6

Data Acquisition Electronic (DAE) System

Cell Controller

Processor: Pentium III Clock Speed: 800 MHz

Operating System: Windows 2000

Data Converter

Features: Signal Amplifier, multiplexer, A/D converter, and control logic

Software: DASY4 software

Connecting Lines: Optical downlink for data and status info.

Optical uplink for commands and clock

6 LABORATORY ENVIRONMENT

Table 3: The Ambient Conditions during EMF Test

Temperature	Min. = 15 °C, Max. = 30 °C				
Relative humidity	Min. = 30%, Max. = 70%				
Ground system resistance	< 0.5 Ω				
Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surround					

Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surroundi objects is minimized and in compliance with requirement of standards.

7 CONDUCTED OUTPUT POWER MEASUREMENT

7.1 Summary

During the process of testing, the EUT was controlled via Rhode & Schwarz Digital Radio Communication tester (CMU-200) to ensure the maximum power transmission and proper modulation. This result contains conducted output power for the EUT. In all cases, the measured output power should be greater and within 5% than EMI measurement.

7.2 Conducted Power

7.2.1 Measurement Methods

The EUT was set up for the maximum output power. The channel power was measured with Agilent Spectrum Analyzer E4440A. These measurements were done at low, middle and high channels.

7.2.2 Measurement result

The conducted power for GSM 850/1900 is as following:

	•	•					
GSM	Conducted Power (dBm)						
850MHZ	Channel 251(848.8MHz) Channel 190(836.6MHz) Channel 128(824.2MHz)						
	33.03	33.02	33.12				
GSM	Conducted Power (dBm)						
1900MHZ	Channel 810(1909.8MHz)	Channel 661(1880MHz)	Channel 512(1850.2MHz)				
	29.54	29.67	29.65				

The conducted power for GPRS 850/1900

The defination perior for the decriptor							
GSM 850	Measured Power (dBm)			calculation	Averaç	ged Power	(dBm)
GPRS	251	190	128		251	190	128
1 Txslot	32.63	32.60	32.65	-9.03dB	23.6	23.57	23.62
2 Txslots	30.47	30.46	30.64	-6.02dB	24.45	24.44	24.62
PCS1900	Meası	red Power	(dBm)	calculation	Averaç	ged Power	(dBm)
GPRS	810	661	512		810	661	512
1 Txslot	28.96	28.97	28.88	-9.03dB	19.93	19.94	19.85
2 Txslots	27.83	27.90	27.83	-6.02dB	21.81	21.88	21.81

NOTES:

1) Division Factors

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB

2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB

According to the conducted power as above, the body measurements are performed with 2 Txslots for GPRS.

7.2.3 Power Drift

To control the output power stability during the SAR test, DASY4 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in Table 10 to Table 15 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

8 TEST RESULTS

8.1 Dielectric Performance

Table 4: Dielectric Performance of Head Tissue Simulating Liquid

Measurement is made at temperature 23.0 °C and relative humidity 42%.

Liquid temperature during the test: 22.5°C

Measurement Date: 850 MHz <u>August 18, 2010</u> 1900 MHz <u>August 19, 2010</u>

1	Frequency	Permittivity ε	Conductivity σ (S/m)	
Target value	850 MHz	41.5	0.90	
Target value	1900 MHz	40.0	1.40	
Measurement value	850 MHz	40.5	0.88	
(Average of 10 tests)	1900 MHz	39.4	1.39	

Table 5: Dielectric Performance of Body Tissue Simulating Liquid

Measurement is made at temperature 23.0 °C and relative humidity 42%.

Liquid temperature during the test: 22.5°C

Measurement Date: 850 MHz <u>August 18, 2010</u> 1900 MHz <u>August 19, 2010</u>

1	Frequency	Permittivity ε	Conductivity σ (S/m)	
Target value	850 MHz	55.2	0.97	
Target value	1900 MHz	53.3	1.52	
Measurement value	850 MHz	54.0	0.96	
(Average of 10 tests)	1900 MHz	52.2	1.52	

8.2 System Validation

Table 6: System Validation of Head

Measurement is made at temperature 23.0 °C and relative humidity 42%.

Liquid temperature during the test: 22.5°C

Measurement Date: 850 MHz <u>August 18, 2010</u> 1900 MHz <u>August 19, 2010</u>

	Dipole	Frequency		Permittivity ε		Conductivity σ (S/m)		
	calibration	835	835 MHz		41.6		0.92	
Liquid	Target value	1900	MHz	39	0.6	1.4	10	
parameters	Actural	835	835 MHz		40.6		0.86	
	Measurement value	1900 MHz		39.4		1.39		
	Frequency	Target value (W/kg)		Measured value (W/kg)		Deviation		
Verification		10 g	1 g	10 g	1 g	10 g	1 g	
results		Average Average		Average	Average	Average	Average	
	835 MHz	1.54	2.38	1.49	2.32	-3.25%	-2.52%	
	1900 MHz	5.05	9.91	4.87	9.64	-3.56%	-2.72%	

Note: Target values are the data of the dipole validation results, please check Annex F for the Dipole Calibration Certificate.

Table 7: System Validation of Body

Measurement is made at temperature 23.0 °C and relative humidity 42%.

Liquid temperature during the test: 22.5°C

Measurement Date: 850 MHz August 18, 2010 1900 MHz August 19, 2010

Medaurement Bate : 000 Wiriz <u>August 10, 2010</u>								
	Dipole	Frequency		Permittivity ε		Conductivity σ (S/m)		
	calibration	835	835 MHz		54.5		97	
Liquid	Target value	1900	MHz	52	2.5	1.5	51	
parameters	Actural	835	835 MHz		54.1		0.94	
	Measurement value	1900 MHz		52.2		1.52		
	Frequency	Target value (W/kg)		Measured value (W/kg)		Deviation		
Verification		10 g	1 g	10 g	1 g	10 g	1 g	
results		Average Average Average Average		Average	Average	Average		
	835 MHz	1.57	2.41	1.53	2.32	-2.55%	-3.73%	
	1900 MHz	5.24	10.4	5.15	10.2	-1.72%	-1.92%	

Note: Target values are the data of the dipole validation results, please check Annex F for the Dipole Calibration Certificate.

8.3 Evaluation of Multi-Batteries

Table 8: Pretest SAR Values (PCS 1900 MHz Band)

Limit of SAR (W/kg)	10 g Average	1 g Average	
Limit of SAR (W/kg)	2.0	1.6	
Test Case	Measurement Result (W		
	10 g Average	1 g Average	
Left hand, Touch cheek, Mid frequency (CAB3130010C1)	0.484	0.923	
Left hand, Touch cheek, Mid frequency (SNN5882A)	0.566	1.09	

Note: According to the values in the above table, the battery, SNN5882A, is the normal battery. We'll perform the head measurement with this battery and retest on highest value point with others.

Table 9: Pretest SAR Values (GSM 850 MHz Band-Body)

Limit of SAR (W/kg)	10 g Average	1 g Average		
Limit of SAR (W/kg)	2.0	1.6		
Test Case	Measurement Result			
	(W/kg)			
	10 g Average	1 g Average		
Body, Towards Ground, Top frequency (CAB3130010C1)	0.299	0.450		
Body, Towards Ground, Top frequency (SNN5882A)	0.308	0.467		

Note: According to the values in the above table, the battery, SNN5882A, is the normal battery. We'll perform the body measurement with this battery and retest on highest value point with others.

8.4 Summary of Measurement Results

Table 10: SAR Values (850MHz-Head) - with battery SNN5882A

Limit of SAR (W/kg)	10 g Average 2.0	1 g Average	Power	
Test Case	Measurem	ent Result	Drift	
	(W	′kg)	(dB)	
	10 g	1 g		
	Average	Average		
Left hand, Touch cheek, Top frequency (See Fig.1)	0.321	0.562	0.171	
Left hand, Touch cheek, Mid frequency (See Fig.2)	0.335	0.599	-0.141	
Left hand, Touch cheek, Bottom frequency (See Fig.3)	0.305	0.555	-0.114	
Left hand, Tilt 15 Degree, Top frequency (See Fig.4)	0.054	0.075	-0.000275	
Left hand, Tilt 15 Degree, Mid frequency (See Fig.5)	0.054	0.074	-0.013	
Left hand, Tilt 15 Degree, Bottom frequency (See Fig.6)	0.051	0.071	-0.104	
Right hand, Touch cheek, Top frequency (See Fig.7)	0.396	0.606	-0.073	
Right hand, Touch cheek, Mid frequency (See Fig.8)	0.407	0.623	-0.043	
Right hand, Touch cheek, Bottom frequency (See Fig.9)	0.366	0.560	-0.016	

Right hand, Tilt 15 Degree, Top frequency (See Fig.10)	0.049	0.071	0.062
Right hand, Tilt 15 Degree, Mid frequency (See Fig.11)	0.049	0.071	-0.185
Right hand, Tilt 15 Degree, Bottom frequency (See Fig.12)	0.049	0.071	0.00317

Table 11: SAR Values (1900MHz-Head) - with battery SNN5882A

Limit of SAR (W/kg)	10 g Average	1 g Average	Power
	2.0	1.6	Drift
Test Case	Measurem	ent Result	(dB)
	(W/	kg)	
	10 g	1 g	
	Average	Average	
Left hand, Touch cheek, Top frequency (See Fig.13)	0.436	0.817	-0.146
Left hand, Touch cheek, Mid frequency (See Fig.14)	0.566	1.09	0.073
Left hand, Touch cheek, Bottom frequency (See Fig.15)	0.466	0.849	-0.183
Left hand, Tilt 15 Degree, Top frequency (See Fig.16)	0.134	0.218	0.018
Left hand, Tilt 15 Degree, Mid frequency (See Fig.17)	0.157	0.255	-0.155
Left hand, Tilt 15 Degree, Bottom frequency (See Fig.18)	0.147	0.236	0.196
Right hand, Touch cheek, Top frequency (See Fig.19)	0.396	0.644	-0.116
Right hand, Touch cheek, Mid frequency (See Fig.20)	0.421	0.697	-0.172
Right hand, Touch cheek, Bottom frequency (See Fig.21)	0.402	0.653	-0.175
Right hand, Tilt 15 Degree, Top frequency (See Fig.22)	0.116	0.194	0.028
Right hand, Tilt 15 Degree, Mid frequency (See Fig.23)	0.150	0.251	-0.036
Right hand, Tilt 15 Degree, Bottom frequency(See Fig.24)	0.148	0.244	0.080

Table 12: SAR Values (1900MHz-Head) - with battery CAB3130010C1

Limit of SAR (W/kg)	10 g Average	1 g Average	_
	2.0	1.6	Power
Test Case	Measurem (W/	Drift (dB)	
	10 g	1 g	(/
	Average	Average	
Left hand, Touch cheek, Mid frequency (See Fig.25)	0.484	0.923	-0.109

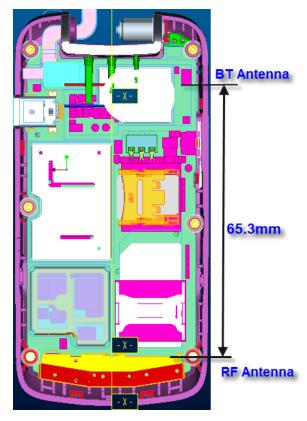
Table 13: SAR Values (850MHz-Body) - with battery SNN5882A

Limit of SAR (W/kg)	10 g Average	1g Average	
, <i>-</i> 2/	2.0	1.6	Power
Test Case	Measu Result	Drift (dB)	
	10 g Average	1 g Average	
Body, Towards Ground, Top frequency with GPRS (See Fig.26)	0.308	0.467	0.040

Body, Towards Ground, Mid frequency with GPRS (See Fig.27)						0.256	0.386	-0.063		
Body, Towards Ground, Bottom frequency with GPRS (See Fig.28)						0.220	0.331	0.132		
Body,	Towards	Ground,	Тор	frequency	with	Headset_	0.208	0.317	0.020	
CCB31	CCB31B0A10C0 (See Fig.29)									
Body,	Towards	Ground,	Тор	frequency	with	Headset_	0.214	0 333	0.001	
CCB31	CCB31B0A11C0 (See Fig.30) 0.214 0.322 0.001									

Table 14: SAR Values (1900MHz-Body) - with battery SNN5882A

Limit of SAR (W/kg)	10 g Average	1g Average	Power	
Measurement Test Case Result (W/kg)				
	10 g Average	1 g Average		
Body, Towards Ground, Top frequency with GPRS (See Fig.31)	0.114	0.173	0.009	
Body, Towards Ground, Mid frequency with GPRS (See Fig.32)	0.118	0.180	-0.012	
Body, Towards Ground, Bottom frequency with GPRS (See Fig.33)	0.121	0.184	0.017	
Body, Towards Ground, Bottom frequency with Headset_CCB31B0A10C0 (See Fig.34)	0.100	0.154	-0.014	
Body, Towards Ground, Bottom frequency with Headset_ CCB31B0A11C0 (See Fig.35)	0.102	0.156	-0.056	


Table 15: SAR Values (850MHz-Body) - with battery CAB3130010C1

Limit of SAR (W/kg)	10 g Average	1g Average	
, ,	2.0	1.6	Power
Test Case	Measu Result	Drift (dB)	
	10 g Average	1 g Average	
Body, Towards Ground, Top frequency (See Fig.36)	0.299	0.450	-0.125

8.5 Summary of Measurement Results (Bluetooth function)

The distance between BT antenna and RF antenna is >5cm. The location of the antennas inside mobile phone is shown below:

The output power of BT antenna is as following:

Channel	Ch 0 2402 MHz	Ch 39 2441 Mhz	Ch 78 2480 MHz
Peak Conducted	7.04	6.89	7.43
Output Power(dBm)	,,,,		, , , , ,

According to the output power measurement result and the distance between the two antennas, we can draw the conclusion that: stand-alone SAR and simultaneous transmission SAR are not required for BT transmitter, because the output power of BT transmitter is \leq 2P_{Ref} and its antenna is >5cm from other antenna

8.6 Conclusion

Localized Specific Absorption Rate (SAR) of this portable wireless device has been measured in all cases requested by the relevant standards cited in Clause 4.2 of this report. Maximum localized SAR is below exposure limits specified in the relevant standards cited in Clause 4.1 of this test report.

9 Measurement Uncertainty

							Standard	Degree
No. Error Description	T	Tolerance	Probability	Distant		Uncertainty	of	
No.	Error Description	Туре	(±%)	Distribution	Divisor	Ci	(0/) (0/)	freedom
							$(\%) u_i(\%)$	$V_{\it eff}$ or $v_{\it i}$
1	System repeatability	Α	0.5	N	1	1	0.5	9

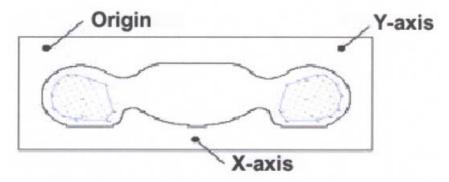
2 — probe calibration B 3.5 N 1 1 3.5 ∞ 3 — axial isotropy of the probe B 4.7 R √3 0.5 4.3 ∞ 4 — hemisphere isotropy of the probe B 9.4 R √3 1 0.5 4.3 ∞ 5 — space resolution B 0 R √3 1 0.6 ∞ 6 — boundary effect B 11.0 R √3 1 6.4 ∞ 7 — probe linearity B 4.7 R √3 1 6.4 ∞ 8 — detection limit B 1.0 R √3 1 0.6 ∞ 9 — readout electronics B 1.0 N 1 1 1.0 ∞ 10 — RF Ambient Conditions B 3.0 R √3 1 1.73 ∞ 11 — Probe Positioner Mechanical Tolerance		Measurement system							
4 −hemisphere isotropy of the probe B 9.4 R √3 0.5 4.3 ∞ 5 −space resolution B 0 R √3 1 0 ∞ 6 −boundary effect B 11.0 R √3 1 6.4 ∞ 7 −probe linearity B 4.7 R √3 1 6.4 ∞ 8 −detection limit B 1.0 R √3 1 0.6 ∞ 9 −readout electronics B 1.0 N 1 1 1.0 ∞ 9 −readout electronics B 1.0 N 1 1 1.0 ∞ 10 −RF Ambient Conditions B 3.0 R √3 1 1.73 ∞ 11 − Probe Positioning with respect to Phantom Shell B 2.9 R √3 1 1.7 ∞ 12 − Extrapolation, interpolation and linegration	2		В	3.5	N	1	1	3.5	∞
4 −hemisphere isotropy of the probe B 9.4 R √3 1 0 ∞ 5 −space resolution B 0 R √3 1 0 ∞ 6 −boundary effect B 11.0 R √3 1 6.4 ∞ 7 −probe linearity B 4.7 R √3 1 2.7 ∞ 8 −detection limit B 1.0 R √3 1 0.6 ∞ 9 −readout electronics B 1.0 N 1 1 1.0 ∞ 9 −readout electronics B 1.0 N 1 1 1.0 ∞ 10 −RF Ambient Conditions B 3.0 R √3 1 1.73 ∞ 11 −Probe Positioning Mith respect to Positioning with respect to Phantom Shell B 2.9 R √3 1 1.7 ∞ 12 − Extrapolation, interp	3	- axial isotropy of the probe	В	4.7	R	$\sqrt{3}$	0.5	4.2	
6	4		В	9.4	R	$\sqrt{3}$	0.5	4.3	8
7 —probe linearity B 4.7 R √3 1 2.7 ∞ 8 —detection limit B 1.0 R √3 1 0.6 ∞ 9 —readout electronics B 1.0 N 1 1 1.0 ∞ 10 —RFAmbient Conditions B 3.0 R √3 1 1.73 ∞ 11 —Probe Positioner Mechanical Tolerance B 0.4 R √3 1 1.73 ∞ 12 —Probe Positioning with respect to Phantom Shell B 2.9 R √3 1 1.7 ∞ 13 and Integration Algorithms for Max. SAR Evaluation B 3.9 R √3 1 2.3 ∞ Test sample Related 14 —Test Sample Positioning A 4.9 N 1 1 4.9 5 15 —Device Holder A 6.1 N 1 1 6.1 5 16 S	5	-space resolution	В	0	R	$\sqrt{3}$	1	0	∞
8 −detection limit B 1.0 R √3 1 0.6 ∞ 9 −readout electronics B 1.0 N 1 1 1.0 ∞ 10 −RF Ambient Conditions B 3.0 R √3 1 1.73 ∞ 11 − Probe Positioner Mechanical Tolerance B 0.4 R √3 1 1.73 ∞ 12 − Probe Positioning with respect to Phantom Shell B 2.9 R √3 1 1.7 ∞ 13 and Integration Algorithms for Max. SAR Evaluation B 3.9 R √3 1 2.3 ∞ 14 − Test Sample Related 1 - Test Sample Positioning A 4.9 N 1 1 4.9 5 15 − Device Holder A 6.1 N 1 1 6.1 5 16 SAR drift measurement B 5.0 R √3 1 2.9	6	-boundary effect	В	11.0	R	$\sqrt{3}$	1	6.4	∞
9	7	− probe linearity	В	4.7	R	$\sqrt{3}$	1	2.7	∞
10	8	-detection limit	В	1.0	R	$\sqrt{3}$	1	0.6	∞
11	9	-readout electronics	В	1.0	N	1	1	1.0	∞
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	RF Ambient Conditions	В	3.0	R	$\sqrt{3}$	1	1.73	∞
12 respect to Phantom Shell	11		В	0.4	R	$\sqrt{3}$	1	0.2	∞
13 and Integration Algorithms for Max. SAR Evaluation B 3.9 R √3 1 2.3 ∞ Test sample Related 14 —Test Sample Positioning A 4.9 N 1 1 4.9 5 15 —Device Holder A 6.1 N 1 1 6.1 5 —Output Power Variation - SAR drift measurement B 5.0 R √3 1 2.9 ∞ Phantom and Tissue Parameters — Phantom Uncertainty (shape and thickness B B 1.0 R √3 1 0.6 ∞ 18 — liquid conductivity (deviation from target) B 5.0 R √3 0.6 1.7 ∞ 19 — liquid conductivity (measurement error) A 0.23 N 1 1 0.23 9 20 — liquid permittivity (deviation from target) B 5.0 R √3 0.6 1.7 ∞	12	_	В	2.9	R	$\sqrt{3}$	1	1.7	∞
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	and Integration Algorithms for	В	3.9	R	$\sqrt{3}$	1	2.3	8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Test sample Related							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	-Test Sample Positioning	Α	4.9	N	1	1	4.9	5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	- Device Holder	Α	6.1	N	1	1	6.1	5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16		В	5.0	R	$\sqrt{3}$	1	2.9	8
17 (shape and thickness B 1.0 R $\sqrt{3}$ 1 0.6 ∞ tolerances) 18 $-$ liquid conductivity (deviation from target) B 5.0 R $\sqrt{3}$ 0.6 1.7 ∞ 19 $-$ liquid conductivity (measurement error) A 0.23 N 1 0.23 9 20 $-$ liquid permittivity (deviation from target) B 5.0 R $\sqrt{3}$ 0.6 1.7 ∞		Phantom and Tissue Paran	neters						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	(shape and thickness	В	1.0	R	$\sqrt{3}$	1	0.6	8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	·	В	5.0	R	$\sqrt{3}$	0.6	1.7	∞
from target) B 5.0 R $\sqrt{3}$ 0.6 1.7 ∞	19	•	Α	0.23	N	1	1	0.23	9
21 - liquid permittivity A 0.46 N 1 1 0.46 9	20		В	5.0	R	$\sqrt{3}$	0.6	1.7	∞
	21	 liquid permittivity 	Α	0.46	N	1	1	0.46	9

(measurement error)					
Combined standard uncertainty	$u'_{c} = \sqrt{\sum_{i=1}^{21} c_{i}^{2} u_{i}^{2}}$		1	12.2	88.7
Expanded uncertainty (confidence interval of 95 %)	$u_e = 2u_c$	N	k=2	24.4	1

10 MAIN TEST INSTRUMENTS

Table 16: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period
01	Network analyzer	HP 8753E	US38433212	August 29,2009	One year
02	Power meter	NRVD	101253	September 4, 2009	One year
03	Power sensor	NRV-Z5	100333	September 4, 2009	
04	Signal Generator	E4433B	US37230472	September 3, 2009	One Year
05	Amplifier	VTL5400	0505	No Calibration Requested	
06	BTS	CMU 200	105948	August 24, 2009	One year
07	E-field Probe	SPEAG ES3DV3	3149	September 25, 2009	One year
08	DAE	SPEAG DAE4	771	November 19, 2009	One year
09	Dipole Validation Kit	SPEAG D835V2	443	February 26, 2010	Two years
10	Dipole Validation Kit	SPEAG D1900V2	541	February 26, 2010	Two years


^{***}END OF REPORT BODY***

ANNEX A MEASUREMENT PROCESS

The evaluation was performed with the following procedure:

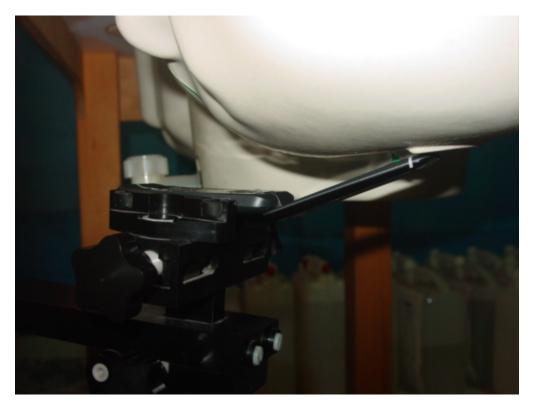
- Step 1: Measurement of the SAR value at a fixed location above the reference point was measured and was used as a reference value for assessing the power drop.
- Step 2: The SAR distribution at the exposed side of the phantom was measured at a distance of 3.9 mm from the inner surface of the shell. The area covered the entire dimension of the flat phantom and the horizontal grid spacing was 10 mm x 10 mm. Based on this data, the area of the maximum absorption was determined by spline interpolation.
- Step 3: Around this point, a volume of 30 mm \times 30 mm \times 30 mm was assessed by measuring 7 \times 7 points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:
- a. The data at the surface were extrapolated, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
- b. The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot"-condition (in $x \sim y$ and z-directions). The volume was integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.
- c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- Step 4: Re-measurement the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation is repeated.

Picture A: SAR Measurement Points in Area Scan

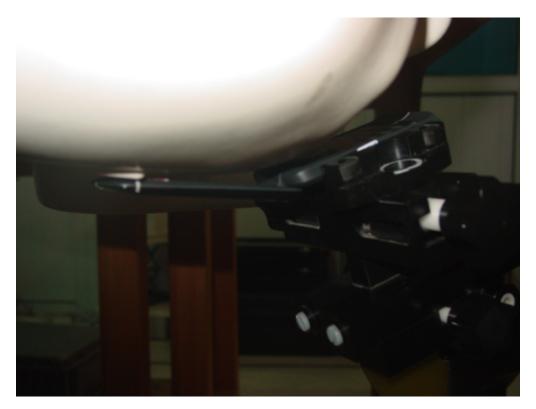
ANNEX B TEST LAYOUT

Picture B1: Specific Absorption Rate Test Layout

Picture B2: Liquid depth in the Flat Phantom (850 MHz)

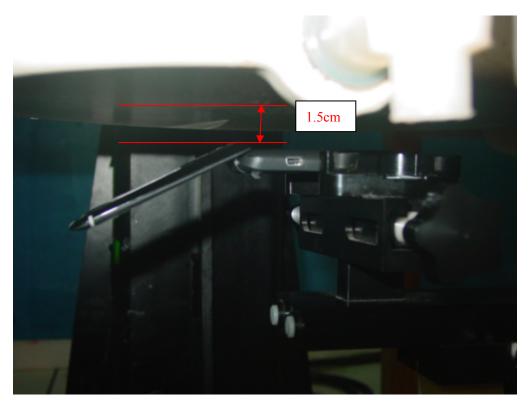


Picture B3 Liquid depth in the Flat Phantom (1900MHz)

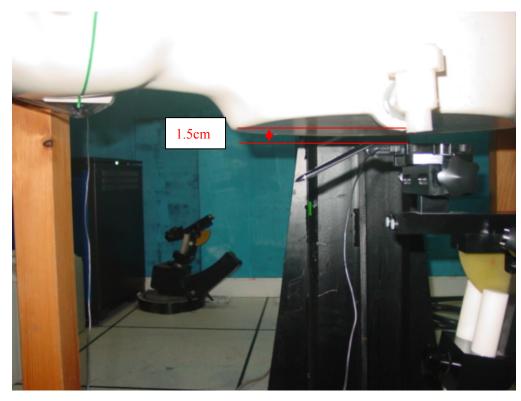


Picture B4: Left Hand Touch Cheek Position

Picture B5: Left Hand Tilt 15° Position



Picture B6: Right Hand Touch Cheek Position



Picture B7: Right Hand Tilt 15° Position

Picture B8: Body-worn Position (towards ground, the distance from handset to the bottom of the Phantom is 1.5cm)

Picture B9: Body-worn Position with Headset (towards ground, the distance from handset to the bottom of the Phantom is 1.5cm)

ANNEX C GRAPH RESULTS

850 Left Cheek High

Date/Time: 2010-8-18 8:12:25 Electronics: DAE4 Sn771

Medium: Head 850

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.88 \text{ mho/m}$; $\epsilon r = 40.5$; $\rho = 1000$

kg/m³

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Cheek High/Area Scan (51x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.608 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.66 V/m; Power Drift = 0.171 dB

Peak SAR (extrapolated) = 1.51 W/kg

SAR(1 g) = 0.562 mW/g; SAR(10 g) = 0.321 mW/g

Maximum value of SAR (measured) = 0.571 mW/g

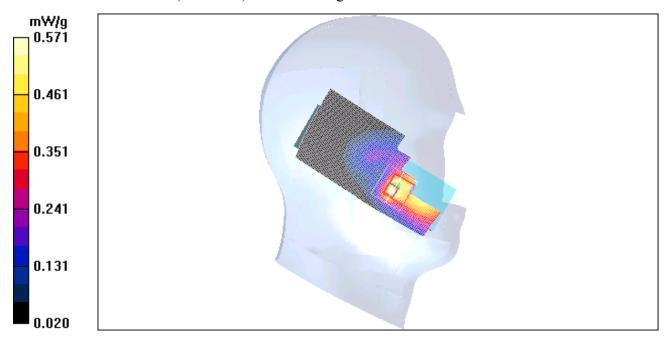


Fig. 1 850MHz CH251

850 Left Cheek Middle

Date/Time: 2010-8-18 8:26:43 Electronics: DAE4 Sn771

Medium: Head 850

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.868$ mho/m; $\epsilon r = 40.6$; $\rho =$

 1000 kg/m^3

Ambient Temperature:23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Cheek Middle/Area Scan (51x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.628 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 4.29 V/m; Power Drift = -0.141 dB

Peak SAR (extrapolated) = 1.61 W/kg

SAR(1 g) = 0.599 mW/g; SAR(10 g) = 0.335 mW/g

Maximum value of SAR (measured) = 0.606 mW/g

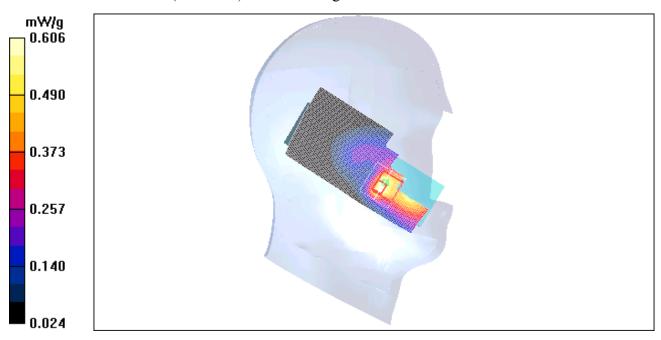


Fig. 2 850 MHz CH190

850 Left Cheek Low

Date/Time: 2010-8-18 8:41:02 Electronics: DAE4 Sn771

Medium: Head 850

Medium parameters used: f = 825 MHz; $\sigma = 0.856 \text{ mho/m}$; $\epsilon r = 40.6$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Cheek Low/Area Scan (51x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.571 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.49 V/m; Power Drift = -0.114 dB

Peak SAR (extrapolated) = 1.5 W/kg

SAR(1 g) = 0.555 mW/g; SAR(10 g) = 0.305 mW/g

Maximum value of SAR (measured) = 0.559 mW/g

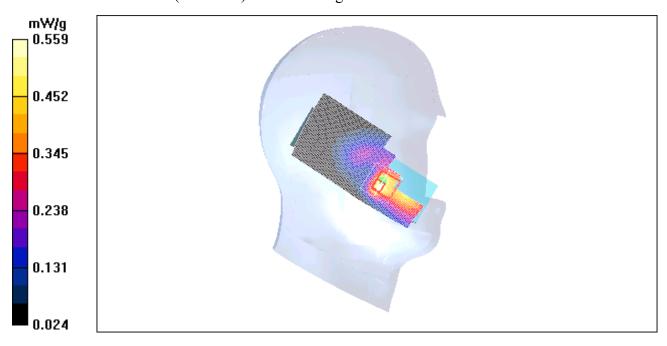


Fig. 3 850 MHz CH128

850 Left Tilt High

Date/Time: 2010-8-18 8:55:37 Electronics: DAE4 Sn771

Medium: Head 850

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.88 \text{ mho/m}$; $\epsilon r = 40.5$; $\rho = 1000$

kg/m³

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Tilt High/Area Scan (51x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.080 mW/g

Tilt High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.54 V/m; Power Drift = -0.000275 dB

Peak SAR (extrapolated) = 0.098 W/kg

SAR(1 g) = 0.075 mW/g; SAR(10 g) = 0.054 mW/g

Maximum value of SAR (measured) = 0.080 mW/g

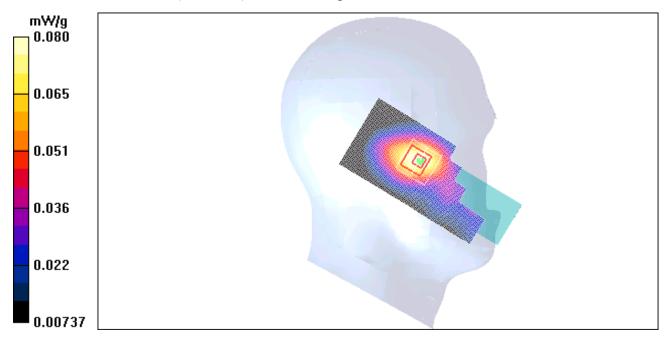


Fig.4 850 MHz CH251

850 Left Tilt Middle

Date/Time: 2010-8-18 9:09:54 Electronics: DAE4 Sn771

Medium: Head 850

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.868$ mho/m; $\epsilon r = 40.6$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Tilt Middle/Area Scan (51x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.079 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.59 V/m; Power Drift = -0.013 dB

Peak SAR (extrapolated) = 0.096 W/kg

SAR(1 g) = 0.074 mW/g; SAR(10 g) = 0.054 mW/g

Maximum value of SAR (measured) = 0.078 mW/g

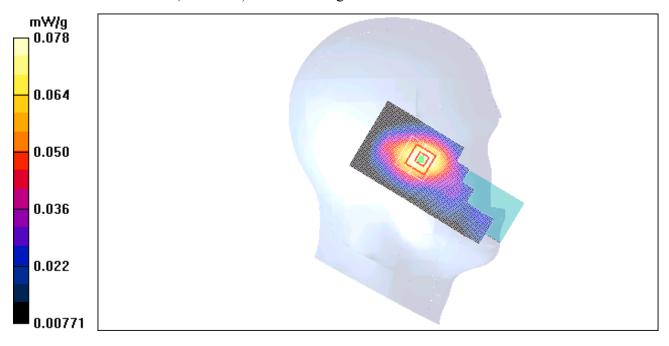


Fig.5 850 MHz CH190

850 Left Tilt Low

Date/Time: 2010-8-18 9:24:18 Electronics: DAE4 Sn771

Medium: Head 850

Medium parameters used: f = 825 MHz; $\sigma = 0.856 \text{ mho/m}$; $\epsilon r = 40.6$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Tilt Low/Area Scan (51x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.076 mW/g

Tilt Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.57 V/m; Power Drift = -0.104 dB

Peak SAR (extrapolated) = 0.092 W/kg

SAR(1 g) = 0.071 mW/g; SAR(10 g) = 0.051 mW/g

Maximum value of SAR (measured) = 0.076 mW/g

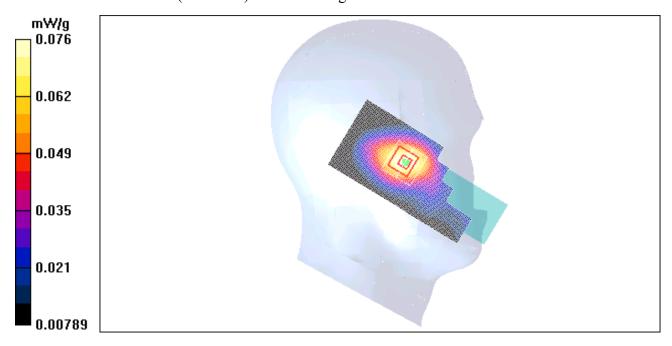


Fig. 6 850 MHz CH128

850 Right Cheek High

Date/Time: 2010-8-18 9:39:04 Electronics: DAE4 Sn771

Medium: Head 850

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.88 \text{ mho/m}$; $\epsilon r = 40.5$; $\rho = 1000$

kg/m³

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Cheek High/Area Scan (51x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.649 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.79 V/m; Power Drift = -0.073 dB

Peak SAR (extrapolated) = 0.899 W/kg

SAR(1 g) = 0.606 mW/g; SAR(10 g) = 0.396 mW/g

Maximum value of SAR (measured) = 0.641 mW/g

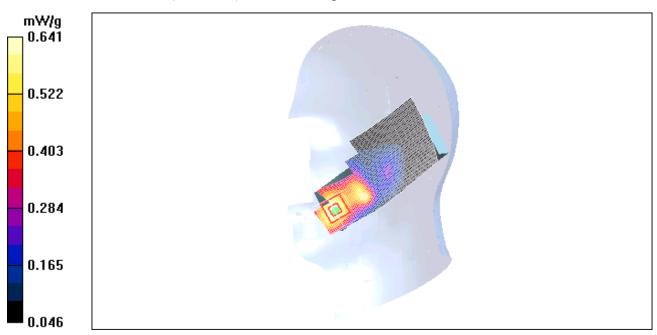


Fig. 7 850 MHz CH251

850 Right Cheek Middle

Date/Time: 2010-8-18 9:53:20 Electronics: DAE4 Sn771

Medium: Head 850

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.868$ mho/m; $\epsilon r = 40.6$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Cheek Middle/Area Scan (51x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.668 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 6.4 V/m; Power Drift = -0.043 dB

Peak SAR (extrapolated) = 0.917 W/kg

SAR(1 g) = 0.623 mW/g; SAR(10 g) = 0.407 mW/g

Maximum value of SAR (measured) = 0.664 mW/g

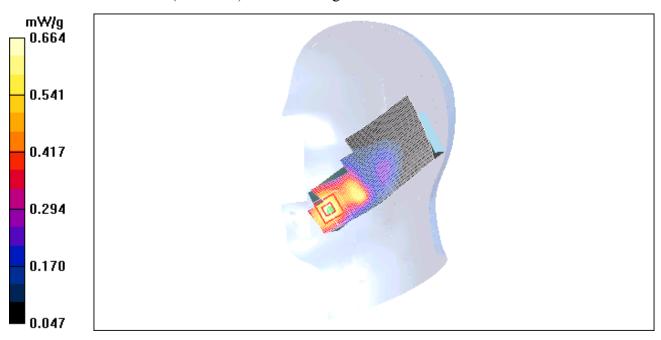


Fig. 8 850 MHz CH190

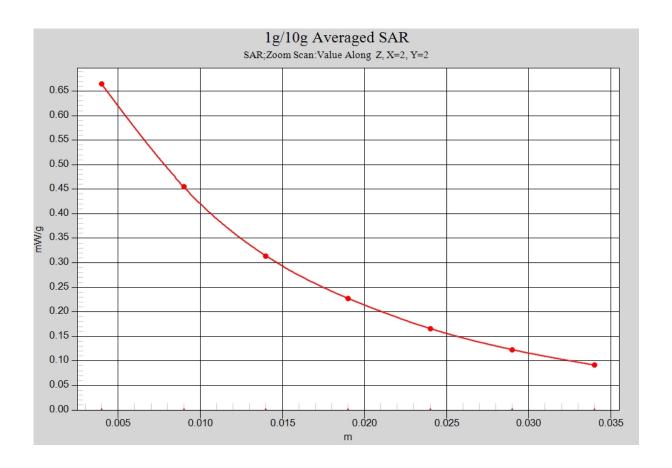


Fig. 8-1 Z-Scan at power reference point (850 MHz CH190)

850 Right Cheek Low

Date/Time: 2010-8-18 10:07:45 Electronics: DAE4 Sn771

Medium: Head 850

Medium parameters used: f = 825 MHz; $\sigma = 0.856 \text{ mho/m}$; $\epsilon r = 40.6$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Cheek Low/Area Scan (51x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.599 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.63 V/m; Power Drift = -0.016 dB

Peak SAR (extrapolated) = 0.825 W/kg

SAR(1 g) = 0.560 mW/g; SAR(10 g) = 0.366 mW/g

Maximum value of SAR (measured) = 0.594 mW/g

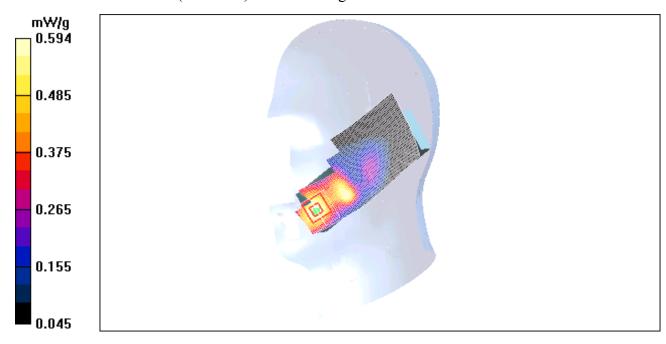


Fig. 9 850 MHz CH128

850 Right Tilt High

Date/Time: 2010-8-18 10:22:13 Electronics: DAE4 Sn771

Medium: Head 850

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.88 \text{ mho/m}$; $\epsilon r = 40.5$; $\rho = 1000$

kg/m³

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Tilt High/Area Scan (51x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.077 mW/g

Tilt High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.68 V/m; Power Drift = 0.062 dB

Peak SAR (extrapolated) = 0.096 W/kg

SAR(1 g) = 0.071 mW/g; SAR(10 g) = 0.049 mW/g

Maximum value of SAR (measured) = 0.076 mW/g

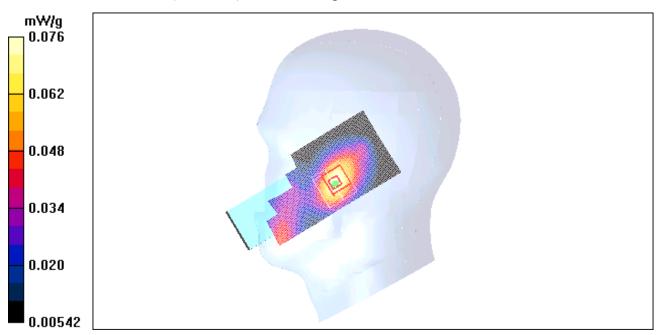


Fig.10 850 MHz CH251

850 Right Tilt Middle

Date/Time: 2010-8-18 10:36:30

Electronics: DAE4 Sn771

Medium: Head 850

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.868$ mho/m; $\epsilon r = 40.6$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Tilt Middle/Area Scan (51x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.077 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.92 V/m; Power Drift = -0.185 dB

Peak SAR (extrapolated) = 0.095 W/kg

SAR(1 g) = 0.071 mW/g; SAR(10 g) = 0.049 mW/g

Maximum value of SAR (measured) = 0.075 mW/g

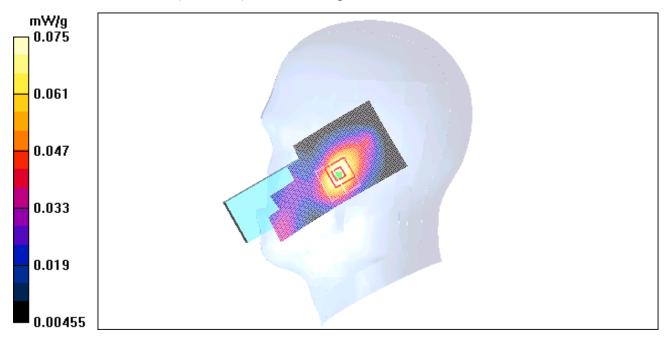


Fig.11 850 MHz CH190

850 Right Tilt Low

Date/Time: 2010-8-18 10:50:47 Electronics: DAE4 Sn771

Medium: Head 850

Medium parameters used: f = 825 MHz; $\sigma = 0.856 \text{ mho/m}$; $\epsilon r = 40.6$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Tilt Low/Area Scan (51x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.077 mW/g

Tilt Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.83 V/m; Power Drift = 0.00317 dB

Peak SAR (extrapolated) = 0.095 W/kg

SAR(1 g) = 0.071 mW/g; SAR(10 g) = 0.049 mW/g

Maximum value of SAR (measured) = 0.076 mW/g

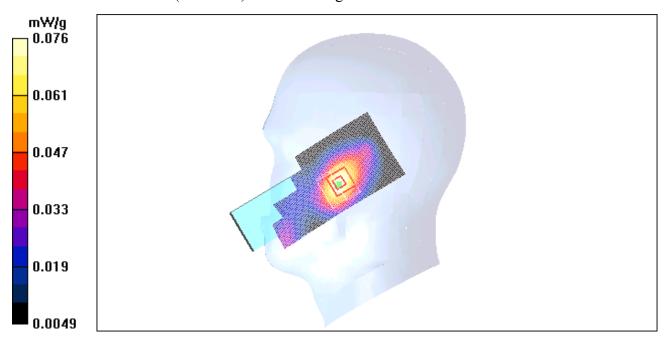


Fig. 12 850 MHz CH128

1900 Left Cheek High

Date/Time: 2010-8-19 8:10:22 Electronics: DAE4 Sn771 Medium: 1900 Head

Medium parameters used: f = 1910 MHz; $\sigma = 1.40 \text{ mho/m}$; $\epsilon r = 39.3$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1909.8 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Cheek High/Area Scan (51x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.919 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.01 V/m; Power Drift = -0.146 dB

Peak SAR (extrapolated) = 1.39 W/kg

SAR(1 g) = 0.817 mW/g; SAR(10 g) = 0.436 mW/g

Maximum value of SAR (measured) = 0.884 mW/g

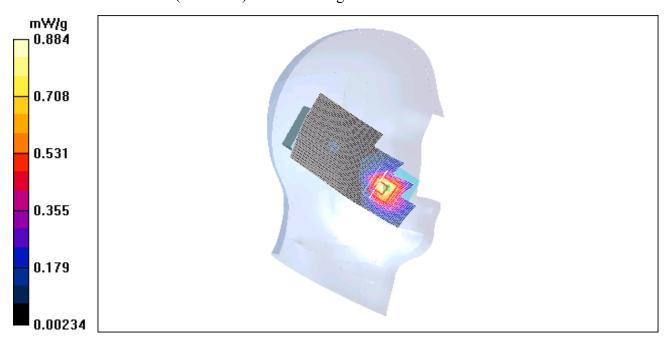


Fig. 13 1900 MHz CH810

1900 Left Cheek Middle

Date/Time: 2010-8-19 8:24:41 Electronics: DAE4 Sn771 Medium: Head 1900 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.38 \text{ mho/m}$; $\epsilon r = 39.4$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Cheek Middle/Area Scan (51x121x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.18 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.09 V/m; Power Drift = 0.073 dB

Peak SAR (extrapolated) = 1.87 W/kg

SAR(1 g) = 1.09 mW/g; SAR(10 g) = 0.566 mW/g

Maximum value of SAR (measured) = 1.25 mW/g

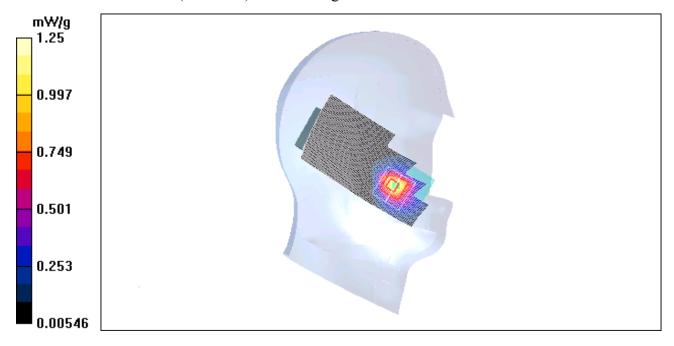


Fig. 14 1900 MHz CH661

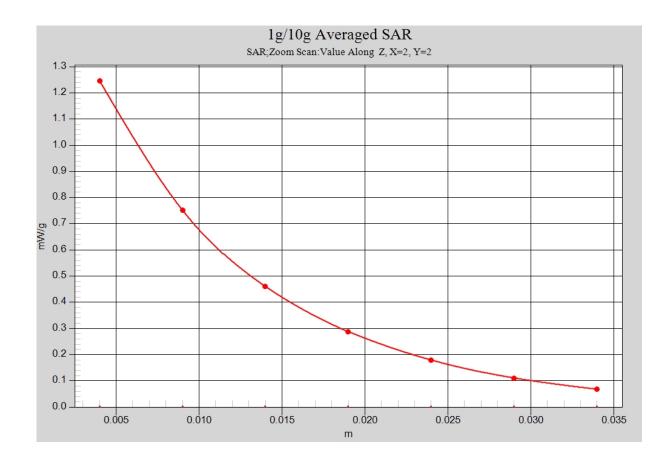


Fig. 14-1 Z-Scan at power reference point (1900 MHz CH661)

1900 Left Cheek Low

Date/Time: 2010-8-19 8:39:05 Electronics: DAE4 Sn771 Medium: 1900 Head

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.35$ mho/m; $\epsilon r = 39.5$; $\rho = 1.35$

 1000 kg/m^3

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1850.2 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Cheek Low/Area Scan (51x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.931 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.61 V/m; Power Drift = -0.183 dB

Peak SAR (extrapolated) = 1.4 W/kg

SAR(1 g) = 0.849 mW/g; SAR(10 g) = 0.466 mW/g

Maximum value of SAR (measured) = 0.957 mW/g

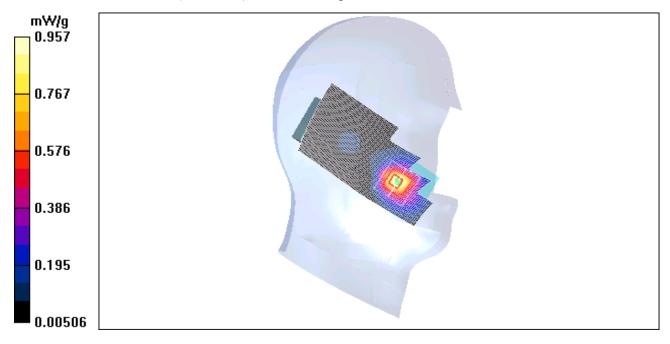


Fig. 15 1900 MHz CH512

1900 Left Tilt High

Date/Time: 2010-8-19 8:53:30 Electronics: DAE4 Sn771 Medium: 1900 Head

Medium parameters used: f = 1910 MHz; $\sigma = 1.40 \text{ mho/m}$; $\epsilon r = 39.3$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1909.8 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Tilt High/Area Scan (51x121x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.265 mW/g

Tilt High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.72 V/m; Power Drift = 0.018 dB

Peak SAR (extrapolated) = 0.325 W/kg

SAR(1 g) = 0.218 mW/g; SAR(10 g) = 0.134 mW/g

Maximum value of SAR (measured) = 0.237 mW/g

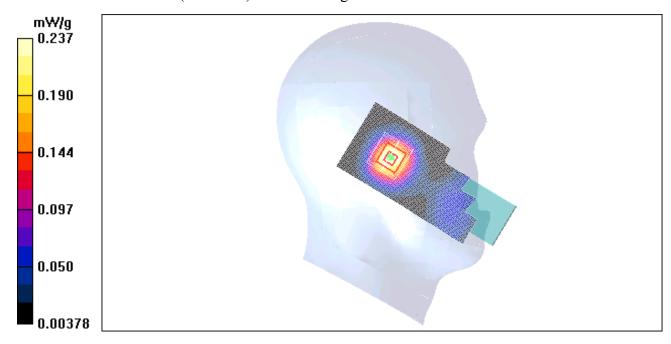


Fig.16 1900 MHz CH810

1900 Left Tilt Middle

Date/Time: 2010-8-19 9:07:51 Electronics: DAE4 Sn771 Medium: 1900 Head

Medium parameters used: f = 1880 MHz; $\sigma = 1.38 \text{ mho/m}$; $\epsilon r = 39.4$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Tilt Middle/Area Scan (51x121x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.300 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.28 V/m; Power Drift = -0.155 dB

Peak SAR (extrapolated) = 0.377 W/kg

SAR(1 g) = 0.255 mW/g; SAR(10 g) = 0.157 mW/g

Maximum value of SAR (measured) = 0.276 mW/g

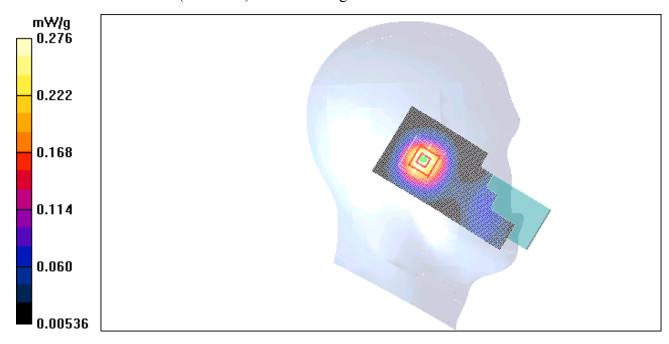


Fig. 17 1900 MHz CH661

1900 Left Tilt Low

Date/Time: 2010-8-19 9:22:17 Electronics: DAE4 Sn771 Medium: 1900 Head

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.35$ mho/m; $\epsilon r = 39.5$; $\rho = 1.35$

 1000 kg/m^3

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1850.2 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Tilt Low/Area Scan (51x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.279 mW/g

Tilt Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.68 V/m; Power Drift = 0.196 dB

Peak SAR (extrapolated) = 0.344 W/kg

SAR(1 g) = 0.236 mW/g; SAR(10 g) = 0.147 mW/g

Maximum value of SAR (measured) = 0.254 mW/g

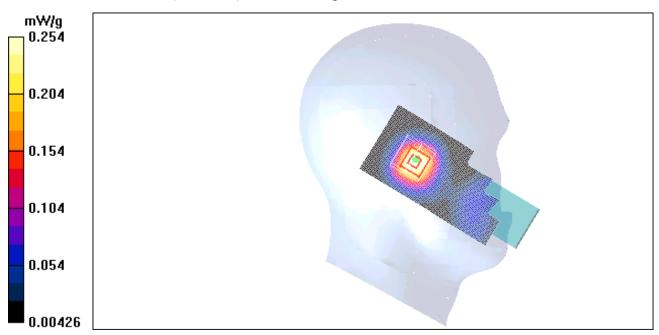


Fig. 18 1900 MHz CH512

1900 Right Cheek High

Date/Time: 2010-8-19 9:36:49 Electronics: DAE4 Sn771 Medium: 1900 Head

Medium parameters used: f = 1910 MHz; $\sigma = 1.40 \text{ mho/m}$; $\epsilon r = 39.3$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1909.8 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Cheek High/Area Scan (51x121x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.678 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.07 V/m; Power Drift = -0.116 dB

Peak SAR (extrapolated) = 0.921 W/kg

SAR(1 g) = 0.644 mW/g; SAR(10 g) = 0.396 mW/g

Maximum value of SAR (measured) = 0.669 mW/g

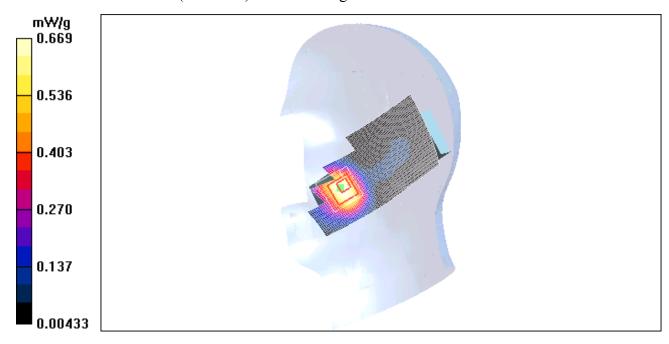


Fig. 19 1900 MHz CH810

1900 Right Cheek Middle

Date/Time: 2010-8-19 9:51:17 Electronics: DAE4 Sn771 Medium: 1900 Head

Medium parameters used: f = 1880 MHz; $\sigma = 1.38 \text{ mho/m}$; $\epsilon r = 39.4$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Cheek Middle/Area Scan (51x121x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.712 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.26 V/m; Power Drift = -0.172 dB

Peak SAR (extrapolated) = 1.01 W/kg

SAR(1 g) = 0.697 mW/g; SAR(10 g) = 0.421 mW/gMaximum value of SAR (measured) = 0.716 mW/g

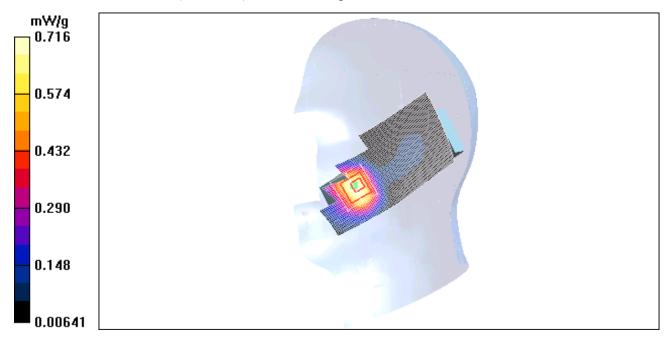


Fig. 20 1900 MHz CH661

1900 Right Cheek Low

Date/Time: 2010-8-19 10:05:36

Electronics: DAE4 Sn771 Medium: 1900 Head

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.35$ mho/m; $\epsilon r = 39.5$; $\rho = 1.35$

 1000 kg/m^3

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1850.2 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Cheek Low/Area Scan (51x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.675 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.21 V/m; Power Drift = -0.175 dB

Peak SAR (extrapolated) = 0.911 W/kg

SAR(1 g) = 0.653 mW/g; SAR(10 g) = 0.402 mW/g

Maximum value of SAR (measured) = 0.685 mW/g

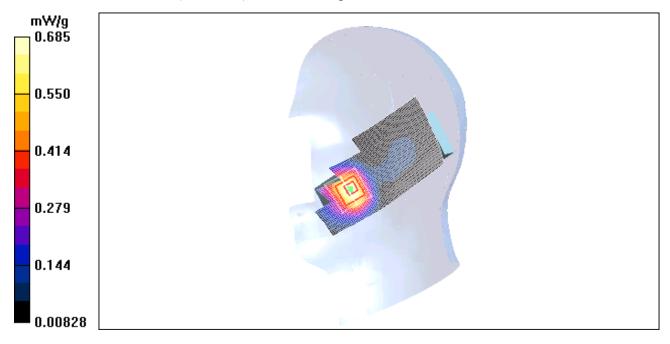


Fig. 21 1900 MHz CH512

1900 Right Tilt High

Date/Time: 2010-8-19 10:20:03

Electronics: DAE4 Sn771 Medium: 1900 Head

Medium parameters used: f = 1910 MHz; $\sigma = 1.40 \text{ mho/m}$; $\epsilon r = 39.3$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1909.8 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Tilt High/Area Scan (51x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.243 mW/g

Tilt High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.19 V/m; Power Drift = 0.028 dB

Peak SAR (extrapolated) = 0.294 W/kg

SAR(1 g) = 0.194 mW/g; SAR(10 g) = 0.116 mW/g

Maximum value of SAR (measured) = 0.214 mW/g

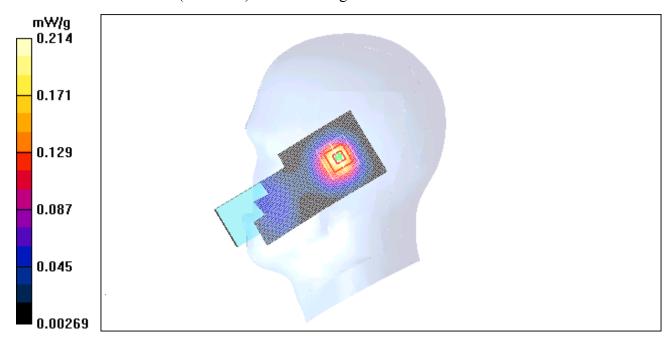


Fig. 22 1900 MHz CH810

1900 Right Tilt Middle

Date/Time: 2010-8-19 10:34:27

Electronics: DAE4 Sn771 Medium: 1900 Head

Medium parameters used: f = 1880 MHz; $\sigma = 1.38 \text{ mho/m}$; $\epsilon r = 39.4$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Tilt Middle/Area Scan (51x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.311 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.3 V/m; Power Drift = -0.036 dB

Peak SAR (extrapolated) = 0.380 W/kg

SAR(1 g) = 0.251 mW/g; SAR(10 g) = 0.150 mW/g

Maximum value of SAR (measured) = 0.274 mW/g

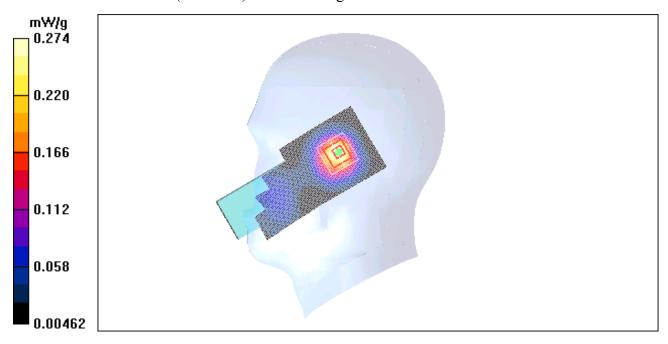


Fig.23 1900 MHz CH661

1900 Right Tilt Low

Date/Time: 2010-8-19 10:48:50

Electronics: DAE4 Sn771 Medium: 1900 Head

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.35$ mho/m; $\epsilon r = 39.5$; $\rho = 1.35$

 1000 kg/m^3

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1850.2 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Tilt Low/Area Scan (51x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.304 mW/g

Tilt Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.99 V/m; Power Drift = 0.080 dB

Peak SAR (extrapolated) = 0.363 W/kg

SAR(1 g) = 0.244 mW/g; SAR(10 g) = 0.148 mW/g

Maximum value of SAR (measured) = 0.266 mW/g

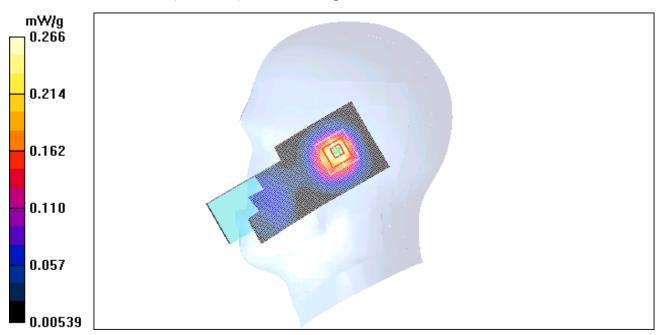


Fig.24 1900 MHz CH512

1900 Left Cheek Middle with battery CAB3130010C2

Date/Time: 2010-8-19 11:06:25

Electronics: DAE4 Sn771 Medium: 1900 Head

Medium parameters used: f = 1880 MHz; $\sigma = 1.38 \text{ mho/m}$; $\epsilon r = 39.4$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Cheek Middle/Area Scan (51x121x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.67 V/m; Power Drift = -0.109 dB

Peak SAR (extrapolated) = 1.58 W/kg

SAR(1 g) = 0.923 mW/g; SAR(10 g) = 0.484 mW/gMaximum value of SAR (measured) = 1.05 mW/g

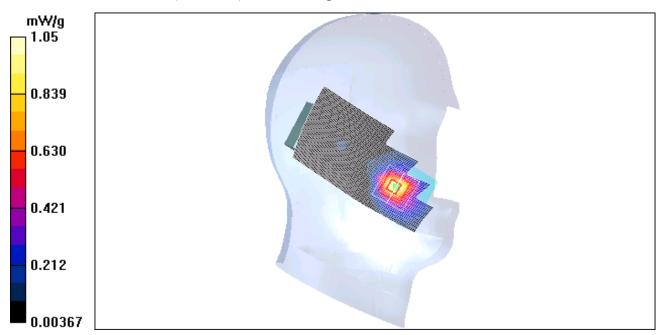


Fig. 25 1900 MHz CH661

850 Body Towards Ground High with GPRS

Date/Time: 2010-8-18 13:44:26

Electronics: DAE4 Sn771

Medium: 850 Body

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.96 \text{ mho/m}$; $\epsilon r = 54.0$; $\rho = 1000$

kg/m³

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 GPRS Frequency: 848.8 MHz Duty Cycle: 1:4

Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Ground High/Area Scan (51x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.510 mW/g

Toward Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.37 V/m; Power Drift = 0.040 dB

Peak SAR (extrapolated) = 0.670 W/kg

SAR(1 g) = 0.467 mW/g; SAR(10 g) = 0.308 mW/g

Maximum value of SAR (measured) = 0.500 mW/g

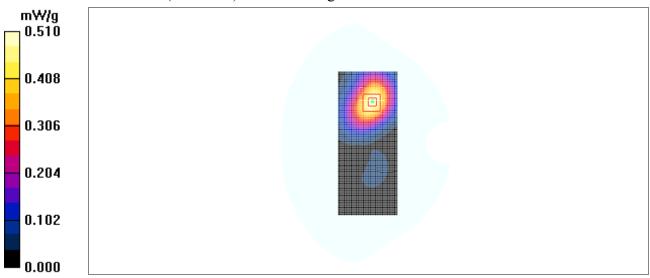


Fig. 26 850 MHz CH251

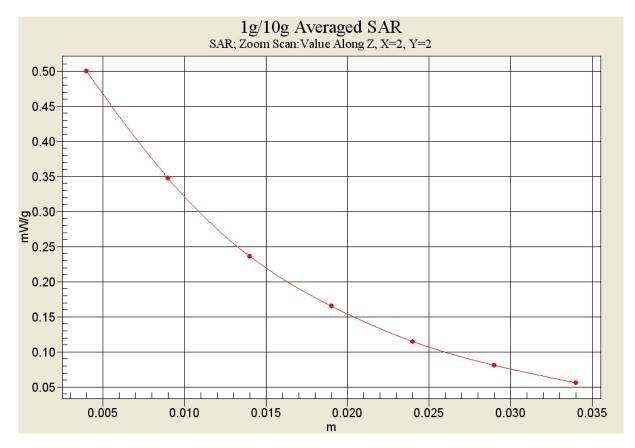


Fig. 26-1 Z-Scan at power reference point (850 MHz CH251)

850 Body Towards Ground Middle with GPRS

Date/Time: 2010-8-18 13:59:45

Electronics: DAE4 Sn771

Medium: 850 Body

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.95$ mho/m; $\epsilon r = 54.1$; $\rho = 1000$

kg/m³

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 GPRS Frequency: 836.6 MHz Duty Cycle: 1:4

Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Ground Middle/Area Scan (51x121x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.417 mW/g

Toward Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 5.46 V/m; Power Drift = -0.063 dB

Peak SAR (extrapolated) = 0.549 W/kg

SAR(1 g) = 0.386 mW/g; SAR(10 g) = 0.256 mW/g

Maximum value of SAR (measured) = 0.415 mW/g

Fig. 27 850 MHz CH190

850 Body Towards Ground Low with GPRS

Date/Time: 2010-8-18 14:15:22

Electronics: DAE4 Sn771

Medium: 850 Body

Medium parameters used: f = 825 MHz; $\sigma = 0.933 \text{ mho/m}$; $\epsilon r = 54.2$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 GPRS Frequency: 824.2 MHz Duty Cycle: 1:4

Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Ground Low/Area Scan (51x121x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.359 mW/g

Toward Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.11 V/m; Power Drift = 0.132 dB

Peak SAR (extrapolated) = 0.472 W/kg

SAR(1 g) = 0.331 mW/g; SAR(10 g) = 0.220 mW/gMaximum value of SAR (measured) = 0.353 mW/g

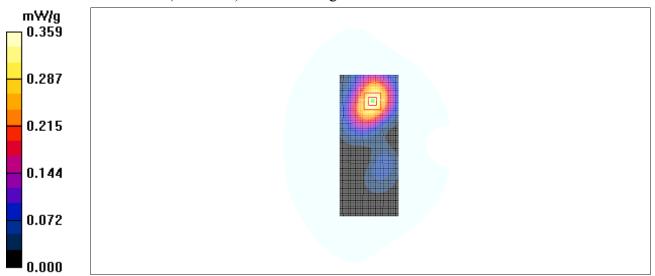


Fig. 28 850 MHz CH128

850 Body Towards Ground High with Headset__CCB31B0A10C0

Date/Time: 2010-8-18 14:32:19

Electronics: DAE4 Sn771

Medium: 850 Body

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.96 \text{ mho/m}$; $\epsilon r = 54.0$; $\rho = 1000$

kg/m³

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Ground High/Area Scan (51x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.342 mW/g

Toward Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 8.07 V/m; Power Drift = 0.020 dB

Peak SAR (extrapolated) = 0.461 W/kg

SAR(1 g) = 0.317 mW/g; SAR(10 g) = 0.208 mW/g

Maximum value of SAR (measured) = 0.340 mW/g

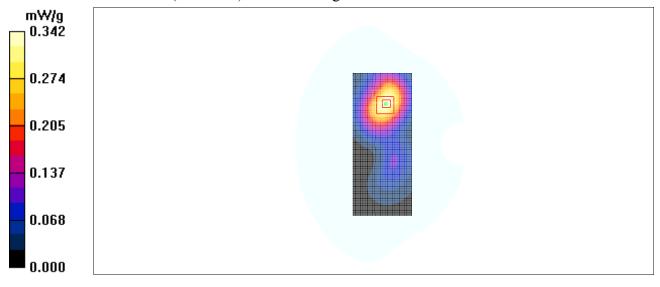


Fig. 29 850 MHz CH251

850 Body Towards Ground High with Headset__CCB31B0A11C0

Date/Time: 2010-8-18 14:49:32

Electronics: DAE4 Sn771

Medium: 850 Body

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.96 \text{ mho/m}$; $\epsilon r = 54.0$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Ground High/Area Scan (51x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.348 mW/g

Toward Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 8.90 V/m; Power Drift = 0.001 dB

Peak SAR (extrapolated) = 0.464 W/kg

SAR(1 g) = 0.322 mW/g; SAR(10 g) = 0.214 mW/g

Maximum value of SAR (measured) = 0.343 mW/g

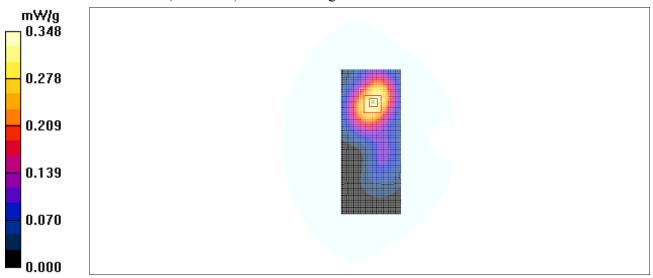


Fig. 30 850 MHz CH251

1900 Body Towards Ground High with GPRS

Date/Time: 2010-8-19 13:46:11 Electronics: DAE4 Sn771 Medium: Body 1900 MHz

Medium parameters used: f = 1910 MHz; $\sigma = 1.53 \text{ mho/m}$; $\epsilon r = 52.2$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz GPRS Frequency: 1909.8 MHz Duty Cycle: 1:4

Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

Toward Ground High/Area Scan (51x121x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.190 mW/g

Toward Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.7 V/m; Power Drift = 0.009 dB

Peak SAR (extrapolated) = 0.260 W/kg

SAR(1 g) = 0.173 mW/g; SAR(10 g) = 0.114 mW/gMaximum value of SAR (measured) = 0.184 mW/g

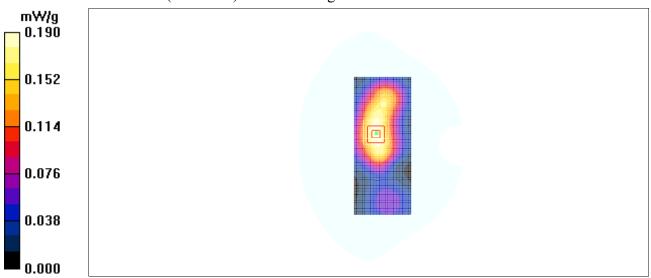


Fig. 31 1900 MHz CH810

1900 Body Towards Ground Middle with GPRS

Date/Time: 2010-8-19 14:01:39

Electronics: DAE4 Sn771 Medium: Body 1900 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.50 \text{ mho/m}$; $\epsilon r = 52.3$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz GPRS Frequency: 1880 MHz Duty Cycle: 1:4

Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

Toward Ground Middle/Area Scan (51x121x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.194 mW/g

Toward Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 11.1 V/m; Power Drift = -0.012 dB

Peak SAR (extrapolated) = 0.272 W/kg

SAR(1 g) = 0.180 mW/g; SAR(10 g) = 0.118 mW/g

Maximum value of SAR (measured) = 0.192 mW/g

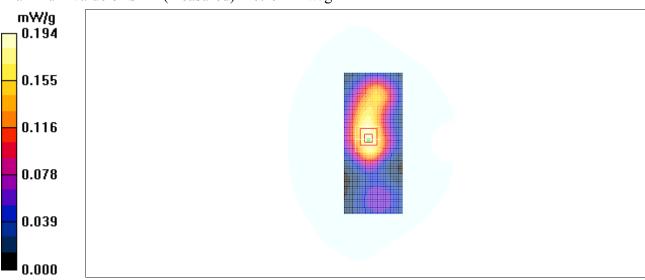


Fig. 32 1900 MHz CH661

1900 Body Towards Ground Low with GPRS

Date/Time: 2010-8-19 14:16:58

Electronics: DAE4 Sn771 Medium: Body 1900 MHz

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.48$ mho/m; $\epsilon r = 52.3$; $\rho = 1.48$ mho/m; $\epsilon r = 52.3$; $\epsilon r = 52.3$

 1000 kg/m^3

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz GPRS Frequency: 1850.2 MHz Duty Cycle: 1:4

Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

Toward Ground Low/Area Scan (51x121x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.196 mW/g

Toward Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.2 V/m; Power Drift = 0.017 dB

Peak SAR (extrapolated) = 0.276 W/kg

SAR(1 g) = 0.184 mW/g; SAR(10 g) = 0.121 mW/g

Maximum value of SAR (measured) = 0.196 mW/g

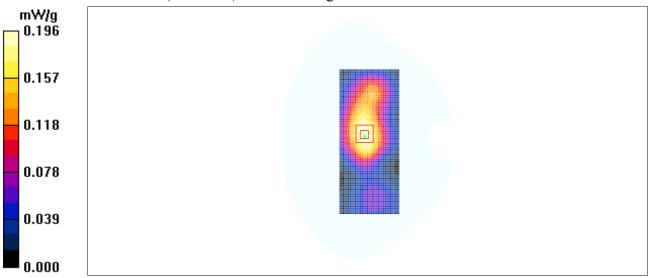


Fig. 33 1900 MHz CH512

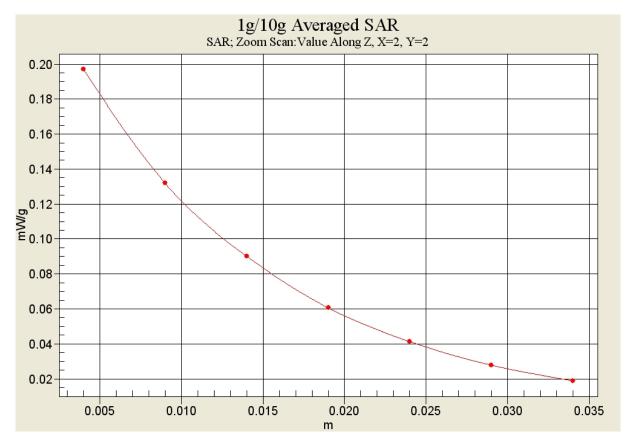


Fig. 33-1 Z-Scan at power reference point (1900 MHz CH512)

1900 Body Towards Ground Low with Headset__CCB31B0A10C0

Date/Time: 2010-8-19 14:33:54

Electronics: DAE4 Sn771 Medium: Body 1900 MHz

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.48$ mho/m; $\epsilon r = 52.3$; $\rho = 1.48$ mho/m; $\epsilon r = 52.3$; $\epsilon r = 52.3$

 1000 kg/m^3

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1850.2 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

Toward Ground Low/Area Scan (51x121x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.165 mW/g

Toward Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.4 V/m; Power Drift = -0.014 dB

Peak SAR (extrapolated) = 0.235 W/kg

SAR(1 g) = 0.154 mW/g; SAR(10 g) = 0.100 mW/g

Maximum value of SAR (measured) = 0.165 mW/g

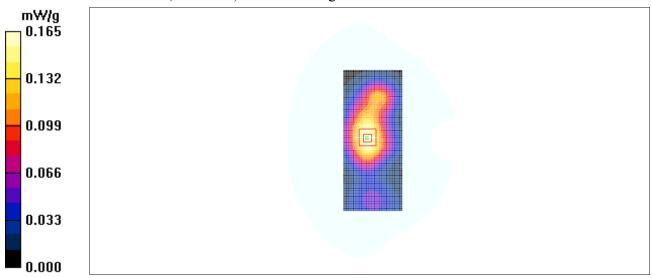


Fig. 34 1900 MHz CH512

1900 Body Towards Ground Low with Headset_CCB31B0A11C0

Date/Time: 2010-8-19 14:50:44

Electronics: DAE4 Sn771 Medium: Body 1900 MHz

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.48$ mho/m; $\epsilon r = 52.3$; $\rho = 1.48$ mho/m; $\epsilon r = 52.3$; $\epsilon r = 52.3$

 1000 kg/m^3

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1850.2 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

Toward Ground Low/Area Scan (51x121x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.169 mW/g

Toward Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.5 V/m; Power Drift = -0.056 dB

Peak SAR (extrapolated) = 0.231 W/kg

SAR(1 g) = 0.156 mW/g; SAR(10 g) = 0.102 mW/g

Maximum value of SAR (measured) = 0.166 mW/g

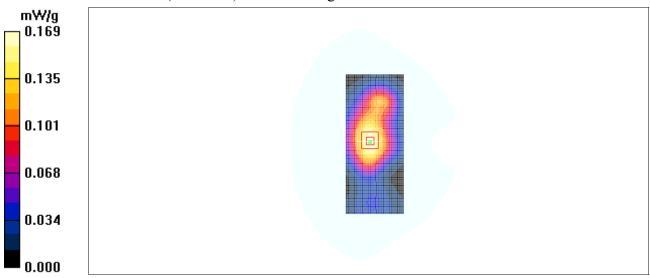


Fig. 35 1900 MHz CH512

850 Body Towards Ground High with GPRS with battery CAB3130010C1

Date/Time: 2010-8-18 15:07:23

Electronics: DAE4 Sn771

Medium: 850 Body

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.96 \text{ mho/m}$; $\epsilon r = 54.0$; $\rho = 1000$

kg/m³

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 GPRS Frequency: 848.8 MHz Duty Cycle: 1:4

Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Ground High/Area Scan (51x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.505 mW/g

Toward Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 6.21 V/m; Power Drift = -0.125 dB

Peak SAR (extrapolated) = 0.640 W/kg

SAR(1 g) = 0.450 mW/g; SAR(10 g) = 0.299 mW/g

Maximum value of SAR (measured) = 0.482 mW/g

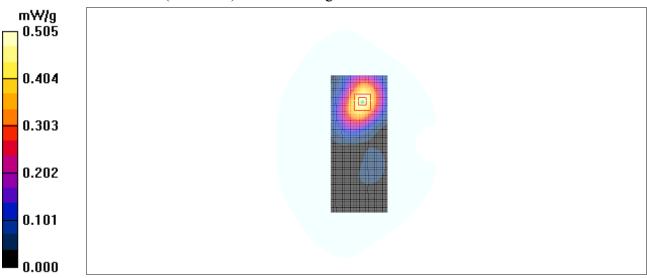


Fig. 36 850 MHz CH251

ANNEX D SYSTEM VALIDATION RESULTS

835MHz

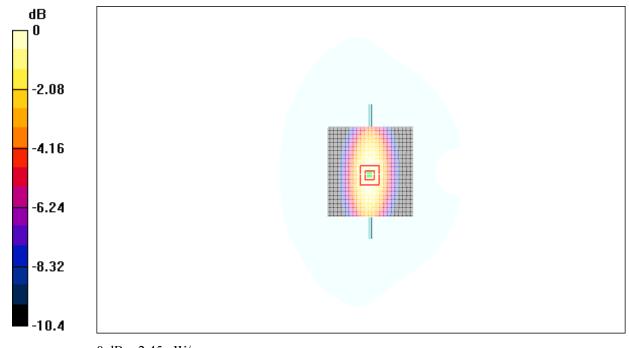
Date/Time: 2010-8-18 7:31:14 Electronics: DAE4 Sn771

Medium: Head 850

Medium parameters used: f = 835 MHz; $\sigma = 0.86$ mho/m; $\varepsilon_r = 40.6$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1

Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)


System Validation /Area Scan (101x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 2.53 mW/g

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.1 V/m; Power Drift = 0.077 dB

Peak SAR (extrapolated) = 3.38 W/kg

SAR(1 g) = 2.32 mW/g; SAR(10 g) = 1.49 mW/gMaximum value of SAR (measured) = 2.45 mW/g

0 dB = 2.45 mW/g

Fig.43 validation 835MHz 250mW

835MHz

Date/Time: 2010-8-18 13:17:42

Electronics: DAE4 Sn771

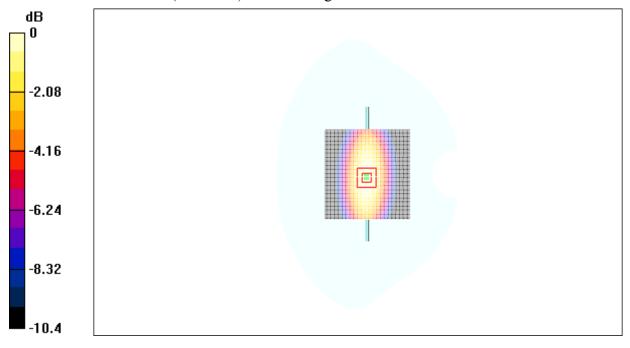
Medium: 850 Body

Medium parameters used: f = 835 MHz; $\sigma = 0.94$ mho/m; $\varepsilon_r = 54.1$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1

Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

System Validation /Area Scan (101x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 2.51 mW/g


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 50.7 V/m; Power Drift = 0.035 dB

Peak SAR (extrapolated) = 3.33 W/kg

SAR(1 g) = 2.32 mW/g; SAR(10 g) = 1.53 mW/g

Maximum value of SAR (measured) = 2.40 mW/g

0 dB = 2.40 mW/g

Fig.44 validation 835MHz 250mW

1900MHz

Date/Time: 2010-8-19 7:28:38 Electronics: DAE4 Sn771 Medium: Head 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.39 \text{ mho/m}$; $\varepsilon_r = 39.4$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1

Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

System Validation/Area Scan (101x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 11.2 mW/g

System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 87.3 V/m; Power Drift = -0.084 dB

Peak SAR (extrapolated) = 14.7 W/kg

SAR(1 g) = 9.64 mW/g; SAR(10 g) = 4.87 mW/gMaximum value of SAR (measured) = 10.3 mW/g

dB 0 -3.36 -6.72 -10.1 -13.4 -16.8

0~dB = 10.3 mW/g

Fig.45 validation 1900MHz 250mW

1900MHz

Date/Time: 2010-8-19 13:21:08

Electronics: DAE4 Sn771 Medium: Body 1900 MHz

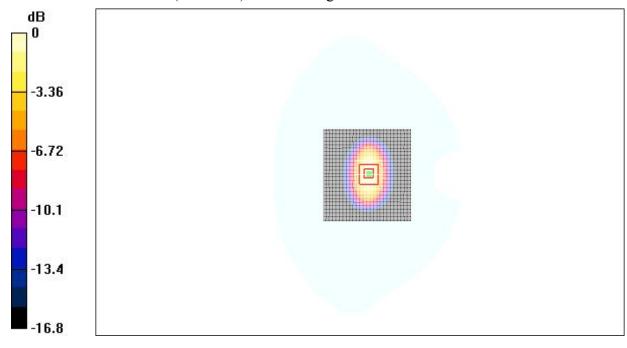
Medium parameters used: f = 1900 MHz; $\sigma = 1.52 \text{ mho/m}$; $\varepsilon_r = 52.2$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1

Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

System Validation/Area Scan (101x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 11.2 mW/g

System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 92.0 V/m; Power Drift = -0.058 dB

Peak SAR (extrapolated) = 16.0 W/kg

SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.15 mW/g

Maximum value of SAR (measured) = 10.6 mW/g

0 dB = 10.6 mW/g

Fig.46 validation 1900MHz 250mW

ANNEX E PROBE CALIBRATION CERTIFICATE

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service sulsse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

lient TMC China		Certifica	te No: ES3DV3-3149_Sep0
CALIBRATION CERT	IFICATE		
Object ES:		S3DV3-SN: 3149	
		A CAL-01.v6	
Calibration date: Se		september 25, 2009	
Condition of the calibrated item In 1		Tolerance	
Calibration Equipment used (N	######################################		Schodulad Calibration
Primary Standards	ID#	Cal Data (Calibrated by, Certification NO.)	Scheduled Calibration
Power meter E4419B	GB41293874	5-May-09 (METAS, NO. 251-00388)	May-10
Power sensor E4412A	MY41495277	5-May-09 (METAS, NO. 251-00388)	May-10
Reference 3 dB Attenuator	SN:S5054 (3c)	10-Aug-09 (METAS, NO. 251-00403)	Aug-10
Reference 20 dB Attenuator	SN:S5086 (20b)	3-May-09 (METAS, NO. 251-00389)	May-10
Reference 30 dB Attenuator DAE4	SN:S5129 (30b) SN:617	10-Aug-09 (METAS, NO. 251-00404)	Aug-10 Jun-10
Reference Probe ES3DV2	SN: 3013	10-Jun-09 (SPEAG, NO.DAE4-907_Jun09) 12-Jan-09 (SPEAG, NO. ES3-3013_Jan09)	Jan-10
Secondary Standards	ID#	Check Data (in house)	Scheduled Calibration
RF generator HP8648C	US3642U01700	4-Aug-99(SPEAG, in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585	18-Oct-01(SPEAG, in house check Nov-07)	In house check: Nov-09
	Name	Function	Signature
Calibrated by:	Katja Pokovic	Technical Manager	Le May
Approved by:	Niels Kuster	Quality Manager	11
			Issued: September 25, 2009

Certificate No: ES3DV3-3149_Sep09 Page 1 of 9