

Portable Cellular Phone SAR Test Report

Test Report #: 22096-1F **Date of Report:** July 22, 2008

Date of Test: June 14, 2008 – June 20, 2008

FCC ID #: IHDT56JW1

Generic Name: N/A

Motorola Mobile Devices Business Product Safety & Compliance Laboratory

Laboratory: 600 N. US Highway 45

Libertyville, Illinois 60048

Katerina Royzen

Report Author: Engineer

Accreditation:

TESTING CERT #2518-02

Statement of

Compliance:

Katya Royyen

This laboratory is accredited to ISO/IEC 17025-2005 to perform the following tests:

<u>Tests</u>: <u>Procedures</u>: Electromagnetic Specific Absorption Rate IEC 62209-1

RSS-102

IEEE 1528 - 2003

FCC OET Bulletin 65 (*including Supplement C*) Australian Communications Authority Radio

Communications (Electromagnetic Radiation – Human

Exposure) Standard 2003 CENELEC EN 50360 (2001) CENELEC EN 50361 (2001) ARIB Std. T-56 (2002)

On the following products or types of products:

On the following products or types of products: Wireless Communications Devices (Examples): Two

Way Radios; Portable Phones (including Cellular, Licensed Non-Broadcast and PCS); Low

Frequency Readers; and Pagers

Motorola declares under its sole responsibility that the portable cellular telephone model to which this declaration relates, is in conformity with the appropriate General Population/Uncontrolled RF exposure standards, recommendations and guidelines (FCC 47 CFR §2.1093) as well as with CENELEC en50360:2001 and ANSI / IEEE C95.1. It also declares that the product was tested in accordance with IEEE 1528 / CENELEC EN62209-1 (2006), as well as other appropriate measurement standards, guidelines and recommended practices. Any deviations from these standards, guidelines and recommended practices are noted below:

(none)

©Motorola, Inc. 2008

This test report shall not be reproduced except in full, without written approval of the laboratory.

The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report.

Motorola encourages all feedback, both positive and negative, on this test report.

Table of Contents

2
2
2
2
3
3
3
4
5
6
7
12
15
16
17
18
19
20
22

1. Introduction

The Motorola Mobile Devices Business Product Safety Laboratory has performed measurements of the maximum potential exposure to the user of the portable cellular phone covered by this test report. The Specific Absorption Rate (SAR) of this product was measured. The portable cellular phone was tested in accordance with [1], [4] and [5]. The SAR values measured for the portable cellular phone are below the maximum recommended levels of 1.6 W/kg in a 1g average set in [3] and 2.0W/kg in a 10g average set in [2].

2. Description of the Device Under Test

2.1 Antenna description

Type	Internal			
Location	Bottom of Transceiver			
Dimensions	Width	45.8 mm		
	Length 17.8 mm			
Configuration	Dual Inverted L Antenna (DILA)			

2.2 Device description

Serial number			A0	000002C6	554A		
Mode(s) of	CDMA	CDMA	CDMA	EV-DO	EV-DO	EV-DO	Bluetooth
Operation	800	1700	1900	800	1700	1900	Biactootii
Modulation	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	GFSK
Mode(s)	,	,	,	`	,	,	
Maximum Output	25.00	25.00	25.00	25.00	25.00	25.00	5.07
Power Setting	dBm	dBm	dBm	dBm	dBm	dBm	dBm
Duty Cycle	1:1	1:1	1:1	1:1	1:1	1:1	1:1
Transmitting	824.7-	1711.2-	1851.2-	824.70-	1711.2-	1851.2-	2400.0-
Frequency	848.31	1753.75	1908.75	848.31	1753.75	1908.75	2483.5
Rang(s)	MHz	MHz	MHz	MHz	MHz	MHz	MHz
Production Unit or Identical							
Prototype (47	Identical Prototype						
CFR §2908)							
Device Category	Portable						
RF Exposure			General Po	opulation /	Uncontrolle	ed	
Limits				1			

3. Test Equipment Used

3.1 Dosimetric System

The Motorola Mobile Devices Business Product Safety & Compliance Laboratory utilizes a Dosimetric Assessment System (Dasy4TM v4.7) manufactured by Schmid & Partner Engineering AG (SPEAGTM), of Zurich Switzerland. All the SAR measurements are taken within a shielded enclosure. The overall 10g RSS uncertainty of the measurement system is $\pm 10.8\%$ (K=1) with an expanded uncertainty of $\pm 21.6\%$ (K=2). The overall 1g RSS uncertainty of the measurement system is $\pm 11.1\%$ (K=1) with an expanded uncertainty of $\pm 22.2\%$ (K=2). The measurement uncertainty budget is given in Appendix 5. Per IEEE 1528, this uncertainty budget is applicable to the SAR range of 0.4W/kg to 10W/kg.

The list of calibrated equipment used for the measurements is shown in the following table.

Description	Serial Number	Cal Due Date
DASY4™ DAE V1	SN 376	3/18/2009
E-Field Probe ET3DV6	SN 1514	7/11/2008
S.A.M. Phantom used for 800/900MHz	TP-1005	
S.A.M. Phantom used for 1800/1900/2450MHz	TP-1139	
Dipole Validation Kit, DV900V2	91	4/22/2009
Dipole Validation Kit, DV1800V2	259tr	4/22/2009
Dipole Validation Kit, DV2450V2	740tr	4/22/2009

3.2 Additional Equipment

Description	Serial Number	Cal Due Date
Signal Generator HP8648C	3847A04810	6/13/2009
Power Meter E4419B	GB39510961	1/24/2010
Power Sensor #1 – E9301A	US39210917	9/10/2008
Power Sensor #2 - E9301A	US39210918	9/10/2008
Network Analyzer HP8753ES	US39172529	9/10/2008
Dielectric Probe Kit HP85070C	US99360070	

4. Electrical parameters of the tissue simulating liquid

Prior to conducting SAR measurements, the relative permittivity, ε_r , and the conductivity, σ , of the tissue simulating liquids were measured with a HP85070 Dielectric Probe Kit These values, along with the temperature of the simulated tissue are shown in the table below. The recommended limits for permittivity and conductivity are also shown. A mass density of $\rho=1$ g/cm3 was entered into the system in all the cases. It can be seen that the measured parameters are within tolerance of the recommended limits specified in [1] and [5].

f	Tiesue		Diele	ctric Parame	eters
(MHz)	Tissue type	Limits / Measured	$\mathbf{\epsilon}_r$	σ (S/m)	Temp (°C)
	Head	Measured, 6/14/2008	41.4	0.91	20.0
835	Heau	Recommended Limits	41.5 ±5%	$0.90 \pm 5\%$	18-25
033	Dody	Measured , 6/18/2008	53.4	0.99	20.0
	Body	Recommended Limits	55.2 ±5%	$0.97 \pm 5\%$	18-25
	Head	Measured, 6/17/2008	41.7	1.32	19.8
1730	Head	Recommended Limits	40.1 ±5%	1.36 ±5%	18-25
1/30	Dody	Measured, 6/18/2008	50.9	1.48	20.0
	Body	Recommended Limits	53.5 ±5%	$1.48 \pm 5\%$	18-25
		Measured, 6/16/2008	38.8	1.39	19.7
	Head	Measured, 6/20/2008	38.5	1.47	19.5
1880		Recommended Limits	40.0 ±5%	1.40 ±5%	18-25
	Dode	Measured, 6/18/2008	51.1	1.59	20.0
	Body	Recommended Limits	53.3 ±5%	1.52 ±5%	18-25
2450	Dody	Measured, 6/19/2008	48.1	1.94	20.0
2450	Body	Recommended Limits	52.7 ±10%	1.95 ±5%	18-25

The list of ingredients and the percent composition used for the tissue simulates are indicated in the table below.

Ingredien t	835MHz / 900 MHz Head	835MHz / 900 MHz Body	1800MHz / 1900 MHz Head	1800 MHz / 1900 MHz Body	2450MHz Head	2450 MHz Body
Sugar	57	44.9				
DGBE			47	30.8		30
Diacetin					51	
Water	40.45	53.06	52.62	68.8	48.75	70
Salt	1.45	0.94	0.38	0.4	0.15	
HEC	1	1				
Bact.	0.1	0.1			0.1	

5. System Accuracy Verification

A system accuracy verification of the DASY4TM was performed using the measurement equipment listed in Section 3.1. The daily system accuracy verification occurs within the flat section of the SAM phantom.

A SAR measurement was performed to verify the measured SAR was within $\pm 10\%$ from the target SAR indicated Appendix 7. These frequencies are within $\pm 10\%$ of the compliance test mid-band frequency as required in [1] and [5]. The test was conducted on the same days as the measurement of the DUT. Recommended limits for permittivity and conductivity, specified in [5], are shown in the table below. The obtained results from the system accuracy verification are also displayed in the table below. SAR values are normalized to 1W forward power delivered to the dipole. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values. The distributions of SAR compare well with those of the reference measurements (see Appendix 1). The tissue stimulant depth was verified to be 15.0cm ± 0.5 cm. Z-axis scans showing the SAR penetration are also included in Appendix 1.

f		SAR (W/kg),	Dielectric Parameters		Ambient	Tissue
(MHz)	Description	1gram	$\mathbf{\epsilon}_r$	σ (S/m)	Temp (°C)	Temp (°C)
	Measured, 6/14/2008	12.15	40.6	0.97	20.4	20.0
900	Measured , 6/18/2008	12.23	39.8	0.96	20.3	20.1
	Recommended Limits	11.29	41.5 ±5%	0.97 ±5%	18-25	18-25
	Measured , 6/16/2008	39.50	39.1	1.37	20.6	20.2
	Measured , 6/17/2008	38.13	41.4	1.40	20.7	19.8
1800	Measured , 6/18/2008	38.75	41.6	1.42	20.3	19.7
	Measured, 6/20/2008	38.30	41.6	1.40	20.6	20.0
	Recommended Limits	37.7	40.0 ±5%	1.4 ±5%	18-25	18-25
2450	Measured , 6/20/2008	58.25	36.0	1.82	20.3	20.0
2430	Recommended Limits	56.5	39.2 ±10%	1.80 ±5%	18-25	18-25

The following probe conversion factors were used on the E-Field probe(s) used for the system accuracy verification measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe	SN 1514	900	5.98	8 of 9
ET3DV6		1810	4.92	8 of 9

6. Test Results

The test sample was operated using an actual transmission through a base station simulator. The base station simulator was setup to the proper channel, transmitter power level and transmit mode of operation. The phone was tested in the configurations stipulated in [1], [4] and [5]. The phone was positioned into these configurations using the device holder supplied with the DASY4TM SAR measurement system The measured dielectric constant of the material used for the device holder is less than 2.9 and the loss tangent is less than 0.02 (± 30%) at 850MHz. The default settings for the "coarse" and "cube" scans were chosen and used for measurements. The grid spacing of the course scan was set to 15 mm as shown in the SAR plots included in Appendix 2 and 3. Please refer to the DASY4TM manual for additional information on SAR scanning procedures and algorithms used.

The Cellular Phone model covered by this report has the following battery options: SNN5782C - 1100 mAH Battery

Per the "SAR Measurement Procedures for 3G Devices" released in October, 2007, RC1, RC3 and RC3 (FCH + SCH) CDMA modes, EVDO Rev O, EVDO Rev A were considered. The conducted power measurements (per steps 3, 4 & 10 of section 4.4.5.2 of 3GPP2 C.5.011 / TIA -98-E) for each mode are shown in the table below.

Conducted power (dBm) for CDMA modes								
Channel		R	C1	RC3		RC3 (FCH + SCH)		
	Chamiei	SO2	SO55	SO2	SO55	RC3 (FCH + 3CH)		
CDMA	1013	24.98	24.89	24.91	24.94			
800	384	24.83	24.82	24.88	24.87			
800	777	24.83	24.90	24.84	24.84	Per Motorola designs, the maximum		
CDMA	25	24.82	24.80	24.78	24.76	power, when in a mode that allows		
1700	450	24.80	24.82	24.88	24.89	supplemental channels, will always be less		
1700	875	24.73	24.72	24.73	24.70	than the RC3/RC1 maximum conducted		
CDMA	25	24.85	24.85	24.90	24.89	power limit.		
CDMA 1900	600	24.90	24.95	24.90	24.90			
1900	1175	24.78	24.79	24.84	24.82			

Conducted power (dBm) for EVDO modes							
		Re	v 0	Rev A (S	ubtype 2)		
	Channel	FTAP 307.2k	RTAP 153.6k	FETAP	RETAP		
CDMA	1013	24.59	24.58	24.87	24.67		
800	384	24.48	24.51	24.74	24.81		
800	777	24.56	24.50	24.78	24.80		
CDMA	25	24.17	23.42	23.44	24.89		
1700	450	24.20	23.55	23.63	24.97		
1700	875	24.15	23.50	23.60	24.94		
CDMA	25	24.61	24.10	24.31	25.21		
1900	600	24.42	24.31	24.31	25.16		
1900	1175	24.41	24.29	24.47	25.08		

6.1 Head Adjacent Test Results

The SAR results shown in tables 1 through 8 are maximum SAR values averaged over 1 gram of phantom tissue, to demonstrate compliance to [3] and also over 10 grams of phantom tissue, to demonstrate compliance to the [6]. Also shown are the measured conducted output power levels for the CDMA RC3/SO55 mode, the temperature of the simulated tissue after the test, the measured drift and the extrapolated SAR. The exact method of extrapolation is New SAR = Old SAR * 10^(-drift/10). The SAR reported at the end of the measurement process by the DASY4TM measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test.

The left head and right head SAR contour distributions are similar. Because of this similarity, the cheek/touch and 15° tilt test conditions with the highest SAR values in each band are indicated as bold numbers in the following tables and are included in Appendix 2. All other test conditions measured lower SAR values than those included in Appendix 2.

The SAR measurements were performed using the SAM phantoms listed in section 3.1. Since the same phantoms and simulated tissue were used for the system accuracy verification and the device SAR measurements, the Z-axis scans included in Appendix 1 are applicable for verification of simulated tissue depth to be 15.0cm ± 0.5 cm.

The following probe conversion factors were used on the E-Field probe(s) used for the head adjacent measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe	SN 1514	900	5.98	8 of 9
ET3DV6		1810	4.92	8 of 9

			Left	Head Ch	neek Position (slid	ler closed)			
f		Conducte d Output	Temp (°C)	Drift (dB)	10g SA	R value	1g SAR value		
(MHz)	Description	Power (dBm)			Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)	
	Channel 1013	24.93							
800MHz	Channel 384	24.93	20.1	-0.06	0.186	0.19	0.261	0.26	
	Channel 777	24.93							
	Channel 25	24.81							
1700MHz	Channel 450	24.89	19.8	-0.14	0.334	0.34	0.496	0.51	
	Channel 875	24.84							
	Channel 25	24.84	19.7	-0.21	0.420	0.44	0.715	0.75	
1900MHz	Channel 600	24.93	19.7	-0.37	0.606	0.66	1.04	1.13	
	Channel 1175	24.90	19.7	-0.25	0.411	0.44	0.715	0.76	

Table 1: SAR measurement results at the highest possible output power, measured in a head cheek position against the ICNIRP and ANSI SAR Limit.

			Right	Head C	heek Position (sli	der closed)		
f		Conducte d Output	Temp	Drift (dB)	10g SA	R value	1g SAI	R value
(MHz)	Description	Power (dBm)	(°C)		Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)
	Channel 1013	24.93						
800MHz	Channel 384	24.93	20.0	-0.30	0.223	0.24	0.304	0.33
	Channel 777	24.93						
	Channel 25	24.81						
1700MHz	Channel 450	24.89	19.8	-0.31	0.233	0.25	0.336	0.36
	Channel 875	24.84						
	Channel 25	24.84						
1900MHz	Channel 600	24.93	19.5	-0.30	0.420	0.45	0.699	0.75
	Channel 1175	24.90						

Table 2: SAR measurement results at the highest possible output power, measured in a head cheek position against the ICNIRP and ANSI SAR Limit.

	Left Head Cheek Position (slider open)											
f		Conducte d Output	Conducte d Output Power (dBm) C°C)	Drift	10g SA	R value	1g SA	R value				
(MHz)	Description	Power		(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)				
	Channel 1013	24.93	20.2	0.25	0.422	0.42	0.562	0.56				
800MHz	Channel 384	24.93	20.1	0.19	0.822	0.82	1.09	1.09				
	Channel 777	24.93	19.9	0.32	0.697	0.70	0.935	0.94				
	Channel 25	24.81										
1700MHz	Channel 450	24.89	19.8	-0.13	0.162	0.17	0.240	0.25				
	Channel 875	24.84										
	Channel 25	24.84										
1900MHz	Channel 600	24.93	19.5	-0.15	0.316	0.33	0.503	0.52				
	Channel 1175	24.90										

Table 3: SAR measurement results at the highest possible output power, measured in a head cheek position against the ICNIRP and ANSI SAR Limit.

	Right Head Cheek Position (slider open)											
f		Conducte d Output	Temp	Drift	10g SA	R value	1g SAI	R value				
(MHz)	Description	Power (dBm)	(°C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)				
800MHz	Channel 1013	24.93	20.0	-0.57	0.382	0.44	0.533	0.61				
	Channel 384	24.93	20.0	-0.06	0.832	0.84	1.08	1.09				
	Channel 777	24.93	20.0	0.79	0.663	0.66	0.874	0.87				
	Channel 25	24.81										
1700MHz	Channel 450	24.89	19.8	0.14	0.159	0.16	0.243	0.24				
	Channel 875	24.84										
	Channel 25	24.84										
1900MHz	Channel 600	24.93	19.5	-0.14	0.228	0.24	0.349	0.36				
	Channel 1175	24.90										

Table 4: SAR measurement results at the highest possible output power, measured in a head cheek position against the ICNIRP and ANSI SAR Limit.

			Left I	Head 15°	Tilt Position (sli	der closed)			
f		Conducte d Output	Temp (°C)	Drift (dB)	10g SA	R value	1g SAR value		
(MHz)	Description	Power (dBm)			Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)	
	Channel 1013	24.93							
800MHz	Channel 384	24.93	20.0	-0.20	0.228	0.24	0.316	0.33	
	Channel 777	24.93							
	Channel 25	24.81							
1700MHz	Channel 450	24.89	19.8	-0.03	0.141	0.14	0.222	0.22	
	Channel 875	24.84							
	Channel 25	24.84							
1900MHz	Channel 600	24.93	19.7	-0.25	0.374	0.40	0.601	0.64	
	Channel 1175	24.90							

Table 5: SAR measurement results at the highest possible output power, measured in a head 15° Tilt position against the ICNIRP and ANSI SAR Limit.

			Right	Head 15	° Tilt Position (sl	ider closed)			
f		Conducte d Output	Temp	Drift	10g SA	R value	1g SAR value		
(MHz)	Description	Power (dBm)	(°C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)	
	Channel 1013	24.93							
800MHz	Channel 384	24.93	20.0	0.48	0.256	0.26	0.378	0.38	
	Channel 777	24.93							
	Channel 25	24.81							
1700MHz	Channel 450	24.89	19.8	-0.06	0.069	0.07	0.104	0.11	
	Channel 875	24.84							
	Channel 25	24.84							
1900MHz	Channel 600	24.93	19.5	-0.14	0.412	0.43	0.665	0.69	
	Channel 1175	24.90							

Table 6: SAR measurement results at the highest possible output power, measured in a head 15° Tilt position against the ICNIRP and ANSI SAR Limit.

			Left	Head 15	° Tilt Position (sl	ider open)		
f		Conducte d Output	Temp	Drift	10g SA	R value	1g SAI	R value
(MHz)	Description	Power (dBm)	(°C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)
	Channel 1013	24.93	20.0	0.36	0.263	0.26	0.360	0.36
800MHz	Channel 384	24.93	20.0	-0.01	0.590	0.59	0.817	0.82
	Channel 777	24.93	20.0	0.26	0.410	0.41	0.570	0.57
	Channel 25	24.81						
1700MHz	Channel 450	24.89	19.8	0.00	0.152	0.15	0.242	0.24
	Channel 875	24.84						
	Channel 25	24.84						
1900MHz	Channel 600	24.93	19.5	-0.09	0.292	0.30	0.467	0.48
	Channel 1175	24.90						

Table 7: SAR measurement results at the highest possible output power, measured in a head 15° Tilt position against the ICNIRP and ANSI SAR Limit.

			Right	Head 15	5° Tilt Position (s	lider open)			
f		Conducte d Output	Temp	Drift	10g SA	R value	1g SAR value		
(MHz)	Description	Power (dBm)	(°C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)	
	Channel 1013	24.93	20.0	-0.32	0.238	0.26	0.312	0.34	
800MHz	Channel 384	24.93	20.0	-0.09	0.571	0.58	0.787	0.80	
	Channel 777	24.93	20.0	-0.62	0.347	0.40	0.496	0.57	
	Channel 25	24.81							
1700MHz	Channel 450	24.89	19.8	-0.08	0.173	0.18	0.263	0.27	
	Channel 875	24.84							
	Channel 25	24.84							
1900MHz	Channel 600	24.93	19.5	-0.27	0.301	0.32	0.488	0.52	
	Channel 1175	24.90							

Table 8: SAR measurement results at the highest possible output power, measured in a head 15° Tilt position against the ICNIRP and ANSI SAR Limit.

6.2 Body Worn Test Results

The SAR results shown in tables 9 through 11 are maximum SAR values averaged over 1 gram of phantom tissue, to demonstrate compliance to [3] and also over 10 grams of phantom tissue, to demonstrate compliance to the [6]. Also shown are the measured conducted output power levels for the CDMA RC3/SO55 mode, the temperature of the test facility during the test, the temperature of the tissue simulate after the test, the measured drift and the extrapolated SAR. The exact method of extrapolation is New SAR = Old SAR * 10^(-drift/10). The SAR reported at the end of the measurement process by the DASY4TM measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test.

The test conditions that produced the highest SAR values in each band are indicated as bold numbers in the following tables and are included in Appendix 3. All other test conditions measured lower SAR values than those included in Appendix 3.

A "flat" phantom was for the body-worn tests. This "flat" phantom is made out of 1" thick natural High Density Polyethylene with a thickness at the bottom equal to 2.0mm. It measures 52.7cm(long) x 26.7cm(wide) x 21.2cm(tall). The measured dielectric constant of the material used is less than 2.3 and the loss tangent is less than 0.0046 all the way up to 2.184GHz.

The tissue stimulant depth was verified to be $15.0 \, \mathrm{cm} \pm 0.5 \, \mathrm{cm}$. The same device holder described in section 6 was used for positioning the phone. The functional accessories were divided into two categories, the ones with metal components and the ones with non-metal components. For non-metallic component accessories', testing was performed on the accessory that displayed the closest proximity to the flat phantom. Each metallic component accessory, if any, was checked for uniqueness of metal component so that each is tested with the device. If multiple accessories shared an identical metal component, only the accessory that dictates the closest spacing to the body was tested. In addition to accessory testing, the cellular phone was tested with the front and back of the phone facing the phantom. For voice mode operation, the phone was placed as a distance of 25mm from the phantom. For data mode operation, the phone was placed as a distance of 25mm from the phantom. The cellular phone was tested with a headset connected to the device for all body-worn SAR measurements.

The following probe conversion factors were used on the E-Field probe(s) used for the body worn measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe	SN 1514	900	5.75	8 of 9
ET3DV6	511 1514	1810	4.59	8 of 9

		В	ody-Wor	n; Front	t of Phone 25mm	from Phantom		
f		Conducte d Output	Temp	Drift	10g SA	R value	1g SAI	R value
(MHz)	Description	Power (dBm)	(°C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)
	Channel 1013	24.93						
800MHz	Channel 384	24.93	20.0	-0.15	0.0282	0.03	0.0386	0.04
	Channel 777	24.93						
	Channel 25	24.81						
1700MHz	Channel 450	24.89	20.0	-0.17	0.0478	0.05	0.0701	0.07
	Channel 875	24.84						
	Channel 25	24.84						
1900MHz	Channel 600	24.93	19.1	-0.22	0.0337	0.04	0.0508	0.05
	Channel 1175	24.90						

Table 9: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

		Bo	dy-Wor	n; Back	of Phone 25mm	from Phantom		
f		Conducted Output	Temp	Drift	10g SA	R value	1g SA	R value
(MHz)	Description	Power (dBm)	(° C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)
	Channel 1013	24.93						
800MHz	Channel 384	24.93	20.0	-0.12	0.114	0.12	0.163	0.17
	Channel 777	24.93						
	Channel 25	24.81						
1700MHz	Channel 450	24.89	20.0	0.01	0.214	0.21	0.360	0.36
	Channel 875	24.84						
	Channel 25	24.84	20.0	-0.16	0.435	0.45	0.741	0.77
1900MHz	Channel 600	24.93	20.0	-0.03	0.503	0.51	0.854	0.86
	Channel 1175	24.90	20.0	0.00	0.345	0.35	0.590	0.59
Bluetooth	Channel 0							
2450 MHz	Channel 39	5.07	20.0	2.49	0.00	0.00	0.00	0.00
2430 11112	Channel 78							
800MHz+ Bluetooth	Channel 384					0.12		0.17
1700MHz+ Bluetooth	Channel 450					0.21		0.36
1900MHz+ Bluetooth	Channel 600					0.51		0.86

Table 10: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

	Body-Worn; Back of Phone 25mm from Phantom (EVDO REV A RETAB)										
f	Description	Conducted Output Power (dBm)	Temp (°C)	Drift (dB)	10g SA	R value	1g SAR value				
(MHz)					Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)			
	Channel 25	25.21	20.0	-0.09	0.414	0.42	0.697	0.71			
1900MHz	Channel 600	25.16	20.0	-0.21	0.456	0.48	0.772	0.81			
	Channel 1175	25.08	20.0	-0.45	0.357	0.40	0.604	0.67			

Table 11: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

References

- [1] CENELEC, en62209-1:2006 "Human Exposure to Radio Frequency Fields From Hand Held and Body Mounted Wireless Communication Devices Human Models, Instrumentation, and Procedures"
- [2] CENELEC, en50360:2001 "Product standard to demonstrate the compliance of mobile phones with the basic restrictions related to human exposure to electromagnetic fields (300MHz 3GHz)".
- [3] ANSI / IEEE, C95.1 1999 Edition "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3kHz to 300GHz"
- [4] FCC OET Bulletin 65 Supplement C 01-01
- [5] IEEE 1528 2003 Edition "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques"
- [6] ICNIRP Guidelines "Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic, and Electromagnetic Fields (up to 300 GHz)"

Appendix 1

SAR distribution comparison for the system accuracy verification

Date/Time: 6/14/2008 5:30:29 PM

DUT: Dipole 900 MHz; Type: D900V2; Procedure Notes: 900 MHz System Performance Check / Dipole Sn# 91; PM1 Power = 200mW; Sim.Temp@ meas = 20.0*C; Sim.Temp@ SPC = 20.0*C; Room Temp@ SPC = 20.4*C

Communication System: CW - Dipole; Frequency: 900 MHz; Duty Cycle: 1:1 Medium: VALIDATION Only; Medium parameters used: f = 900 MHz; $\sigma = 0.97$ mho/m; $\epsilon_r = 40.6$; $\rho = 1000$ kg/m³

DASY4 Configuration:

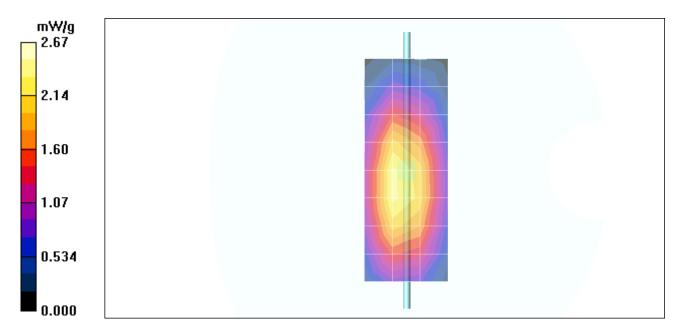
- Probe: ET3DV6 SN1514; ConvF(5.98, 5.98, 5.98); Calibrated: 7/11/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 3/18/2008
- Phantom: R1_ Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1005;
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

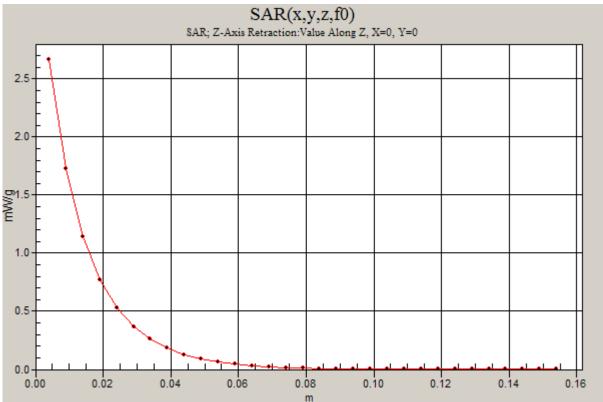
Daily SPC Check/Dipole Area Scan (4x9x1):

Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 2.38 mW/g

Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 52.9 V/m; Power Drift = 0.046 dB Peak SAR (extrapolated) = 3.75 W/kg SAR(1 g) = 2.45 mW/g; SAR(10 g) = 1.56 mW/g Maximum value of SAR (measured) = 2.66 mW/g


Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 52.9 V/m; Power Drift = 0.046 dB Peak SAR (extrapolated) = 3.71 W/kg SAR(1 g) = 2.41 mW/g; SAR(10 g) = 1.53 mW/g Maximum value of SAR (measured) = 2.56 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 2.67 mW/g

900MHz Val 6/14 Page 1 of 2

900MHz Val 6/14 Page 2 of 2

Date/Time: 6/18/2008 9:05:18 AM

DUT: Dipole 900 MHz; Type: D900V2; Procedure Notes: 900MHz System Performance Check / Dipole Sn# 91; PM1 Power = 200 mW Sim.Temp@ meas = 20.0*C; Sim.Temp@ SPC = 20.1*C; Room Temp@ SPC = 20.3*C

Communication System: CW - Dipole; Frequency: 900 MHz; Duty Cycle: 1:1 Medium: VALIDATION Only; Medium parameters used: f = 900 MHz; $\sigma = 0.96$ mho/m; $\epsilon_r = 39.8$; $\rho = 1000$ kg/m³

DASY4 Configuration:

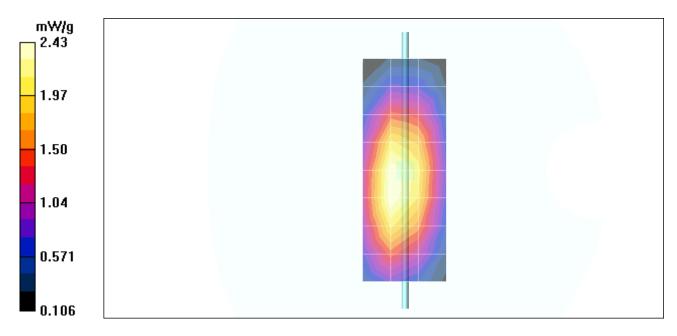
- Probe: ET3DV6 SN1514; ConvF(5.98, 5.98, 5.98); Calibrated: 7/11/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 3/18/2008
- Phantom: R1_ Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1005;
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

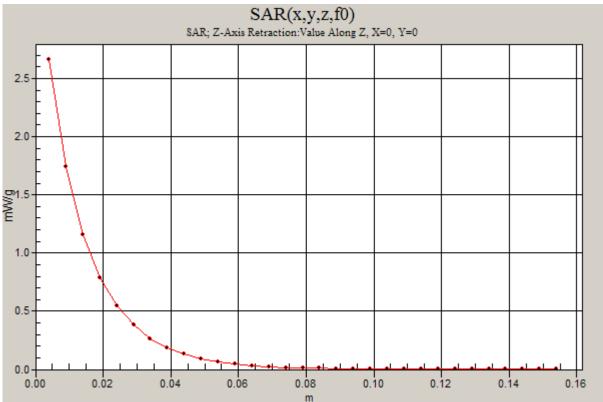
Daily SPC Check/Dipole Area Scan (4x9x1):

Measurement grid: dx=15mm, dy=15mmMaximum value of SAR (measured) = 2.43 mW/g

Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 53.6 V/m; Power Drift = 0.040 dB Peak SAR (extrapolated) = 3.73 W/kg SAR(1 g) = 2.46 mW/g; SAR(10 g) = 1.57 mW/g Maximum value of SAR (measured) = 2.67 mW/g


Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 53.6 V/m; Power Drift = 0.040 dB Peak SAR (extrapolated) = 3.72 W/kg SAR(1 g) = 2.43 mW/g; SAR(10 g) = 1.55 mW/g Maximum value of SAR (measured) = 2.61 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 2.66 mW/g

900MHz Val 6/18 Page 1 of 2

900MHz Val 6/18 Page 2 of 2

Date/Time: 6/16/2008 9:43:20 AM

DUT: Dipole 1800 MHz; Type: D1800V2; Procedure Notes: 1800MHz System Performance Check / Dipole Sn# 259tr; PM1 Power = 200mW

Sim.Temp@ meas = 19.8*C; Sim.Temp@ SPC = 20.2*C; Room Temp@ SPC = 20.6*C

Communication System: CW - Dipole; Frequency: 1800 MHz; Duty Cycle: 1:1 Medium: VALIDATION Only; Medium parameters used: f = 1800 MHz; $\sigma = 1.37$ mho/m; $\epsilon_r = 39.1$; $\rho = 1000$ kg/m³

DASY4 Configuration:

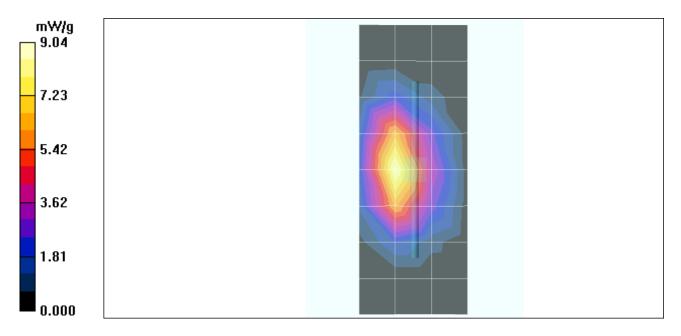
- Probe: ET3DV6 SN1514; ConvF(4.92, 4.92, 4.92); Calibrated: 7/11/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 3/18/2008
- Phantom: R1 Section 2, Amy Twin, Rev2 (23-June-04); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

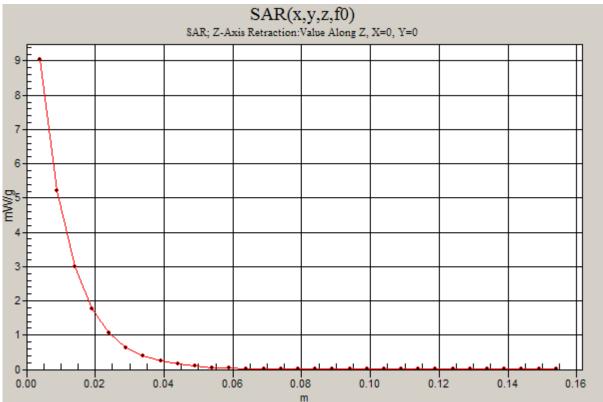
Daily SPC Check/Dipole Area Scan (9x4x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 8.69 mW/g

Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 76.5 V/m; Power Drift = 0.109 dB Peak SAR (extrapolated) = 13.6 W/kg SAR(1 g) = 7.94 mW/g; SAR(10 g) = 4.23 mW/g Maximum value of SAR (measured) = 8.79 mW/g


Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 76.5 V/m; Power Drift = 0.109 dB Peak SAR (extrapolated) = 13.5 W/kg SAR(1 g) = 7.86 mW/g; SAR(10 g) = 4.18 mW/g. Maximum value of SAR (measured) = 8.84 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 9.04 mW/g

1800MHz Val 6/16 Page 1 of 2

1800MHz Val 6/16 Page 2 of 2

Date/Time: 6/17/2008 8:46:17 AM

DUT: Dipole 1800 MHz; Type: D1800V2; Procedure Notes: 1800MHz System Performance Check / Dipole Sn# 259tr; PM1 Power = 200 mW Sim.Temp@ meas = 19.6*C; Sim.Temp@ SPC = 19.8*C; Room Temp@ SPC = 20.7*C

Communication System: CW - Dipole; Frequency: 1800 MHz; Duty Cycle: 1:1 Medium: VALIDATION Only; Medium parameters used: f = 1800 MHz; $\sigma = 1.4$ mho/m; $\epsilon_r = 41.4$; $\rho = 1000$ kg/m³

DASY4 Configuration:

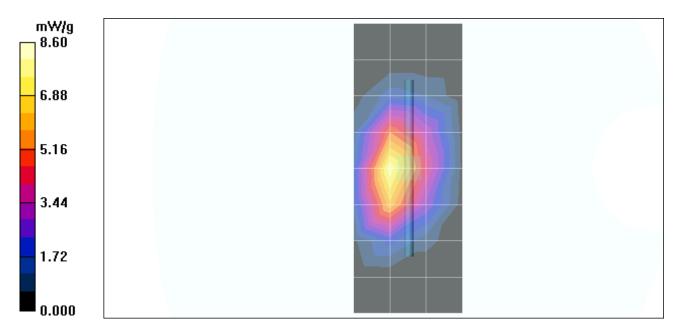
- Probe: ET3DV6 SN1514; ConvF(4.92, 4.92, 4.92); Calibrated: 7/11/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 3/18/2008
- Phantom: R1_ Glycol, SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1139;
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

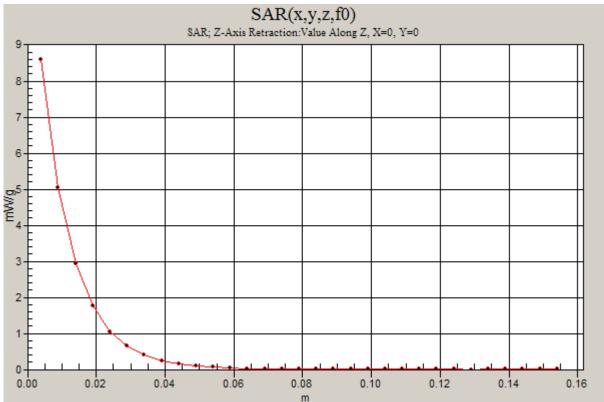
Daily SPC Check/Dipole Area Scan (4x9x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 7.89 mW/g

Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 77.6 V/m; Power Drift = 0.073 dB Peak SAR (extrapolated) = 12.8 W/kg SAR(1 g) = 7.57 mW/g; SAR(10 g) = 4.08 mW/g Maximum value of SAR (measured) = 8.33 mW/g


Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 77.6 V/m; Power Drift = 0.073 dB Peak SAR (extrapolated) = 13.1 W/kg SAR(1 g) = 7.68 mW/g; SAR(10 g) = 4.13 mW/g Maximum value of SAR (measured) = 8.12 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 8.60 mW/g

1800MHz Val 6/17 Page 1 of 2

1800MHz Val 6/17 Page 2 of 2

Date/Time: 6/18/2008 8:27:11 AM

DUT: Dipole 1800 MHz; Type: D1800V2; Procedure Notes: 1800 MHz System Performance Check / Dipole Sn# 259tr; PM1 Power = 200 mW

Sim. Temp@ meas = 19.4*C; Sim. Temp@ SPC = 19.7*C; Room Temp@ SPC = 20.3*C

Communication System: CW - Dipole; Frequency: 1800 MHz; Duty Cycle: 1:1 Medium: VALIDATION Only; Medium parameters used: f = 1800 MHz; $\sigma = 1.42$ mho/m; $\varepsilon_r = 41.6$; ρ $= 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ET3DV6 SN1514; ConvF(4.92, 4.92, 4.92); Calibrated: 7/11/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 3/18/2008
- Phantom: R1 Glycol, SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1139;
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

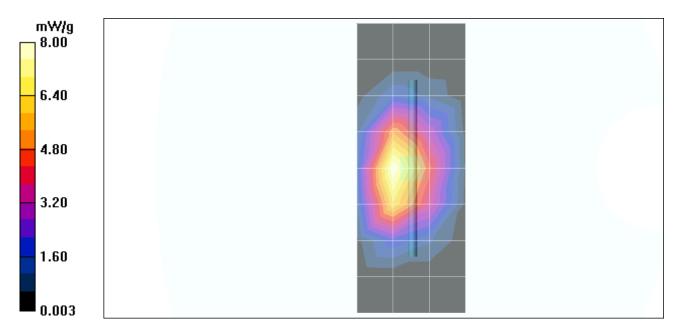
Daily SPC Check/Dipole Area Scan (4x9x1):

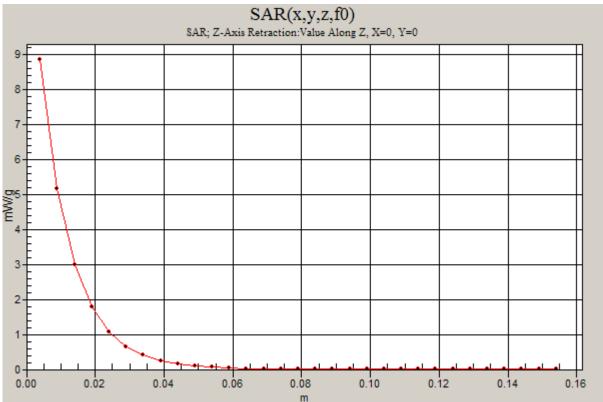
Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 8.00 mW/g

Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 79.4 V/m; Power Drift = 0.077 dB Peak SAR (extrapolated) = 13.3 W/kgSAR(1 g) = 7.82 mW/g; SAR(10 g) = 4.21 mW/g

Maximum value of SAR (measured) = 8.66 mW/g


Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 79.4 V/m; Power Drift = 0.077 dBPeak SAR (extrapolated) = 13.1 W/kgSAR(1 g) = 7.68 mW/g; SAR(10 g) = 4.13 mW/gMaximum value of SAR (measured) = 8.36 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 8.85 mW/g

1800MHz Val 6/18 Page 1 of 2

1800MHz Val 6/18 Page 2 of 2

Date/Time: 6/20/2008 8:20:16 AM

DUT: Dipole 1800 MHz; Type: D1800V2; Procedure Notes: 1800 MHz System Performance Check / Dipole Sn# 259tr; PM1 Power = 200 mW Sim.Temp@ meas =19.8*C; Sim.Temp@ SPC = 20.0*C; Room Temp@ SPC = 20.6*C

Communication System: CW - Dipole; Frequency: 1800 MHz; Duty Cycle: 1:1 Medium: VALIDATION Only; Medium parameters used: f = 1800 MHz; $\sigma = 1.4$ mho/m; $\epsilon_r = 41.6$; $\rho = 1000$ kg/m³

DASY4 Configuration:

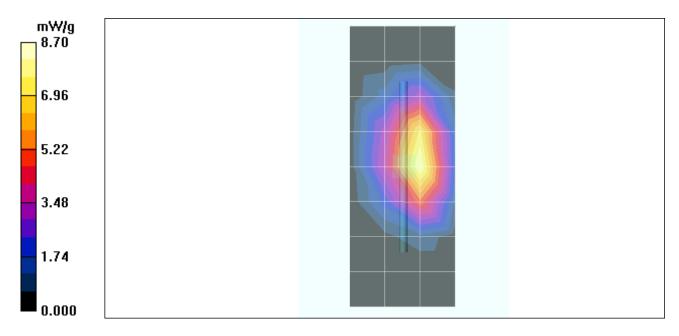
- Probe: ET3DV6 SN1514; ConvF(4.92, 4.92, 4.92); Calibrated: 7/11/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 3/18/2008
- Phantom: R1 Section 2, Amy Twin, Rev2 (23-June-04); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

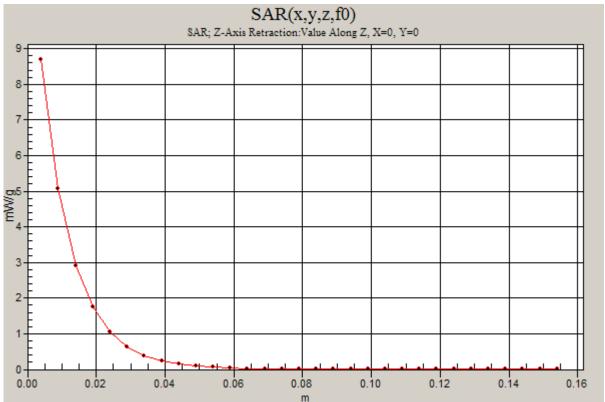
Daily SPC Check/Dipole Area Scan (9x4x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 8.25 mW/g

Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 78.5 V/m; Power Drift = -0.012 dB Peak SAR (extrapolated) = 13.3 W/kg SAR(1 g) = 7.75 mW/g; SAR(10 g) = 4.15 mW/g Maximum value of SAR (measured) = 8.70 mW/g


Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 78.5 V/m; Power Drift = -0.012 dB Peak SAR (extrapolated) = 13.0 W/kg SAR(1 g) = 7.57 mW/g; SAR(10 g) = 4.07 mW/g Maximum value of SAR (measured) = 8.06 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm

1800MHz Val 6/20 Page 1 of 2

1800MHz Val 6/20 Page 2 of 2

Date/Time: 6/19/2008 11:06:32 AM

DUT: HAC Dipole 2450 MHz; Type: CD2450V3; Procedure Notes: 2450MHz System Performance Check / Dipole Sn# 740tr; PM1 Power = 200 mW Sim.Temp@ meas = 20.0*C; Sim.Temp@ SPC = 20.0*C; Room Temp@ SPC = 20.3*C

Communication System: CW - Dipole; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: VALIDATION Only; Medium parameters used: f = 2450 MHz; $\sigma = 1.82$ mho/m; $\epsilon_r = 36$; $\rho = 1000$ kg/m³

DASY4 Configuration:

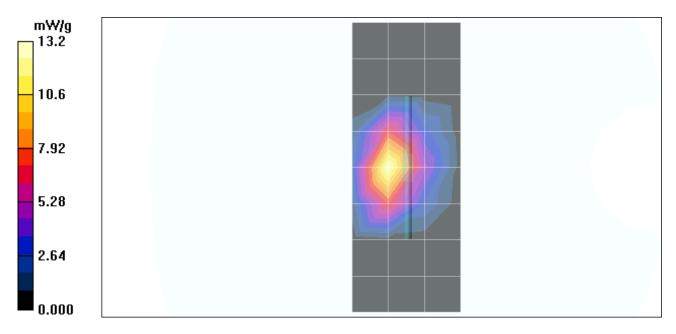
- Probe: ET3DV6 SN1514; ConvF(4.44, 4.44, 4.44); Calibrated: 7/11/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 3/18/2008
- Phantom: R1_ Glycol, SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1139;
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

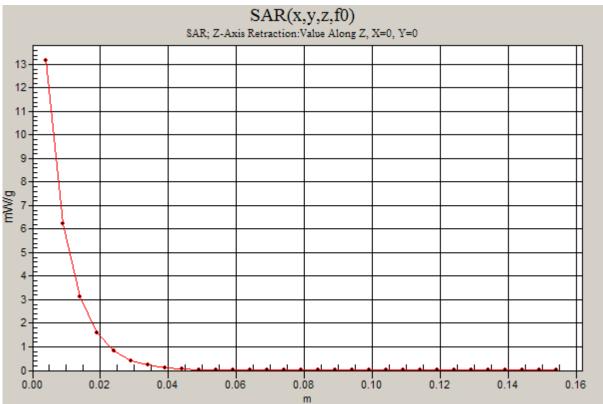
Daily SPC Check/Dipole Area Scan (4x9x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 12.7 mW/g

Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 78.9 V/m; Power Drift = 0.055 dB Peak SAR (extrapolated) = 26.9 W/kg SAR(1 g) = 11.8 mW/g; SAR(10 g) = 5.41 mW/g Maximum value of SAR (measured) = 13.1 mW/g


Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 78.9 V/m; Power Drift = 0.055 dB Peak SAR (extrapolated) = 26.5 W/kg SAR(1 g) = 11.5 mW/g; SAR(10 g) = 5.28 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 13.2 mW/g

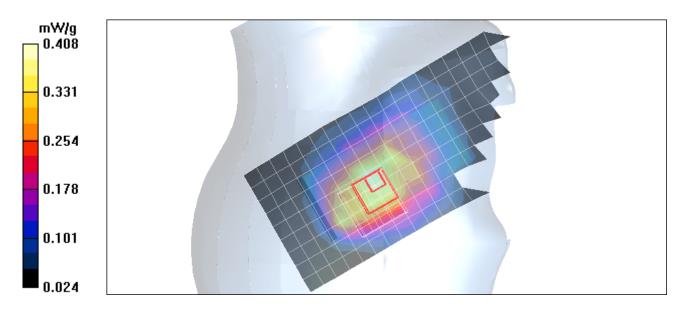
2450MHz Val 6/19 Page 1 of 2

2450MHz Val 6/19 Page 2 of 2

Appendix 2

SAR distribution plots for Phantom Head Adjacent Use

Date/Time: 6/15/2008 2:22:25 AM

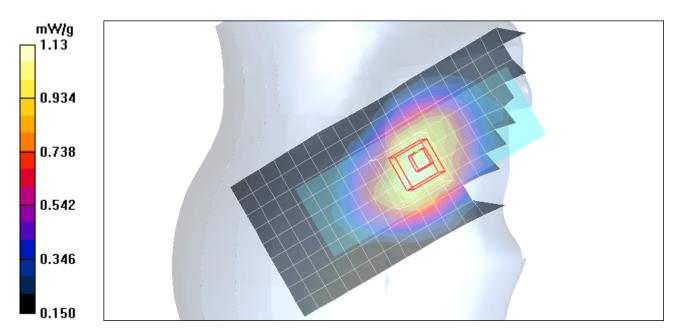

Serial: A0000002C6554A; Procedure Notes: Pwr Step: all up; Antenna Position: internal; Accessory Model #: n/a; Battery Model #: SNN5782C; DEVICE POSITION: tilt; Communication System: CDMA 835; Frequency: 836.52 MHz; Communication System Channel Number: 384; Duty Cycle: 1:1; Medium: Low Freq Head; Medium parameters used: f = 835 MHz; $\sigma = 0.91$ mho/m; $\varepsilon_r = 41.4$; $\rho = 1000$ kg/m³; DASY4 Configuration:

- Probe: ET3DV6 SN1514; ConvF(5.98, 5.98, 5.98); Calibrated: 7/11/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 3/18/2008
- Phantom: R1_ Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1005;
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Right Head Template/Area Scan - Normal (10mm) (10x25x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.391 mW/g

Right Head Template/5x5x7 Zoom Scan (<=3GHz)

(5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 21.0 V/m; Power Drift = 0.476 dB; Peak SAR (extrapolated) = 0.585 W/kg; SAR(1 g) = 0.378 mW/g; SAR(10 g) = 0.256 mW/g; Maximum value of SAR (measured) = 0.408 mW/g

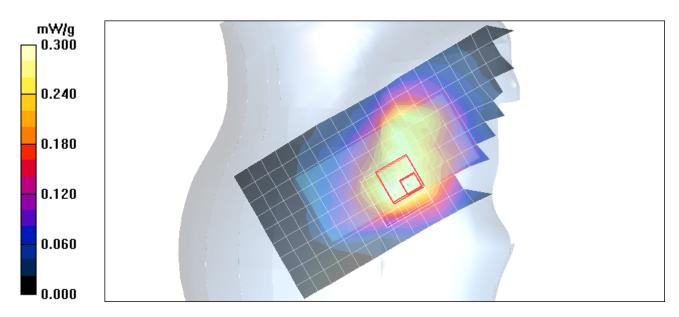

Date/Time: 6/14/2008 9:52:12 PM

Serial: A0000002C6554A; Procedure Notes: Pwr Step: all up; Antenna Position: internal; Accessory Model #: n/a; Battery Model #: SNN5782C; DEVICE POSITION: cheek; Communication System: CDMA 835; Frequency: 836.52 MHz; Communication System Channel Number: 384; Duty Cycle: 1:1; Medium: Low Freq Head; Medium parameters used: f = 835 MHz; $\sigma = 0.91$ mho/m; $\epsilon_r = 41.4$; $\rho = 1000$ kg/m³; DASY4 Configuration:

- Probe: ET3DV6 SN1514; ConvF(5.98, 5.98, 5.98); Calibrated: 7/11/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 3/18/2008
- Phantom: R1_ Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1005.
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Right Head Template/Area Scan - Normal (10mm) (10x25x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 1.15 mW/g

Right Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 36.7 V/m; Power Drift = -0.058 dB; Peak SAR (extrapolated) = 1.37 W/kg; **SAR(1 g) = 1.08 mW/g; SAR(10 g) = 0.832 mW/g;** Maximum value of SAR (measured) = 1.13 mW/g

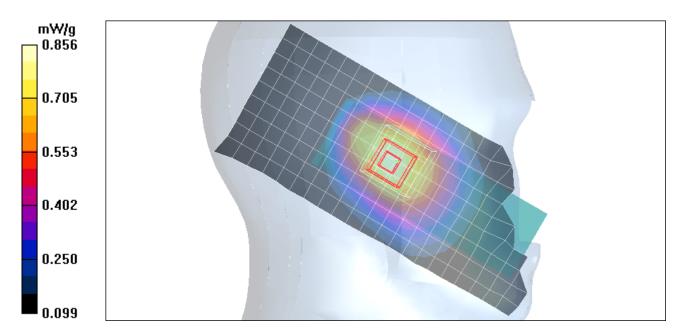

Date/Time: 6/14/2008 9:19:12 PM

Serial: A0000002C6554A; Procedure Notes: Pwr Step: all up; Antenna Position: internal; Accessory Model #: n/a; Battery Model #: SNN5782C; DEVICE POSITION: cheek; Communication System: CDMA 835; Frequency: 836.52 MHz; Communication System Channel Number: 384; Duty Cycle: 1:1; Medium: Low Freq Head; Medium parameters used: f = 835 MHz; $\sigma = 0.91$ mho/m; $\varepsilon_r = 41.4$; $\rho = 1000$ kg/m³; DASY4 Configuration:

- Probe: ET3DV6 SN1514; ConvF(5.98, 5.98, 5.98); Calibrated: 7/11/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 3/18/2008
- Phantom: R1_ Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1005;
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Right Head Template/Area Scan - Normal (10mm) (10x25x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.300 mW/g

Right Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 16.8 V/m; Power Drift = -0.296 dB; Peak SAR (extrapolated) = 0.549 W/kg; **SAR(1 g) = 0.304 mW/g**; **SAR(10 g) = 0.223 mW/g**; Maximum value of SAR (measured) = 0.329 mW/g


Date/Time: 6/14/2008 6:58:53 PM

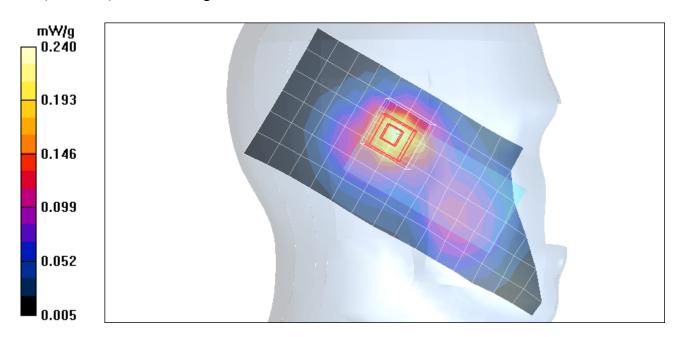
Serial: A0000002C6554A; Procedure Notes: Pwr Step: all up; Antenna Position: internal; Accessory Model #: n/a; Battery Model #: SNN5782C; DEVICE POSITION: tilt; Communication System: CDMA 835; Frequency: 836.52 MHz; Communication System Channel Number: 384; Duty Cycle: 1:1; Medium: Low Freq Head; Medium parameters used: f = 835 MHz; $\sigma = 0.91$ mho/m; $\varepsilon_r = 41.4$; $\rho = 1000$ kg/m³; DASY4 Configuration:

- Probe: ET3DV6 SN1514; ConvF(5.98, 5.98, 5.98); Calibrated: 7/11/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 3/18/2008
- Phantom: R1_ Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1005.
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Left Head Template/Area Scan - Normal (10mm) (10x25x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.869 mW/g

Left Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 29.9 V/m; Power Drift = -0.010 dB; Peak SAR (extrapolated) = 1.06 W/kg; SAR(1 g) = 0.817 mW/g; SAR(10 g) = 0.590 mW/g; Maximum value of SAR (measured) = 0.856 mW/g

Date/Time: 6/17/2008 11:34:05 AM

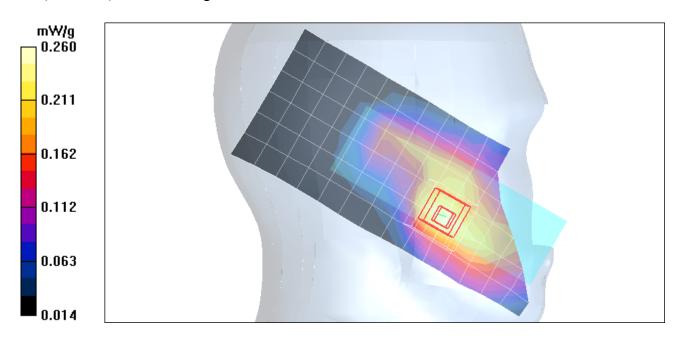

Serial: A0000002C6554A; Procedure Notes: Pwr Step: all up; Antenna Position: internal; Accessory Model #: n/a; Battery Model #: SNN5782C; DEVICE POSITION: tilt; Communication System: CDMA 1700; Frequency: 1732.5 MHz; Communication System Channel Number: 450; Duty Cycle: 1:1; Medium: Regular Glycol Head 1730; Medium parameters used: f = 1730 MHz; $\sigma = 1.32$ mho/m; $\varepsilon_r = 1.32$

41.7; $\rho = 1000 \text{ kg/m}^3$; DASY4 Configuration:

- Probe: ET3DV6 SN1514; ConvF(4.92, 4.92, 4.92); Calibrated: 7/11/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 3/18/2008
- Phantom: R1_ Glycol, SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1139
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Left Head Template/Area Scan - Normal (15mm) (7x17x1): Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.243 mW/g

Left Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 13.6 V/m; Power Drift = -0.035 dB; Peak SAR (extrapolated) = 0.305 W/kg; **SAR(1 g) = 0.222 mW/g; SAR(10 g) = 0.141 mW/g;** Maximum value of SAR (measured) = 0.240 mW/g

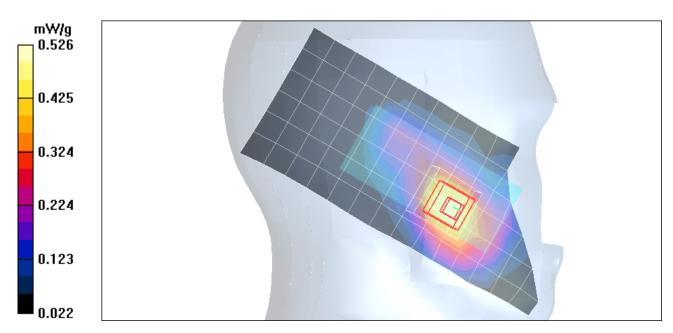

Date/Time: 6/17/2008 10:31:46 AM

Serial: A0000002C6554A; Procedure Notes: Pwr Step: all up; Antenna Position: internal; Accessory Model #: n/a; Battery Model #: SNN5782C; DEVICE POSITION: cheek; Communication System: CDMA 1700; Frequency: 1732.5 MHz; Communication System Channel Number: 450; Duty Cycle: 1:1; Medium: Regular Glycol Head 1730; Medium parameters used: f = 1730 MHz; $\sigma = 1.32$ mho/m; $\varepsilon_r = 41.7$; $\rho = 1000$ kg/m³; DASY4 Configuration:

- Probe: ET3DV6 SN1514; ConvF(4.92, 4.92, 4.92); Calibrated: 7/11/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 3/18/2008
- Phantom: R1_ Glycol, SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1139
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Left Head Template/Area Scan - Normal (15mm) (7x17x1): Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.257 mW/g

Left Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 14.5 V/m; Power Drift = -0.129 dB; Peak SAR (extrapolated) = 0.340 W/kg; **SAR(1 g) = 0.240 mW/g; SAR(10 g) = 0.162 mW/g;** Maximum value of SAR (measured) = 0.260 mW/g

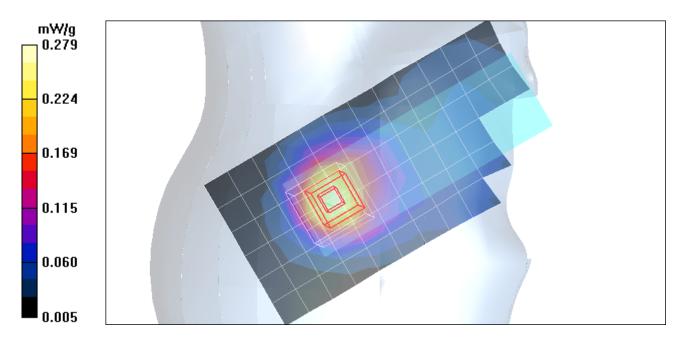

Date/Time: 6/17/2008 11:11:23 AM

Serial: A0000002C6554A; Procedure Notes: Pwr Step: all up; Antenna Position: internal; Accessory Model #: n/a; Battery Model #: SNN5782C; DEVICE POSITION: cheek; Communication System: CDMA 1700; Frequency: 1732.5 MHz; Communication System Channel Number: 450; Duty Cycle: 1:1; Medium: Regular Glycol Head 1730; Medium parameters used: f = 1730 MHz; $\sigma = 1.32$ mho/m; $\varepsilon_r = 41.7$; $\rho = 1000$ kg/m³; DASY4 Configuration:

- Probe: ET3DV6 SN1514; ConvF(4.92, 4.92, 4.92); Calibrated: 7/11/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 3/18/2008
- Phantom: R1_ Glycol, SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1139;
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Left Head Template/Area Scan - Normal (15mm) (7x17x1): Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.479 mW/g

Left Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 21.4 V/m; Power Drift = -0.137 dB; Peak SAR (extrapolated) = 0.673 W/kg; **SAR(1 g) = 0.496 mW/g**; **SAR(10 g) = 0.334 mW/g**; Maximum value of SAR (measured) = 0.526 mW/g

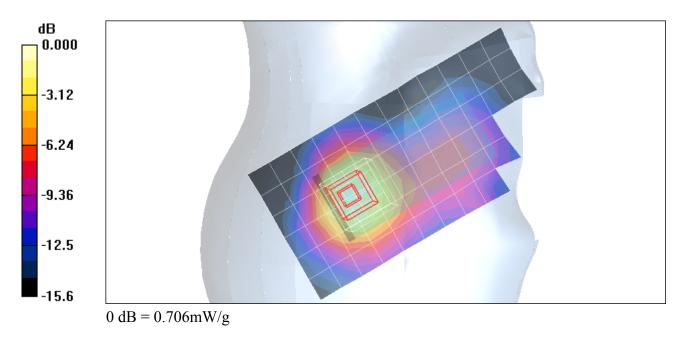

Date/Time: 6/17/2008 2:24:10 PM

Serial: A0000002C6554A; Procedure Notes: Pwr Step: always up; Antenna Position: internal; Accessory Model #: n/a; Battery Model #: SNN5782C; DEVICE POSITION: tilt; Communication System: CDMA 1700; Frequency: 1732.5 MHz; Communication System Channel Number: 450; Duty Cycle: 1:1; Medium: Regular Glycol Head 1730; Medium parameters used: f = 1730 MHz; $\sigma = 1.32$ mho/m; $\epsilon_r = 41.7$; $\rho = 1000$ kg/m³; DASY4 Configuration:

- Probe: ET3DV6 SN1514; ConvF(4.92, 4.92, 4.92); Calibrated: 7/11/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 3/18/2008
- Phantom: R1_ Glycol, SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1139;
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Right Head Template/Area Scan - Normal (15mm) (7x17x1): Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.266 mW/g

Right Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 15.1 V/m; Power Drift = -0.080 dB; Peak SAR (extrapolated) = 0.352 W/kg; **SAR(1 g) = 0.263 mW/g; SAR(10 g) = 0.173 mW/g;** Maximum value of SAR (measured) = 0.279 mW/g

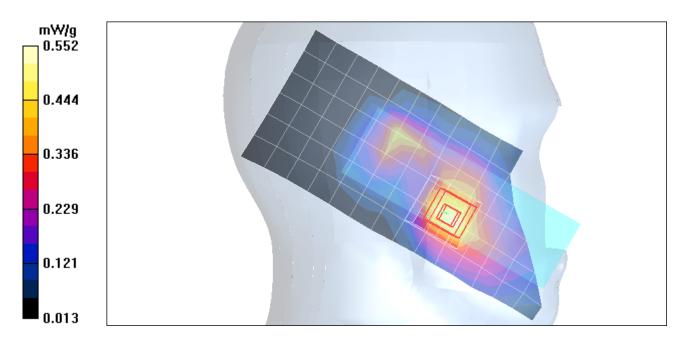

Date/Time: 6/16/2008 6:24:21 PM

Serial: A0000002C6554A; Procedure Notes: Pwr Step: all up; Antenna Position: internal; Accessory Model #: n/a; Battery Model #: SNN5782C; DEVICE POSITION: tilt; Communication System: CDMA 1900; Frequency: 1880 MHz; Communication System Channel Number: 600; Duty Cycle: 1:1; Medium: 3G Glycol Head; Medium parameters used: f = 1880 MHz; $\sigma = 1.39$ mho/m; $\epsilon_r = 38.8$; $\rho = 1000$ kg/m³; DASY4 Configuration:

- Probe: ET3DV6 SN1514; ConvF(4.92, 4.92, 4.92); Calibrated: 7/11/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 3/18/2008
- Phantom: R1_ Glycol, SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1139
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Right Head Template/Area Scan - Normal (15mm) (7x17x1): Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.685 mW/g

Right Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 22.1 V/m; Power Drift = -0.140 dB; Peak SAR (extrapolated) = 0.914 W/kg; **SAR(1 g) = 0.665 mW/g; SAR(10 g) = 0.412 mW/g;** Maximum value of SAR (measured) = 0.706 mW/g

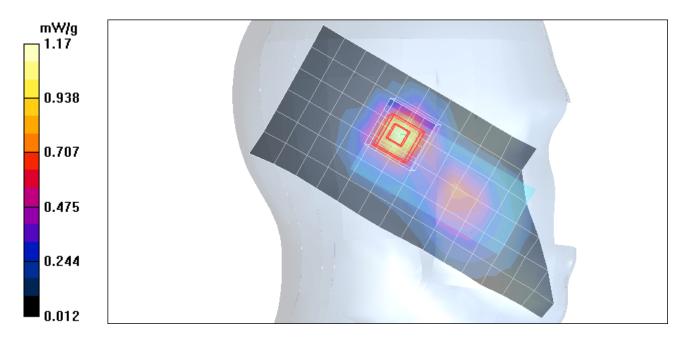

Date/Time: 6/16/2008 5:09:08 PM

Serial: A0000002C6554A; Procedure Notes: Pwr Step: all up; Antenna Position: internal; Accessory Model #: n/a; Battery Model #: SNN5782C; DEVICE POSITION: cheek; Communication System: CDMA 1900; Frequency: 1880 MHz; Communication System Channel Number: 600; Duty Cycle: 1:1; Medium: 3G Glycol Head; Medium parameters used: f = 1880 MHz; $\sigma = 1.39$ mho/m; $\epsilon_r = 38.8$; $\rho = 1000$ kg/m³; DASY4 Configuration:

- Probe: ET3DV6 SN1514; ConvF(4.92, 4.92, 4.92); Calibrated: 7/11/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 3/18/2008
- Phantom: R1_ Glycol, SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1139;
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Left Head Template/Area Scan - Normal (15mm) (7x17x1): Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.541 mW/g

Left Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 20.9 V/m; Power Drift = -0.151 dB; Peak SAR (extrapolated) = 0.744 W/kg; **SAR(1 g) = 0.503 mW/g; SAR(10 g) = 0.316 mW/g;** Maximum value of SAR (measured) = 0.552 mW/g

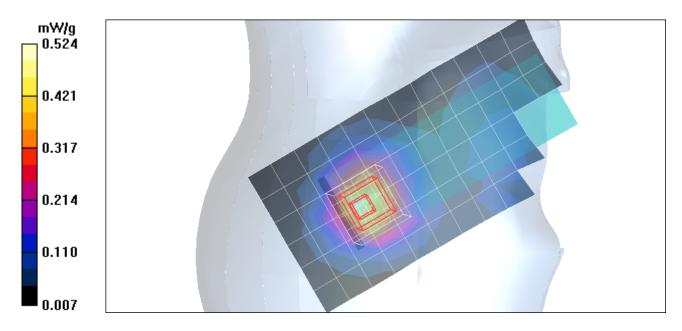

Date/Time: 6/20/2008 8:40:36 PM

Serial: A0000002C6554A; Procedure Notes: Pwr Step: all up; Antenna Position: internal; Accessory Model #: n/a; Battery Model #: SNN5782C; DEVICE POSITION: cheek; Communication System: CDMA 1900; Frequency: 1880 MHz; Communication System Channel Number: 600; Duty Cycle: 1:1; Medium: Backup Glycol Head 1750/1880; Medium parameters used: f = 1880 MHz; $\sigma = 1.47$ mho/m; $\varepsilon_r = 38.5$; $\rho = 1000$ kg/m³; DASY4 Configuration:

- Probe: ET3DV6 SN1514; ConvF(4.92, 4.92, 4.92); Calibrated: 7/11/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 3/18/2008
- Phantom: R1_ Glycol, SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1139
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Left Head Template/Area Scan - Normal (15mm) (7x17x1): Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 1.17 mW/g

Left Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 27.9 V/m; Power Drift = -0.371 dB; Peak SAR (extrapolated) = 1.51 W/kg; **SAR(1 g) = 1.04 mW/g**; **SAR(10 g) = 0.606 mW/g**


Date/Time: 6/16/2008 8:22:05 PM

Serial: A0000002C6554A; Procedure Notes: Pwr Step: all up; Antenna Position: internal; Accessory Model #: n/a; Battery Model #: SNN5782C; DEVICE POSITION: tilt; Communication System: CDMA 1900; Frequency: 1880 MHz; Communication System Channel Number: 600; Duty Cycle: 1:1; Medium: 3G Glycol Head; Medium parameters used: f = 1880 MHz; $\sigma = 1.39$ mho/m; $\varepsilon_r = 38.8$; $\rho = 1000$ kg/m³; DASY4 Configuration:

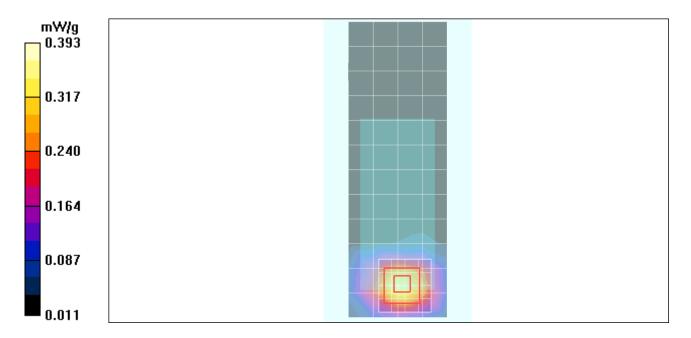
- Probe: ET3DV6 SN1514; ConvF(4.92, 4.92, 4.92); Calibrated: 7/11/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 3/18/2008
- Phantom: R1_ Glycol, SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1139
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Right Head Template/Area Scan - Normal (15mm) (7x17x1): Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.513 mW/g

Right Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 19.2 V/m; Power Drift = -0.271 dB; Peak SAR (extrapolated) = 0.701 W/kg; **SAR(1 g) = 0.488 mW/g; SAR(10 g) = 0.301 mW/g;** Maximum value of SAR (measured) = 0.524 mW/g

Appendix 3

SAR distribution plots for Body Worn Configuration


Date/Time: 6/18/2008 6:55:02 PM

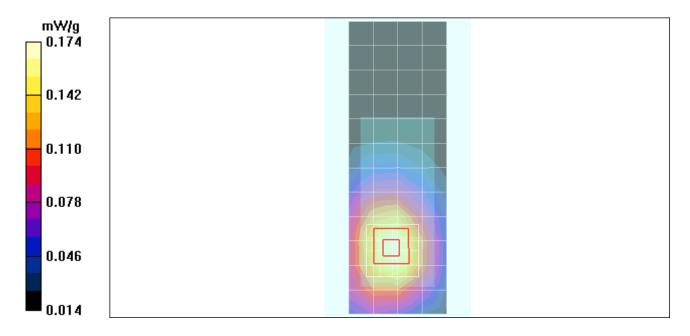
Serial: A0000002C6554A; Procedure Notes: Pwr Step: all up; Antenna Position: internal; Battery Model #: SNN5782C; Accessory Model #: n/a; DEVICE POSITON: BODYWORN BACK OF PHONE 25MM AWAY FROM PHANTOM; Communication System: CDMA 1700; Frequency: 1732.5 MHz; Communication System Channel Number: 450; Duty Cycle: 1:1; Medium: Regular Glycol Body 1730; Medium parameters used: f = 1730 MHz; $\sigma = 1.48$ mho/m; $\varepsilon_r = 50.9$; $\rho = 1000$ kg/m³; DASY4 Configuration:

- Probe: ET3DV6 SN1514; ConvF(4.59, 4.59, 4.59); Calibrated: 7/11/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376: Calibrated: 3/18/2008
- Phantom: R1_ Section 2, Amy Twin, Rev2 (23-June-04); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Amy Twin Phone Template/Area Scan - Normal Body (15mm) (13x7x1): Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.351 mW/g

Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 12.0 V/m; Power Drift = 0.005 dB; Peak SAR (extrapolated) = 0.547 W/kg; **SAR(1 g) = 0.360 mW/g; SAR(10 g) = 0.214 mW/g;** Maximum value of SAR (measured) = 0.393 mW/g

CDMA1700 Body Page 1 of 1


Date/Time: 6/18/2008 8:38:02 PM

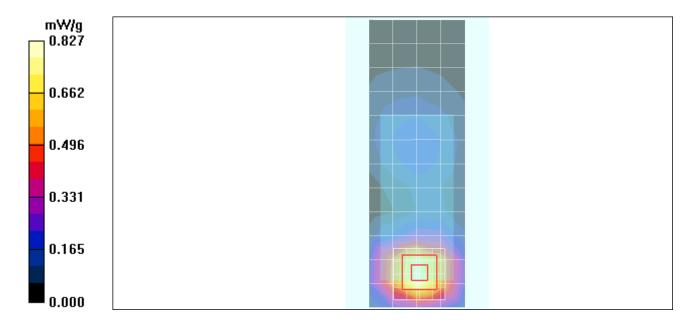
Serial: A0000002C6554A; Procedure Notes: Pwr Step: all up; Antenna Position: internal; Battery Model #: SNN5782C; Accessory Model #: none; DEVICE POSITION: BODYWORN BACK OF PHONE 25MM AWAY FROM PHANTOM; Communication System: CDMA 835; Frequency: 836.52 MHz; Communication System Channel Number: 384; Duty Cycle: 1:1; Medium: Low Freq Body; Medium parameters used: f = 835 MHz; $\sigma = 0.99$ mho/m; $\varepsilon_r = 53.4$; $\rho = 1000$ kg/m³; DASY4 Configuration:

- Probe: ET3DV6 SN1514; ConvF(5.75, 5.75, 5.75); Calibrated: 7/11/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376: Calibrated: 3/18/2008
- Phantom: R1_ Section 1, Amy Twin, Rev2 (23-June-04); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Amy Twin Phone Template/Area Scan - Normal Body (15mm) (13x7x1): Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.172 mW/g

Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 13.7 V/m; Power Drift = -0.117 dB; Peak SAR (extrapolated) = 0.219 W/kg; **SAR(1 g) = 0.163 mW/g; SAR(10 g) = 0.114 mW/g;** Maximum value of SAR (measured) = 0.174 mW/g

CDMA800 Body Page 1 of 1


Date/Time: 6/18/2008 2:07:19 PM

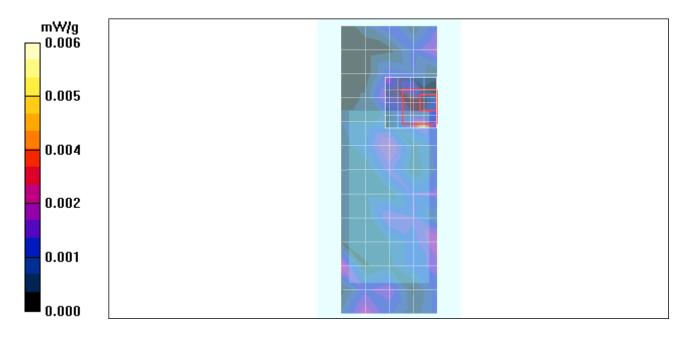
Serial: A0000002C6554A; Procedure Notes: Pwr Step: all up; Antenna Position: internal; Battery Model #: SNN5782C; Accessory Model #: none; DEVICE POSITION: BODYWORN BACK OF PHONE 25MM AWAY FROM PHANTOM; Communication System: CDMA 1900; Frequency: 1880 MHz; Communication System Channel Number: 600; Duty Cycle: 1:1; Medium: Regular Glycol Body 1750/1880; Medium parameters used: f = 1880 MHz; $\sigma = 1.59$ mho/m; $\varepsilon_r = 51.1$; $\rho = 1000$ kg/m³; DASY4 Configuration:

- Probe: ET3DV6 SN1514; ConvF(4.59, 4.59, 4.59); Calibrated: 7/11/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376: Calibrated: 3/18/2008
- Phantom: R1 Section 2, Amy Twin, Rev2 (23-June-04); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Amy Twin Phone Template/Area Scan - Normal Body (15mm) (13x7x1): Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.827 mW/g

Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 21.1 V/m; Power Drift = -0.034 dB; Peak SAR (extrapolated) = 1.40 W/kg; **SAR(1 g) = 0.854 mW/g; SAR(10 g) = 0.503 mW/g;** Maximum value of SAR (measured) = 0.930 mW/g

CDMA1900 Body Page 1 of 1


Date/Time: 6/19/2008 11:46:14 AM

Serial: A0000002C6554A; Procedure Notes: Pwr Step: continuos; Antenna Position: internal; Battery Model #:SNN5782C; Accessory Model #: n/a; DEVICE POSITION: BODYWORN FRONT OF PHONE 25MM AWAY FROM PHANTOM; Communication System: Bluetooth; Frequency: 2441 MHz; Communication System Channel Number: 39; Duty Cycle: 1:1; Medium: 2450 Glycol Body; Medium parameters used: f = 2450 MHz; $\sigma = 1.94$ mho/m; $\varepsilon_r = 48.1$; $\rho = 1000$ kg/m³; DASY4 Configuration:

- Probe: ET3DV6 SN1514; ConvF(4.07, 4.07, 4.07); Calibrated: 7/11/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376: Calibrated: 3/18/2008
- Phantom: R1_ Section 2, Amy Twin, Rev2 (23-June-04); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Amy Twin Phone Template/Area Scan - Normal Body (15mm) (13x7x1): Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.003 mW/g

Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 0.222 V/m; Power Drift = 2.49 dB; Peak SAR (extrapolated) = 0.005 W/kg; **SAR(1 g) = 4.96e-005 mW/g; SAR(10 g) = 7.02e-006 mW/g;** Maximum value of SAR (measured) = 0.006 mW/g

Bluetooth Body Page 1 of 1

Appendix 4

Probe Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerlscher Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

Client

Motorola MDb

Certificate No: ET3-1514_Jul07

CALIBRATION CERTIFICATE

Object ET3DV6 - SN:1514

Calibration procedure(s) QA CAL-01.v6

Calibration procedure for dosimetric E-field probes

Calibration date: July 11, 2007

Condition of the calibrated item In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-07 (METAS, No. 217-00670)	Mar-08
Power sensor E4412A	MY41495277	29-Mar-07 (METAS, No. 217-00670)	Mar-08
Power sensor E4412A	MY41498087	29-Mar-07 (METAS, No. 217-00670)	Mar-08
Reference 3 dB Attenuator	SN: S5054 (3c)	10-Aug-06 (METAS, No. 217-00592)	Aug-07
Reference 20 dB Attenuator	SN: \$5086 (20b)	29-Mar-07 (METAS, No. 217-00671)	Mar-08
Reference 30 dB Attenuator	SN: S5129 (30b)	10-Aug-06 (METAS, No. 217-00593)	Aug-07
Reference Probe ES3DV2	SN: 3013	4-Jan-07 (SPEAG, No. ES3-3013_Jan07)	Jan-08
DAE4	SN: 654	20-Apr-07 (SPEAG, No. DAE4-654_Apr07)	Apr-08
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (SPEAG, in house check Nov-05)	In house check: Nov-07
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Oct-06)	In house check: Oct-07
	Name	Function	Signature
Calibrated by:	Katja Pokovic	Technical Manager	201-112
Approved by:	Niels Kuster	Quality Manager	

Issued: July 12, 2007

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,v.z tissue simulating liquid sensitivity in free space

ConF

sensitivity in TSL / NORMx,y,z

DCP

diode compression point

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of
 the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe ET3DV6

SN:1514

Manufactured:

November 24, 1999

Last calibrated:

July 17, 2006

Recalibrated:

July 11, 2007

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ET3DV6 SN:1514

Sensitivity in Free	Diode C	ompression ^B	1		
NormX	1.70 ± 10.1%	μ V/(V/m) ²	DCP X	91 mV	
NormY	1.94 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	91 mV	
NormZ	1.85 ± 10.1%	μV/(V/m) ²	DCP Z	89 mV	

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL 900 MHz Typical SAR gradient: 5 % per mm

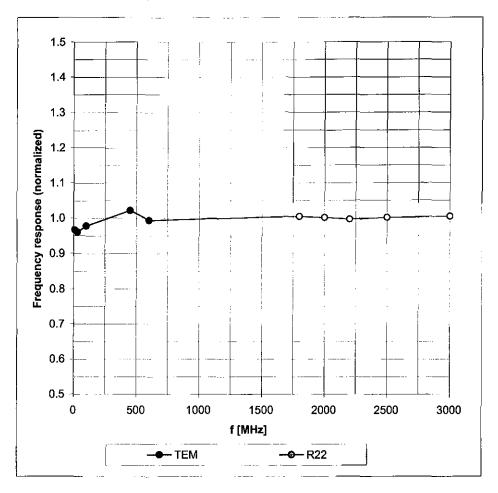
Sensor Center to	o Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	10.2	5.3
SAR _{be} [%]	With Correction Algorithm	0.1	0.3

TSL 1810 MHz Typical SAR gradient: 10 % per mm

Sensor Center to	Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	14.0	9.1
SAR _{be} [%]	With Correction Algorithm	0.1	0.0

Sensor Offset

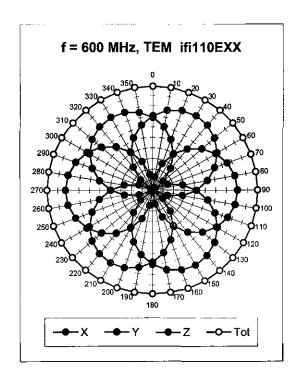
Probe Tip to Sensor Center 2.7 mm

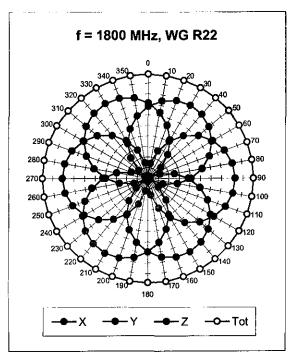

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

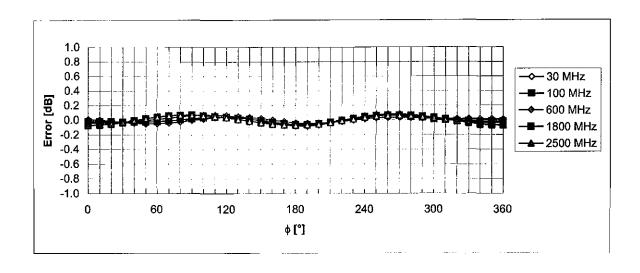
A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Page 8).

^B Numerical linearization parameter: uncertainty not required.

Frequency Response of E-Field

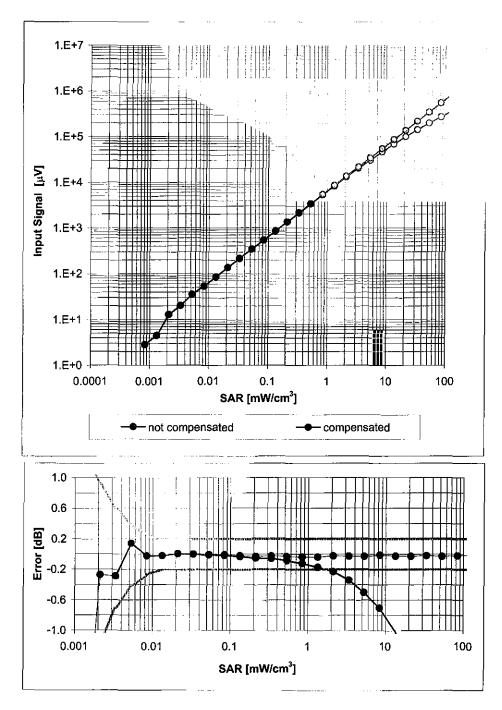

(TEM-Cell:ifi110 EXX, Waveguide: R22)



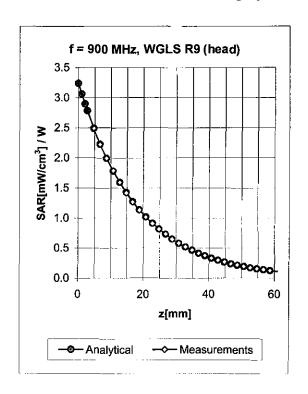

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

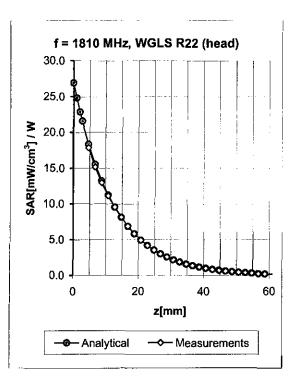
July 11, 2007

Receiving Pattern (ϕ), ϑ = 0°



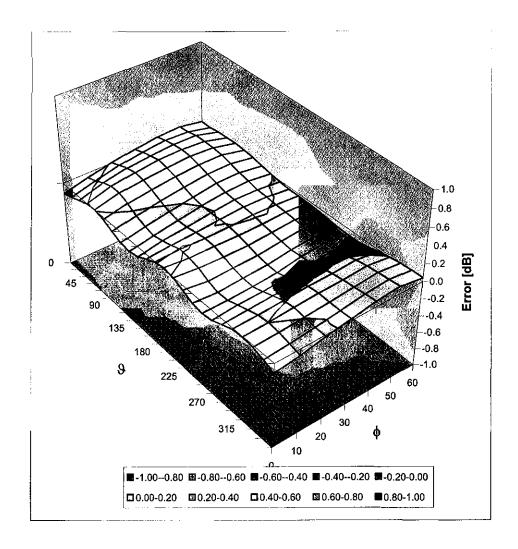
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head})


(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment



f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.33	2.62	5.98 ± 11.0% (k=2)
1810	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.54	2.61	4.92 ± 11.0% (k=2)
1950	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.62	2.50	4.72 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.94	1.62	4.44 ± 11.8% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.33	2.79	5.75 ± 11.0% (k=2)
1810	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.74	2.31	4.59 ± 11.0% (k=2)
1950	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.97	1.96	4.34 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.79	1.94	4.07 ± 11.8% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Appendix 5

Measurement Uncertainty Budget

							h=	i =	
	b		d	e =	f	~	c x f	cxg	k
<u>a</u>	D	<u>с</u>		f(d,k)		g	/e	/e	, A
	IEEE	Tol.	Prob		Ci	C _i	1 g	10 g	
	1528	(± %)	Dist		(1 g)	(10 g)	u i	u _i	
Uncertainty Component	section	(± /0)	Dist	Div.	(19)	9/	(±%)	(±%)	V i
Measurement System				D.111			(= /0)	(=70)	• ,
Probe Calibration	E.2.1	5.9	N	1.00	1	1	5.9	5.9	
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	8
Hemispherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	8
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	8
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3	
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	8
Integration Time	E.2.8	1.1	R	1.73	1	1	0.6	0.6	8
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	8
RF Ambient Conditions - Noise	E.0.1	3.0	N	1.73	ı	ı	1.7	1.7	3
Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	∞
Probe Positioner Mech.		0.0		0			0.0	0.0	
Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	∞
Probe Positioning w.r.t									
Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8	∞
Max. SAR Evaluation (ext.,									
int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	∞
Test sample Related									
Test Sample Positioning	E.4.2	3.2	N	1.00	1	1	3.2	3.2	29
Device Holder Uncertainty	E.4.1	4.0	N	1.00	1	1	4.0	4.0	8
SAR drift	6.6.2	5.0	R	1.73	1	1	2.9	2.9	∞
Phantom and Tissue									
Parameters	5 0 1	4.0		4 = 0	4	4			
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	~
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	~
Liquid Conductivity	F 2 2	2.0	N.	4.00	0.04	0.40	0.4		
(measurement)	E.3.3	3.3	N	1.00	0.64	0.43	2.1	1.4	∞
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	∞
Liquid Permittivity (measurement)	E.3.3	1.9	N	1.00	0.6	0.49	1.1	0.9	8
Combined Standard	L.J.J	1.3	IN	1.00	0.0	0.43	1.1	0.8	3
Uncertainty			RSS				11.1	10.8	411
Expanded Uncertainty									
(95% CONFIDENCE LEVEL)			k=2				22.2	21.6	

Appendix 6

Dipole Characterization Certificate

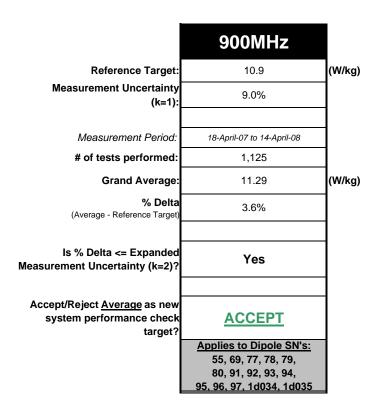
Certification of System Performance Check Targets

Based on WI-0396

-Historical Data-

	1800MHz	
Reference Target:	38.4	(W/kg)
Measurement Uncertainty (k=1):	9.0%	
Measurement Period:	18-April-07 to 14-April-08	
# of tests performed:	1,028	
Grand Average:	37.7	(W/kg)
% Delta (Average - Reference Target)	-1.7%	
Is % Delta <= Expanded Measurement Uncertainty (k=2)?	Yes	
Accept/Reject <u>Average</u> as new system performance check target?	ACCEPT	
	Applies to Dipole SN's: 246tr, 250tr, 251tr, 259tr, 263tr, 271tr, 272tr, 276tr, 277tr, 279tr, 280tr, 281tr, 283tr, 284tr, 2d128, 2d129	

-New System Performance Check Targets- per WI-0396


(based on analysis of historical data)

Frequency	SAR Target (W/kg)	Permittivity	Conductivity (S/m)
1800MHz	37.7	40.0 ± 5%	1.40 ± 5%

-Approvals-				-
• •	bmitted by:	Marge Kaunas	Date:	16-Apr-08
	Signed:	Marge Kawas		
C	Comments:	Spreadsheet detailing referenced historical measurement	nts is available upon reques	st.
Apr	proved by:	Mark Douglas	Date:	22-Apr-08
	Signed:	Mark Pouglas		
C	omments:			

Certification of System Performance Check Targets Based on WI-0396

-Historical Data-

-New System Performance Check Targets- per WI-0396

(based on analysis of historical data)

Frequency	SAR Target (W/kg)	Permittivity	Conductivity (S/m)
900MHz	11.29	41.5 ± 5%	0.97 ± 5%

-Approvals-		
Submitted by:	Marge Kaunas	Date: 16-Apr-08
Signed:	Marge Kawas	
Comments:	Spreadsheet detailing referenced historical measurements	is available upon request.
Approved by:	Mark Douglas	Date: 22-Apr-08
Signed:	Mark Porglas	
Comments:		

Certification of System Performance Check Targets Based on WI-0396

-Historical Data-

	2450MHz	
Reference Target:	52.4	(W/kg)
Measurement Uncertainty (k=1):	9.0%	
,		
Measurement Period:	18-April-07 to 14-April-08	
# of tests performed:	77	
Grand Average:	56.5	(W/kg)
% Delta (Average - IEEE1528 Target)	7.8%	
Is % Delta <= Expanded Measurement Uncertainty (k=2)?	Yes	
Accept/Reject <u>Average</u> as new system performance check target?	ACCEPT	
	Applies to Dipole SN's: 740, 766, 767, 788, 789	

-New System Performance Check Targets- per WI-0396

(based on analysis of historical data)

Frequency	SAR Target (W/kg)	Permittivity	Conductivity (S/m)
2450MHz	56.5	39.2 ± 5%	1.80 ± 5%

Approvals-		
Submitted by:	Marge Kaunas	Date: 16-Apr-08
Signed:	Marge Kawas	
Comments:	Spreadsheet detailing referenced historical measurements i	s available upon request.
Approved by:	Mark Douglas	Date: 22-Apr-08
<u>Signed:</u>	ssjork Morgla	
Comments:		