

## Portable Cellular Phone SAR Test Report

**Test Report #:** 21466-1F Rev. A **Date of Report:** Jan-28-2008

**Date of Test:** Dec-12-2007 to Jan-07-2008, Jan-24-2008

FCC ID #: IHDT56JA1

Generic Name: N/A

TESTING CERT #2518-02

Statement of

**Compliance:** 

Motorola Mobile Devices Business Product Safety & Compliance Laboratory

**Laboratory:** 600 N. US Highway 45

Libertyville, Illinois 60048

**Report Author:** Thomas Knipple RF Engineer

This laboratory is accredited to ISO/IEC 17025-2005 to perform the following tests:

<u>Procedures:</u>

Electromagnetic Specific Absorption Rate 
IEC 62209-1

Accreditation: RSS-102 IEEE 1528 - 2003

FCC OET Bulletin 65 (*including Supplement C*) Australian Communications Authority Radio

Communications (Electromagnetic Radiation – Human

Exposure) Standard 2003 CENELEC EN 50360 (2001) CENELEC EN 50361 (2001) ARIB Std. T-56 (2002)

On the following products or types of products:

Wireless Communications Devices (Examples): Two Way Radios; Portable Phones (including

Cellular, Licensed Non-Broadcast and PCS); Low Frequency Readers; and Pagers

Motorola declares under its sole responsibility that the portable cellular telephone model to which this declaration relates, is in conformity with the appropriate General Population/Uncontrolled RF exposure standards, recommendations and guidelines (FCC 47 CFR §2.1093) as well as with CENELEC en50360:2001 and ANSI / IEEE C95.1. It also declares that the product was tested in accordance with IEEE 1528 / CENELEC EN62209-1 (2006), as well as other appropriate measurement standards, guidelines and recommended practices. Any deviations from these

standards, guidelines and recommended practices are noted below:

(none)

©Motorola, Inc. 2008

This test report shall not be reproduced except in full, without written approval of the laboratory.

The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report.

Motorola encourages all feedback, both positive and negative, on this test report.

## **Table of Contents**

| 1. Introduction                                                          | 2  |
|--------------------------------------------------------------------------|----|
| 2. Description of the Device Under Test                                  | 2  |
| 2.1 Antenna description                                                  | 2  |
| 2.2 Device description                                                   | 2  |
| 3. Test Equipment Used                                                   | 3  |
| 3.1 Dosimetric System                                                    | 3  |
| 3.2 Additional Equipment                                                 | 3  |
| 4. Electrical parameters of the tissue simulating liquid                 | 4  |
| 5. System Accuracy Verification                                          | 5  |
| 6. Test Results                                                          | 6  |
| 6.1 Head Adjacent Test Results                                           | 7  |
| 6.2 Body Worn Test Results                                               | 11 |
| References                                                               | 14 |
| Appendix 1: SAR distribution comparison for system accuracy verification | 15 |
| Appendix 2: SAR distribution plots for Phantom Head Adjacent Use         | 16 |
| Appendix 3: SAR distribution plots for Body Worn Configuration           | 17 |
| Appendix 4: Probe Calibration Certificate                                | 18 |
| Appendix 5: Measurement Uncertainty Budget                               | 19 |
| Appendix 6: Photographs of the device under test                         | 21 |
| Appendix 7: Dipole Characterization Certificate                          | 26 |

#### 1. Introduction

The Motorola Mobile Devices Business Product Safety Laboratory has performed measurements of the maximum potential exposure to the user of the portable cellular phone covered by this test report. The Specific Absorption Rate (SAR) of this product was measured. The portable cellular phone was tested in accordance with [1], [4] and [5]. The SAR values measured for the portable cellular phone are below the maximum recommended levels of 1.6 W/kg in a 1 g average set in [3] and 2.0 W/kg in a 10 g average set in [2].

For ICNIRP (10 g), the final SAR reading for this phone is 0.34 W/kg for head adjacent use and 0.47 W/kg for body-worn use. For ANSI / IEEE C95.1 (1 g), the final SAR reading for this phone is 0.61 W/kg for head adjacent use and 0.80 W/kg for body-worn use. These measurements were performed using a Dasy4<sup>TM</sup> v4.7 system manufactured by Schmid & Partner Engineering AG (SPEAG), of Zurich Switzerland.

#### 2. Description of the Device Under Test

#### 2.1 Antenna description

| Type          | Internal              |       |  |  |
|---------------|-----------------------|-------|--|--|
| Location      | Bottom of Transceiver |       |  |  |
| Dimensions    | Length                | 42 mm |  |  |
|               | Width                 | 6 mm  |  |  |
| Configuration | FJA                   |       |  |  |

#### 2.2 Device description

| Serial number                                               | 80B4B68E                            |                          |                        |                          |                        |  |
|-------------------------------------------------------------|-------------------------------------|--------------------------|------------------------|--------------------------|------------------------|--|
| Mode(s) of Operation                                        | 800 CDMA                            |                          |                        |                          |                        |  |
| <b>Modulation Mode(s)</b>                                   | QPSK                                | QPSK                     | QPSK                   | QPSK                     | GFSK                   |  |
| Maximum Output Power<br>Setting                             | 25.0 dBm 25.00 dBm 25.0 dBm 6.6 dBm |                          |                        |                          |                        |  |
| Duty Cycle                                                  | 1:1                                 | 1:1                      | 1:1                    | 1:1                      | 1:1                    |  |
| Transmitting Frequency Range(s)                             | 824.70 –<br>848.31 MHz              | 1851.25 –<br>1908.75 MHz | 824.70 –<br>848.31 MHz | 1851.25 –<br>1908.75 MHz | 2400.0 -<br>2483.5 MHz |  |
| Production Unit or<br>Identical Prototype<br>(47 CFR §2908) | Identical Prototype                 |                          |                        |                          |                        |  |
| <b>Device Category</b>                                      | Portable                            |                          |                        |                          |                        |  |
| RF Exposure Limits                                          |                                     | General                  | Population / Unc       | ontrolled                |                        |  |

## 3. Test Equipment Used

#### 3.1 Dosimetric System

The Motorola Mobile Devices Business Product Safety & Compliance Laboratory utilizes a Dosimetric Assessment System (Dasy4<sup>TM</sup> v4.7) manufactured by Schmid & Partner Engineering AG (SPEAG<sup>TM</sup>), of Zurich Switzerland. All the SAR measurements are taken within a shielded enclosure. The overall 10 g RSS uncertainty of the measurement system is  $\pm 12.0\%$  (K=1) with an expanded uncertainty of  $\pm 24.0\%$  (K=2). The overall 1 g RSS uncertainty of the measurement system is  $\pm 12.0\%$  (K=1) with an expanded uncertainty of  $\pm 24.0\%$  (K=2). The measurement uncertainty budget is given in Appendix 6. Per IEEE 1528, this uncertainty budget is applicable to the SAR range of 0.4 W/kg to 10 W/kg.

The list of calibrated equipment used for the measurements is shown in the following table.

| Description                                | Serial Number | Cal Due Date |
|--------------------------------------------|---------------|--------------|
| DASY4™ DAE V1                              | 378           | Apr-13-2008  |
| E-Field Probe ES3DV3                       | 3115          | Jul-16-2008  |
| E-Field Probe ET3DV6                       | 1514          | Jul-11-2008  |
| S.A.M. Phantom used for 800/900 MHz        | TP-1005       |              |
| S.A.M. Phantom used for 1800/1900/2450 MHz | TP-1139       |              |
| Dipole Validation Kit, DV900V2             | 91            | May-01-2008  |
| Dipole Validation Kit, DV1800V2            | 259TR         | May-01-2008  |
| Dipole Validation Kit, DV2450V2            | 766           | May-01-2008  |

#### 3.2 Additional Equipment

| Description                   | Serial Number | Cal Due Date |
|-------------------------------|---------------|--------------|
| Signal Generator HP8648C      | 3847A04982    | Jun-13-2009  |
| Power Meter E4419B            | GB39511082    | Jul-19-2008  |
| Power Sensor #1 - E9301A      | US39210931    | Jul-20-2008  |
| Power Sensor #2 - E9301A      | US39210932    | Jul-20-2008  |
| Signal Generator HP8648C      | 3847A04843    | Jul-10-2008  |
| Power Meter E4419B            | US39250622    | Jun-07-2009  |
| Power Sensor #1 - E9301A      | US39211006    | Jun-20-2008  |
| Power Sensor #2 - E9301A      | US39211007    | Jun-11-2008  |
| Network Analyzer HP8753ES     | US39171846    | Jul-19-2008  |
| Dielectric Probe Kit HP85070B | US99360070    |              |

## 4. Electrical parameters of the tissue simulating liquid

Prior to conducting SAR measurements, the relative permittivity,  $\varepsilon_r$ , and the conductivity,  $\sigma$ , of the tissue simulating liquids were measured with a HP85070 Dielectric Probe Kit These values, along with the temperature of the simulated tissue are shown in the table below. The recommended limits for permittivity and conductivity are also shown. A mass density of  $\rho = 1$  g/cm<sup>3</sup> was entered into the system in all the cases. It can be seen that the measured parameters are within tolerance of the recommended limits specified in [1] and [5].

| f Tissue type |      |                       | Dielectric Parameters |                |              |  |
|---------------|------|-----------------------|-----------------------|----------------|--------------|--|
|               |      | Limits / Measured     | $\mathbf{\epsilon}_r$ | σ (S/m)        | Temp<br>(°C) |  |
|               |      | Measured, Dec-12-2007 | 41.9                  | 0.93           | 20.0         |  |
|               | Head | Measured, Jan-07-2008 | 41.1                  | 0.91           | 20.0         |  |
| 835           |      | Recommended Limits    | 41.5 ±5%              | $0.90 \pm 5\%$ | 18-25        |  |
| 033           |      | Measured, Dec-12-2007 | 53.1                  | 0.98           | 20.0         |  |
|               | Body | Measured, Jan-24-2008 | 53.3                  | 0.98           | 19.2         |  |
|               |      | Recommended Limits    | 55.2 ±5%              | $0.97 \pm 5\%$ | 18-25        |  |
|               | Head | Measured, Dec-13-2007 | 38.4                  | 1.47           | 20.4         |  |
|               | Heau | Recommended Limits    | 40.0 ±5%              | $1.40 \pm 5\%$ | 18-25        |  |
| 1880          | Body | Measured, Dec-17-2007 | 50.8                  | 1.59           | 19.4         |  |
|               |      | Measured, Jan-24-2008 | 51.1                  | 1.59           | 21.2         |  |
|               |      | Recommended Limits    | 53.3 ±5%              | $1.52 \pm 5\%$ | 18-25        |  |
|               | Head | Measured, Dec-14-2007 | 36.6                  | 1.84           | 19.7         |  |
| 2450          | пеац | Recommended Limits    | 39.2 ±10%             | 1.80 ±5%       | 18-25        |  |
| 2450          | Dody | Measured, Dec-14-2007 | 47.7                  | 1.96           | 21.2         |  |
|               | Body | Recommended Limits    | 52.7 ±10%             | 1.95 ±5%       | 18-25        |  |

The list of ingredients and the percent composition used for the tissue simulates are indicated in the table below.

| Ingredient | 835 MHz /<br>900 MHz<br>Head | 835 MHz /<br>900 MHz<br>Body | 1800 MHz /<br>1900 MHz<br>Head | 1800 MHz /<br>1900 MHz<br>Body | 2450 MHz<br>Head | 2450 MHz<br>Body |
|------------|------------------------------|------------------------------|--------------------------------|--------------------------------|------------------|------------------|
| Sugar      | 57                           | 44.9                         |                                | -                              |                  |                  |
| DGBE       |                              |                              | 47                             | 30.8                           |                  | 30               |
| Diacetin   |                              |                              |                                |                                | 51               |                  |
| Water      | 40.45                        | 53.06                        | 52.62                          | 68.8                           | 48.75            | 70               |
| Salt       | 1.45                         | 0.94                         | 0.38                           | 0.4                            | 0.15             |                  |
| HEC        | 1                            | 1                            |                                |                                |                  |                  |
| Bact.      | 0.1                          | 0.1                          |                                |                                | 0.1              |                  |

#### 5. System Accuracy Verification

A system accuracy verification of the DASY4<sup>TM</sup> was performed using the measurement equipment listed in Section 3.1. The daily system accuracy verification occurs within the flat section of the SAM phantom.

A SAR measurement was performed to verify the measured SAR was within  $\pm 10\%$  from the target SAR indicated Appendix 7. These frequencies are within  $\pm 10\%$  of the compliance test mid-band frequency as required in [1] and [5]. The test was conducted on the same days as the measurement of the DUT. Recommended limits for permittivity and conductivity, specified in [5], are shown in the table below. The obtained results from the system accuracy verification are also displayed in the table below. SAR values are normalized to 1 W forward power delivered to the dipole. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values. The distributions of SAR compare well with those of the reference measurements (see Appendix 1). The tissue stimulant depth was verified to be 15.0 cm  $\pm$  0.5 cm. Z-axis scans showing the SAR penetration are also included in Appendix 1.

| f     |                       | SAR (W/kg), | Dielectric P | 1              | Ambient   | Tissue    |
|-------|-----------------------|-------------|--------------|----------------|-----------|-----------|
| (MHz) | Description           | 1 gram      | $\epsilon_r$ | σ (S/m)        | Temp (°C) | Temp (°C) |
|       | Measured, Dec-12-2007 | 10.45       | 41.7         | 0.99           | 20.6      | 18.7      |
| 900   | Measured, Jan-07-2008 | 11.175      | 40.3         | 0.97           | 21.1      | 20.1      |
| 700   | Measured, Jan-24-2008 | 11.525      | 40.1         | 0.97           | 20.9      | 19.6      |
|       | Recommended Limits    | 11.24       | 41.5 ±5%     | $0.97 \pm 5\%$ | 18-25     | 18-25     |
|       | Measured, Dec-13-2007 | 37.275      | 38.8         | 1.38           | 20.7      | 19.4      |
| 1800  | Measured, Dec-17-2007 | 37.675      | 38.4         | 1.38           | 20.6      | 19.3      |
| 1000  | Measured, Jan-24-2008 | 38.3        | 41.5         | 1.38           | 20.9      | 20.0      |
|       | Recommended Limits    | 37.5        | 40.0 ±5%     | 1.4 ±5%        | 18-25     | 18-25     |
| 2450  | Measured, Dec-14-2007 | 52.5        | 36.6         | 1.84           | 20.7      | 19.7      |
| 2430  | Recommended Limits    | 58.0        | 39.2 ±10%    | 1.80 ±5%       | 18-25     | 18-25     |

The following probe conversion factors were used on the E-Field probe(s) used for the system accuracy verification measurements:

| Description             | Serial<br>Number | f<br>(MHz) | Conversion Factor | Cal Cert pg # |
|-------------------------|------------------|------------|-------------------|---------------|
|                         |                  | 900        | 6.03              | 8 of 9        |
| E-Field Probe<br>ET3DV3 | 3115             | 1810       | 4.92              | 8 of 9        |
|                         |                  | 2450       | 4.39              | 8 of 9        |
| E-Field Probe           | 1514             | 900        | 5.98              | 8 of 9        |
| ET3DV6                  | 1514             | 1810       | 4.92              | 8 of 9        |

#### 6. Test Results

The test sample was operated using an actual transmission through a base station simulator. The base station simulator was setup to the proper channel, transmitter power level and transmit mode of operation. The phone was tested in the configurations stipulated in [1], [4] and [5]. The phone was positioned into these configurations using the device holder supplied with the DASY4<sup>TM</sup> SAR measurement system The measured dielectric constant of the material used for the device holder is less than 2.9 and the loss tangent is less than 0.02 (± 30%) at 850 MHz. The default settings for the "coarse" and "cube" scans were chosen and used for measurements. The grid spacing of the course scan was set to 15cm as shown in the SAR plots included in Appendix 2 and 3. Please refer to the DASY4<sup>TM</sup> manual for additional information on SAR scanning procedures and algorithms used.

The Cellular Phone model covered by this report has the following battery options: Model SNN5792A - 1100 mAH Battery Model SNN5795A - 930 mAH Battery

The battery with the highest capacity is the Model SNN5892A. This battery was used to do most of the SAR testing. The phone was placed in the SAR measurement system with a fully charged battery. The configurations that resulted in the highest SAR values were tested using the other batteries listed above.

Per the "SAR Measurement Procedures for 3G Devices" released in October, 2007, RC1, RC3 and RC3 (FCH + SCH) CDMA modes, EVDO Rev O, EVDO Rev A were considered. The conducted power measurements (per steps 3, 4 & 10 of section 4.4.5.2 of 3GPP2 C.5.011 / TIA -98-E) for each mode are shown in the tables below.

| Conducted power (dBm) for CDMA modes |         |       |                        |       |       |                                                                         |  |  |
|--------------------------------------|---------|-------|------------------------|-------|-------|-------------------------------------------------------------------------|--|--|
|                                      | Channel | RC1   |                        | R(    | C3    | D00 (5011 0011)                                                         |  |  |
|                                      |         | SO2   | SO55                   | SO2   | SO55  | RC3 (FCH + SCH)                                                         |  |  |
| CDMA                                 | 1013    | 24.97 | 24.97                  | 24.94 | 24.93 | Dor Matarala dacigna, the mayimum                                       |  |  |
| 800                                  | 384     | 24.91 | 24.91                  | 24.89 | 24.90 | Per Motorola designs, the maximum                                       |  |  |
| 800                                  | 777     | 24.82 | 24.82                  | 24.81 | 24.86 | power, when in a mode that allows supplemental channels, will always be |  |  |
| CDMA                                 | 25      | 25.10 | 25.07                  | 25.01 | 24.94 | less than the RC3/RC1 maximum                                           |  |  |
| 1900                                 | 600     | 26 00 | conducted power limit. |       |       |                                                                         |  |  |
| 1900                                 | 1175    | 25.07 | 25.06                  | 24.97 | 24.97 | Conducted power mint.                                                   |  |  |

| Conducted power (dBm) for EVDO modes |         |        |        |        |        |  |  |
|--------------------------------------|---------|--------|--------|--------|--------|--|--|
|                                      |         | Re     | v 0    | Re     | v A    |  |  |
|                                      | Channel |        | RTAP   | Type 0 | Type 2 |  |  |
| · ·                                  |         | 307.2k | 153.6k | Type 0 | Type 2 |  |  |
| CDMA                                 | 1013    | 24.61  | 24.96  | 24.54  | 24.69  |  |  |
| CDMA<br>800                          | 384     | 24.65  | 24.93  | 24.50  | 24.64  |  |  |
| 800                                  | 777     | 24.60  | 24.87  | 24.42  | 24.59  |  |  |
| CDMA                                 | 25      | 25.47  | 25.22  | 25.53  | 25.37  |  |  |
| 1900                                 | 600     | 25.41  | 25.18  | 25.55  | 25.35  |  |  |
| 1900                                 | 1175    | 25.48  | 25.16  | 25.63  | 25.44  |  |  |

#### 6.1 Head Adjacent Test Results

The SAR results shown in tables 1 through 7 are maximum SAR values averaged over 1 gram of phantom tissue, to demonstrate compliance to [3] and also over 10 grams of phantom tissue, to demonstrate compliance to the [6]. Also shown are the measured conducted output power levels for the CDMA RC3/SO55 mode, the temperature of the simulated tissue after the test, the measured drift and the extrapolated SAR. The exact method of extrapolation is New SAR = Old SAR \* 10<sup>(-drift/10)</sup>. The SAR reported at the end of the measurement process by the DASY4<sup>TM</sup> measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test. Note that 800 MHz digital mode SAR measurements were performed in accordance with [4].

The left head and right head SAR contour distributions are similar. Because of this similarity, the cheek/touch and 15° tilt test conditions with the highest SAR values in each band are indicated as bold numbers in the following tables and are included in Appendix 2. All other test conditions measured lower SAR values than those included in Appendix 2.

The SAR measurements were performed using the SAM phantoms listed in section 3.1. Since the same phantoms and simulated tissue were used for the system accuracy verification and the device SAR measurements, the Z-axis scans included in Appendix 1 are applicable for verification of simulated tissue depth to be  $15.0 \text{cm} \pm 0.5 \text{cm}$ .

The following probe conversion factors were used on the E-Field probe(s) used for head adjacent measurements:

| Description             | Serial<br>Number | f<br>(MHz) | Conversion Factor | Cal Cert pg # |
|-------------------------|------------------|------------|-------------------|---------------|
|                         |                  | 900        | 6.03              | 8 of 9        |
| E-Field Probe<br>ET3DV3 | 3115             | 1810       | 4.92              | 8 of 9        |
|                         |                  | 2450       | 4.39              | 8 of 9        |
| E-Field Probe<br>ET3DV6 | 1514             | 900        | 5.98              | 8 of 9        |
|                         |                  | 1810       | 4.92              | 8 of 9        |

|                       |             |                     |              | Left H     | lead Cheek Positi  | ion                 |                    |                     |
|-----------------------|-------------|---------------------|--------------|------------|--------------------|---------------------|--------------------|---------------------|
| f                     |             | Conducted<br>Output | Temp<br>(°C) | Drift (dB) | 10 g SA            | R value             | 1 g SA             | R value             |
| (MHz)                 | Description | Power (dBm)         |              |            | Measured<br>(W/kg) | Extrapolated (W/kg) | Measured<br>(W/kg) | Extrapolated (W/kg) |
| CDMA                  | Chan. 1013  | 24.93               |              |            |                    |                     |                    |                     |
| CDMA<br>800           | Chan. 384   | 24.90               | 20.0         | -0.201     | 0.24               | 0.25                | 0.326              | 0.34                |
| 000                   | Chan. 777   | 24.86               |              |            |                    |                     |                    |                     |
| CDIA                  | Chan. 25    | 24.94               |              |            |                    |                     |                    |                     |
| CDMA<br>1900          | Chan. 600   | 25.00               | 20.4         | 0.357      | 0.289              | 0.29                | 0.511              | 0.51                |
| 1700                  | Chan. 1175  | 24.97               |              |            |                    |                     |                    |                     |
| Bluetooth<br>2450 MHz | N/A         | 6.556               | 19.7         | 0.156      | 0.00048            | 0.00                | 0.00081            | 0.00                |

Table 1: SAR measurement results at the highest possible output power, measured in a head cheek position against the ICNIRP and ANSI SAR Limit.

|                       |             |                     |      | Right I | Head Cheek Posi    | tion                |                    |                     |
|-----------------------|-------------|---------------------|------|---------|--------------------|---------------------|--------------------|---------------------|
| f                     |             | Conducted<br>Output | Temp | Drift   | 10 g SA            | 10 g SAR value      |                    | R value             |
| (MHz)                 | Description | Power (dBm)         | (°C) | (dB)    | Measured<br>(W/kg) | Extrapolated (W/kg) | Measured<br>(W/kg) | Extrapolated (W/kg) |
| CDMA                  | Chan. 1013  | 24.93               |      |         |                    |                     |                    |                     |
| CDMA<br>800           | Chan. 384   | 24.90               | 20.1 | -0.161  | 0.272              | 0.28                | 0.384              | 0.40                |
| 000                   | Chan. 777   | 24.86               |      |         |                    |                     |                    |                     |
| CDM                   | Chan. 25    | 24.94               |      |         |                    |                     |                    |                     |
| CDMA<br>1900          | Chan. 600   | 25.00               | 20.4 | -0.321  | 0.32               | 0.34                | 0.567              | 0.61                |
| 1700                  | Chan. 1175  | 24.97               |      |         |                    |                     |                    |                     |
| Bluetooth<br>2450 MHz | N/A         | 6.556               | 19.7 | 0.845   | 0.000797           | 0.00                | 0.00191            | 0.00                |

Table 2: SAR measurement results at the highest possible output power, measured in a head cheek position against the ICNIRP and ANSI SAR Limit.

|                       |             | Ri                  | ght Head | d Cheek    | Position with Bat  | tery SNN5795A       |                    |                     |  |
|-----------------------|-------------|---------------------|----------|------------|--------------------|---------------------|--------------------|---------------------|--|
| f                     |             | Conducted<br>Output | Temp     | Drift (dB) | 10 g SA            | R value             | 1 g SAR value      |                     |  |
| (MHz)                 | Description | Power (dBm)         | (°C)     |            | Measured<br>(W/kg) | Extrapolated (W/kg) | Measured<br>(W/kg) | Extrapolated (W/kg) |  |
| CDMA                  | Chan. 1013  | 24.93               |          |            |                    |                     |                    |                     |  |
| CDMA<br>800           | Chan. 384   | 24.90               | 20.0     | -0.125     | 0.296              | 0.30                | 0.43               | 0.44                |  |
| 000                   | Chan. 777   | 24.86               |          |            |                    |                     |                    |                     |  |
| CDMA                  | Chan. 25    | 24.94               |          |            |                    |                     |                    |                     |  |
| CDMA<br>1900          | Chan. 600   | 25.00               | 21.3     | -0.146     | 0.231              | 0.24                | 0.393              | 0.41                |  |
| 1700                  | Chan. 1175  | 24.97               |          |            |                    |                     |                    |                     |  |
| Bluetooth<br>2450 MHz | N/A         | 6.556               | 19.7     | -0.710     | 0.00076            | 0.00                | 0.00167            | 0.00                |  |

Table 3: SAR measurement results at the highest possible output power, measured in a head cheek position against the ICNIRP and ANSI SAR Limit.

|                       |             |                     |      | Left H  | ead 15° Tilt Posit | tion                |                    |                     |  |
|-----------------------|-------------|---------------------|------|---------|--------------------|---------------------|--------------------|---------------------|--|
| f                     |             | Conducted<br>Output | Temp | p Drift | 10 g SA            | R value             | 1 g SAR value      |                     |  |
| (MHz)                 | Description | Power (dBm)         | (°C) | (dB)    | Measured<br>(W/kg) | Extrapolated (W/kg) | Measured<br>(W/kg) | Extrapolated (W/kg) |  |
| CDMA                  | Chan. 1013  | 24.93               |      |         |                    |                     |                    |                     |  |
| CDMA<br>800           | Chan. 384   | 24.90               | 20.0 | -0.057  | 0.124              | 0.13                | 0.167              | 0.17                |  |
|                       | Chan. 777   | 24.86               |      |         |                    |                     |                    |                     |  |
| CDICA                 | Chan. 25    | 24.94               |      |         |                    |                     |                    |                     |  |
| CDMA<br>1900          | Chan. 600   | 25.00               | 20.4 | -0.145  | 0.195              | 0.20                | 0.324              | 0.34                |  |
| 1700                  | Chan. 1175  | 24.97               |      |         |                    |                     |                    |                     |  |
| Bluetooth<br>2450 MHz | N/A         | 6.556               | 19.7 | -0.982  | 0.00042            | 0.00                | 0.00074            | 0.00                |  |

Table 4: SAR measurement results at the highest possible output power, measured in a head 15° Tilt position against the ICNIRP and ANSI SAR Limit.

|                       |             |                     |      | Right H    | lead 15° Tilt Posi | ition               |                    |                     |
|-----------------------|-------------|---------------------|------|------------|--------------------|---------------------|--------------------|---------------------|
| f                     |             | Conducted<br>Output | Temp | Drift (dB) | 10 g SA            | R value             | 1 g SAR value      |                     |
| (MHz)                 | Description | Power (dBm)         | (°C) |            | Measured<br>(W/kg) | Extrapolated (W/kg) | Measured<br>(W/kg) | Extrapolated (W/kg) |
| CDMA                  | Chan. 1013  | 24.93               |      |            |                    |                     |                    |                     |
| CDMA<br>800           | Chan. 384   | 24.90               | 20.0 | -0.053     | 0.112              | 0.11                | 0.149              | 0.15                |
| 000                   | Chan. 777   | 24.86               |      |            |                    |                     |                    |                     |
| CDMA                  | Chan. 25    | 24.94               |      |            |                    |                     |                    |                     |
| 1900                  | Chan. 600   | 25.00               | 20.4 | -0.104     | 0.158              | 0.16                | 0.264              | 0.27                |
| 1700                  | Chan. 1175  | 24.97               |      |            |                    |                     |                    |                     |
| Bluetooth<br>2450 MHz | N/A         | 6.556               | 19.7 | -0.697     | 0.00029            | 0.00                | 0.00059            | 0.00                |

Table 5: SAR measurement results at the highest possible output power, measured in a head 15° Tilt position against the ICNIRP and ANSI SAR Limit.

|                       |             | Le                      | ft Head | 15° Tilt 1 | Position with Bat  | tery SNN5795A       |                    |                     |
|-----------------------|-------------|-------------------------|---------|------------|--------------------|---------------------|--------------------|---------------------|
| f                     |             | Conducted<br>Output Ten | Temp    | Drift      | 10 g SA            | R value             | 1 g SAR value      |                     |
| (MHz)                 | Description | Power (dBm)             | (°C)    | (dB)       | Measured<br>(W/kg) | Extrapolated (W/kg) | Measured<br>(W/kg) | Extrapolated (W/kg) |
| CDMA                  | Chan. 1013  | 24.93                   |         |            |                    |                     |                    |                     |
| 800                   | Chan. 384   | 24.90                   | 20.0    | 0.025      | 0.136              | 0.14                | 0.183              | 0.18                |
| 000                   | Chan. 777   | 24.86                   |         |            |                    |                     |                    |                     |
| CDMA                  | Chan. 25    | 24.94                   |         |            |                    |                     |                    |                     |
| 1900                  | Chan. 600   | 25.00                   | 21.3    | 0.205      | 0.183              | 0.18                | 0.305              | 0.31                |
| 1700                  | Chan. 1175  | 24.97                   |         |            |                    |                     |                    |                     |
| Bluetooth<br>2450 MHz | N/A         | 6.556                   | 19.7    | -0.888     | 0.000445           | 0.00                | 0.000846           | 0.00                |

Table 6: SAR measurement results at the highest possible output power, measured in a head  $15^{\circ}$  Tilt position against the ICNIRP and ANSI SAR Limit.

|              | Highest Extrapolated SAR Values, including Bluetooth summation |                                   |                                    |                  |                                   |                                    |                  |  |  |  |  |  |
|--------------|----------------------------------------------------------------|-----------------------------------|------------------------------------|------------------|-----------------------------------|------------------------------------|------------------|--|--|--|--|--|
|              |                                                                | į                                 | 10 g SAR valu                      | 2                | 1 g SAR value                     |                                    |                  |  |  |  |  |  |
| (MHz)        | Description                                                    | Original<br>Measurement<br>(W/kg) | Bluetooth<br>Measurement<br>(W/kg) | Summation (W/kg) | Original<br>Measurement<br>(W/kg) | Bluetooth<br>Measurement<br>(W/kg) | Summation (W/kg) |  |  |  |  |  |
| CDMA<br>800  | Right Head Cheek<br>with Battery SNN5795A                      | 0.30                              | 0.00                               | 0.30             | 0.44                              | 0.00                               | 0.44             |  |  |  |  |  |
| CDMA<br>1900 | Right Head Cheek<br>with Battery SNN5792A                      | 0.34                              | 0.00                               | 0.34             | 0.61                              | 0.00                               | 0.61             |  |  |  |  |  |

Table 7: SAR measurement results at the highest possible output power, calculated for the head position against the ICNIRP and ANSI SAR Limit.

#### **6.2 Body Worn Test Results**

The SAR results shown in tables 8 through 13 are maximum SAR values averaged over 1 gram of phantom tissue, to demonstrate compliance to [3] and also over 10 grams of phantom tissue, to demonstrate compliance to the [6]. Also shown are the measured conducted output power levels for the CDMA RC3/SO55 mode, the temperature of the test facility during the test, the temperature of the tissue simulate after the test, the measured drift and the extrapolated SAR. The exact method of extrapolation is New SAR = Old SAR \* 10<sup>(-drift/10)</sup>. The SAR reported at the end of the measurement process by the DASY4<sup>TM</sup> measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test. Note that 800 MHz digital mode SAR measurements were performed in accordance with [4].

The test conditions that produced the highest SAR values in each band are indicated as bold numbers in the following tables and are included in Appendix 3. All other test conditions measured lower SAR values than those included in Appendix 3.

A "flat" phantom was for the body-worn tests. This "flat" phantom is made out of 1" thick natural High Density Polyethylene with a thickness at the bottom equal to 2.0 mm. It measures 52.7 cm(long) by 26.7 cm(wide) by 21.2 cm(tall). The measured dielectric constant of the material used is less than 2.3 and the loss tangent is less than 0.0046 all the way up to 2.184 GHz.

The tissue stimulant depth was verified to be  $15.0~\rm cm \pm 0.5~\rm cm$ . The same device holder described in section 6 was used for positioning the phone. The functional accessories were divided into two categories, the ones with metal components and the ones with non-metal components. For non-metallic component accessories', testing was performed on the accessory that displayed the closest proximity to the flat phantom. Each metallic component accessory, if any, was checked for uniqueness of metal component so that each is tested with the device. If multiple accessories shared an identical metal component, only the accessory that dictates the closest spacing to the body was tested. In addition to accessory testing, the cellular phone was tested with the front and back of the phone facing the phantom. For voice mode operation, the phone was placed as a distance of 15 mm from the phantom. For data mode operation, the phone was placed as a distance of 25 mm from the phantom. The cellular phone was tested with a headset connected to the device for all body-worn SAR measurements.

There are no Body-Worn Accessories available for this phone:

The following probe conversion factors were used on the E-Field probe(s) used for the body worn measurements:

| Description             | Serial<br>Number | f<br>(MHz) | Conversion Factor | Cal Cert<br>pg # |
|-------------------------|------------------|------------|-------------------|------------------|
|                         |                  | 900        | 5.72              | 8 of 9           |
| E-Field Probe<br>ET3DV3 | 3115             | 1810       | 4.70              | 8 of 9           |
|                         |                  | 2450       | 4.07              | 8 of 9           |
| E-Field Probe           | 1514             | 900        | 5.75              | 8 of 9           |
| ET3DV6                  | 1314             | 1810       | 4.59              | 8 of 9           |

|                       |             | Body V              | Vorn Po | sition, F  | ront of Phone 15   | mm From Phant       | om                 |                     |  |
|-----------------------|-------------|---------------------|---------|------------|--------------------|---------------------|--------------------|---------------------|--|
| f                     |             | Conducted<br>Output | Temp    | Drift (dB) | 10 g SA            | R value             | 1 g SAR value      |                     |  |
| (MHz)                 | Description | Power (dBm)         | (°C)    |            | Measured<br>(W/kg) | Extrapolated (W/kg) | Measured<br>(W/kg) | Extrapolated (W/kg) |  |
| CDMA                  | Chan. 1013  | 24.93               |         |            |                    |                     |                    |                     |  |
| CDMA<br>800           | Chan. 384   | 24.90               | 20.0    | -0.076     | 0.261              | 0.27                | 0.359              | 0.37                |  |
| 000                   | Chan. 777   | 24.86               |         |            |                    |                     |                    |                     |  |
| CDMA                  | Chan. 25    | 24.94               |         |            |                    |                     |                    |                     |  |
| CDMA<br>1900          | Chan. 600   | 25.00               | 19.8    | -0.024     | 0.188              | 0.19                | 0.32               | 0.32                |  |
| 1700                  | Chan. 1175  | 24.97               |         |            |                    |                     |                    |                     |  |
| Bluetooth<br>2450 MHz | I N/A       | 6.556               | 21.2    | -0.372     | 0.000443           | 0.00                | 0.00097            | 0.00                |  |

Table 8: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

|                       |             | Body '              | Worn Po | sition, B      | ack of Phone 15    | mm From Phanto      | om                 |                     |
|-----------------------|-------------|---------------------|---------|----------------|--------------------|---------------------|--------------------|---------------------|
| f                     |             | Conducted<br>Output |         | emp Drift (dB) | 10 g SA            | R value             | 1 g SAR value      |                     |
| (MHz)                 | Description | Power (dBm)         | (°C)    |                | Measured<br>(W/kg) | Extrapolated (W/kg) | Measured<br>(W/kg) | Extrapolated (W/kg) |
| CDMA                  | Chan. 1013  | 24.93               |         |                |                    |                     |                    |                     |
| CDMA<br>800           | Chan. 384   | 24.90               | 20.0    | -0.069         | 0.304              | 0.31                | 0.43               | 0.44                |
| 000                   | Chan. 777   | 24.86               |         |                |                    |                     |                    |                     |
| CDM                   | Chan. 25    | 24.94               |         |                |                    |                     |                    |                     |
| CDMA<br>1900          | Chan. 600   | 25.00               | 19.8    | 0.013          | 0.228              | 0.23                | 0.397              | 0.40                |
| 1700                  | Chan. 1175  | 24.97               |         |                |                    |                     |                    |                     |
| Bluetooth<br>2450 MHz | N/A         | 6.556               | 21.2    | 1.55           | 0.00047            | 0.00                | 0.00079            | 0.00                |

Table 9: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

|              | Body Wo     | orn Position,                         | Back of      | Phone 2    | 5 mm From Pha      | ntom with EV-DO     | O Rev. A (Type 0   | )                   |
|--------------|-------------|---------------------------------------|--------------|------------|--------------------|---------------------|--------------------|---------------------|
| f            | Description | Conducted<br>Output<br>Power<br>(dBm) | Temp<br>(°C) | Drift (dB) | 10 g SA            | R value             | 1 g SA             | R value             |
| (MHz)        |             |                                       |              |            | Measured<br>(W/kg) | Extrapolated (W/kg) | Measured<br>(W/kg) | Extrapolated (W/kg) |
| CDMA         | Chan. 25    | 25.53                                 |              |            |                    |                     |                    |                     |
| CDMA<br>1900 | Chan. 600   | 25.55                                 | 19.7         | -0.154     | 0.164              | 0.17                | 0.264              | 0.27                |
| 1700         | Chan. 1175  | 25.63                                 |              |            |                    |                     |                    |                     |

Table 10: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

|                                         |             | Body Wor            | n Positio | n, <i>Noted</i> | Facing of Phone    | 15 mm From Ph       | nantom             |                     |
|-----------------------------------------|-------------|---------------------|-----------|-----------------|--------------------|---------------------|--------------------|---------------------|
| f                                       |             | Conducted<br>Output | Temp      | Drift (dB)      | 10 g SA            | R value             | 1 g SAR value      |                     |
| (MHz)                                   | Description | Power (dBm)         | (°C)      |                 | Measured<br>(W/kg) | Extrapolated (W/kg) | Measured<br>(W/kg) | Extrapolated (W/kg) |
| CDMA                                    | Chan. 1013  | 24.93               |           |                 |                    |                     |                    |                     |
| 800                                     | Chan. 384   | 24.90               | 20.0      | -0.101          | 0.324              | 0.33                | 0.459              | 0.47                |
| Back of Phone                           | Chan. 777   | 24.86               |           |                 |                    |                     |                    |                     |
| CDMA                                    | Chan. 25    | 24.94               |           |                 |                    |                     |                    |                     |
| 1900                                    | Chan. 600   | 25.00               | 19.4      | 0.003           | 0.303              | 0.30                | 0.534              | 0.53                |
| Back of Phone                           | Chan. 1175  | 24.97               |           |                 |                    |                     |                    |                     |
| Bluetooth<br>2450 MHz<br>Front of Phone | N/A         | 6.556               | 21.2      | 0.239           | 0.00045            | 0.00                | 0.00079            | 0.00                |

Table 11: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

| Highest Extrapolated SAR Values, including Bluetooth summation |                                                                         |                                   |                                    |                  |                                   |                                    |                  |  |  |  |  |
|----------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------|------------------------------------|------------------|-----------------------------------|------------------------------------|------------------|--|--|--|--|
| f<br>(MHz)                                                     | Description                                                             | 10 g SAR value                    |                                    |                  | 1 g SAR value                     |                                    |                  |  |  |  |  |
|                                                                |                                                                         | Original<br>Measurement<br>(W/kg) | Bluetooth<br>Measurement<br>(W/kg) | Summation (W/kg) | Original<br>Measurement<br>(W/kg) | Bluetooth<br>Measurement<br>(W/kg) | Summation (W/kg) |  |  |  |  |
| CDMA<br>800                                                    | Body Worn, Back of Phone<br>15 mm From Phantom<br>with Battery SNN5795A | 0.33                              | 0.00                               | 0.33             | 0.47                              | 0.00                               | 0.47             |  |  |  |  |
| CDMA<br>1900                                                   | Body Worn, Back of Phone<br>15 mm From Phantom<br>with Battery SNN5795A | 0.30                              | 0.00                               | 0.30             | 0.53                              | 0.00                               | 0.53             |  |  |  |  |

Table 12: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

| Body Worn Position, Back of Phone 15 mm From Phantom with Battery SNN5795A and Bluetooth Enabled |             |                     |              |               |                    |                     |                    |                     |  |  |  |  |
|--------------------------------------------------------------------------------------------------|-------------|---------------------|--------------|---------------|--------------------|---------------------|--------------------|---------------------|--|--|--|--|
| f<br>(MHz)                                                                                       | Description | Conducted<br>Output | Temp<br>(°C) | Drift<br>(dB) | 10 g SA            | R value             | 1 g SAR value      |                     |  |  |  |  |
|                                                                                                  |             | Power (dBm)         |              |               | Measured<br>(W/kg) | Extrapolated (W/kg) | Measured<br>(W/kg) | Extrapolated (W/kg) |  |  |  |  |
| CDMA<br>800                                                                                      | Chan. 1013  | 24.93               |              |               |                    |                     |                    |                     |  |  |  |  |
|                                                                                                  | Chan. 384   | 24.90               | 19.2         | -0.027        | 0.361              | 0.36                | 0.509              | 0.51                |  |  |  |  |
|                                                                                                  | Chan. 777   | 24.86               |              |               |                    |                     |                    |                     |  |  |  |  |
| CDMA<br>1900                                                                                     | Chan. 25    | 24.94               |              |               |                    |                     |                    |                     |  |  |  |  |
|                                                                                                  | Chan. 600   | 25.00               | 21.2         | 0.037         | 0.474              | 0.47                | 0.799              | 0.80                |  |  |  |  |
|                                                                                                  | Chan. 1175  | 24.97               |              |               |                    |                     |                    |                     |  |  |  |  |

Table 13: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

#### References

- [1] CENELEC, en62209-1:2006 "Human Exposure to Radio Frequency Fields From Hand Held and Body Mounted Wireless Communication Devices Human Models, Instrumentation, and Procedures"
- [2] CENELEC, en50360:2001 "Product standard to demonstrate the compliance of mobile phones with the basic restrictions related to human exposure to electromagnetic fields (300 MHz 3 GHz)".
- [3] ANSI / IEEE, C95.1 1999 Edition "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz"
- [4] FCC OET Bulletin 65 Supplement C 01-01
- [5] IEEE 1528 2003 Edition "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques"
- [6] ICNIRP Guidelines "Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic, and Electromagnetic Fields (up to 300 GHz)"

# Appendix 1

SAR distribution comparison for the system accuracy verification

Date/Time: 12/12/2007 10:01:38 AM

# Test Laboratory: Motorola - 121207 900MHz Good at -7.0%

**DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN: 91; FCC ID: IHDT56JA1** Procedure Notes: 900 MHz System Performance Check; Dipole Sn# 91; Input Power = 200 mW Sim.Temp@meas = 18.7 C; Sim.Temp@SPC = 18.7 C; Room Temp @ SPC = 20.6 C Communication System: CW - Dipole; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: VALIDATION Only

Medium parameters used: f = 900 MHz;  $\sigma = 0.99$  mho/m;  $\varepsilon_r = 41.7$ ;  $\rho = 1000$  kg/m<sup>3</sup>

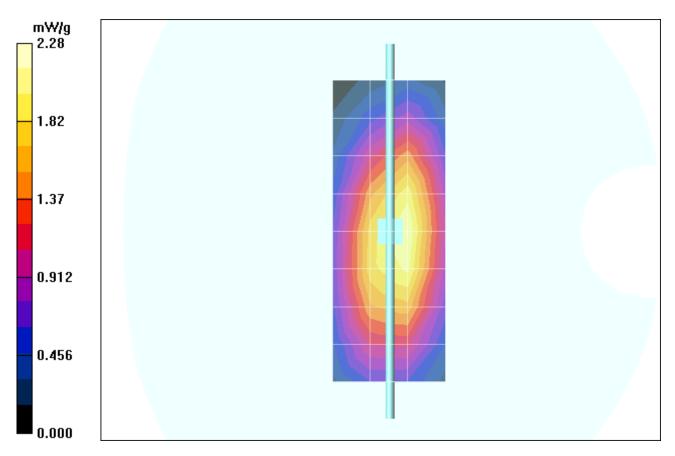
#### DASY4 Configuration:

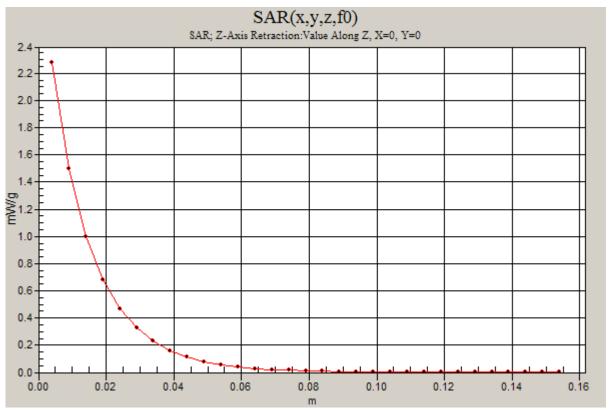
- Probe: ES3DV3 SN3115; ConvF(6.03, 6.03, 6.03); Calibrated: 7/16/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn378; Calibrated: 4/13/2007
- Phantom: R1: Sugar SAM; Type: SAM; Serial: TP-1005;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

#### Daily SPC Check/Dipole Area Scan (4x9x1):

Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 2.14 mW/g

# Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 48.2 V/m; Power Drift = -0.013 dB; Peak SAR (extrapolated) = 3.21 W/kg SAR(1 g) = 2.12 mW/g; SAR(10 g) = 1.36 mW/g; Maximum value of SAR (measured) = 2.30 mW/g


## Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 48.2 V/m; Power Drift = -0.013 dB; Peak SAR (extrapolated) = 3.13 W/kg SAR(1 g) = 2.06 mW/g; SAR(10 g) = 1.31 mW/g; Maximum value of SAR (measured) = 2.18 mW/g

#### Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 2.28 mW/g





Date/Time: 1/7/2008 10:16:40 AM

# Test Laboratory: Motorola - 010708 900MHz Good at -0.6%

# **DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN: 91; FCC ID: IHDT56JA1**Procedure Notes: 900 MHz System Performance Check; Dipole Sn# 091; Input Power = 200 mW Sim.Temp@meas = 20.1 C; Sim.Temp@SPC = 20.1 C; Room Temp @ SPC = 21.1 C Communication System: CW - Dipole; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: Low Freq Head

Medium parameters used: f = 900 MHz;  $\sigma$  = 0.97 mho/m;  $\epsilon_r$  = 40.3;  $\rho$  = 1000 kg/m<sup>3</sup>

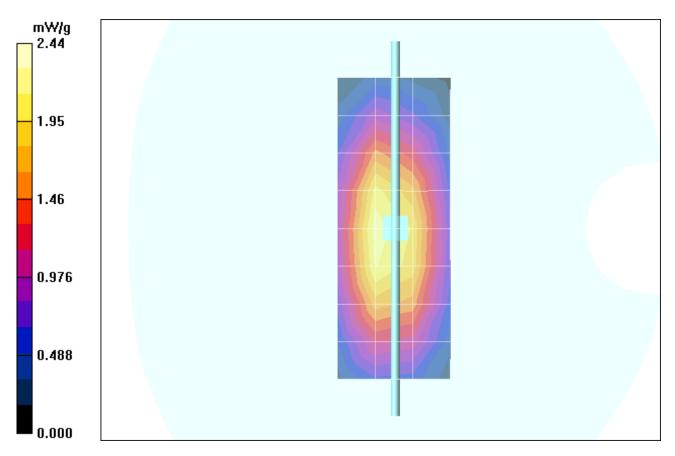
#### DASY4 Configuration:

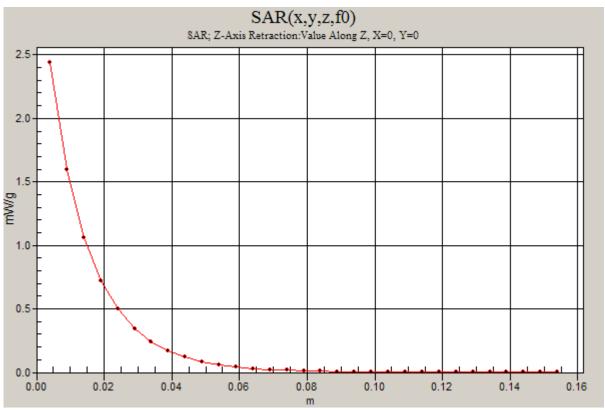
- Probe: ET3DV6 SN1514; ConvF(5.98, 5.98, 5.98); Calibrated: 7/11/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn378; Calibrated: 4/13/2007
- Phantom: R#1 Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1005;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

#### Daily SPC Check/Dipole Area Scan (4x9x1):

Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 2.23 mW/g

# Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 51.5 V/m; Power Drift = -0.072 dB; Peak SAR (extrapolated) = 3.41 W/kg SAR(1 g) = 2.25 mW/g; SAR(10 g) = 1.44 mW/g; Maximum value of SAR (measured) = 2.44 mW/g


## Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 51.5 V/m; Power Drift = -0.072 dB; Peak SAR (extrapolated) = 3.38 W/kg SAR(1 g) = 2.22 mW/g; SAR(10 g) = 1.42 mW/g; Maximum value of SAR (measured) = 2.40 mW/g

# **Daily SPC Check/Z-Axis Retraction (1x1x31):**

Measurement grid: dx=20mm, dy=20mm, dz=5mm





Date/Time: 1/24/2008 9:23:03 AM

# Test Laboratory: Motorola - 012408 900MHz Good at +2.5%

# **DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN: 91; FCC ID: IHDT56JA1** Procedure Notes: 900MHz System Performance Check; Dipole Sn# 91; Input Power = 200 mW Sim.Temp@meas = 19.6 C; Sim.Temp@SPC = 19.6 C; Room Temp @ SPC = 20.9 C Communication System: CW - Dipole; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: VALIDATION Only

Medium parameters used: f = 900 MHz;  $\sigma$  = 0.97 mho/m;  $\epsilon_r$  = 40.1;  $\rho$  = 1000 kg/m<sup>3</sup>

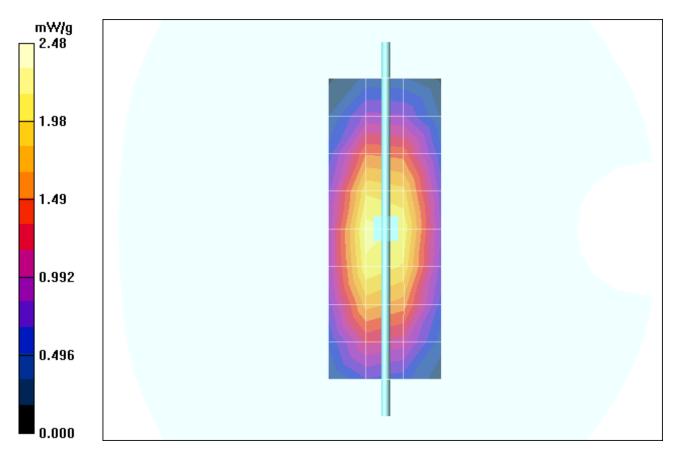
#### DASY4 Configuration:

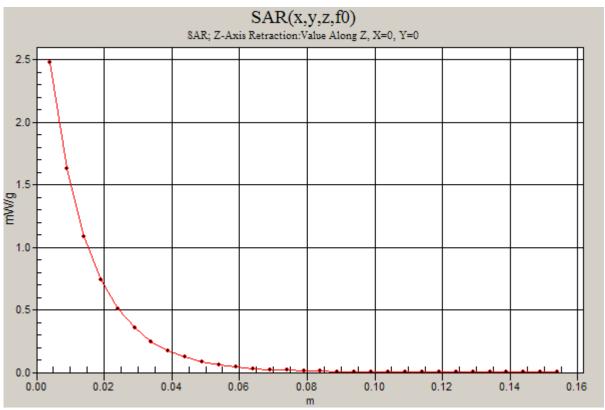
- Probe: ET3DV6 SN1514; ConvF(5.98, 5.98, 5.98); Calibrated: 7/11/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn378; Calibrated: 4/13/2007
- Phantom: R1: Sugar SAM; Type: SAM; Serial: TP-1005;
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

#### Daily SPC Check/Dipole Area Scan (4x9x1):

Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 2.22 mW/g

# Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 52.6 V/m; Power Drift = -0.025 dB; Peak SAR (extrapolated) = 3.50 W/kg SAR(1 g) = 2.31 mW/g; SAR(10 g) = 1.48 mW/g; Maximum value of SAR (measured) = 2.50 mW/g


## Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 52.6 V/m; Power Drift = -0.025 dB; Peak SAR (extrapolated) = 3.50 W/kg SAR(1 g) = 2.3 mW/g; SAR(10 g) = 1.47 mW/g; Maximum value of SAR (measured) = 2.47 mW/g

#### Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 2.48 mW/g





Date/Time: 12/13/2007 8:55:08 AM

# Test Laboratory: Motorola - 121307 1800MHz Good at -.6%

**DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 259TR; FCC ID: IHDT56JA1** Procedure Notes: 1800 MHz System Performance Check; Dipole Sn# 259tr; Input Power = 200 mW Sim.Temp@meas = 19.4 C; Sim.Temp@SPC = 19.4 C; Room Temp @ SPC = 20.7 C Communication System: CW - Dipole; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: VALIDATION Only

Medium parameters used: f = 1800 MHz;  $\sigma = 1.38 \text{ mho/m}$ ;  $\varepsilon_r = 38.8$ ;  $\rho = 1000 \text{ kg/m}^3$ 

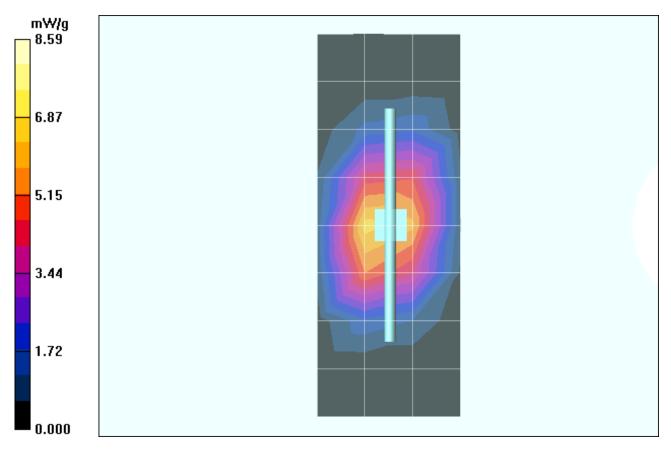
#### DASY4 Configuration:

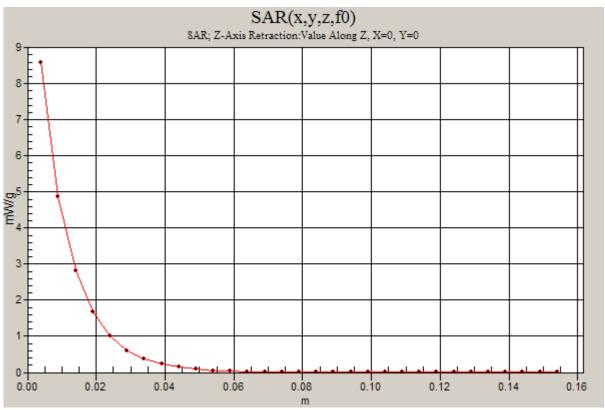
- Probe: ES3DV3 SN3115; ConvF(4.92, 4.92, 4.92); Calibrated: 7/16/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn378; Calibrated: 4/13/2007
- Phantom: R1: Glycol SAM; Type: SAM; Serial: TP-1139;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

#### Daily SPC Check/Dipole Area Scan (4x9x1):

Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 6.58 mW/g

## Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 80.5 V/m; Power Drift = -0.038 dB; Peak SAR (extrapolated) = 13.6 W/kg SAR(1 g) = 7.64 mW/g; SAR(10 g) = 4.06 mW/g; Maximum value of SAR (measured) = 8.50 mW/g


#### Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 80.5 V/m; Power Drift = -0.038 dB; Peak SAR (extrapolated) = 12.9 W/kg SAR(1 g) = 7.27 mW/g; SAR(10 g) = 3.88 mW/g; Maximum value of SAR (measured) = 8.12 mW/g

#### Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 8.59 mW/g





Date/Time: 12/17/2007 2:29:07 PM

# Test Laboratory: Motorola - 121707 1800MHz Good at +0.5%

**DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:259TR; FCC ID: IHDT56JA1** Procedure Notes: 1800 MHz System Performance Check; Dipole Sn# 259tr; Input Power = 200 mW Sim.Temp@meas = 19.1 C; Sim.Temp@SPC = 19.3 C; Room Temp @ SPC = 20.6 C Communication System: CW - Dipole; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: VALIDATION Only

Medium parameters used: f = 1800 MHz;  $\sigma = 1.38 \text{ mho/m}$ ;  $\varepsilon_r = 38.4$ ;  $\rho = 1000 \text{ kg/m}^3$ 

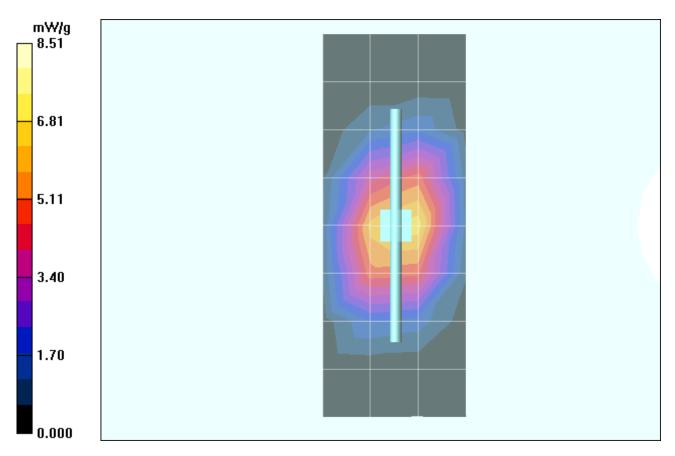
#### DASY4 Configuration:

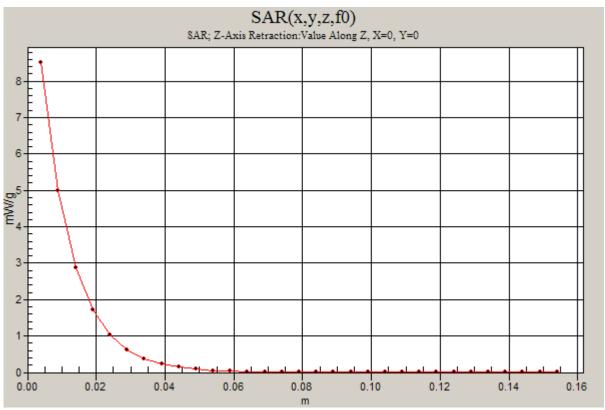
- Probe: ET3DV6 SN1514; ConvF(4.92, 4.92, 4.92); Calibrated: 7/11/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn378; Calibrated: 4/13/2007
- Phantom: R1: Glycol SAM; Type: SAM; Serial: TP-1139;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

#### Daily SPC Check/Dipole Area Scan (4x9x1):

Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 6.63 mW/g

# Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 83.8 V/m; Power Drift = -0.014 dB; Peak SAR (extrapolated) = 12.6 W/kg SAR(1 g) = 7.57 mW/g; SAR(10 g) = 4.09 mW/g; Maximum value of SAR (measured) = 8.52 mW/g


## Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 83.8 V/m; Power Drift = -0.014 dB; Peak SAR (extrapolated) = 12.6 W/kg SAR(1 g) = 7.5 mW/g; SAR(10 g) = 4.04 mW/g; Maximum value of SAR (measured) = 8.39 mW/g

#### **Daily SPC Check/Z-Axis Retraction (1x1x31):**

Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 8.51 mW/g





Date/Time: 1/24/2008 8:13:14 AM

# Test Laboratory: Motorola - 012408 1800MHz Good at +2.1%

**DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:259TR; FCC ID: IHDT56JA1** Procedure Notes: 1800MHz System Performance Check; Dipole Sn# 259TR; Input Power = 200 mW Sim.Temp@meas = 20 C; Sim.Temp@SPC = 19.8 C; Room Temp @ SPC = 20.9 C Communication System: CW - Dipole; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: VALIDATION Only

Medium parameters used: f = 1800 MHz;  $\sigma = 1.38 \text{ mho/m}$ ;  $\varepsilon_r = 41.5$ ;  $\rho = 1000 \text{ kg/m}^3$ 

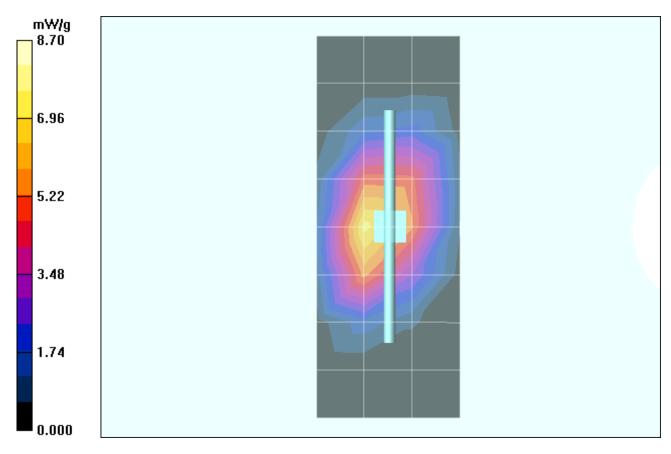
#### DASY4 Configuration:

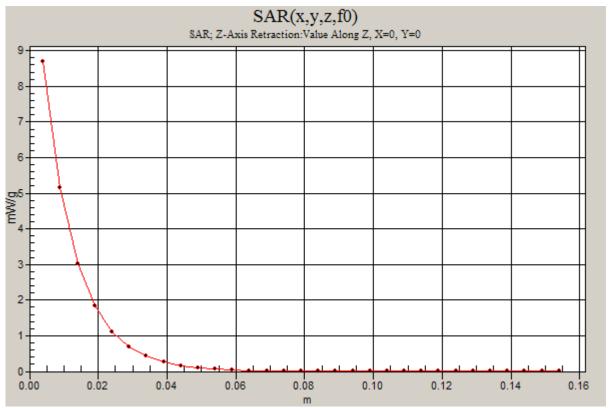
- Probe: ET3DV6 SN1514; ConvF(4.92, 4.92, 4.92); Calibrated: 7/11/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn378; Calibrated: 4/13/2007
- Phantom: R1: Glycol SAM; Type: SAM; Serial: TP-1139;
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

#### Daily SPC Check/Dipole Area Scan (4x9x1):

Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 7.22 mW/g

# Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 82.7 V/m; Power Drift = -0.004 dB; Peak SAR (extrapolated) = 12.7 W/kg SAR(1 g) = 7.66 mW/g; SAR(10 g) = 4.16 mW/g; Maximum value of SAR (measured) = 8.64 mW/g


## Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 82.7 V/m; Power Drift = -0.004 dB; Peak SAR (extrapolated) = 12.9 W/kg SAR(1 g) = 7.66 mW/g; SAR(10 g) = 4.13 mW/g; Maximum value of SAR (measured) = 8.19 mW/g

#### Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 8.70 mW/g





Date/Time: 12/14/2007 1:15:47 PM

# Test Laboratory: Motorola - 121407 2450MHz Good at -9.5% open

**DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 766; FCC ID: IHDT56JA1** Procedure Notes: 2450 MHz System Performance Check; Dipole Sn# 766; Input Power = 200 mW Sim.Temp@meas = 19.7 C; Sim.Temp@SPC = 19.7 C; Room Temp @ SPC = 20.7 C Communication System: CW - Dipole; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: VALIDATION Only

Medium parameters used: f = 2450 MHz;  $\sigma = 1.84 \text{ mho/m}$ ;  $\varepsilon_r = 36.6$ ;  $\rho = 1000 \text{ kg/m}^3$ 

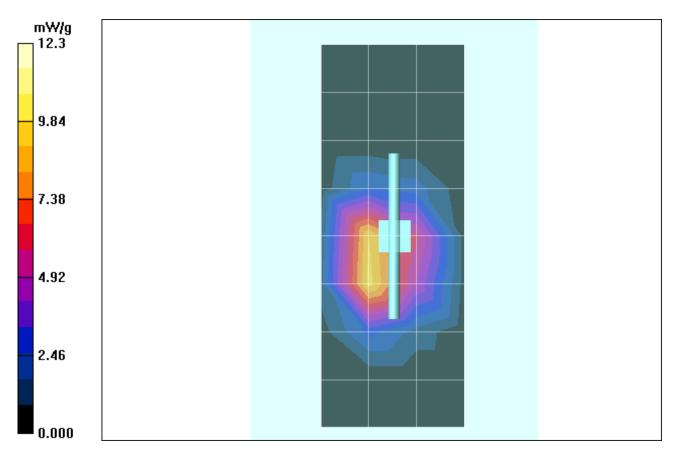
#### DASY4 Configuration:

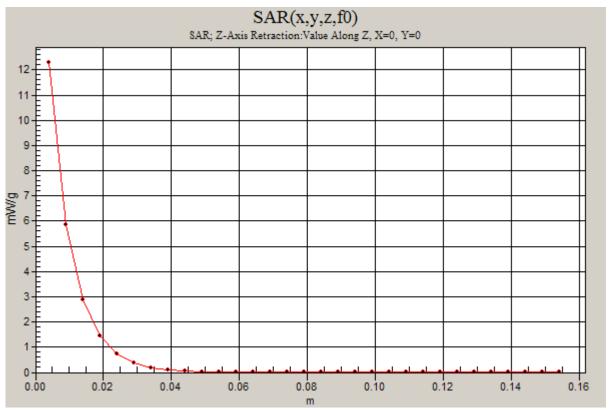
- Probe: ES3DV3 SN3115; ConvF(4.39, 4.39, 4.39); Calibrated: 7/16/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn378; Calibrated: 4/13/2007
- Phantom: R1: Sect.2, Amy Twin; Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

#### Daily SPC Check/Dipole Area Scan (9x4x1):

Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 9.40 mW/g

# Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 77.8 V/m; Power Drift = -0.104 dB; Peak SAR (extrapolated) = 23.6 W/kg SAR(1 g) = 11 mW/g; SAR(10 g) = 5.04 mW/g; Maximum value of SAR (measured) = 12.4 mW/g


## Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 77.8 V/m; Power Drift = -0.104 dB; Peak SAR (extrapolated) = 21.4 W/kg SAR(1 g) = 10 mW/g; SAR(10 g) = 4.63 mW/g; Maximum value of SAR (measured) = 11.2 mW/g

#### **Daily SPC Check/Z-Axis Retraction (1x1x31):**

Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 12.3 mW/g





# Appendix 2

SAR distribution plots for Phantom Head Adjacent Use

Date/Time: 1/7/2008 1:28:08 PM

# Test Laboratory: Motorola - CDMA 800 Cheek

Serial: 80B4B68E; FCC ID: IHDT56JA1

Procedure Notes: Pwr Step: All up bits; Antenna Position: Internal; Accessory Model #: None

Battery Model #: SNN5795A; DEVICE POSITION: CHEEK

Communication System: CDMA 835; Frequency: 836.52 MHz; Channel Number: 384; Duty Cycle: 1:1

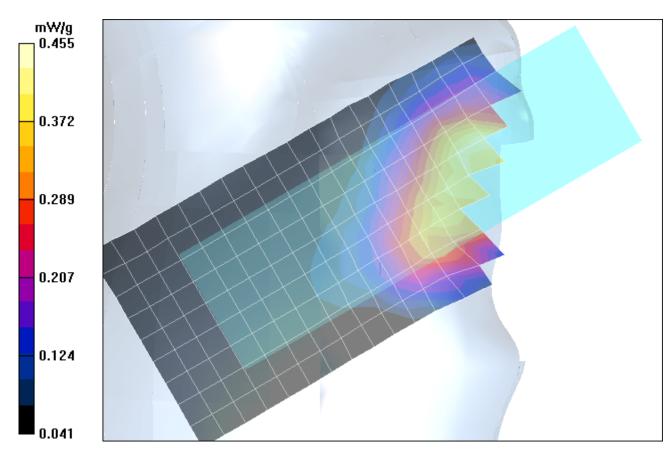
Medium: Low Freq Head

Medium parameters used: f = 835 MHz;  $\sigma = 0.91$  mho/m;  $\varepsilon_r = 41.1$ ;  $\rho = 1000$  kg/m<sup>3</sup>

#### DASY4 Configuration:

- Probe: ET3DV6 SN1514; ConvF(5.98, 5.98, 5.98); Calibrated: 7/11/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn378; Calibrated: 4/13/2007
- Phantom: R#1 Sugar SAM (EXTRA-extended range), Rev.2 (04-Jan-08); Type: SAM v4.0; Serial: TP-1005;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

#### Right Head Template/Area Scan - Normal (10mm) (10x25x1):


Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.424 mW/g

## Right Head Template/5x5x7 Zoom Scan (<=3GHz) - shifted 2 (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.7 V/m; Power Drift = -0.125 dB; Peak SAR (extrapolated) = 0.557 W/kg

SAR(1 g) = 0.430 mW/g; SAR(10 g) = 0.296 mW/g; Maximum value of SAR (measured) = 0.455 mW/g



Date/Time: 12/13/2007 2:40:52 PM

# Test Laboratory: Motorola - CDMA 1900 Cheek

Serial: 80B4B68E; FCC ID: IHDT56JA1

Procedure Notes: Pwr Step: All up bits; Antenna Position: Internal; Accessory Model #: None

Battery Model #: SNN5792A; DEVICE POSITION (cheek or rotated): Cheek

Communication System: CDMA 1900; Frequency: 1880 MHz; Channel Number: 600; Duty Cycle: 1:1

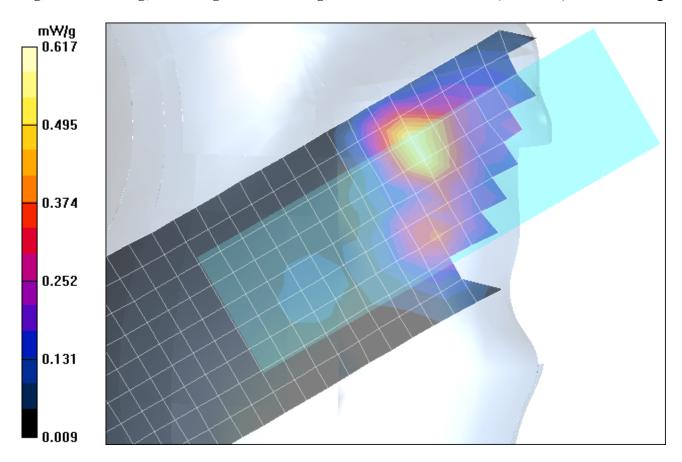
Medium: Regular Glycol Head

Medium parameters used: f = 1880 MHz;  $\sigma = 1.47 \text{ mho/m}$ ;  $\varepsilon_r = 38.4$ ;  $\rho = 1000 \text{ kg/m}^3$ 

#### DASY4 Configuration:

- Probe: ES3DV3 SN3115; ConvF(4.92, 4.92, 4.92); Calibrated: 7/16/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn378; Calibrated: 4/13/2007
- Phantom: R#1 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1139;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

#### Right Head Template/Area Scan - Normal Extended (10mm) (10x25x1):


Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.576 mW/g

#### Right Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.8 V/m; Power Drift = -0.321 dB; Peak SAR (extrapolated) = 0.906 W/kg

SAR(1 g) = 0.567 mW/g; SAR(10 g) = 0.320 mW/g; Maximum value of SAR (measured) = 0.617 mW/g



Date/Time: 12/14/2007 3:24:44 PM

# Test Laboratory: Motorola - Bluetooth Cheek

Serial: 80B4B68E; FCC ID: IHDT56JA1

Procedure Notes: Pwr Step: N/A; Antenna Position: Internal; Accessory Model #: None

Battery Model #: SNN5792A; DEVICE POSITION: Cheek

Communication System: Bluetooth; Frequency: 2441 MHz; Channel Number: 39; Duty Cycle: 1:1

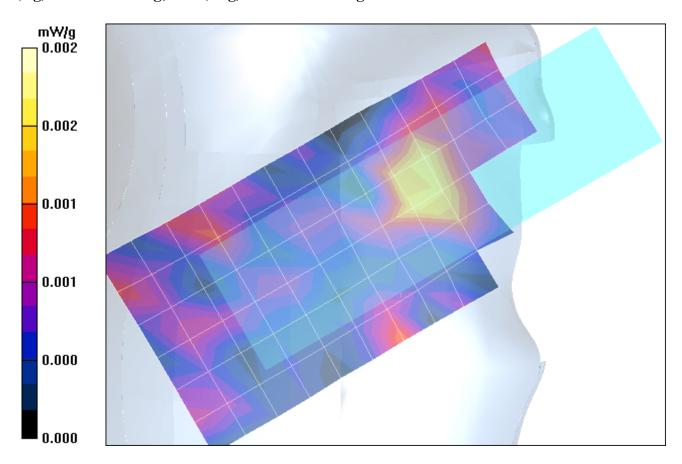
Medium: 2450 Glycol Head

Medium parameters used: f = 2450 MHz;  $\sigma = 1.84 \text{ mho/m}$ ;  $\varepsilon_r = 36.6$ ;  $\rho = 1000 \text{ kg/m}^3$ 

#### DASY4 Configuration:

- Probe: ES3DV3 SN3115; ConvF(4.39, 4.39, 4.39); Calibrated: 7/16/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn378; Calibrated: 4/13/2007
- Phantom: R#1 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1139;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

#### **Right Head Template/Area Scan - Normal (15mm) (7x17x1):**


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.002 mW/g

#### Right Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.884 V/m; Power Drift = 0.845 dB; Peak SAR (extrapolated) = 0.006 W/kg

SAR(1 g) = 0.00191 mW/g; SAR(10 g) = 0.000797 mW/g



Date/Time: 12/12/2007 8:19:01 PM

# Test Laboratory: Motorola - CDMA 800 Tilt

Serial: 80B4B68E; FCC ID: IHDT56JA1

Procedure Notes: Pwr Step: All up bits; Antenna Position: Internal; Accessory Model #: None

Battery Model #: SNN5795A; DEVICE POSITION (cheek or rotated): Rotated

Communication System: CDMA 835; Frequency: 836.52 MHz; Channel Number: 384; Duty Cycle: 1:1

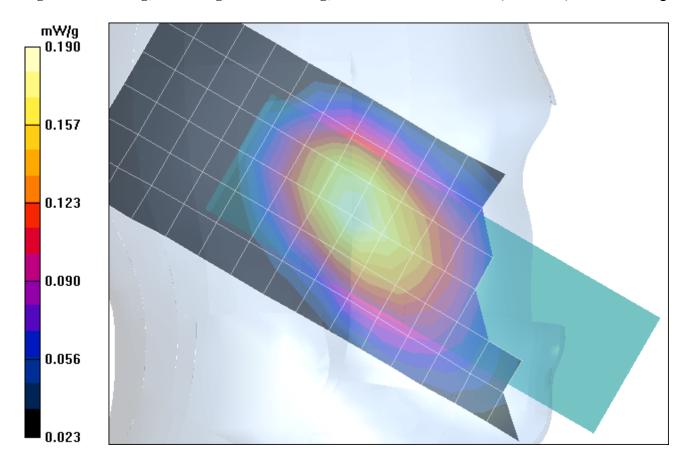
Medium: Low Freq Head

Medium parameters used: f = 835 MHz;  $\sigma = 0.93$  mho/m;  $\varepsilon_r = 41.9$ ;  $\rho = 1000$  kg/m<sup>3</sup>

#### DASY4 Configuration:

- Probe: ES3DV3 SN3115; ConvF(6.03, 6.03, 6.03); Calibrated: 7/16/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn378; Calibrated: 4/13/2007
- Phantom: R1: Sugar SAM; Type: SAM; Serial: TP-1005;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

#### Left Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.196 mW/g

#### Left Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.9 V/m; Power Drift = 0.025 dB; Peak SAR (extrapolated) = 0.238 W/kg

SAR(1 g) = 0.183 mW/g; SAR(10 g) = 0.136 mW/g; Maximum value of SAR (measured) = 0.190 mW/g



Date/Time: 12/13/2007 1:14:09 PM

# Test Laboratory: Motorola - CDMA 1900 Tilt

Serial: 80B4B68E; FCC ID: IHDT56JA1

Procedure Notes: Pwr Step: All up bits; Antenna Position: Internal; Accessory Model #: None

Battery Model #: SNN5792A; DEVICE POSITION (cheek or rotated): Rotated

Communication System: CDMA 1900; Frequency: 1880 MHz; Channel Number: 600; Duty Cycle: 1:1

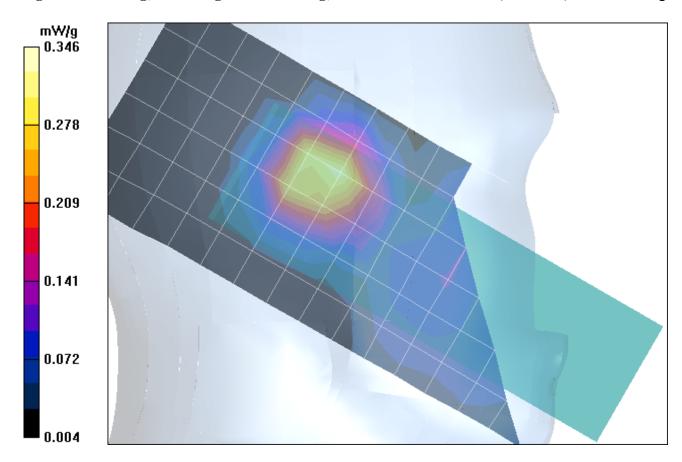
Medium: Regular Glycol Head

Medium parameters used: f = 1880 MHz;  $\sigma = 1.47 \text{ mho/m}$ ;  $\varepsilon_r = 38.4$ ;  $\rho = 1000 \text{ kg/m}^3$ 

#### DASY4 Configuration:

- Probe: ES3DV3 SN3115; ConvF(4.92, 4.92, 4.92); Calibrated: 7/16/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn378; Calibrated: 4/13/2007
- Phantom: R1: Glycol SAM; Type: SAM; Serial: TP-1139;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

#### **Left Head Template/Area Scan - Normal (15mm) (7x17x1):**


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.316 mW/g

#### Left Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.7 V/m; Power Drift = -0.145 dB; Peak SAR (extrapolated) = 0.497 W/kg

SAR(1 g) = 0.324 mW/g; SAR(10 g) = 0.195 mW/g; Maximum value of SAR (measured) = 0.346 mW/g



Date/Time: 12/14/2007 5:50:50 PM

## **Test Laboratory: Motorola - Bluetooth Tilt**

Serial: 80B4B68E; FCC ID: IHDT56JA1

Procedure Notes: Pwr Step: N/A; Antenna Position: Internal; Accessory Model #: None

Battery Model #: SNN5795A; DEVICE POSITION (cheek or rotated): Rotated

Communication System: Bluetooth; Frequency: 2441 MHz; Channel Number: 39; Duty Cycle: 1:1

Medium: 2450 Glycol Head

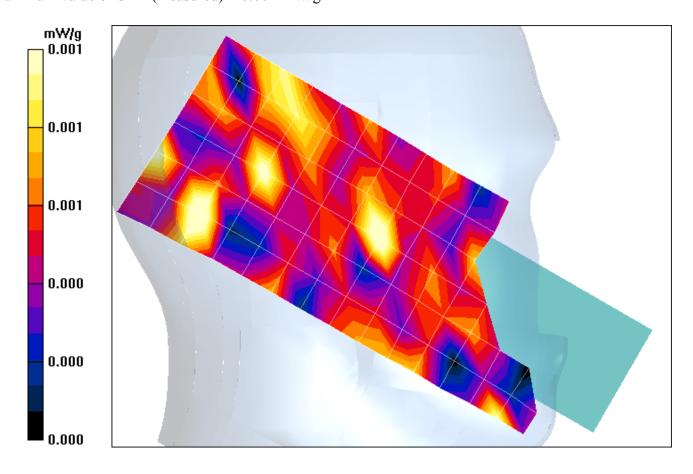
Medium parameters used: f = 2450 MHz;  $\sigma = 1.84 \text{ mho/m}$ ;  $\varepsilon_r = 36.6$ ;  $\rho = 1000 \text{ kg/m}^3$ 

#### DASY4 Configuration:

- Probe: ES3DV3 SN3115; ConvF(4.39, 4.39, 4.39); Calibrated: 7/16/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn378; Calibrated: 4/13/2007
- Phantom: R#1 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1139;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

#### Left Head Template/Area Scan - Normal (15mm) (7x17x1):

Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.001 mW/g


#### Left Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.577 V/m; Power Drift = -0.888 dB; Peak SAR (extrapolated) = 0.004 W/kg

SAR(1 g) = 0.000846 mW/g; SAR(10 g) = 0.000445 mW/g;

Maximum value of SAR (measured) = 0.002 mW/g



## Appendix 3

**SAR distribution plots for Body Worn Configuration** 

Date/Time: 12/12/2007 10:03:39 PM

## Test Laboratory: Motorola - CDMA 800 Body Worn

Serial: 80B4B68E; FCC ID: IHDT56JA1

Procedure Notes: Pwr Step: All up bits; Antenna Position: Internal; Battery Model #: SNN5795A

Device Position: Body Worn, Back of Phone 15mm from Phantom

Communication System: CDMA 835; Frequency: 836.52 MHz; Channel Number: 384; Duty Cycle: 1:1

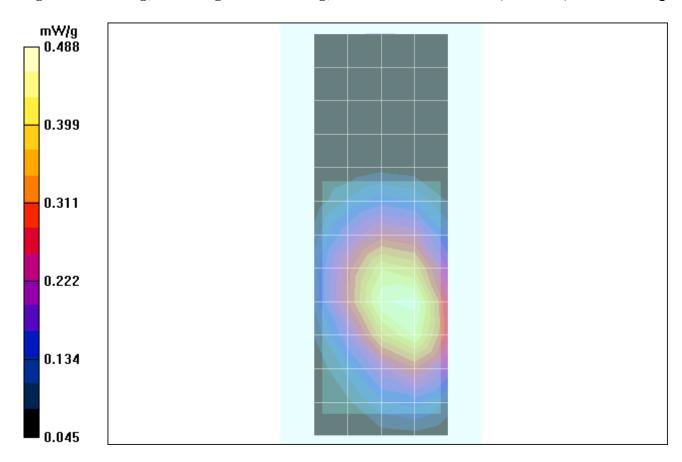
Medium: Low Freq Body

Medium parameters used: f = 835 MHz;  $\sigma = 0.98$  mho/m;  $\varepsilon_r = 53.1$ ;  $\rho = 1000$  kg/m<sup>3</sup>

#### DASY4 Configuration:

- Probe: ES3DV3 SN3115; ConvF(5.72, 5.72, 5.72); Calibrated: 7/16/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn378; Calibrated: 4/13/2007
- Phantom: R1: Sect.1, Amy Twin; Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

#### Amy Twin Phone Template/Area Scan - Normal Body (15mm) (13x7x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.468 mW/g

#### Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.1 V/m; Power Drift = -0.101 dB; Peak SAR (extrapolated) = 0.607 W/kg

SAR(1 g) = 0.459 mW/g; SAR(10 g) = 0.324 mW/g; Maximum value of SAR (measured) = 0.488 mW/g



Date/Time: 1/24/2008 8:16:36 PM

# Test Laboratory: Motorola - CDMA 800 Body Worn with Bluetooth

Serial: 80B4B68E; FCC ID: IHDT56JA1

Procedure Notes: Pwr Step: All up Bits; Antenna Position: Internal; Battery Model #: SNN5795A Device Position: Body Worn, Back of Phone 15mm From Phantom with Bluetooth Enabled

Communication System: CDMA 835; Frequency: 836.52 MHz; Channel Number: 384; Duty Cycle: 1:1

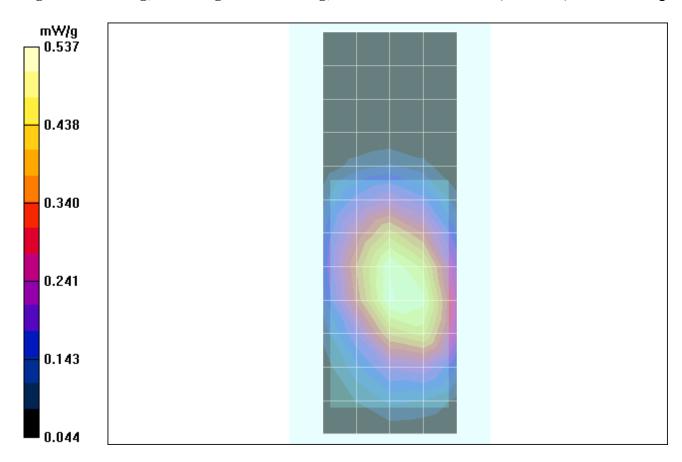
Medium: Low Freq Body

Medium parameters used: f = 835 MHz;  $\sigma = 0.98$  mho/m;  $\varepsilon_r = 53.3$ ;  $\rho = 1000$  kg/m<sup>3</sup>

#### DASY4 Configuration:

- Probe: ET3DV6 SN1514; ConvF(5.75, 5.75, 5.75); Calibrated: 7/11/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn378; Calibrated: 4/13/2007
- Phantom: R1: Sect.1, Amy Twin; Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

#### Amy Twin Phone Template/Area Scan - Normal Body (15mm) (13x7x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.508 mW/g

#### Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.1 V/m; Power Drift = -0.027 dB; Peak SAR (extrapolated) = 0.683 W/kg

SAR(1 g) = 0.509 mW/g; SAR(10 g) = 0.361 mW/g; Maximum value of SAR (measured) = 0.537 mW/g



Date/Time: 12/17/2007 4:44:26 PM

## Test Laboratory: Motorola - CDMA 1900 Body

Serial: 80B4B68E; FCC ID: IHDT56JA1

Procedure Notes: Pwr Step: All up Bits; Antenna Position: Internal; Battery Model #: SNN5795A

Device Position: Body Worn, Back of Phone 15mm from Phantom

Communication System: CDMA 1900; Frequency: 1880 MHz; Channel Number: 600; Duty Cycle: 1:1

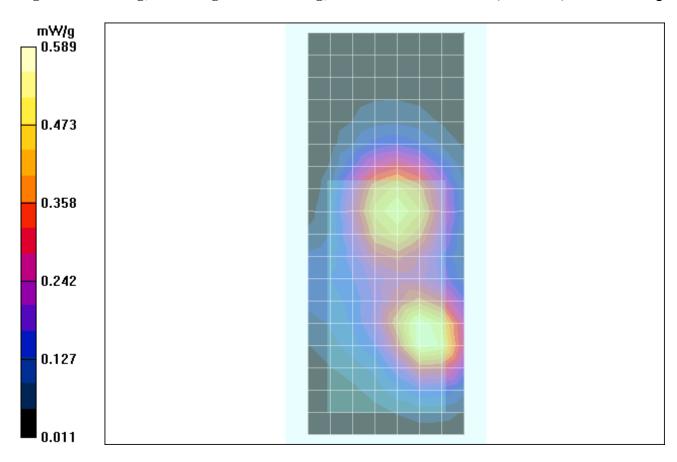
Medium: Regular Glycol Body

Medium parameters used: f = 1880 MHz;  $\sigma = 1.59 \text{ mho/m}$ ;  $\varepsilon_r = 50.8$ ;  $\rho = 1000 \text{ kg/m}^3$ 

#### DASY4 Configuration:

- Probe: ET3DV6 SN1514; ConvF(4.59, 4.59, 4.59); Calibrated: 7/11/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn378; Calibrated: 4/13/2007
- Phantom: R1: Sect.2, Amy Twin; Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

#### Amy Twin Phone Template/Area Scan - Normal Body (10mm) (19x10x1):


Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.543 mW/g

#### Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.5 V/m; Power Drift = 0.003 dB; Peak SAR (extrapolated) = 0.898 W/kg

SAR(1 g) = 0.534 mW/g; SAR(10 g) = 0.303 mW/g; Maximum value of SAR (measured) = 0.589 mW/g



Date/Time: 1/24/2008 7:35:26 PM

# Test Laboratory: Motorola - CDMA 1900 Body Worn with Bluetooth

Serial: 80B4B68E; FCC ID: IHDT56JA1

Procedure Notes: Pwr Step: All up Bits; Antenna Position: Internal; Battery Model #: SNN5795A Device Position: Body Worn, Back of Phone 15mm From Phantom with Bluetooth Enabled

Communication System: CDMA 1900; Frequency: 1880 MHz; Channel Number: 600; Duty Cycle: 1:1

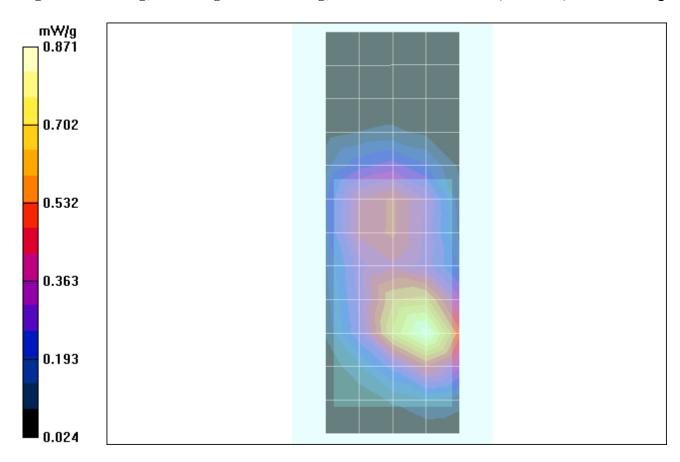
Medium: Regular Glycol Body 1750/1880

Medium parameters used: f = 1880 MHz;  $\sigma = 1.59 \text{ mho/m}$ ;  $\varepsilon_r = 51.1$ ;  $\rho = 1000 \text{ kg/m}^3$ 

#### DASY4 Configuration:

- Probe: ET3DV6 SN1514; ConvF(4.59, 4.59, 4.59); Calibrated: 7/11/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn378; Calibrated: 4/13/2007
- Phantom: R1: Sect.2, Amy Twin; Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

#### Amy Twin Phone Template/Area Scan - Normal Body (15mm) (13x7x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.854 mW/g

#### Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.1 V/m; Power Drift = 0.037 dB; Peak SAR (extrapolated) = 1.29 W/kg

SAR(1 g) = 0.799 mW/g; SAR(10 g) = 0.474 mW/g; Maximum value of SAR (measured) = 0.871 mW/g



Date/Time: 12/14/2007 7:06:17 PM

## Test Laboratory: Motorola - Bluetooth Body

Serial: 80B4B68E; FCC ID: IHDT56JA1

Procedure Notes: Pwr Step: N/A; Antenna Position: Internal; Battery Model #: SNN5792A

Device Position: Body Worn, Front of Phone 15mm From Phantom

Communication System: Bluetooth; Frequency: 2441 MHz; Channel Number: 39; Duty Cycle: 1:1

Medium: 2450 Glycol Body

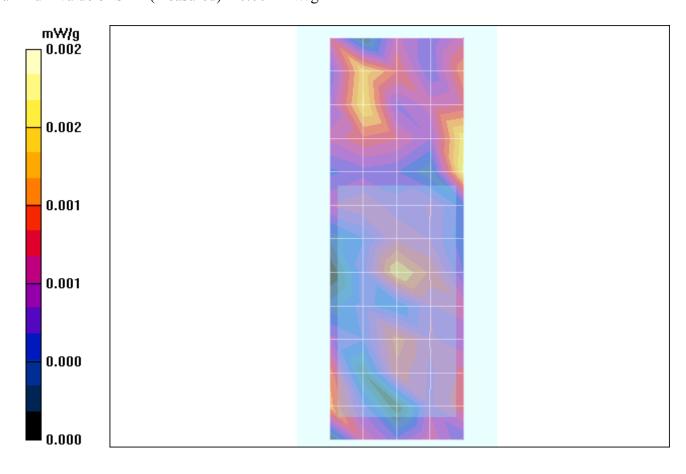
Medium parameters used: f = 2450 MHz;  $\sigma = 1.96 \text{ mho/m}$ ;  $\varepsilon_r = 47.7$ ;  $\rho = 1000 \text{ kg/m}^3$ 

#### DASY4 Configuration:

- Probe: ES3DV3 SN3115; ConvF(4.07, 4.07, 4.07); Calibrated: 7/16/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn378; Calibrated: 4/13/2007
- Phantom: R1: Sect.2, Amy Twin; Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

#### Amy Twin Phone Template/Area Scan - Normal Body (15mm) (13x7x1):

Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.002 mW/g


#### Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.567 V/m; Power Drift = -0.372 dB; Peak SAR (extrapolated) = 0.003 W/kg

SAR(1 g) = 0.00097 mW/g; SAR(10 g) = 0.000443 mW/g;

Maximum value of SAR (measured) = 0.001 mW/g



# Appendix 4

### **Probe Calibration Certificate**

#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurlch, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

Client

Motorola

Certificate No: ES3-3115\_Jul07

## **CALIBRATION CERTIFICATE**

Object ES3DV3 - SN:3115

Calibration procedure(s)

QA CAL-01 v6

Calibration procedure for dosimetric E-field probes



Calibration date:

July 16, 2007

Condition of the calibrated item

In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards          | ID#              | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration                      |
|----------------------------|------------------|-------------------------------------------|--------------------------------------------|
| Power meter E4419B         | GB41293874       | 29-Mar-07 (METAS, No. 217-00670)          | Mar-08                                     |
| Power sensor E4412A        | MY41495277       | 29-Mar-07 (METAS, No. 217-00670)          | Mar-08                                     |
| Power sensor E4412A        | MY41498087       | 29-Mar-07 (METAS, No. 217-00670)          | Mar-08                                     |
| Reference 3 dB Attenuator  | SN: S5054 (3c)   | 10-Aug-06 (METAS, No. 217-00592)          | Aug-07                                     |
| Reference 20 dB Attenuator | SN: \$5086 (20b) | 29-Mar-07 (METAS, No. 217-00671)          | Mar-08                                     |
| Reference 30 dB Attenuator | SN: S5129 (30b)  | 10-Aug-06 (METAS, No. 217-00593)          | Aug-07                                     |
| Reference Probe ES3DV2     | SN: 3013         | 4-Jan-07 (SPEAG, No. ES3-3013_Jan07)      | Jan-08                                     |
| DAE4                       | SN: 654          | 20-Apr-07 (SPEAG, No. DAE4-654_Apr07)     | Apr-08                                     |
| Secondary Standards        | ID#              | Check Date (in house)                     | Scheduled Check                            |
| RF generator HP 8648C      | US3642U01700     | 4-Aug-99 (SPEAG, in house check Nov-05)   | In house check: Nov-07                     |
| Network Analyzer HP 8753E  | US37390585       | 18-Oct-01 (SPEAG, in house check Oct-06)  | In house check: Oct-07                     |
|                            | Name             | Function                                  | Signature                                  |
| Calibrated by:             | Katja Pokovic    | Technical Manager                         |                                            |
|                            |                  | J. State of                               | The property of the property of the second |
| Approved by:               | Niels Kuster     | Quality Manager                           | 1144                                       |

Issued: July 17, 2007

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ES3-3115\_Jul07

#### **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étaionnage
Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

#### Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConF

sensitivity in TSL / NORMx,y,z

DCP

diode compression point φ rotation around probe axis

Polarization φ
Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e.,  $\vartheta = 0$  is normal to probe axis

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

#### Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

# Probe ES3DV3

SN:3115

Manufactured:

March 6, 2006

Last calibrated:

July 3, 2006

Recalibrated:

July 16, 2007

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

#### DASY - Parameters of Probe: ES3DV3 SN:3115

| NormX | <b>1.26</b> ± 10.1% | $\mu$ V/(V/m) <sup>2</sup> | DCP X | <b>95</b> mV |
|-------|---------------------|----------------------------|-------|--------------|
| NormY | 1.27 ± 10.1%        | $\mu$ V/(V/m) <sup>2</sup> | DCP Y | <b>95</b> mV |
| NormZ | <b>1.28</b> ± 10.1% | $\mu V/(V/m)^2$            | DCP Z | <b>95</b> mV |

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

### **Boundary Effect**

TSL 900 MHz Typical SAR gradient: 5 % per mm

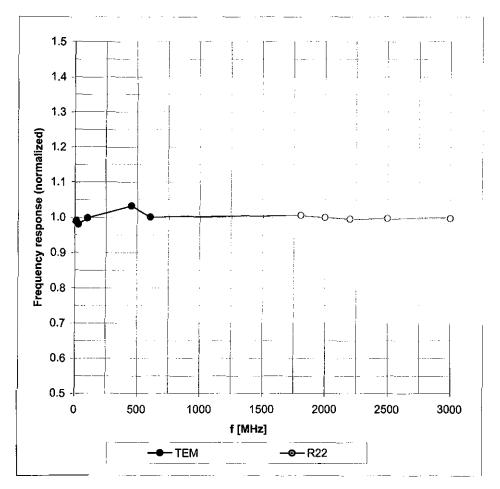
| Sensor Center to      |                              |     | 4.0 mm |
|-----------------------|------------------------------|-----|--------|
| SAR <sub>be</sub> [%] | Without Correction Algorithm | 5.6 | 2.4    |
| SAR <sub>be</sub> [%] | With Correction Algorithm    | 0.0 | 0.1    |

TSL 1810 MHz Typical SAR gradient: 10 % per mm

| Sensor Center to      | Phantom Surface Distance     | 3.0 mm | 4.0 mm |
|-----------------------|------------------------------|--------|--------|
| SAR <sub>be</sub> [%] | Without Correction Algorithm | 8.4    | 5.3    |
| SAR <sub>be</sub> [%] | With Correction Algorithm    | 0.0    | 0.0    |

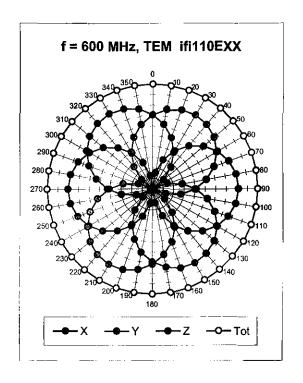
#### Sensor Offset

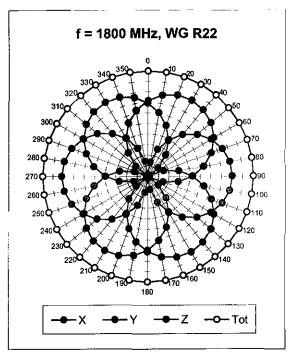
Probe Tip to Sensor Center 2.0 mm

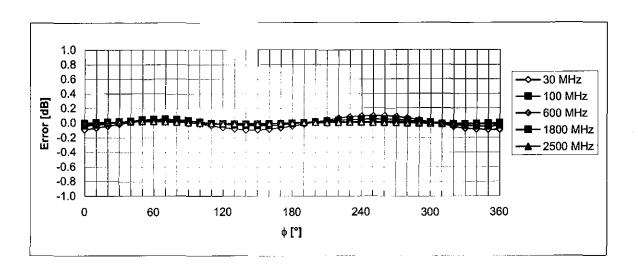

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Page 8).

<sup>&</sup>lt;sup>8</sup> Numerical linearization parameter: uncertainty not required.


# Frequency Response of E-Field

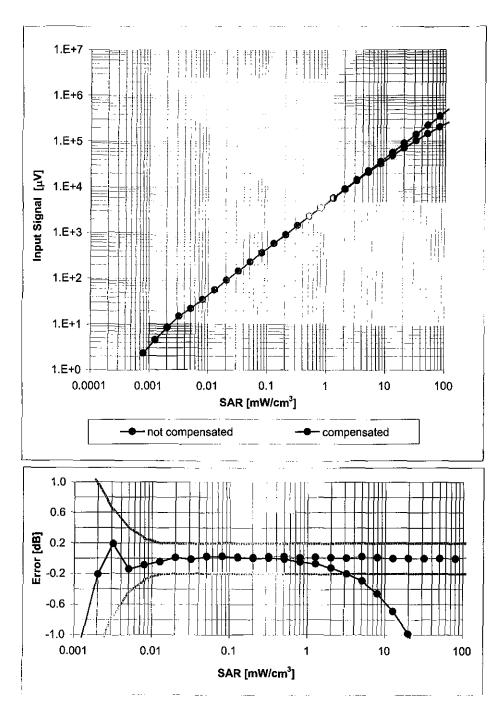

(TEM-Cell:ifi110 EXX, Waveguide: R22)




Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

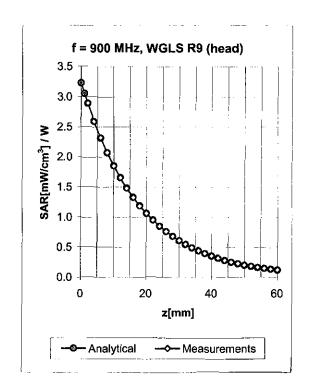
Receiving Pattern ( $\phi$ ),  $\vartheta = 0^{\circ}$ 

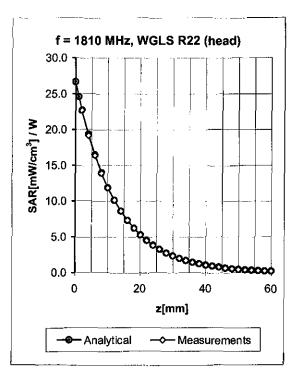







Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


# Dynamic Range f(SAR<sub>head</sub>)

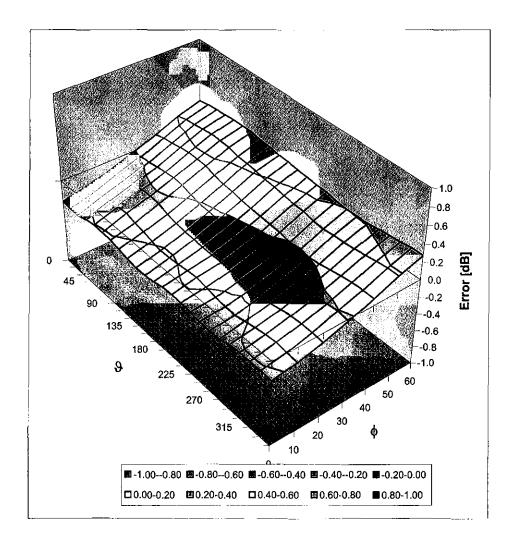

(Waveguide R22, f = 1800 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

## **Conversion Factor Assessment**






| f [MHz] | Validity [MHz] <sup>c</sup> | TSL  | Permittivity | Conductivity | Alpha | Depth | ConvF Uncertainty  |
|---------|-----------------------------|------|--------------|--------------|-------|-------|--------------------|
| 900     | ± 50 / ± 100                | Head | 41.5 ± 5%    | 0.97 ± 5%    | 1.00  | 1.11  | 6.03 ± 11.0% (k=2) |
| 1810    | ± 50 / ± 100                | Head | 40.0 ± 5%    | 1.40 ± 5%    | 0.81  | 1.32  | 4.92 ± 11.0% (k=2) |
| 1950    | ± 50 / ± 100                | Head | 40.0 ± 5%    | 1.40 ± 5%    | 0.90  | 1.20  | 4.72 ± 11.0% (k=2) |
| 2300    | ± 50 / ± 100                | Head | 39.4 ± 5%    | 1.71 ± 5%    | 0.76  | 1.34  | 4.58 ± 11.8% (k=2) |
| 2450    | ± 50 / ± 100                | Head | 39.2 ± 5%    | 1.80 ± 5%    | 0.76  | 1.34  | 4.39 ± 11.8% (k=2) |
| 2600    | ± 50 / ± 100                | Head | 39.0 ± 5%    | 1.96 ± 5%    | 0.86  | 1.20  | 4.24 ± 11.8% (k=2) |
|         |                             |      |              |              |       |       |                    |
| 900     | ± 50 / ± 100                | Body | 55.0 ± 5%    | 1.05 ± 5%    | 1.00  | 1.22  | 5.72 ± 11.0% (k=2) |
| 1810    | ± 50 / ± 100                | Body | 53.3 ± 5%    | 1.52 ± 5%    | 0.76  | 1.44  | 4.70 ± 11.0% (k=2) |
| 1950    | ± 50 / ± 100                | Body | 53.3 ± 5%    | 1.52 ± 5%    | 0.74  | 1.40  | 4.55 ± 11.0% (k=2) |
| 2300    | ± 50 / ± 100                | Body | 52.8 ± 5%    | 1.85 ± 5%    | 0.73  | 1.38  | 4.35 ± 11.8% (k=2) |
| 2450    | ± 50 / ± 100                | Body | 52.7 ± 5%    | 1.95 ± 5%    | 0.91  | 1.17  | 4.07 ± 11.8% (k=2) |
| 2600    | ± 50 / ± 100                | Body | 52.5 ± 5%    | 2.16 ± 5%    | 1.00  | 1.08  | 3.84 ± 11.8% (k=2) |

<sup>&</sup>lt;sup>c</sup> The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

# **Deviation from Isotropy in HSL**

Error ( $\phi$ ,  $\vartheta$ ), f = 900 MHz



Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerlscher Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

Motorola MDb



Certificate No: ET3-1514\_Jul07

#### CALIBRATION CERTIFICATE

Object ET3DV6 - SN:1514

Calibration procedure(s) QA CAL-01.v6

Calibration procedure for dosimetric E-field probes

Calibration date: July 11, 2007

Condition of the calibrated item In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards          | ID#             | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration  |
|----------------------------|-----------------|-------------------------------------------|------------------------|
| Power meter E4419B         | GB41293874      | 29-Mar-07 (METAS, No. 217-00670)          | Mar-08                 |
| Power sensor E4412A        | MY41495277      | 29-Mar-07 (METAS, No. 217-00670)          | Mar-08                 |
| Power sensor E4412A        | MY41498087      | 29-Mar-07 (METAS, No. 217-00670)          | Mar-08                 |
| Reference 3 dB Attenuator  | SN: S5054 (3c)  | 10-Aug-06 (METAS, No. 217-00592)          | Aug-07                 |
| Reference 20 dB Attenuator | SN: S5086 (20b) | 29-Mar-07 (METAS, No. 217-00671)          | Mar-08                 |
| Reference 30 dB Attenuator | SN: S5129 (30b) | 10-Aug-06 (METAS, No. 217-00593)          | Aug-07                 |
| Reference Probe ES3DV2     | SN: 3013        | 4-Jan-07 (SPEAG, No. ES3-3013_Jan07)      | Jan-08                 |
| DAE4                       | SN: 654         | 20-Apr-07 (SPEAG, No. DAE4-654_Apr07)     | Apr-08                 |
| Secondary Standards        | ID#             | Check Date (in house)                     | Scheduled Check        |
| RF generator HP 8648C      | US3642U01700    | 4-Aug-99 (SPEAG, in house check Nov-05)   | In house check: Nov-07 |
| Network Analyzer HP 8753E  | US37390585      | 18-Oct-01 (SPEAG, in house check Oct-06)  | In house check: Oct-07 |
|                            | Name            | Function                                  | Signature              |
| Calibrated by:             | Katja Pokovic   | Technical Manager                         | 201-112                |
|                            |                 |                                           |                        |
| Approved by:               | Niels Kuster    | Quality Manager                           |                        |

Issued: July 12, 2007

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

#### **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,v.z tissue simulating liquid sensitivity in free space

ConF

sensitivity in TSL / NORMx,y,z

DCP

diode compression point

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e.,  $\vartheta = 0$  is normal to probe axis

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

#### Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This
  linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of
  the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

# Probe ET3DV6

SN:1514

Manufactured:

November 24, 1999

Last calibrated:

July 17, 2006

Recalibrated:

July 11, 2007

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

### DASY - Parameters of Probe: ET3DV6 SN:1514

| Sensitivity in Free | Diode Compression <sup>E</sup> |                            |       |              |  |
|---------------------|--------------------------------|----------------------------|-------|--------------|--|
| NormX               | <b>1.70</b> ± 10.1%            | $\mu$ V/(V/m) <sup>2</sup> | DCP X | <b>91</b> mV |  |
| NormY               | <b>1.94</b> ± 10.1%            | $\mu V/(V/m)^2$            | DCP Y | <b>91</b> mV |  |
| NormZ               | <b>1.85</b> ± 10.1%            | μV/(V/m) <sup>2</sup>      | DCP Z | 89 mV        |  |

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

#### **Boundary Effect**

TSL 900 MHz Typical SAR gradient: 5 % per mm

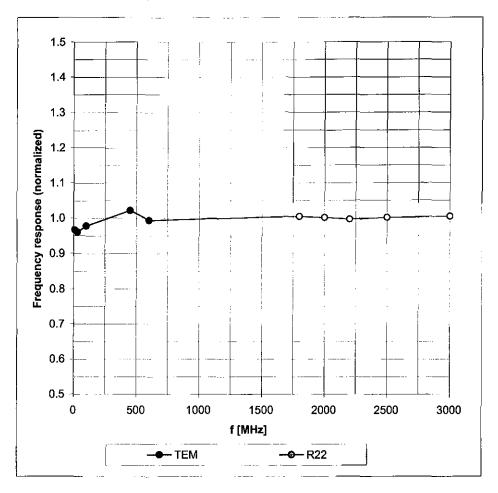
| Sensor Center to      | o Phantom Surface Distance   | 3.7 mm | 4.7 mm |
|-----------------------|------------------------------|--------|--------|
| SAR <sub>be</sub> [%] | Without Correction Algorithm | 10.2   | 5.3    |
| SAR <sub>be</sub> [%] | With Correction Algorithm    | 0.1    | 0.3    |

TSL 1810 MHz Typical SAR gradient: 10 % per mm

| Sensor Center to      | <b></b>                      |      | 4.7 mm |
|-----------------------|------------------------------|------|--------|
| SAR <sub>be</sub> [%] | Without Correction Algorithm | 14.0 | 9.1    |
| SAR <sub>be</sub> [%] | With Correction Algorithm    | 0.1  | 0.0    |

#### Sensor Offset

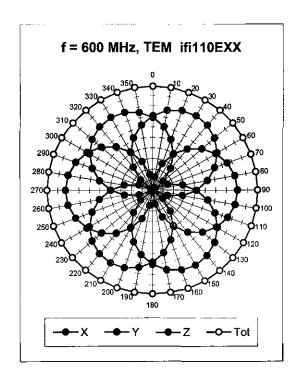
Probe Tip to Sensor Center 2.7 mm

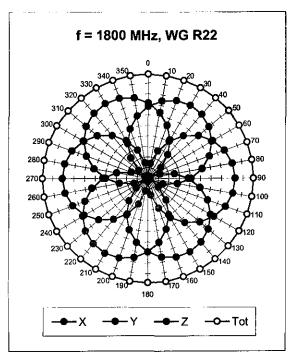

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

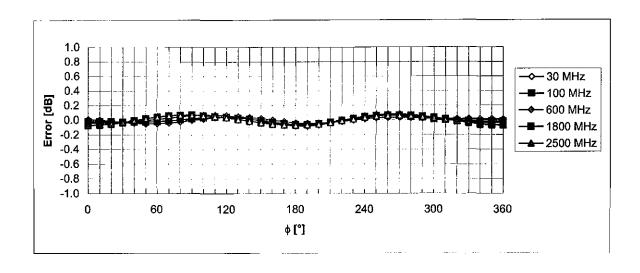
A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Page 8).

<sup>&</sup>lt;sup>B</sup> Numerical linearization parameter: uncertainty not required.

# Frequency Response of E-Field


(TEM-Cell:ifi110 EXX, Waveguide: R22)

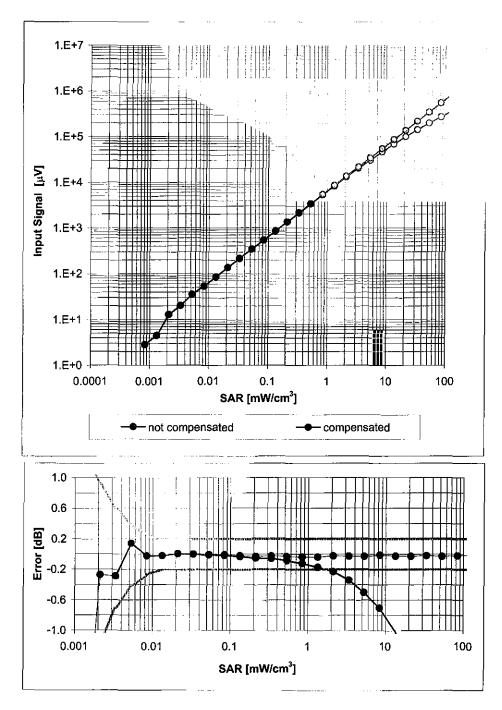




Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

July 11, 2007

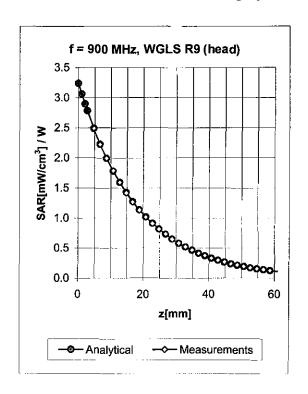
# Receiving Pattern ( $\phi$ ), $\vartheta$ = 0°

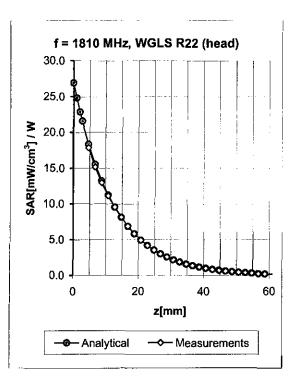







Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


# Dynamic Range f(SAR<sub>head</sub>)

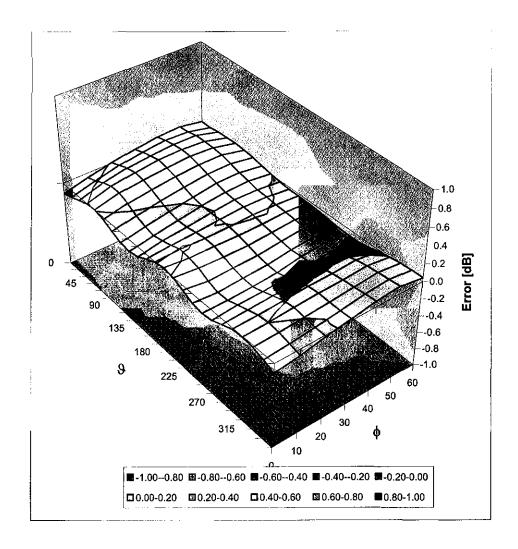

(Waveguide R22, f = 1800 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

### **Conversion Factor Assessment**






| f [MHz] | Validity [MHz] <sup>c</sup> | TSL  | Permittivity | Conductivity | Alpha | Depth | ConvF Uncertainty  |
|---------|-----------------------------|------|--------------|--------------|-------|-------|--------------------|
| 900     | ± 50 / ± 100                | Head | 41.5 ± 5%    | 0.97 ± 5%    | 0.33  | 2.62  | 5.98 ± 11.0% (k=2) |
| 1810    | ± 50 / ± 100                | Head | 40.0 ± 5%    | 1.40 ± 5%    | 0.54  | 2.61  | 4.92 ± 11.0% (k=2) |
| 1950    | ± 50 / ± 100                | Head | 40.0 ± 5%    | 1.40 ± 5%    | 0.62  | 2.50  | 4.72 ± 11.0% (k=2) |
| 2450    | ± 50 / ± 100                | Head | 39.2 ± 5%    | 1.80 ± 5%    | 0.94  | 1.62  | 4.44 ± 11.8% (k=2) |
|         |                             |      |              |              |       |       |                    |
|         |                             |      |              |              |       |       |                    |
| 900     | ± 50 / ± 100                | Body | 55.0 ± 5%    | 1.05 ± 5%    | 0.33  | 2.79  | 5.75 ± 11.0% (k=2) |
| 1810    | ± 50 / ± 100                | Body | 53.3 ± 5%    | 1.52 ± 5%    | 0.74  | 2.31  | 4.59 ± 11.0% (k=2) |
| 1950    | ± 50 / ± 100                | Body | 53.3 ± 5%    | 1.52 ± 5%    | 0.97  | 1.96  | 4.34 ± 11.0% (k=2) |
| 2450    | ± 50 / ± 100                | Body | 52.7 ± 5%    | 1.95 ± 5%    | 0.79  | 1.94  | 4.07 ± 11.8% (k=2) |

<sup>&</sup>lt;sup>c</sup> The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

# **Deviation from Isotropy in HSL**

Error ( $\phi$ ,  $\vartheta$ ), f = 900 MHz



Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

## Appendix 5

## **Measurement Uncertainty Budget**

Uncertainty Budget for Device Under Test, for 30 MHz to 3 GHz

| Officertainty budge           | Uncertainty Budget for Device Under Test, for 30 Minz to 3 Ghz |       |             |        |          |        |            |                       |          |
|-------------------------------|----------------------------------------------------------------|-------|-------------|--------|----------|--------|------------|-----------------------|----------|
|                               |                                                                |       |             |        |          |        | h=         | i =                   |          |
|                               |                                                                |       |             | e =    |          |        | c x f      | cxg                   |          |
| а                             | b                                                              | С     | d           | f(d,k) | f        | g      | /e         | /e                    | k        |
|                               | IEEE                                                           | Tol.  | Prob        |        | Ci       | Ci     | 1 g        | 10 g                  |          |
|                               | 1528                                                           | (± %) | Dist        |        | (1 g)    | (10 g) | <b>u</b> i | <b>u</b> <sub>i</sub> |          |
| <b>Uncertainty Component</b>  | section                                                        | , ,   | j           | Div.   |          |        | (±%)       | (±%)                  | $V_i$    |
| Measurement System            |                                                                |       |             |        |          |        |            |                       |          |
| Probe Calibration             | E.2.1                                                          | 5.9   | N           | 1.00   | 1        | 1      | 5.9        | 5.9                   | ~        |
| Axial Isotropy                | E.2.2                                                          | 4.7   | R           | 1.73   | 0.000    | 0.000  | 0.0        | 0.0                   | 8        |
| Hemispherical Isotropy        | E.2.2                                                          | 9.6   | R           | 1.73   | 1.000    | 1.000  | 5.5        | 5.5                   | 8        |
| Boundary Effect               | E.2.3                                                          | 5.8   | R           | 1.73   | 1        | 1      | 3.3        | 3.3                   | 8        |
| Linearity                     | E.2.4                                                          | 4.7   | R           | 1.73   | 1        | 1      | 2.7        | 2.7                   | ~        |
| System Detection Limits       | E.2.5                                                          | 1.0   | R           | 1.73   | 1        | 1      | 0.6        | 0.6                   | 8        |
| Readout Electronics           | E.2.6                                                          | 0.3   | N           | 1.00   | 1        | 1      | 0.3        | 0.3                   | ∞        |
| Response Time                 | E.2.7                                                          | 1.1   | R           | 1.73   | 1        | 1      | 0.6        | 0.6                   | 8        |
| Integration Time              | E.2.8                                                          | 1.1   | R           | 1.73   | 1        | 1      | 0.6        | 0.6                   | 8        |
| RF Ambient Conditions -       | L.Z.0                                                          | 1.1   | IX.         | 1.73   | '        | '      | 0.0        | 0.0                   | $\sim$   |
| Noise                         | E.6.1                                                          | 3.0   | R           | 1.73   | 1        | 1      | 1.7        | 1.7                   | ∞        |
| RF Ambient Conditions -       | 2.0.1                                                          | 0.0   | - 1 \       | 1.70   | · ·      | · ·    |            | 1.,,                  |          |
| Reflections                   | E.6.1                                                          | 0.0   | R           | 1.73   | 1        | 1      | 0.0        | 0.0                   | $\infty$ |
| Probe Positioner Mech.        |                                                                |       |             |        |          |        |            |                       |          |
| Tolerance                     | E.6.2                                                          | 0.4   | R           | 1.73   | 1        | 1      | 0.2        | 0.2                   | $\infty$ |
| Probe Positioning w.r.t       |                                                                |       |             |        |          |        |            |                       |          |
| Phantom                       | E.6.3                                                          | 2.9   | R           | 1.73   | 1        | 1      | 1.7        | 1.7                   | $\infty$ |
| Max. SAR Evaluation           |                                                                |       |             | 4 =0   |          |        |            |                       |          |
| (ext., int., avg.)            | E.5                                                            | 3.4   | R           | 1.73   | 1        | 1      | 2.0        | 2.0                   | $\infty$ |
| Test sample Related           |                                                                |       |             |        |          |        |            |                       |          |
| Test Sample Positioning       | E.4.2                                                          | 3.2   | N           | 1.00   | 1        | 1      | 3.2        | 3.2                   | 29       |
| Device Holder                 | _ , ,                                                          | 4.0   |             | 4.00   |          | _      | 4.0        | 4.0                   |          |
| Uncertainty                   | E.4.1                                                          | 4.0   | N           | 1.00   | 1        | 1      | 4.0        | 4.0                   | 8        |
| SAR drift                     | 6.6.2                                                          | 5.0   | R           | 1.73   | 1        | 1      | 2.9        | 2.9                   | $\infty$ |
| Phantom and Tissue Parameters |                                                                |       |             |        |          |        |            |                       |          |
| Phantom Uncertainty           | E.3.1                                                          | 4.0   | R           | 1.73   | 1        | 1      | 2.3        | 2.3                   | ∞        |
| Liquid Conductivity           | E.3.1                                                          | 4.0   | I N         | 1.73   | <u> </u> | I      | 2.3        | 2.3                   | <u> </u> |
| (target)                      | E.3.2                                                          | 5.0   | R           | 1.73   | 0.64     | 0.43   | 1.8        | 1.2                   | 8        |
| Liquid Conductivity           | L.0.2                                                          | 0.0   | 11          | 1.70   | 0.04     | 0.40   | 1.0        | 1.2                   | 30       |
| (measurement)                 | E.3.3                                                          | 3.3   | N           | 1.00   | 0.64     | 0.43   | 2.1        | 1.4                   | $\infty$ |
| Liquid Permittivity (target)  | E.3.2                                                          | 5.0   | R           | 1.73   | 0.6      | 0.49   | 1.7        | 1.4                   | ∞        |
| Liquid Permittivity           |                                                                |       | _           |        |          |        |            |                       |          |
| (measurement)                 | E.3.3                                                          | 1.9   | N           | 1.00   | 0.6      | 0.49   | 1.1        | 0.9                   | 8        |
| Combined Standard             |                                                                |       |             |        |          |        |            |                       |          |
| Uncertainty                   |                                                                |       | RSS         |        |          |        | 12         | 12                    | 593      |
| Expanded Uncertainty          |                                                                |       |             |        |          |        |            |                       |          |
| (95% CONFIDENCE               |                                                                |       |             |        |          |        |            |                       |          |
| LEVEL)                        |                                                                |       | <i>k</i> =2 |        |          |        | 24         | 24                    |          |

# Appendix 7

## **Dipole Characterization Certificate**

# **Certification of System Performance Check Targets**Based on WI-0396

-Historical Data-

|                                                                            | 900MHz                                                                                            |        |
|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------|
| IEEE/IEC Target:                                                           | 10.8                                                                                              | (W/kg) |
| Measurement Uncertainty<br>(k=1):                                          | 9.0%                                                                                              |        |
| Measurement Period:                                                        | 10-May-06 to 18-April-07                                                                          |        |
| # of tests performed:                                                      | 1,562                                                                                             |        |
| Grand Average:                                                             | 11.24                                                                                             | (W/kg) |
| <b>% Delta</b><br>(Average - IEEE1528 Target)                              | 4.1%                                                                                              |        |
| Is % Delta <= Expanded<br>Measurement Uncertainty (k=2)?                   | Yes                                                                                               |        |
| Accept/Reject <u>Average</u> as new<br>system performance check<br>target? | ACCEPT                                                                                            |        |
|                                                                            | Applies to Dipole SN's:<br>55, 69, 77, 78, 79,<br>80, 91, 92, 93, 94,<br>95, 96, 97, 1d034, 1d035 |        |

-New System Performance Check Targets- per WI-0396

(based on analysis of historical data)

| Frequency | SAR Target (W/kg) | Permittivity | Conductivity (S/m) |
|-----------|-------------------|--------------|--------------------|
| 900MHz    | 11.24             | 41.5 ± 5%    | 0.97 ± 5%          |

| -Approvals-   |                                                       |                                 |
|---------------|-------------------------------------------------------|---------------------------------|
| Submitted by: | Marge Kaunas                                          | Date: 24-Apr-07                 |
| Signed:       | Manga Kanna                                           |                                 |
| Comments:     | Spreadsheet detailing referenced historical measureme | ents is available upon request. |
| Approved by:  | Mark Douglas                                          | Date: 1-May-07                  |
| Signed:       | ssjork Morgla                                         |                                 |
| Comments:     |                                                       |                                 |

# **Certification of System Performance Check Targets Based on WI-0396**

-Historical Data-

|                                                                            | 1800MHz                                                                                                                                            |        |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| IEEE1528 Target:                                                           | 38.1                                                                                                                                               | (W/kg) |
| Measurement Uncertainty<br>(k=1):                                          | 9.0%                                                                                                                                               |        |
| Measurement Period:                                                        | 10-May-06 to 18-April-07                                                                                                                           |        |
| # of tests performed:                                                      | 1314                                                                                                                                               |        |
| Grand Average:                                                             | 37.5                                                                                                                                               | (W/kg) |
| <b>% Delta</b> (Average - IEEE1528 Target)                                 | -1.6%                                                                                                                                              |        |
| Is % Delta <= Expanded<br>Measurement Uncertainty (k=2)?                   | Yes                                                                                                                                                | -      |
| Accept/Reject <u>Average</u> as new<br>system performance check<br>target? | ACCEPT                                                                                                                                             |        |
|                                                                            | Applies to Dipole SN's:<br>246tr, 250tr, 251tr, 259tr,<br>263tr, 271tr, 272tr, 276tr,<br>277tr, 279tr, 280tr, 281tr,<br>283tr, 284tr, 2d128, 2d129 |        |

-New System Performance Check Targets- per WI-0396

(based on analysis of historical data)

| Frequency | SAR Target (W/kg) | Permittivity | Conductivity (S/m) |
|-----------|-------------------|--------------|--------------------|
| 1800MHz   | 37.5              | 40.0 ± 5%    | 1.40 ± 5%          |

| -Approvals- |                |                                                         |                                 |
|-------------|----------------|---------------------------------------------------------|---------------------------------|
| -Appiovais- | Submitted by:  | Marge Kaunas                                            | Date: 24-Apr-07                 |
|             | Signed:        | Manga Kamas                                             |                                 |
|             | Comments:      | Spreadsheet detailing referenced historical measurement | ents is available upon request. |
|             | Approved by:   | Mark Douglas                                            | Date: 1-May-07                  |
|             | <u>Signed:</u> | Mark Porgla                                             |                                 |
|             | Comments:      |                                                         |                                 |

# Certification of System Performance Check Targets Based on WI-0396

-Historical Data-

|                                                                            | 2450MHz                                         |        |
|----------------------------------------------------------------------------|-------------------------------------------------|--------|
| IEEE1528 Target:                                                           | 52.4                                            | (W/kg) |
| Measurement Uncertainty<br>(k=1):                                          | 9.0%                                            |        |
| Measurement Period:                                                        | 10-May-06 to 18-April-07                        |        |
| # of tests performed:                                                      | 32                                              |        |
| Grand Average:                                                             | 58.0                                            | (W/kg) |
| <b>% Delta</b><br>(Average - IEEE1528 Target)                              | 10.6%                                           |        |
| Is % Delta <= Expanded<br>Measurement Uncertainty (k=2)?                   | Yes                                             |        |
| Accept/Reject <u>Average</u> as new<br>system performance check<br>target? | ACCEPT                                          |        |
|                                                                            | Applies to Dipole SN's: 740, 766, 767, 788, 789 |        |

-New System Performance Check Targets- per WI-0396

(based on analysis of historical data)

| Frequency | SAR Target (W/kg) | Permittivity | Conductivity (S/m) |
|-----------|-------------------|--------------|--------------------|
| 2450MHz   | 58.0              | 39.2 ± 5%    | 1.80 ± 5%          |

| -Approvals-<br>Submitted by: | Marge Kaunas                                                                        | Date: 24-Ap | r-07 |  |
|------------------------------|-------------------------------------------------------------------------------------|-------------|------|--|
| Signed:                      | Manga Kaura                                                                         |             |      |  |
| Comments:                    | Spreadsheet detailing referenced historical measurements is available upon request. |             |      |  |
| Approved by:                 | Mark Douglas                                                                        | Date: 1-May | /-07 |  |
| <u>Signed:</u>               | Mark Porglas                                                                        |             |      |  |
| Comments:                    |                                                                                     |             |      |  |