

Portable Cellular Phone SAR Test Report

Test Report #: 20431-1F *Rev. A* **Date of Report:** May-23-2007

Date of Test: Apr-20-2007 to May-17-2007

FCC ID #: IHDT56GY1
Generic Name: MQ5-4411A21

Motorola Mobile Devices Business Product Safety & Compliance Laboratory

Laboratory: 600 N. US Highway 45

Libertyville, Illinois 60048

Report Author: Thomas Nipple

RF Engineer

This laboratory is accredited to ISO/IEC 17025-1999 to perform the following tests:

Tests: Procedures:

Electromagnetic Specific Absorption Rate IEC 62209-1 RSS-102

IEEE 1528 - 2003

Accreditation: FCC OET Bulletin 65 (including Supplement C)

Australian Communications Authority Radio

Communications (Electromagnetic Radiation – Human

Exposure) Standard 2003 CENELEC EN 50360 (2001) CENELEC EN 50361 (2001) ARIB Std. T-56 (2002)

On the following products or types of products:

Wireless Communications Devices (Examples): Two Way Radios; Portable Phones (including

Cellular, Licensed Non-Broadcast and PCS); Low Frequency Readers; and Pagers

A2LA certificate # 2518-02

Motorola declares under its sole responsibility that the portable cellular telephone model to which this declaration relates, is in conformity with the appropriate General Population/Uncontrolled RF exposure standards, recommendations and guidelines (FCC 47 CFR §2.1093) as well as with CENELEC en50360:2001 and ANSI / IEEE C95.1. It also declares that the product was tested in accordance with IEEE 1528 / CENELEC EN62209-1 (2006), as well as other appropriate measurement standards, guidelines and recommended practices. Any deviations from these standards, guidelines and recommended practices are noted below:

Statement of Compliance:

(none)

©Motorola, Inc. 2007

This test report shall not be reproduced except in full, without written approval of the laboratory.

The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report.

Motorola encourages all feedback, both positive and negative, on this test report.

Table of Contents

1. Introduction	2
2. Description of the Device Under Test	2
2.1 Antenna description	2
2.2 Device description	2
3. Test Equipment Used	3
3.1 Dosimetric System	3
3.2 Additional Equipment	3
4. Electrical parameters of the tissue simulating liquid	4
5. System Accuracy Verification	5
6. Test Results	6
6.1 Head Adjacent Test Results	6
6.2 Body Worn Test Results	10
References	13
Appendix 1: SAR distribution comparison for system accuracy verification	14
Appendix 2: SAR distribution plots for Phantom Head Adjacent Use	15
Appendix 3: SAR distribution plots for Body Worn Configuration	16
Appendix 4: Probe Calibration Certificate	17
Appendix 5: Measurement Uncertainty Budget	18
Appendix 6: Photographs of the device under test	20
Appendix 7: Dipole Characterization Certificate	27

1. Introduction

The Motorola Mobile Devices Business Product Safety Laboratory has performed measurements of the maximum potential exposure to the user of the portable cellular phone covered by this test report. The Specific Absorption Rate (SAR) of this product was measured. The portable cellular phone was tested in accordance with [1], [4] and [5]. The SAR values measured for the portable cellular phone are below the maximum recommended levels of 1.6 W/kg in a 1 g average set in [3] and 2.0 W/kg in a 10 g average set in [2].

2. Description of the Device Under Test

2.1 Antenna description

Type	Internal				
Location	Bottom of Transceiver Length 36.6 mm Width 8.0 mm				
D'	Length	36.6 mm			
Dimensions	Width	8.0 mm			
Configuration	FJA				

2.2 Device description

Serial Number		ŗ	ГА026018ТМ	1		
Mode(s) of Operation	GSM 850	GSM 900	GSM 1800	GSM 1900	Bluetooth	
Modulation Mode(s)	GMSK	GMSK	GMSK	GMSK	GFSK	
Maximum Output Power Setting	32.50 dBm	33.00 dBm	30.50 dBm	30.50 dBm	4.0 dBm	
Duty Cycle	1:8	1:8	1:8	1:8	1:1	
Transmitting Frequency Range(s)	824.2 - 848.8 MHz	880.2 - 914.8 MHz	1710.2 - 1784.8 MHz	1850.2 - 1909.8 MHz	2400.0 - 2483.5 MHz	
Production Unit or Identical Prototype (47 CFR §2.908)			Identical Prototype			
Device Category	Portable					
RF Exposure Limits		Genera	al Population / Uncor	ntrolled		

Mode(s) of Operation	GPRS 850				GPRS 900			GPRS 1800			GPRS 1900					
Modulation Mode(s)		GM	ISK			GMSK			GMSK			GMSK				
Maximum Output Power Setting	32.50 dBm	30.50 dBm	28.50 dBm	26.50 dBm	33.00 dBm	31.00 dBm	29.00 dBm	27.00 dBm	30.50 dBm	28.50 dBm	26.50 dBm	24.50 dBm	30.50 dBm	28.50 dBm	26.50 dBm	24.50 dBm
Duty Cycle	1:8	2:8	3:8	4:8	1:8	2:8	3:8	4:8	1:8	2:8	3:8	4:8	1:8	2:8	3:8	4:8
Transmitting Frequency Range(s)			- 848.8 Hz				- 914.8 Hz		1710.2 - 1784.8 MHz				1850.2 - 1909.8 MHz			

Mode(s) of Operation			GE 50		EDGE 900			EDGE 1800			EDGE 1900					
Modulation Mode(s)		8P	SK			8PSK			8PSK			8PSK				
Maximum Output Power Setting	27.50 dBm	26.50 dBm	24.50 dBm	22.50 dBm	27.50 dBm	26.50 dBm	24.50 dBm	22.50 dBm	26.50 dBm	25.50 dBm	23.50 dBm	21.50 dBm	26.50 dBm	25.50 dBm	23.50 dBm	21.50 dBm
Duty Cycle	1:8	2:8	3:8	4:8	1:8	2:8	3:8	4:8	1:8	2:8	3:8	4:8	1:8	2:8	3:8	4:8
Transmitting Frequency Range(s)			- 848.8 Hz				- 914.8 Hz		1710.2 - 1784.8 MHz				1850.2 - 1909.8 MHz			

Note: Bolded entries indicate data mode of highest time-average power per band and data mode type.

3. Test Equipment Used

3.1 Dosimetric System

The Motorola Mobile Devices Business Product Safety & Compliance Laboratory utilizes a Dosimetric Assessment System (Dasy4TM v4.7) manufactured by Schmid & Partner Engineering AG (SPEAGTM), of Zurich Switzerland. All the SAR measurements are taken within a shielded enclosure. The overall 10 g RSS uncertainty of the measurement system is $\pm 10.8\%$ (K=1) with an expanded uncertainty of $\pm 21.6\%$ (K=2). The overall 1 g RSS uncertainty of the measurement system is $\pm 11.1\%$ (K=1) with an expanded uncertainty of $\pm 22.2\%$ (K=2). The measurement uncertainty budget is given in Appendix 6. Per IEEE 1528, this uncertainty budget is applicable to the SAR range of 0.4 W/kg to 10 W/kg.

The list of calibrated equipment used for the measurements is shown in the following table.

Description	Serial Number	Cal Due Date
DASY4™ DAE V1	437	Jul-18-2007
E-Field Probe ET3DV6	1514	Jul-17-2007
DASY4™ DAE V1	650	Aug-22-2007
E-Field Probe ET3DV6	1520	Mar-19-2008
Dipole Validation Kit, DV900V2	78	May-01-2008
S.A.M. Phantom used for 800/900 MHz	TP-1106	
Dipole Validation Kit, DV1800V2	281TR	
S.A.M. Phantom used for 1800/1900 MHz	TP-1250	
S.A.M. Phantom used for 1800/1900 MHz	TP-1235	

3.2 Additional Equipment

Description	Serial Number	Cal Due Date
Signal Generator HP8648C	3847A04633	Jul-07-2007
Power Meter E4419B	GB39511087	Jul-05-2007
Power Sensor #1 – E9301A	MY41495336	Jun-28-2007
Power Sensor #2 – E9301A	US39210918	Aug-17-2007
Signal Generator HP8648C	3847A04822	Jun-30-2007
Power Meter E4419B	GB39510961	Jul-05-2007
Power Sensor #1 – E9301A	US39211008	Jun-28-2007
Power Sensor #2 – E9301A	US39211009	Jun-28-2007
Network Analyzer HP8753ES	US39172529	Sep-26-2007
Dielectric Probe Kit HP85070B	US99360070	

4. Electrical parameters of the tissue simulating liquid

Prior to conducting SAR measurements, the relative permittivity, ϵ_r , and the conductivity, σ , of the tissue simulating liquids were measured with a HP85070 Dielectric Probe Kit These values, along with the temperature of the simulated tissue are shown in the table below. The recommended limits for permittivity and conductivity are also shown. A mass density of $\rho = 1$ $^g/_{cm^3}$ was entered into the system in all the cases. It can be seen that the measured parameters are within tolerance of the recommended limits specified in [1] and [5].

£	Tissue		Dielectric Parameters				
(MHz)	type	Limits / Measured	$\mathbf{\epsilon}_r$	σ (S/m)	Temp (°C)		
		Measured, May-09-2007	40.7	0.90	19.9		
	Head	Measured, May-10-2007	40.8	0.90	19.7		
835		Recommended Limits	41.5 ±5%	$0.90 \pm 5\%$	18-25		
	Body	Measured, May-16-2007	53.7	0.98	20.0		
		Recommended Limits	55.2 ±5%	$0.97 \pm 5\%$	18-25		
		Measured, Apr-20-2007	40.1	1.46	19.1		
	Head	Measured, May-15-2007	39.2	1.47	19.4		
1880		Recommended Limits	40.0 ±5%	1.40 ±5%	18-25		
	Dody	Measured, May-17-2007	50.9	1.58	19.7		
	Body	Recommended Limits	53.3 ±5%	1.52 ±5%	18-25		

The list of ingredients and the percent composition used for the tissue simulates are indicated in the table below.

Ingredient	835 MHz / 900 MHz Head	835 MHz / 900 MHz Body	1800 MHz / 1900 MHz Head	1800 MHz / 1900 MHz Body	2450 MHz Head	2450 MHz Body
Sugar	57	44.9				
DGBE			47	30.8		30
Diacetin					51	
Water	40.45	53.06	52.62	68.8	48.75	70
Salt	1.45	0.94	0.38	0.4	0.15	
HEC	1	1				
Bact.	0.1	0.1			0.1	

5. System Accuracy Verification

A system accuracy verification of the DASY4TM was performed using the measurement equipment listed in Section 3.1. The daily system accuracy verification occurs within the flat section of the SAM phantom.

A SAR measurement was performed to verify the measured SAR was within $\pm 10\%$ from the target SAR indicated in Section 8.3.7 Reference SAR Values in [5] or Appendix 7 for the 900 Mhz target reference SAR value. These tests were done at 900 MHz and 1800 MHz. These frequencies are within $\pm 10\%$ of the compliance test mid-band frequency as required in [1] and [5]. The test was conducted on the same days as the measurement of the DUT. Recommended limits for permittivity and conductivity, specified in [5], are shown in the table below. The obtained results from the system accuracy verification are also displayed in the table below. SAR values are normalized to 1 W forward power delivered to the dipole. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values. The distributions of SAR compare well with those of the reference measurements (see Appendix 1). The tissue stimulant depth was verified to be 15.0 cm \pm 0.5 cm. Z-axis scans showing the SAR penetration are also included in Appendix 1.

f (MHz)	Description	SAR (W/kg), 1 gram	Dielectric F ϵ_r	Parameters σ (S/m)	Ambient Temp (°C)	Tissue Temp (°C)
	Measured, May-09-2007	11.3	40.0	0.96	20.8	20.4
900	Measured, May-10-2007	11.4	40.0	0.96	20.3	20.2
900	Measured, May-16-2007	11.3	40.3	0.96	20.1	20.0
	Recommended Limits	11.2	41.5 ±5%	0.97 ±5%	18-25	18-25
	Measured, Apr-20-2007	37.15	40.5	1.37	20.4	19.1
1900	Measured, May-15-2007	38.975	39.6	1.38	19.6	19.4
1800	Measured, May-17-2007	38.8	39.5	1.39	20.0	19.2
	Recommended Limits	38.1	40.0 ±5%	1.4 ±5%	18-25	18-25

The following probe conversion factors were used on the E-Field probe(s) used for the system accuracy verification measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe ET3DV6	1514	900	5.99	8 of 9
	1314	1810	5.05	8 of 9
E-Field Probe ET3DV6	1520	900	6.08	8 of 9
	1320	1810	5.11	8 of 9

6. Test Results

The test sample was operated using an actual transmission through a base station simulator. The base station simulator was setup to the proper channel, transmitter power level and transmit mode of operation. The phone was tested in the configurations stipulated in [1], [4] and [5]. The phone was positioned into these configurations using the device holder supplied with the DASY4TM SAR measurement system The measured dielectric constant of the material used for the device holder is less than 2.9 and the loss tangent is less than 0.02 (\pm 30%) at 850 MHz. The default settings for the "coarse" and "cube" scans were chosen and used for measurements. The grid spacing of the course scan was set to 15 cm as shown in the SAR plots included in Appendix 2 and 3. Please refer to the DASY4TM manual for additional information on SAR scanning procedures and algorithms used.

The Cellular Phone model covered by this report has the following battery options: Model SNN5779B - 750 mAH Battery

This battery was used to do all SAR testing. The phone was placed in the SAR measurement system with a fully charged battery.

6.1 Head Adjacent Test Results

The SAR results shown in tables 1 through 8 are maximum SAR values averaged over 1 gram of phantom tissue, to demonstrate compliance to [3] and also over 10 grams of phantom tissue, to demonstrate compliance to the [6]. Also shown are the measured conducted output power levels, the temperature of the simulated tissue after the test, the measured drift and extrapolated SAR. The exact method extrapolation the of New SAR = Old SAR * 10^(-drift/10). The SAR reported at the end of the measurement process by the DASY4TM measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test.

The left head and right head SAR contour distributions are similar. Because of this similarity, the cheek/touch and 15° tilt test conditions with the highest SAR values in each band are indicated as bold numbers in the following tables and are included in Appendix 2. All other test conditions measured lower SAR values than those included in Appendix 2.

The SAR measurements were performed using the SAM phantoms listed in section 3.1. Since the same phantoms and simulated tissue were used for the system accuracy verification and the device SAR measurements, the Z-axis scans included in Appendix 1 are applicable for verification of simulated tissue depth to be 15.0 cm \pm 0.5 cm.

The following probe conversion factors were used on the E-Field probe(s) used for head-adjacent measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe ET3DV6	1514	900	5.99	8 of 9
	1314	1810	5.05	8 of 9
E-Field Probe ET3DV6	1520	900	6.08	8 of 9
	1320	1810	5.11	8 of 9

			Left H	lead Che	ek Position, Slide	er Extended		
f		Conducted Output	Temp (°C)	Drift (dB)	10 g SA	R value	1 g SA	R value
(MHz) Desc	Description	Power (dBm)			Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)
	Channel 128	32.47	19.9	-0.008	0.794	0.80	1.10	1.10
850 MHz	Channel 190	32.44	19.9	-0.020	0.765	0.77	1.06	1.06
	Channel 251	32.46	19.9	0.008	0.725	0.73	1.01	1.01
	Channel 512	30.44						
1900 MHz	Channel 661	30.44	19.2	-0.126	0.106	0.11	0.165	0.17
	Channel 810	30.43						

Table 1: SAR measurement results at the highest possible output power, measured in a head cheek position against the ICNIRP and ANSI SAR Limit.

			Left H	ead Che	ek Position, Slide	r Retracted				
f		Conducted Output	Temp (°C)	Drift (dB)	10 g SA	R value	1 g SA	1 g SAR value		
(MHz) Descripti	Description	Power (dBm)			Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)		
	Channel 128	32.47	19.9	0.007	0.886	0.89	1.25	1.25		
850 MHz	Channel 190	32.44	19.9	-0.004	0.842	0.84	1.20	1.20		
	Channel 251	32.46	19.9	0.030	0.753	0.75	1.08	1.08		
	Channel 512	30.44	19.1	-0.009	0.719	0.72	1.36	1.36		
1900 MHz	Channel 661	30.44	19.1	-0.017	0.581	0.58	1.09	1.09		
	Channel 810	30.43	18.9	-0.023	0.491	0.49	0.934	0.94		

Table 2: SAR measurement results at the highest possible output power, measured in a head cheek position against the ICNIRP and ANSI SAR Limit.

	Right Head Cheek Position, Slider Extended										
f		Conducted Output	Temp		10 g SA	R value	1 g SA	1 g SAR value			
(MHz) Des	Description	Power (dBm)	(°C)		Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)			
	Channel 128	32.47	19.9	-0.045	0.844	0.85	1.16	1.17			
850 MHz	Channel 190	32.44	19.9	-0.048	0.841	0.85	1.16	1.17			
	Channel 251	32.46	19.9	-0.050	0.785	0.79	1.10	1.11			
	Channel 512	30.44									
1900 MHz	Channel 661	30.44	19.4	-0.094	0.116	0.12	0.181	0.18			
	Channel 810	30.43									

Table 3: SAR measurement results at the highest possible output power, measured in a head cheek position against the ICNIRP and ANSI SAR Limit.

			Right H	Head Che	eek Position, Slide	er Retracted		
f		Conducted Output	Temp (°C)	Drift (dB)	10 g SA	R value	1 g SA	R value
(MHz)	Description	Power (dBm)			Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)
	Channel 128	32.47	19.7	-0.051	0.994	1.01	1.38	1.40
850 MHz	Channel 190	32.44	19.9	-0.030	0.876	0.88	1.22	1.23
	Channel 251	32.46	19.7	-0.050	0.807	0.82	1.13	1.14
	Channel 512	30.44						
1900 MHz	Channel 661	30.44	19.4	0.018	0.443	0.44	0.761	0.76
	Channel 810	30.43						

Table 4: SAR measurement results at the highest possible output power, measured in a head cheek position against the ICNIRP and ANSI SAR Limit.

	Left Head 15° Tilt Position, Slider Extended											
f		Conducted Output	Temp Drift	Drift	10 g SAR value		1 g SAR value					
(MHz)	Description	Power (dBm)	(°C)	-	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)				
	Channel 128	32.47										
850 MHz	Channel 190	32.44	19.9	-0.009	0.473	0.47	0.645	0.65				
	Channel 251	32.46										
	Channel 512	30.44										
1900 MHz	Channel 661	30.44	19.4	0.046	0.047	0.05	0.077	0.08				
	Channel 810	30.43										

Table 5: SAR measurement results at the highest possible output power, measured in a head tilt position against the ICNIRP and ANSI SAR Limit.

	Left Head 15° Tilt Position, Slider Retracted										
f		Conducted Output	Temp (°C)	Drift	10 g SA	R value	1 g SA	R value			
(MHz) Desc	Description	Power (dBm)		(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)			
	Channel 128	32.47									
850 MHz	Channel 190	32.44	19.9	0.078	0.436	0.44	0.586	0.59			
	Channel 251	32.46									
	Channel 512	30.44									
1900 MHz	Channel 661	30.44	18.9	-0.084	0.115	0.12	0.192	0.20			
	Channel 810	30.43									

Table 6: SAR measurement results at the highest possible output power, measured in a head tilt position against the ICNIRP and ANSI SAR Limit.

			Right H	lead 15°	Tilt Position, Slic	ler Extended			
f		Conducted Output	Temp	Drift	10 g SA	R value	1 g SA	1 g SAR value	
(MHz) Description	Power (dBm)	(°C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)		
	Channel 128	32.47							
850 MHz	Channel 190	32.44	19.7	0.020	0.463	0.46	0.626	0.63	
	Channel 251	32.46							
	Channel 512	30.44							
1900 MHz	Channel 661	30.44	19.4	-0.025	0.0406	0.04	0.0715	0.07	
	Channel 810	30.43							

Table 7: SAR measurement results at the highest possible output power, measured in a head tilt position against the ICNIRP and ANSI SAR Limit.

			Right H	lead 15°	Tilt Position, Slic	ler Retracted		
f		Conducted Output	 Temp Drift	10 g SA	10 g SAR value		R value	
(MHz)	Description	Power (dBm)	(°C)	-	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)
	Channel 128	32.47						
850 MHz	Channel 190	32.44	19.7	-0.013	0.458	0.46	0.619	0.62
	Channel 251	32.46						
	Channel 512	30.44						
1900 MHz	Channel 661	30.44	19.4	0.004	0.118	0.12	0.207	0.21
	Channel 810	30.43						

Table 8: SAR measurement results at the highest possible output power, measured in a head tilt position against the ICNIRP and ANSI SAR Limit.

6.2 Body Worn Test Results

The SAR results shown in tables 9 through 14 are maximum SAR values averaged over 1 gram of phantom tissue, to demonstrate compliance to [3] and also over 10 grams of phantom tissue, to demonstrate compliance to the [6]. Also shown are the measured conducted output power levels, the temperature of the test facility during the test, the temperature of the tissue simulate after the test, the measured drift and the extrapolated SAR. The exact method of extrapolation is New SAR = Old SAR * 10^(-drift/10). The SAR reported at the end of the measurement process by the DASY4TM measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test.

The test conditions that produced the highest SAR values in each band are indicated as bold numbers in the following tables and are included in Appendix 3. All other test conditions measured lower SAR values than those included in Appendix 3.

A "flat" phantom was for the body-worn tests. This "flat" phantom is made out of 1" thick natural High Density Polyethylene with a thickness at the bottom equal to 2.0 mm. It measures $52.7 \text{ cm}(\log) \times 26.7 \text{ cm}(\text{wide}) \times 21.2 \text{ cm}(\text{tall})$. The measured dielectric constant of the material used is less than 2.3 and the loss tangent is less than 0.0046 all the way to 2.184 GHz.

The tissue stimulant depth was verified to be $15.0~\rm cm \pm 0.5~\rm cm$. The same device holder described in section 6 was used for positioning the phone. The functional accessories were divided into two categories, the ones with metal components and the ones with non-metal components. For non-metallic component accessories, testing was performed on the accessory that displayed the closest proximity to the flat phantom. Each metallic component accessory, if any, was checked for uniqueness of metal component so that each is tested with the device. If multiple accessories shared an identical metal component, only the accessory that dictates the closest spacing to the body was tested. In addition to accessory testing, the cellular phone was tested with the front and back of the phone facing the phantom. For voice mode operation, the phone was placed as a distance of 15 mm from the phantom. For data mode operation, the phone was placed as a distance of 25 mm from the phantom. The cellular phone was tested with a headset connected to the device for all body-worn SAR measurements.

The DUT is multislot Class 6/Class 10 (2 timeslots in uplink), Class 11 (3 timeslots in uplink), and Class 12 (4 timeslots in uplink) capable in GPRS and EDGE (8PSK) modes. The software within the phone has been designed to reduce the peak power of the pulse when these multislot classes are being used. The peak power values for each mode and class are given in the tables in section 2.2. The worst-case configuration is found in Class 10, when comparing the average power increases (due to additional timeslots) and power reductions for each multislot class. For this reason, multislot Class 10 was used to perform SAR tests in both GPRS and EDGE modes.

There is one Body-Worn Accessory available for this phone: A Leather Pouch with Belt Clip: Model SYN1696A (Pouch), Model SYN9853A (Belt Clip)

The following probe conversion factors were used on the E-Field probe(s) used for body-worn measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe	1520	900	5.96	8 of 9
ET3DV6	1320	1810	4.75	8 of 9

		Во	ody-Wor	n; Front	of Phone 15 mm	from Phantom		
f		Conducted Output	Temp (°C)	Drift (dB)	10 g SAR value		1 g SAR value	
(MHz) De	Description	Power (dBm)			Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)
	Channel 128	32.47						
850 MHz	Channel 190	32.44	20.0	-0.030	0.396	0.40	0.54	0.54
	Channel 251	32.46						
	Channel 512	30.44						
1900 MHz	Channel 661	30.44	19.7	0.003	0.182	0.18	0.306	0.31
	Channel 810	30.43						

Table 9: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

	Body-Worn; Back of Phone 15 mm from Phantom										
f		Conducted Output	Temp	Drift	10 g SA	R value	1 g SA	R value			
(MHz) Description	Power (dBm)	(°C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)				
	Channel 128	32.47									
850 MHz	Channel 190	32.44	20.0	-0.004	0.508	0.51	0.716	0.72			
	Channel 251	32.46									
	Channel 512	30.44									
1900 MHz	Channel 661	30.44	19.6	-0.033	0.12	0.12	0.196	0.20			
	Channel 810	30.43									

Table 10: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

	Body-Worn; Noted Position of Phone 15 mm from Phantom with Bluetooth Enabled										
f		Conducted Output	Temp (°C)	Drift (dB)	10 g SA	R value	1 g SA	R value			
(MHz)	Description	Power (dBm)			Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)			
	Channel 128	32.47	20.0	-0.012	0.62	0.62	0.876	0.88			
850 MHz Back	Channel 190	32.44	20.0	-0.031	0.578	0.58	0.814	0.82			
2 de la	Channel 251	32.46	20.0	0.011	0.495	0.50	0.698	0.70			
	Channel 512	30.44									
Front _	Channel 661	30.44	19.6	-0.038	0.144	0.15	0.241	0.24			
	Channel 810	30.43									

Table 11: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

Body-Worn; Noted Position of Phone 25 mm from Phantom with GPRS Class 10								
f (MHz)	Description	Conducted Output Power (dBm)	Temp (°C)	Drift (dB)	10 g SAR value		1 g SAR value	
					Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)
850 MHz Back	Channel 128	30.47						
	Channel 190	30.44	20.0	0.010	0.527	0.53	0.72	0.72
	Channel 251	30.46						
1900 MHz Front	Channel 512	28.44						
	Channel 661	28.44	19.6	-0.092	0.122	0.12	0.198	0.20
	Channel 810	28.43						

Table 12: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

Body-Worn; Noted Position of Phone 25 mm from Phantom with EDGE Class 10								
f (MHz)	Description	Conducted Output	Temp (°C)	Drift (dB)	10 g SAR value		1 g SAR value	
		Power (dBm)			Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)
850 MHz Back	Channel 128	26.39						
	Channel 190	26.49	20.0	-0.025	0.0926	0.09	0.127	0.13
	Channel 251	26.30						
1900 MHz Front	Channel 512	25.43						
	Channel 661	25.49	19.5	-0.054	0.0305	0.03	0.0495	0.05
	Channel 810	25.38						

Table 13: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

Body-Worn; Noted Facing of Phone with Pouch SYN1696A and optional Bluetooth								
f (MHz)	Description	Conducted Output	Temp (°C)	Drift (dB)	10 g SAR value		1 g SAR value	
		Power (dBm)			Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)
850 MHz Back Facing BT Enabled	Channel 128	32.47						
	Channel 190	32.44	20.0	-0.051	0.158	0.16	0.216	0.22
	Channel 251	32.46						
1900 MHz Front Facing	Channel 512	30.44						
	Channel 661	30.44	19.2	-0.091	0.0368	0.04	0.0574	0.06
	Channel 810	30.43						

Table 14: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

References

- [1] CENELEC, en62209-1:2006 "Human Exposure to Radio Frequency Fields From Hand Held and Body Mounted Wireless Communication Devices Human Models, Instrumentation, and Procedures"
- [2] CENELEC, en50360:2001 "Product standard to demonstrate the compliance of mobile phones with the basic restrictions related to human exposure to electromagnetic fields (300 MHz 3 GHz)".
- [3] ANSI / IEEE, C95.1 1999 Edition "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz"
- [4] FCC OET Bulletin 65 Supplement C 01-01
- [5] IEEE 1528 2003 Edition "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques"
- [6] ICNIRP Guidelines "Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic, and Electromagnetic Fields (up to 300 GHz)"

Appendix 1

SAR distribution comparison for the system accuracy verification

Date/Time: 5/9/2007 8:07:37 AM

Test Laboratory: Motorola - 050907 900Mhz GOOD 0.5%

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN: 78

Procedure Notes: 900 MHz System Performance Check; Dipole Sn# 78; Input Power = 200 mW Sim.Temp@meas = 20.4 \(\text{C}; \) Sim.Temp@SPC = 20.4 \(\text{C}; \) Room Temp @ SPC = 20.8 \(\text{C} \) Communication System: CW - Dipole; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: VALIDATION Only

Medium parameters used: f = 900 MHz; $\sigma = 0.96$ mho/m; $\varepsilon_r = 40$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ET3DV6 SN1520; ConvF(6.08, 6.08, 6.08); Calibrated: 3/19/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn650; Calibrated: 8/22/2006
- Phantom: R2: Sugar SAM; Type: SAM; Serial: TP-1106;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Daily SPC Check/Dipole Area Scan (4x9x1):

Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 2.35 mW/g

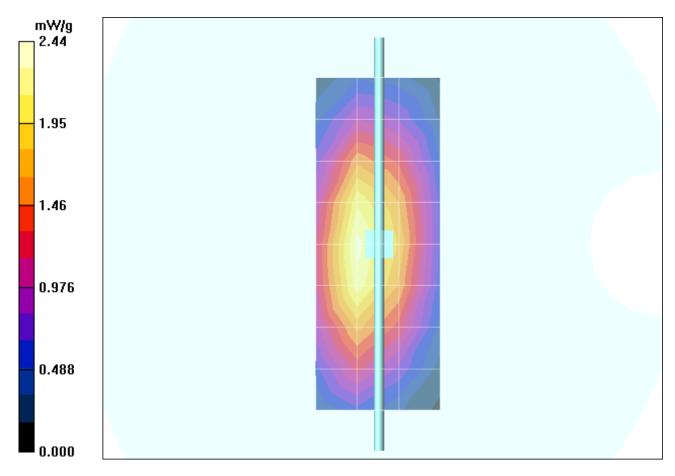
Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0:

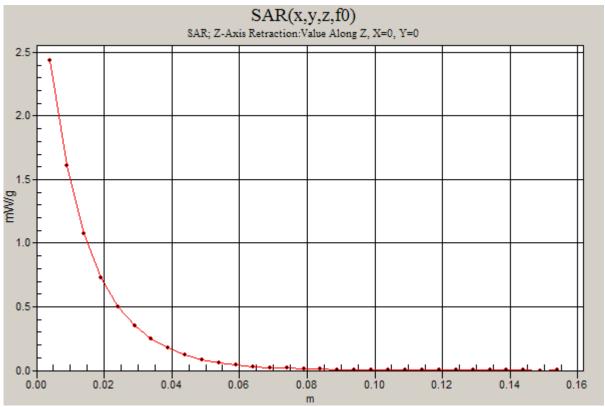
Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 51.2 V/m; Power Drift = -0.012 dB; Peak SAR (extrapolated) = 3.35 W/kg

SAR(1 g) = 2.25 mW/g; SAR(10 g) = 1.44 mW/g; Maximum value of SAR (measured) = 2.45 mW/g

Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 51.2 V/m; Power Drift = -0.012 dB; Peak SAR (extrapolated) = 3.37 W/kg

SAR(1 g) = 2.27 mW/g; SAR(10 g) = 1.46 mW/g; Maximum value of SAR (measured) = 2.46 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 2.44 mW/g

Date/Time: 5/10/2007 7:44:54 AM

Test Laboratory: Motorola - 051007 900Mhz GOOD 1.4%

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN: 78

Procedure Notes: 900 MHz System Performance Check; Dipole Sn# 78; Input Power = 200 mW

Sim.Temp@meas = $20.2 \, \Gamma$ C; Sim.Temp@SPC = $20.2 \, \Gamma$ C; Room Temp @ SPC = $20.3 \, \Gamma$ C

Communication System: CW - Dipole; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: VALIDATION Only

Medium parameters used: f = 900 MHz; $\sigma = 0.96$ mho/m; $\varepsilon_r = 40$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ET3DV6 SN1520; ConvF(6.08, 6.08, 6.08); Calibrated: 3/19/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn650; Calibrated: 8/22/2006
- Phantom: R2: Sugar SAM; Type: SAM; Serial: TP-1106;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Daily SPC Check/Dipole Area Scan (4x9x1):

Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 2.32 mW/g

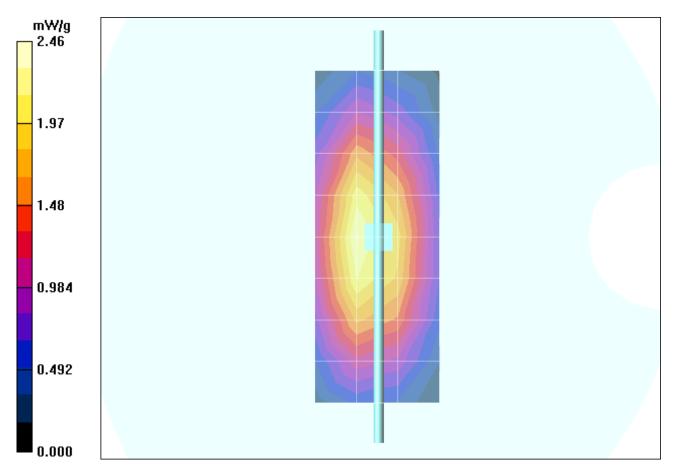
Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0:

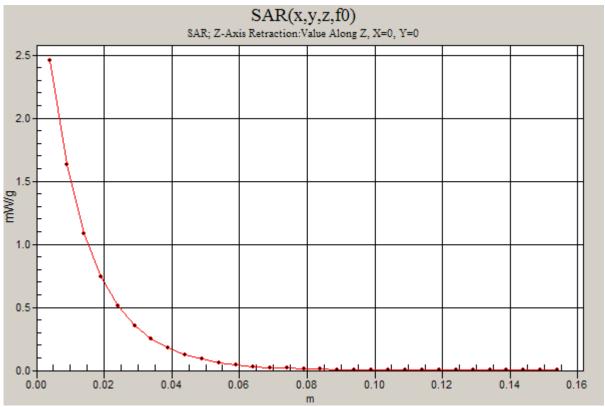
Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 51.9 V/m; Power Drift = -0.022 dB; Peak SAR (extrapolated) = 3.38 W/kg

SAR(1 g) = 2.27 mW/g; SAR(10 g) = 1.46 mW/g; Maximum value of SAR (measured) = 2.47 mW/g

Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 51.9 V/m; Power Drift = -0.022 dB; Peak SAR (extrapolated) = 3.40 W/kg

SAR(1 g) = 2.29 mW/g; SAR(10 g) = 1.47 mW/g; Maximum value of SAR (measured) = 2.49 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 2.46 mW/g

Date/Time: 5/16/2007 8:08:11 AM

Test Laboratory: Motorola - 051607 900Mhz GOOD 0.5%

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN: 78

Procedure Notes: 900 MHz System Performance Check; Dipole Sn# 78; Input Power = 200 mW

Sim.Temp@meas = $20.0 \, \Gamma$ C; Sim.Temp@SPC = $20.0 \, \Gamma$ C; Room Temp @ SPC = $20.1 \, \Gamma$ C

Communication System: CW - Dipole; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: VALIDATION Only

Medium parameters used: f = 900 MHz; $\sigma = 0.96$ mho/m; $\varepsilon_r = 40.3$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ET3DV6 SN1520; ConvF(6.08, 6.08, 6.08); Calibrated: 3/19/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn650; Calibrated: 8/22/2006
- Phantom: R2: Sugar SAM; Type: SAM; Serial: TP-1106;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Daily SPC Check/Dipole Area Scan (4x9x1):

Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 2.24 mW/g

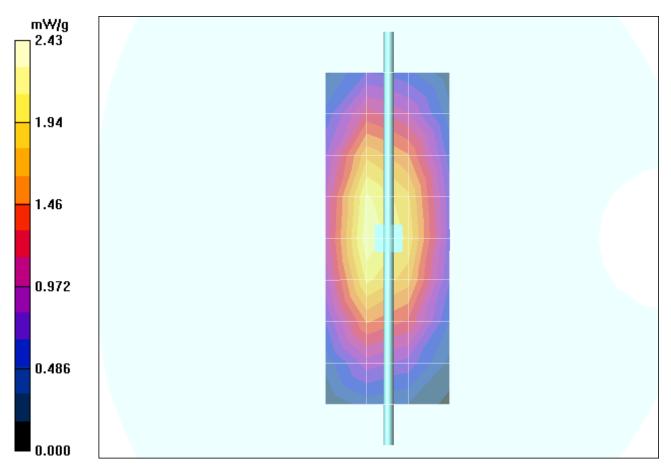
Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0:

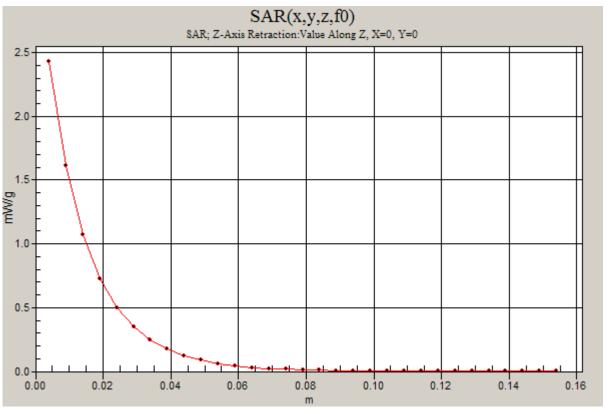
Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 51.8 V/m; Power Drift = -0.078 dB; Peak SAR (extrapolated) = 3.33 W/kg

SAR(1 g) = 2.24 mW/g; SAR(10 g) = 1.44 mW/g; Maximum value of SAR (measured) = 2.44 mW/g

Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 51.8 V/m; Power Drift = -0.078 dB; Peak SAR (extrapolated) = 3.39 W/kg

SAR(1 g) = 2.28 mW/g; SAR(10 g) = 1.47 mW/g; Maximum value of SAR (measured) = 2.45 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 2.43 mW/g

Date/Time: 4/20/2007 1:46:48 PM

Test Laboratory: Motorola - 042007 1800MHz Good at -2.5%

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 272tr

Procedure Notes: 1800 MHz System Performance Check; Dipole Sn# 272tr; Input Power = 200 mW

Sim.Temp@meas = 19.1*C; Sim.Temp@SPC = 19.1*C; Room Temp @ SPC = 20.4*C

Communication System: CW - Dipole; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: VALIDATION Only

Medium parameters used: f = 1800 MHz; $\sigma = 1.37$ mho/m; $\varepsilon_r = 40.5$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ET3DV6 SN1514; ConvF(5.05, 5.05, 5.05); Calibrated: 7/17/2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn437; Calibrated: 7/18/2006
- Phantom: R4: Glycol SAM; Type: SAM; Serial: TP-1250;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Daily SPC Check/Dipole Area Scan (4x9x1):

Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 6.13 mW/g

Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0:

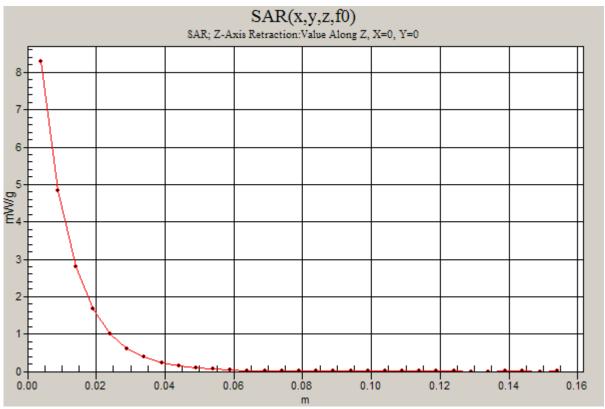
Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 82.4 V/m; Power Drift = -0.094 dB; Peak SAR (extrapolated) = 12.8 W/kg

SAR(1 g) = 7.47 mW/g; SAR(10 g) = 3.99 mW/g; Maximum value of SAR (measured) = 8.47 mW/g

Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 82.4 V/m; Power Drift = -0.094 dB; Peak SAR (extrapolated) = 12.6 W/kg

SAR(1 g) = 7.39 mW/g; SAR(10 g) = 3.97 mW/g; Maximum value of SAR (measured) = 8.17 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 8.29 mW/g

Date/Time: 5/15/2007 7:42:22 AM

Test Laboratory: Motorola - 051507 1800Mhz GOOD 2.3%

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:281TR

Procedure Notes: 1800 MHz System Performance Check; Dipole Sn# 281TR; Input Power = 200 mW

Sim.Temp@meas = $19.4 \, \Gamma$ C; Sim.Temp@SPC = $19.4 \, \Gamma$ C; Room Temp @ SPC = $19.6 \, \Gamma$ C

Communication System: CW - Dipole; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: VALIDATION Only

Medium parameters used: f = 1800 MHz; $\sigma = 1.38 \text{ mho/m}$; $\varepsilon_r = 39.6$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ET3DV6 SN1520; ConvF(5.11, 5.11, 5.11); Calibrated: 3/19/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn650; Calibrated: 8/22/2006
- Phantom: R2 Sect 1, Amy Twin, Rev2 (23-June-04); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Daily SPC Check/Dipole Area Scan (9x4x1):

Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 6.62 mW/g

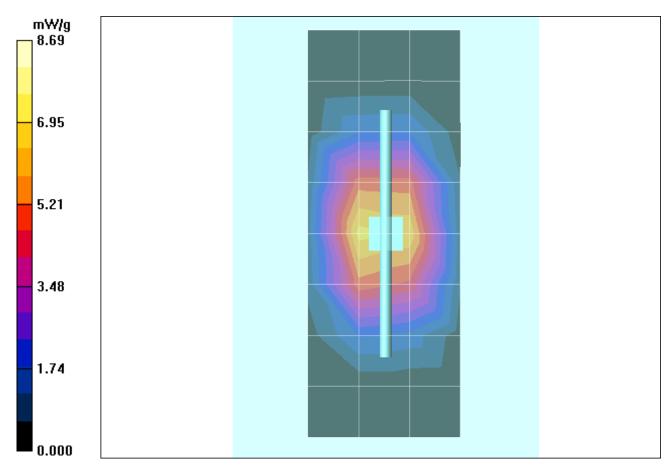
Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0:

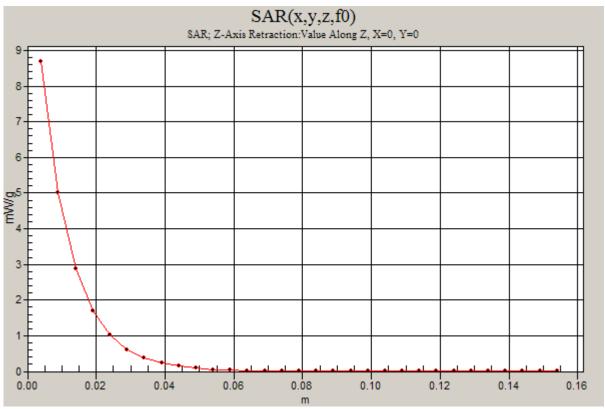
Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 84.2 V/m; Power Drift = -0.047 dB; Peak SAR (extrapolated) = 13.3 W/kg

SAR(1 g) = 7.78 mW/g; SAR(10 g) = 4.19 mW/g; Maximum value of SAR (measured) = 8.79 mW/g

Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 84.2 V/m; Power Drift = -0.047 dB; Peak SAR (extrapolated) = 13.3 W/kg

SAR(1 g) = 7.81 mW/g; SAR(10 g) = 4.21 mW/g; Maximum value of SAR (measured) = 8.84 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 8.69 mW/g

Date/Time: 5/17/2007 6:39:50 AM

Test Laboratory: Motorola - 051707 1800Mhz GOOD 1.8%

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:281tr

Procedure Notes: 1800 MHz System Performance Check; Dipole Sn# 281tr; Input Power = 200 mW

Sim.Temp@meas = $18.7 \, \Gamma$ C; Sim.Temp@SPC = $19.2 \, \Gamma$ C; Room Temp @ SPC = $20.0 \, \Gamma$ C

Communication System: CW - Dipole; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: VALIDATION Only

Medium parameters used: f = 1800 MHz; $\sigma = 1.39 \text{ mho/m}$; $\varepsilon_r = 39.5$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ET3DV6 SN1520; ConvF(5.11, 5.11, 5.11); Calibrated: 3/19/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn650; Calibrated: 8/22/2006
- Phantom: R2 Sect 1, Amy Twin, Rev2 (23-June-04); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Daily SPC Check/Dipole Area Scan (9x4x1):

Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 6.89 mW/g

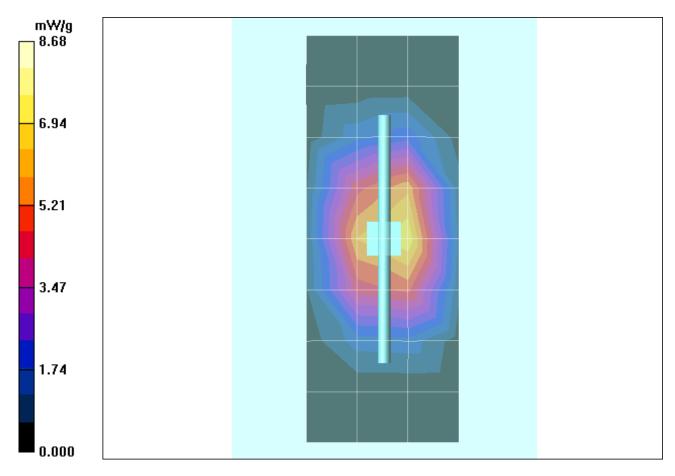
Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0:

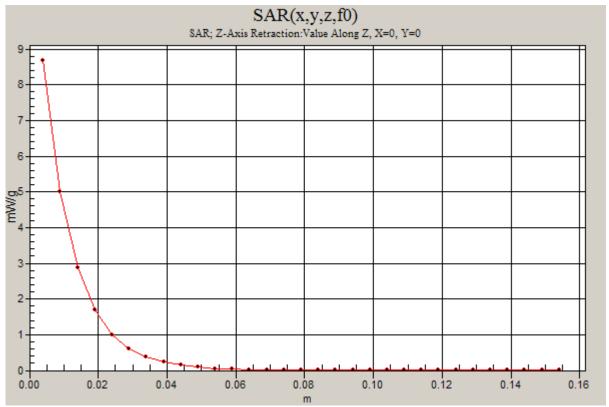
Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 83.5 V/m; Power Drift = 0.000 dB; Peak SAR (extrapolated) = 13.1 W/kg

SAR(1 g) = 7.7 mW/g; SAR(10 g) = 4.17 mW/g; Maximum value of SAR (measured) = 8.53 mW/g

Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 83.5 V/m; Power Drift = 0.000 dB; Peak SAR (extrapolated) = 13.3 W/kg

SAR(1 g) = 7.82 mW/g; SAR(10 g) = 4.23 mW/g; Maximum value of SAR (measured) = 8.76 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 8.68 mW/g

Appendix 2

SAR distribution plots for Phantom Head Adjacent Use

Date/Time: 5/9/2007 2:44:41 PM

Test Laboratory: Motorola - GSM 850 Cheek, Slider Extended

Serial: TA026018TM FCC ID: IHDT56GY1

Procedure Notes: Pwr Step: 5; Antenna Position: Internal; Accessory Model #: None Battery Model #: SNN5779B; DEVICE POSITION (cheek or rotated): Cheek, Slide Extended

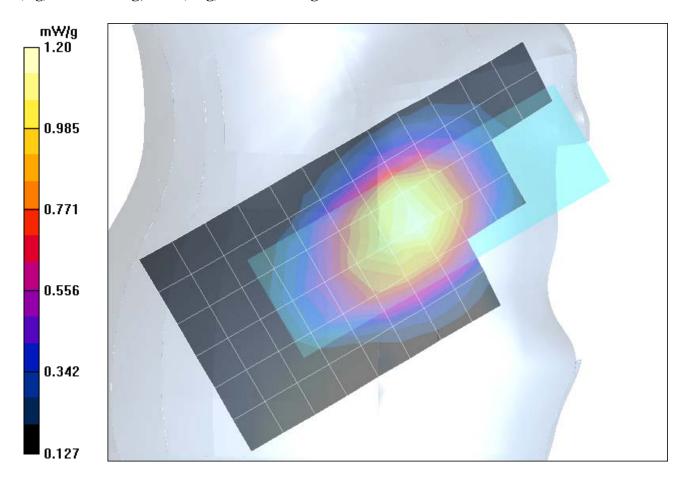
Communication System: GSM 850; Frequency: 824.2 MHz; Channel Number: 128; Duty Cycle: 1:8

Medium: Low Freq Head; Medium parameters used: f = 835 MHz; $\sigma = 0.9$ mho/m; $\varepsilon_r = 40.7$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ET3DV6 SN1520; ConvF(6.08, 6.08, 6.08); Calibrated: 3/19/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn650; Calibrated: 8/22/2006
- Phantom: R2: Sugar SAM; Type: SAM; Serial: TP-1106;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Right Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 1.20 mW/g

Right Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 37.0 V/m; Power Drift = -0.045 dB; Peak SAR (extrapolated) = 1.47 W/kg

SAR(1 g) = 1.16 mW/g; SAR(10 g) = 0.844 mW/g

Date/Time: 5/15/2007 1:41:03 PM

Test Laboratory: Motorola - GSM 1900 Cheek, Slider Extended

Serial: TA026018TM FCC ID: IHDT56GY1

Procedure Notes: Pwr Step: 0; Antenna Position: Internal; Accessory Model #: None

Battery Model #: SNN5779B; DEVICE POSITION: Cheek, Slide Extended

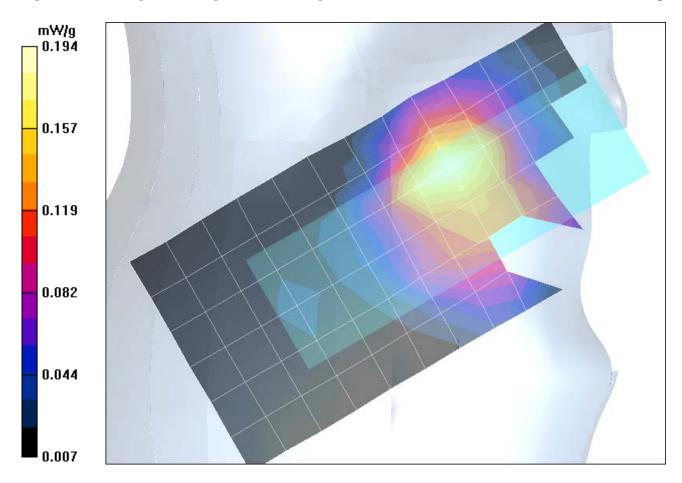
Communication System: GSM 1900; Frequency: 1880 MHz; Channel Number: 661; Duty Cycle: 1:8

Medium: Glycol Head; Medium parameters used: f = 1880 MHz; $\sigma = 1.47 \text{ mho/m}$; $\varepsilon_r = 39.2$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ET3DV6 SN1520; ConvF(5.11, 5.11, 5.11); Calibrated: 3/19/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn650; Calibrated: 8/22/2006
- Phantom: R#_2 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1235;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Right Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.197 mW/g

Right Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.9 V/m; Power Drift = -0.094 dB; Peak SAR (extrapolated) = 0.251 W/kg

SAR(1 g) = 0.181 mW/g; SAR(10 g) = 0.116 mW/g; Maximum value of SAR (measured) = 0.194 mW/g

Date/Time: 5/10/2007 8:21:22 AM

Test Laboratory: Motorola - GSM 850 Cheek, Slider Retracted

Serial: TA026018TM FCC ID: IHDT56GY1

Procedure Notes: Pwr Step: 5; Antenna Position: Internal; Accessory Model #: None

Battery Model #: SNN5779B; DEVICE POSITION (cheek or rotated): Cheek, Slide Retracted

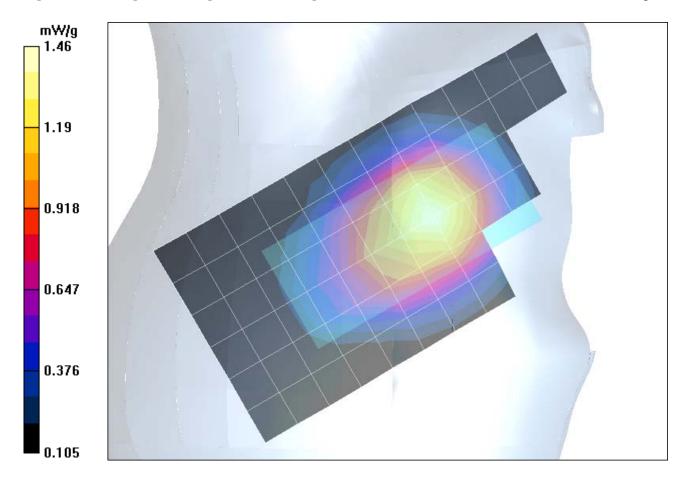
Communication System: GSM 850; Frequency: 824.2 MHz; Channel Number: 128; Duty Cycle: 1:8

Medium: Low Freq Head; Medium parameters used: f = 835 MHz; $\sigma = 0.9$ mho/m; $\varepsilon_r = 40.8$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ET3DV6 SN1520; ConvF(6.08, 6.08, 6.08); Calibrated: 3/19/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn650; Calibrated: 8/22/2006
- Phantom: R2: Sugar SAM; Type: SAM; Serial: TP-1106;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Right Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 1.47 mW/g

Right Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 39.2 V/m; Power Drift = -0.051 dB; Peak SAR (extrapolated) = 1.76 W/kg

SAR(1 g) = 1.38 mW/g; SAR(10 g) = 0.994 mW/g; Maximum value of SAR (measured) = 1.46 mW/g

Date/Time: 4/20/2007 3:04:02 PM

Test Laboratory: Motorola - GSM 1900 Cheek, Slider Retracted

Serial: TA026018TM FCC ID: IHDT56GY1

Procedure Notes: Pwr Step: 0; Antenna Position: Internal; Accessory Model #: None

Battery Model #: SNN5779B; DEVICE POSITION: Cheek, Slide Retracted

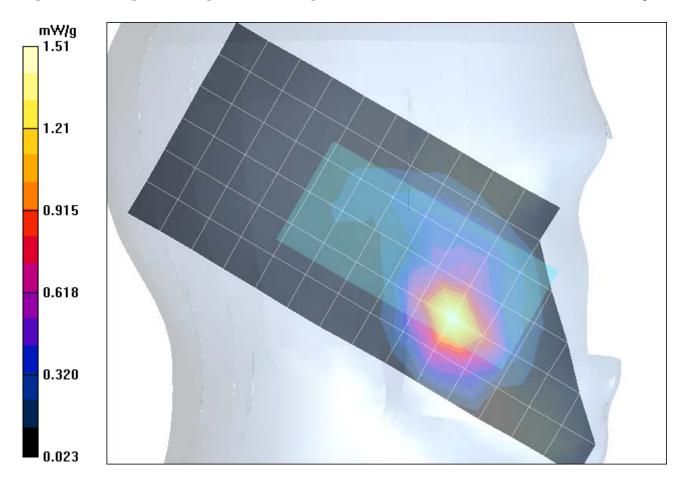
Communication System: GSM 1900; Frequency: 1850.2 MHz; Channel Number: 512; Duty Cycle: 1:8

Medium: Glycol Head; Medium parameters used: f = 1880 MHz; $\sigma = 1.46$ mho/m; $\varepsilon_r = 40.1$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ET3DV6 SN1514; ConvF(5.05, 5.05, 5.05); Calibrated: 7/17/2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn437; Calibrated: 7/18/2006
- Phantom: R#4 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1250;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Left Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 1.54 mW/g

Left Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.8 V/m; Power Drift = -0.009 dB; Peak SAR (extrapolated) = 2.37 W/kg

SAR(1 g) = 1.36 mW/g; SAR(10 g) = 0.719 mW/g; Maximum value of SAR (measured) = 1.51 mW/g

Date/Time: 5/9/2007 1:22:26 PM

Test Laboratory: Motorola - GSM 850 Tilt, Slider Extended

Serial: TA026018TM FCC ID: IHDT56GY1

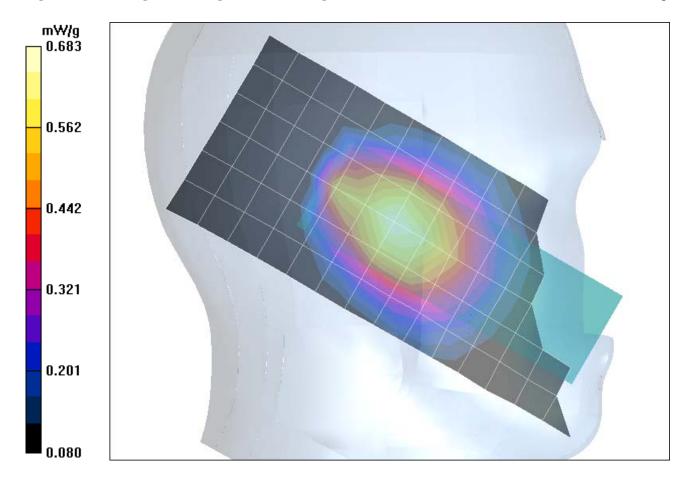
Procedure Notes: Pwr Step: 5; Antenna Position: Internal; Accessory Model #: None Battery Model #: SNN5779B; DEVICE POSITION (cheek or rotated): Rotated, Slide Extended Communication System: GSM 850; Frequency: 836.6 MHz; Channel Number: 190; Duty Cycle: 1:8

Medium: Low Freq Head; Medium parameters used: f = 835 MHz; $\sigma = 0.9$ mho/m; $\varepsilon_r = 40.7$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ET3DV6 SN1520; ConvF(6.08, 6.08, 6.08); Calibrated: 3/19/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn650; Calibrated: 8/22/2006
- Phantom: R2: Sugar SAM; Type: SAM; Serial: TP-1106;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Left Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.690 mW/g

Left Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.6 V/m; Power Drift = -0.009 dB; Peak SAR (extrapolated) = 0.827 W/kg

SAR(1 g) = 0.645 mW/g; SAR(10 g) = 0.473 mW/g; Maximum value of SAR (measured) = 0.683 mW/g

Date/Time: 5/15/2007 4:06:20 PM

Test Laboratory: Motorola - GSM 1900 Tilt, Slider Extended

Serial: TA026018TM FCC ID: IHDT56GY1

Procedure Notes: Pwr Step: 0; Antenna Position: Internal; Accessory Model #: None

Battery Model #: SNN5779B; DEVICE POSITION: Tilt, Slide Extended

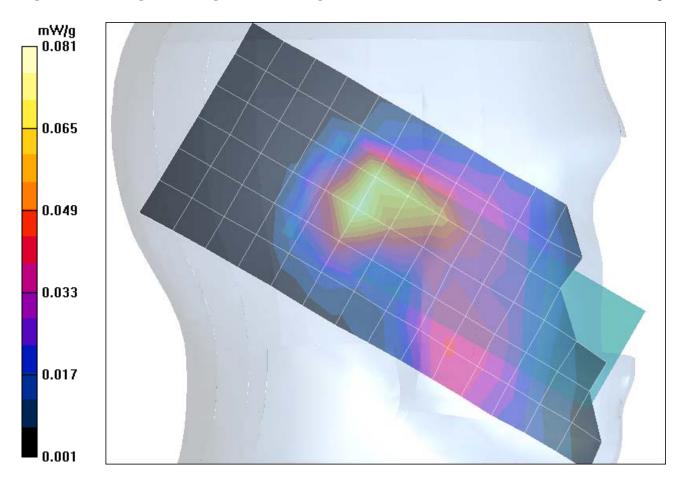
Communication System: GSM 1900; Frequency: 1880 MHz; Channel Number: 661; Duty Cycle: 1:8

Medium: Glycol Head; Medium parameters used: f = 1880 MHz; $\sigma = 1.47 \text{ mho/m}$; $\varepsilon_r = 39.2$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ET3DV6 SN1520; ConvF(5.11, 5.11, 5.11); Calibrated: 3/19/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn650; Calibrated: 8/22/2006
- Phantom: R#_2 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1235;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Left Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.079 mW/g

Left Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.40 V/m; Power Drift = 0.046 dB; Peak SAR (extrapolated) = 0.118 W/kg

SAR(1 g) = 0.077 mW/g; SAR(10 g) = 0.047 mW/g; Maximum value of SAR (measured) = 0.081 mW/g

Date/Time: 5/10/2007 9:55:22 AM

Test Laboratory: Motorola - GSM 850 Tilt, Slider Retracted

Serial: TA026018TM FCC ID: IHDT56GY1

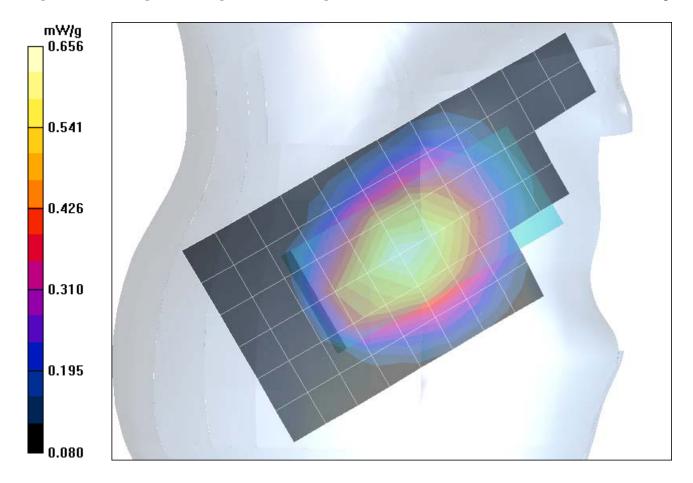
Procedure Notes: Pwr Step: 5; Antenna Position: Internal; Accessory Model #: None Battery Model #: SNN5779B; DEVICE POSITION (cheek or rotated): Rotated, Slide Retracted Communication System: GSM 850; Frequency: 836.6 MHz; Channel Number: 190; Duty Cycle: 1:8

Medium: Low Freq Head; Medium parameters used: f = 835 MHz; $\sigma = 0.9$ mho/m; $\varepsilon_r = 40.8$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ET3DV6 SN1520; ConvF(6.08, 6.08, 6.08); Calibrated: 3/19/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn650; Calibrated: 8/22/2006
- Phantom: R2: Sugar SAM; Type: SAM; Serial: TP-1106;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Right Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.662 mW/g

Right Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.1 V/m; Power Drift = -0.013 dB; Peak SAR (extrapolated) = 0.769 W/kg

SAR(1 g) = 0.619 mW/g; SAR(10 g) = 0.458 mW/g; Maximum value of SAR (measured) = 0.656 mW/g

Date/Time: 5/15/2007 3:22:52 PM

Test Laboratory: Motorola - GSM 1900 Tilt, Slider Retracted

Serial: TA026018TM FCC ID: IHDT56GY1

Procedure Notes: Pwr Step: 0; Antenna Position: Internal; Accessory Model #: None

Battery Model #: SNN5779B; DEVICE POSITION: Tilt, Slide Retracted

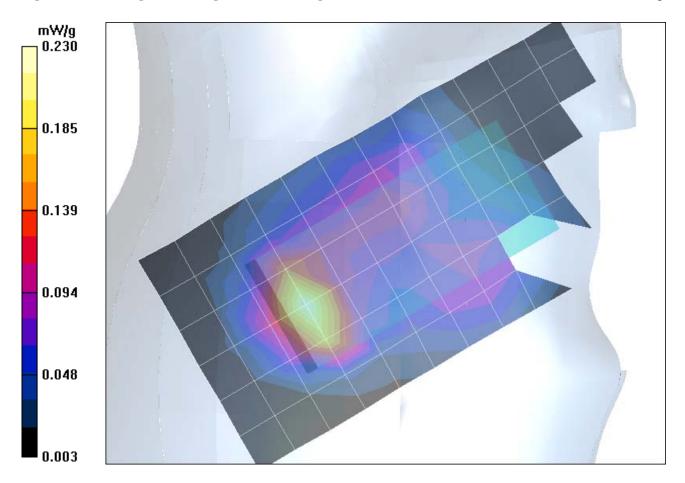
Communication System: GSM 1900; Frequency: 1880 MHz; Channel Number: 661; Duty Cycle: 1:8

Medium: Glycol Head; Medium parameters used: f = 1880 MHz; $\sigma = 1.47 \text{ mho/m}$; $\varepsilon_r = 39.2$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ET3DV6 SN1520; ConvF(5.11, 5.11, 5.11); Calibrated: 3/19/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn650; Calibrated: 8/22/2006
- Phantom: R#_2 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1235;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Right Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.228 mW/g

Right Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.7 V/m; Power Drift = 0.004 dB; Peak SAR (extrapolated) = 0.319 W/kg

SAR(1 g) = 0.207 mW/g; SAR(10 g) = 0.118 mW/g; Maximum value of SAR (measured) = 0.230 mW/g

Appendix 3

SAR distribution plots for Body Worn Configuration

Date/Time: 5/16/2007 10:57:25 AM

Test Laboratory: Motorola - GSM 850 Body

Serial: TA026018TM FCC ID: IHDT56GY1

Procedure Notes: Pwr Step: 5; Antenna Position: Internal; Battery Model #: SNN5779B Device Position: Body Worn, Back of Phone 15mm from Phantom with Bluetooth Enabled

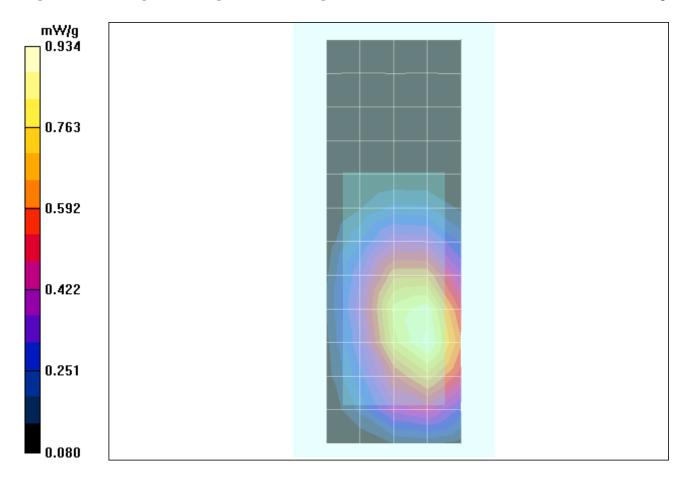
Communication System: GSM 850; Frequency: 824.2 MHz; Channel Number: 128; Duty Cycle: 1:8

Medium: Low Freq Body; Medium parameters used: f = 835 MHz; $\sigma = 0.98$ mho/m; $\varepsilon_r = 53.7$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ET3DV6 SN1520; ConvF(5.96, 5.96, 5.96); Calibrated: 3/19/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn650; Calibrated: 8/22/2006
- Phantom: R2 Section 2, Amy Twin, Rev2 (23-June-04); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Amy Twin Phone Template/Area Scan - Normal Body (15mm) (13x7x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.893 mW/g

Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 28.9 V/m; Power Drift = -0.012 dB; Peak SAR (extrapolated) = 1.14 W/kg

SAR(1 g) = 0.876 mW/g; SAR(10 g) = 0.620 mW/g; Maximum value of SAR (measured) = 0.934 mW/g

Date/Time: 5/17/2007 12:59:09 PM

Test Laboratory: Motorola - GSM 1900 Body

Serial: TA026018TM FCC ID: IHDT56GY1

Procedure Notes: Pwr Step: 0; Antenna Position: Internal; Battery Model #: SNN5779B

Device Position: Body Worn, Front of Phone 15mm From Phantom

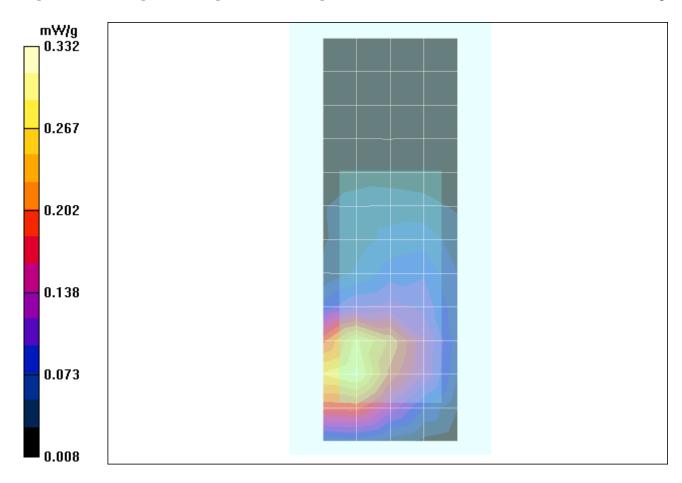
Communication System: GSM 1900; Frequency: 1880 MHz; Channel Number: 661; Duty Cycle: 1:8

Medium: Glycol Body; Medium parameters used: f = 1880 MHz; $\sigma = 1.58 \text{ mho/m}$; $\varepsilon_r = 50.9$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ET3DV6 SN1520; ConvF(4.75, 4.75, 4.75); Calibrated: 3/19/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn650; Calibrated: 8/22/2006
- Phantom: R2 Sect 1, Amy Twin, Rev2 (23-June-04); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Amy Twin Phone Template/Area Scan - Normal Body (15mm) (13x7x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.296 mW/g

Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.0 V/m; Power Drift = 0.003 dB; Peak SAR (extrapolated) = 0.512 W/kg

SAR(1 g) = 0.306 mW/g; SAR(10 g) = 0.182 mW/g; Maximum value of SAR (measured) = 0.332 mW/g

Appendix 4

Probe Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

Motorola MDb

Certificate No: ET3-1514 Jul06

Galeration of billioa Object ET3DV6 - SN:1514 Calibration procedure(s) QA CAL-01.v5 Calibration procedure for dosimetric E-field probes Calibration date: July 17, 2006 Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration Primary Standards ID# Cal Date (Calibrated by, Certificate No.) GB41293874 Power meter E4419B 5-Apr-06 (METAS, No. 251-00557) Apr-07 Power sensor E4412A MY41495277 5-Apr-06 (METAS, No. 251-00557) Арг-07 Power sensor E4412A MY41498087 5-Apr-06 (METAS, No. 251-00557) Apr-07 Reference 3 dB Attenuator SN: S5054 (3c) 11-Aug-05 (METAS, No. 251-00499) Aug-06 Reference 20 dB Attenuator SN: S5086 (20b) Apr-07 4-Apr-06 (METAS, No. 251-00558) Reference 30 dB Attenuator SN: S5129 (30b) 11-Aug-05 (METAS, No. 251-00500) Aug-06 Reference Probe ES3DV2 SN: 3013 2-Jan-06 (SPEAG, No. ES3-3013_Jan06) Jan-07 DAE4 SN: 654 21-Jun-06 (SPEAG, No. DAE4-654_Jun06) Jun-07 Secondary Standards ID# Scheduled Check Check Date (in house) US3642U01700 RF generator HP 8648C In house check: Nov-07 4-Aug-99 (SPEAG, in house check Nov-05) US37390585 Network Analyzer HP 8753E 18-Oct-01 (SPEAG, in house check Nov-05) In house check: Nov 06 Name **Function** Signature Calibrated by: Katja Pokovic Technical Manager Approved by: Niels Kuster Quality Manager Issued: July 17, 2006

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConF sensitivity in TSL / NORMx,y,z

DCP diode compression point Polarization φ rotation around probe axis

Polarization ϑ 9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1514_Jul06 Page 2 of 9

Probe ET3DV6

SN:1514

Manufactured:

November 24, 1999

Last calibrated:

July 20, 2005

Recalibrated:

July 17, 2006

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ET3-1514_Jul06

DASY - Parameters of Probe: ET3DV6 SN:1514

Sensitivity in Free	ensitivity in Free Space ^A				В
NormX	1.74 ± 10.1%	μV/(V/m) ²	DCP X	86 mV	
NormY	1.90 ± 10.1%	μ V/(V/m) ²	DCP Y	91 mV	
NormZ	1.87 ± 10.1%	μ V/(V/m) ²	DCP Z	84 mV	

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL 900 MHz Typical SAR gradient: 5 % per mm

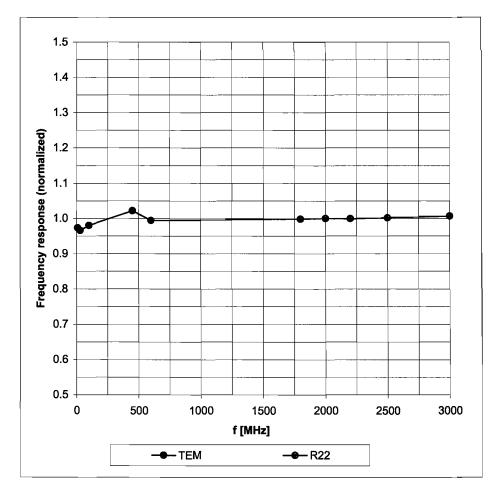
Sensor Center to	o Phantom Surface Distance	•	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm		9.7	5.0
SAR _{be} [%]	With Correction Algorithm		0.1	0.3

TSL 1810 MHz Typical SAR gradient: 10 % per mm

Sensor Center to	Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	11.8	7.0
SAR _{be} [%]	With Correction Algorithm	0.2	0.4

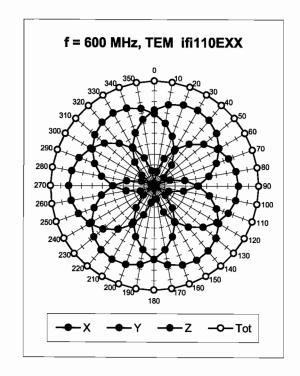
Sensor Offset

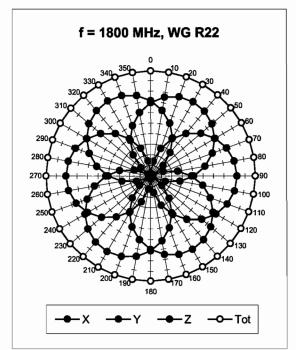
Probe Tip to Sensor Center 2.7 mm

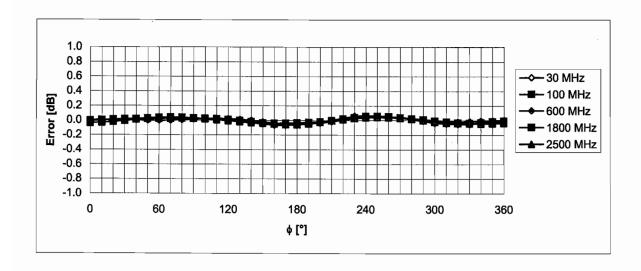

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

^B Numerical linearization parameter: uncertainty not required.

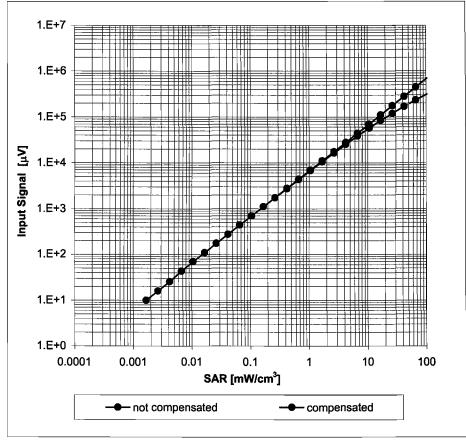

Frequency Response of E-Field

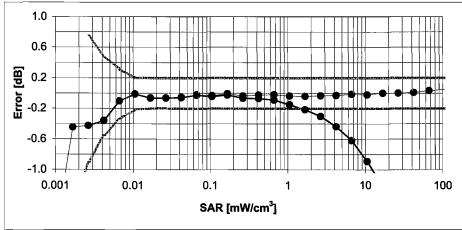

(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

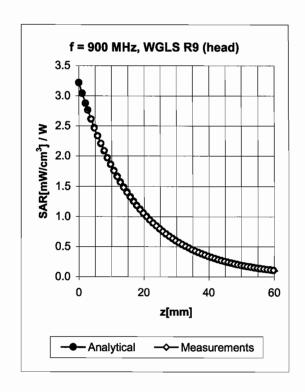
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

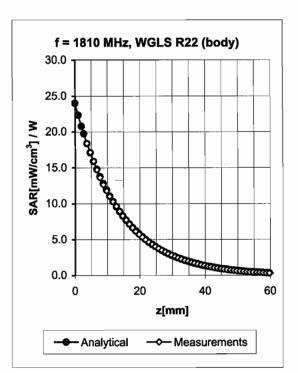



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ET3-1514_Jul06

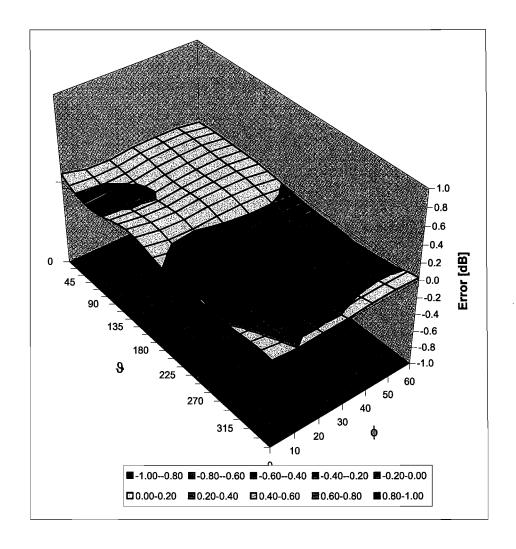
Dynamic Range f(SAR_{head})


(Waveguide R22, f = 1800 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment



f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.67	1.82	5.99 ± 11.0% (k=2)
1810	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.57	2.46	5.05 ± 11.0% (k=2)
1950	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.56	2.49	4.76 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.65	2.09	4.47 ± 11.8% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.64	1.95	5.86 ± 11.0% (k=2)
1810	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.61	2.53	4.53 ± 11.0% (k=2)
1950	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.75	2.16	4.30 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.62	2.07	4.16 ± 11.8% (k=2)

^C The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurlch, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étaionnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

Client

Motorola MDb

Certificate No: ET3-1520_Mar07

CALIBRATION CERTIFICATE ET3DV6 - SN:1520 Object QA CAL-01.v5 Calibration procedure(s) Calibration procedure for dosimetric E-field probes March 19, 2007 Calibration date: In Tolerance Condition of the calibrated item This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) ID# Scheduled Calibration Primary Standards Cal Date (Calibrated by, Certificate No.) Power meter E4419B GB41293874 5-Apr-06 (METAS, No. 251-00557) Apr-07 Apr-07 Power sensor E4412A MY41495277 5-Apr-06 (METAS, No. 251-00557) MY41498087 5-Apr-06 (METAS, No. 251-00557) Apr-07 Power sensor E4412A Reference 3 dB Attenuator SN: S5054 (3c) 10-Aug-06 (METAS, No. 217-00592) Aug-07 4-Apr-06 (METAS, No. 251-00558) Apr-07 Reference 20 dB Attenuator SN: S5086 (20b) Reference 30 dB Attenuator 10-Aug-06 (METAS, No. 217-00593) Aug-07 SN: S5129 (30b) Reference Probe ES3DV2 SN: 3013 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) Jan-08 DAE4 SN: 654 21-Jun-06 (SPEAG, No. DAE4-654 Jun06) Jun-07 Secondary Standards ID# Check Date (in house) Scheduled Check RF generator HP 8648C US3642U01700 4-Aug-99 (SPEAG, in house check Nov-05) In house check: Nov-07 Network Analyzer HP 8753E US37390585 18-Oct-01 (SPEAG, in house check Oct-06) In house check: Oct-07 Name Function Signature **Technical Manager** Calibrated by: Katja Pokovic Fin Bomholt R&D Director Approved by: Issued: March 19, 2007

Certificate No: ET3-1520_Mar07

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurlch, Switzerland

S Schweizerischer Kalibrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConF sensitivity in TSL / NORMx,y,z
DCP diode compression point

DCP diode compression point Polarization φ rotation around probe axis

Polarization ϑ ϑ rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1520_Mar07 Page 2 of 9

Probe ET3DV6

SN:1520

Manufactured:

February 1, 2000

Last calibrated:

May 3, 2006

Recalibrated:

March 19, 2007

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ET3-1520_Mar07

DASY - Parameters of Probe: ET3DV6 SN:1520

Sensitivity	in F	ree Space [/]	A
-------------	------	------------------------	---

Diode Compression^B

NormX	1.88 ± 10.1%	μ V/(V/m) ²	DCP X	96 mV
NormY	1.70 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	95 mV
NormZ	1.90 ± 10.1%	μV/(V/m) ²	DCP Z	95 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

SAR_{be} [%]

SAR_{be} [%]

TSL Typical SAR gradient: 5 % per mm 900 MHz

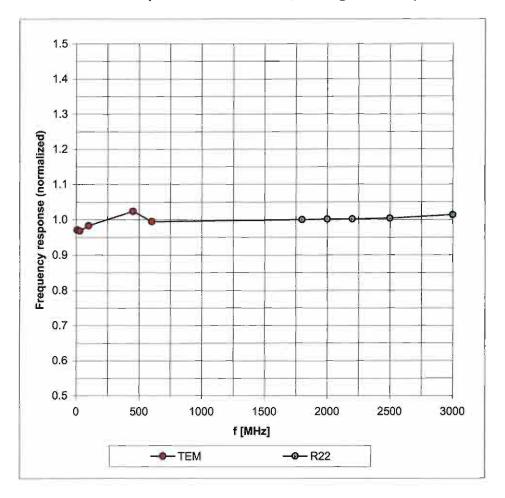
> Sensor Center to Phantom Surface Distance 3.7 mm 4.7 mm Without Correction Algorithm 9.1 4.8 0.1 0.2 With Correction Algorithm

TSL 1810 MHz Typical SAR gradient: 10 % per mm

Sensor Center t	o Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	13.3	9.0
SAR _{be} [%]	With Correction Algorithm	0.2	0.2

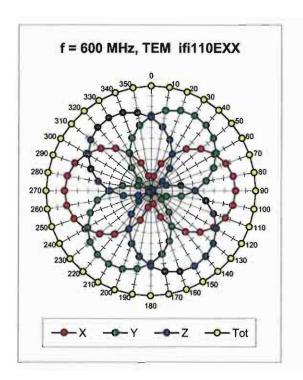
Sensor Offset

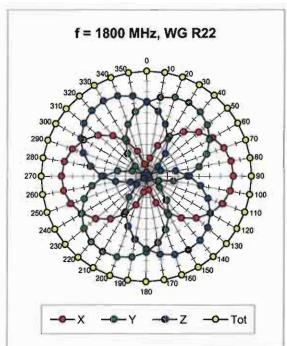
2.7 mm Probe Tip to Sensor Center

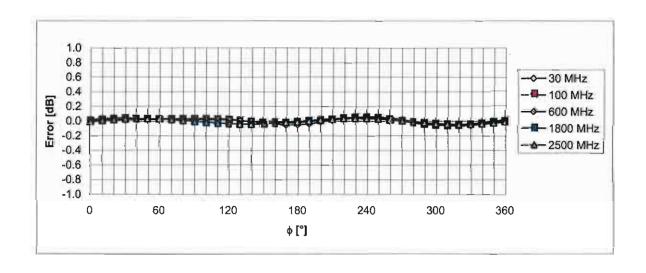

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

⁸ Numerical linearization parameter: uncertainty not required.

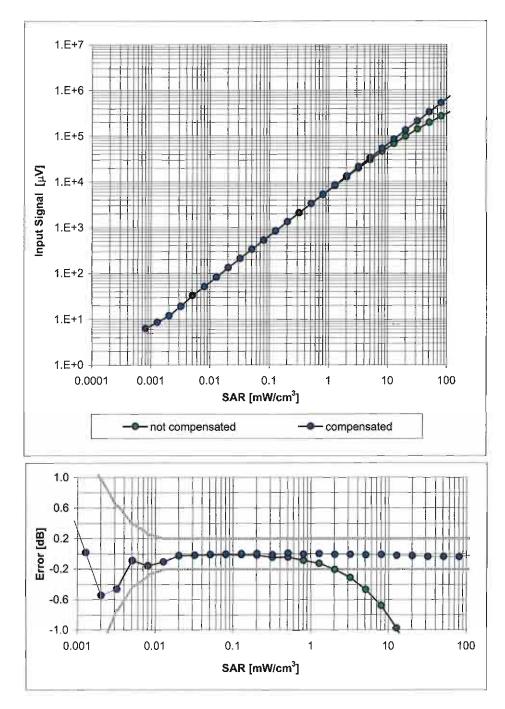

Frequency Response of E-Field


(TEM-Cell:ifi110 EXX, Waveguide: R22)

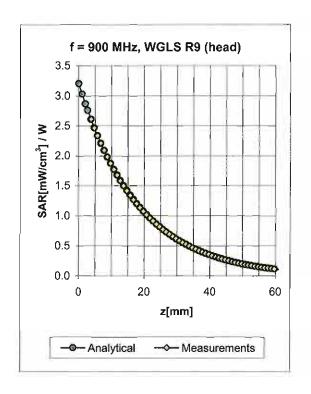


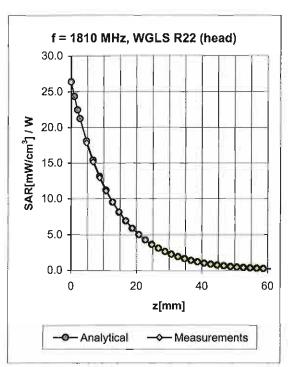
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), θ = 0°



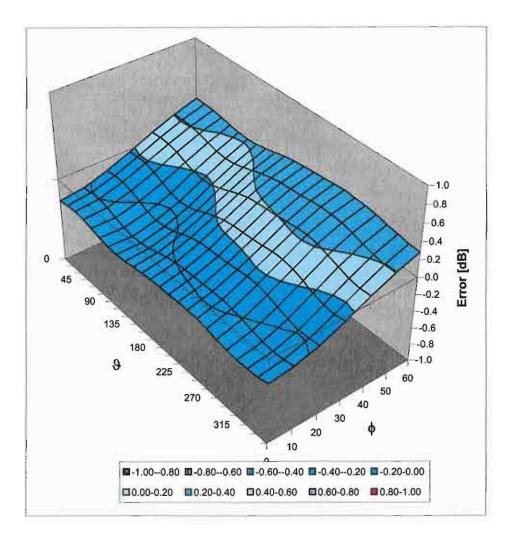
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head})


(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment



f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.29	2.89	6.08 ± 11.0% (k=2)
1810	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.53	2.53	5.11 ± 11.0% (k=2)
1950	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.58	2.42	4.90 ± 11.0% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.36	2.64	5.96 ± 11.0% (k=2)
1810	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.64	2.48	4.75 ± 11.0% (k=2)
1950	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.74	2.29	4.47 ± 11.0% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Appendix 5

Measurement Uncertainty Budget

Combined Section Column								h=	i =	
Combined Combined	a	b	С	d	e = f(d,k)	f	g	cxf /e	cxg /e	k
Uncertainty Component Section Section Div. Div. Ct*/o Ct*/o		IEEE	Tol.	Prob		Ci	_	1 g	10 g	
Probe Calibration E.2.1 5.9 N 1.00 1 1 5.9 5.9 ∞			(± %)	Dist		(1 g)	(10 g)	u _i	u _i	
Probe Calibration	Uncertainty Component	section			Div.			(±%)	(±%)	V _i
Axial Isotropy	Measurement System									
Hemispherical Isotropy	Probe Calibration	E.2.1	5.9	N	1.00	1	1	5.9	5.9	8
Boundary Effect	Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	8
Linearity E.2.4 4.7 R 1.73 1 1 2.7 2.7 ∞	Hemispherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	8
System Detection Limits	Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	8
Readout Electronics E.2.6 0.3 N 1.00 1 1 0.3 0.3 ∞ Response Time E.2.7 1.1 R 1.73 1 1 0.6 0.6 ∞ Integration Time E.2.8 1.1 R 1.73 1 1 0.6 0.6 ∞ RF Ambient Conditions - Noise E.6.1 3.0 R 1.73 1 1 1.7 1.7 ∞ RF Ambient Conditions - Reflections E.6.1 0.0 R 1.73 1 1 0.0 0.0 ∞ Probe Positioner Mech. Tolerance E.6.2 0.4 R 1.73 1 1 0.2 0.2 ∞ Probe Positioning W.r.t Phantom E.6.3 1.4 R 1.73 1 1 0.2 0.2 ∞ Max. SAR Evaluation (ext., int., avg.) E.5 3.4 R 1.73 1 1 2.0 2.0 ∞ Test Sample Related Test S	Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	8
Response Time	System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	8
Integration Time	Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3	8
RF Ambient Conditions - Noise E.6.1 3.0 R 1.73 1 1 1.7 1.7 ∞ RF Ambient Conditions - Reflections E.6.1 0.0 R 1.73 1 1 0.0 0.0 ∞ Probe Positioner Mech. Tolerance E.6.2 0.4 R 1.73 1 1 0.2 0.2 ∞ Probe Positioning w.r.t Phantom E.6.3 1.4 R 1.73 1 1 0.8 0.8 ∞ Max. SAR Evaluation (ext., int., avg.) E.5 3.4 R 1.73 1 1 0.8 0.8 ∞ Test sample Related Test Sample Positioning E.4.2 3.2 N 1.00 1 1 3.2 3.2 29 Device Holder Uncertainty E.4.1 4.0 N 1.00 1 1 4.0 4.0 8 SAR drift 6.6.2 5.0 R 1.73 1 1 2.9 2.9 ∞	Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	8
RF Ambient Conditions - Reflections E.6.1 0.0 R 1.73 1 1 0.0 0.0 ∞ Probe Positioner Mech. Tolerance E.6.2 0.4 R 1.73 1 1 0.2 0.2 ∞ Probe Positioning w.r.t Phantom E.6.3 1.4 R 1.73 1 1 0.8 0.8 ∞ Max. SAR Evaluation (ext., int., avg.) E.5 3.4 R 1.73 1 1 0.8 0.8 ∞ Test sample Related Test Sample Positioning E.4.2 3.2 N 1.00 1 1 3.2 3.2 29 Device Holder Uncertainty E.4.1 4.0 N 1.00 1 1 4.0 8 SAR drift 6.6.2 5.0 R 1.73 1 1 2.9 2.9 ∞ Phantom Uncertainty E.3.1 4.0 R 1.73 1 1 2.3 2.3 ∞ Liq	Integration Time	E.2.8	1.1	R	1.73	1	1	0.6	0.6	8
Reflections	RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	8
Probe Positioner Mech. E.6.2 0.4 R 1.73 1 1 0.2 0.2 ∞ Probe Positioning w.r.t Phantom E.6.3 1.4 R 1.73 1 1 0.8 0.8 ∞ Max. SAR Evaluation (ext., int., avg.) E.5 3.4 R 1.73 1 1 2.0 2.0 ∞ Test sample Related Test Sample Positioning E.4.2 3.2 N 1.00 1 1 3.2 3.2 29 Device Holder Uncertainty E.4.1 4.0 N 1.00 1 1 4.0 4.0 8 SAR drift 6.6.2 5.0 R 1.73 1 1 2.9 2.9 ∞ Phantom and Tissue Parameters Phantom Uncertainty E.3.1 4.0 R 1.73 1 1 2.3 2.3 ∞ Liquid Conductivity (target) E.3.2 5.0 R 1.73 0.64 0.43 1.8	RF Ambient Conditions -									
Tolerance		E.6.1	0.0	R	1.73	1	1	0.0	0.0	∞
Probe Positioning w.r.t Phantom E.6.3 1.4 R 1.73 1 1 0.8 0.8 ∞ Max. SAR Evaluation (ext., int., avg.) E.5 3.4 R 1.73 1 1 2.0 2.0 ∞ Test sample Related Test Sample Positioning E.4.2 3.2 N 1.00 1 1 3.2 3.2 29 Device Holder Uncertainty E.4.1 4.0 N 1.00 1 1 4.0 4.0 8 SAR drift 6.6.2 5.0 R 1.73 1 1 2.9 2.9 ∞ Phantom and Tissue Parameters Phantom Uncertainty E.3.1 4.0 R 1.73 1 1 2.3 2.3 ∞ Liquid Conductivity (target) E.3.2 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Permittivity (target) E.3.2 5.0 R 1.73 0.6 <td< td=""><td></td><td></td><td></td><td>_</td><td>4 =0</td><td></td><td></td><td></td><td>0.0</td><td></td></td<>				_	4 =0				0.0	
Phantom E.6.3 1.4 R 1.73 1 1 0.8 0.8 ∞ Max. SAR Evaluation (ext., int., avg.) E.5 3.4 R 1.73 1 1 2.0 2.0 ∞ Test sample Related Test Sample Positioning E.4.2 3.2 N 1.00 1 1 3.2 3.2 29 Device Holder Uncertainty E.4.1 4.0 N 1.00 1 1 4.0 4.0 8 SAR drift 6.6.2 5.0 R 1.73 1 1 2.9 2.9 ∞ Phantom uncertainty E.3.1 4.0 R 1.73 1 1 2.3 2.3 ∞ Liquid Conductivity (target) E.3.2 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Conductivity (measurement) E.3.2 5.0 R 1.73 0.6 0.49 1.7 1.4 ∞		E.6.2	0.4	R	1./3	1	1	0.2	0.2	∞
Max. SAR Evaluation (ext., int., avg.) E.5 3.4 R 1.73 1 1 2.0 2.0 ∞ Test sample Related Test Sample Positioning E.4.2 3.2 N 1.00 1 1 3.2 3.2 29 Device Holder Uncertainty E.4.1 4.0 N 1.00 1 1 4.0 4.0 8 SAR drift 6.6.2 5.0 R 1.73 1 1 2.9 2.9 ∞ Phantom and Tissue Parameters Phantom Uncertainty E.3.1 4.0 R 1.73 1 1 2.3 2.3 ∞ Phantom Uncertainty (target) E.3.2 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Conductivity (target) E.3.3 3.3 N 1.00 0.64 0.43 2.1 1.4 ∞ Liquid Permittivity (target) E.3.2 5.0 R 1.73 0.6		E 6 3	1 /	D	1 73	1	1	Λ Ω	Λ Ω	~
int., avg.) E.5 3.4 R 1.73 1 1 2.0 2.0 ∞ Test sample Related Test Sample Positioning E.4.2 3.2 N 1.00 1 1 3.2 3.2 29 Device Holder Uncertainty E.4.1 4.0 N 1.00 1 1 4.0 4.0 8 SAR drift 6.6.2 5.0 R 1.73 1 1 2.9 2.9 ∞ Phantom and Tissue Parameters Phantom Uncertainty E.3.1 4.0 R 1.73 1 1 2.3 2.3 ∞ Phantom Uncertainty E.3.2 5.0 R 1.73 1 1 2.3 2.3 ∞ Liquid Conductivity (target) E.3.2 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Permittivity (target) E.3.2 5.0 R 1.73 0.6 0.49 1.7 1.4 ∞ <td></td> <td>L.0.3</td> <td>1.4</td> <td>IX.</td> <td>1.73</td> <td>'</td> <td>ı</td> <td>0.0</td> <td>0.0</td> <td>~</td>		L.0.3	1.4	IX.	1.73	'	ı	0.0	0.0	~
Test sample Related E.4.2 3.2 N 1.00 1 1 3.2 3.2 29 Device Holder Uncertainty E.4.1 4.0 N 1.00 1 1 4.0 4.0 8 SAR drift 6.6.2 5.0 R 1.73 1 1 2.9 2.9 ∞ Phantom and Tissue Parameters Phantom Uncertainty E.3.1 4.0 R 1.73 1 1 2.3 2.3 ∞ Liquid Conductivity (target) E.3.2 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Conductivity (measurement) E.3.3 3.3 N 1.00 0.64 0.43 2.1 1.4 ∞ Liquid Permittivity (target) E.3.2 5.0 R 1.73 0.6 0.49 1.7 1.4 ∞ Combined Standard Uncertainty RSS 11.1 10.8 411	•	E.5	3.4	R	1.73	1	1	2.0	2.0	∞
Test Sample Positioning E.4.2 3.2 N 1.00 1 1 3.2 3.2 29 Device Holder Uncertainty E.4.1 4.0 N 1.00 1 1 4.0 4.0 8 SAR drift 6.6.2 5.0 R 1.73 1 1 2.9 2.9 ∞ Phantom and Tissue Parameters Phantom Uncertainty E.3.1 4.0 R 1.73 1 1 2.3 2.3 ∞ Liquid Conductivity (target) E.3.2 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Conductivity (measurement) E.3.3 3.3 N 1.00 0.64 0.43 2.1 1.4 ∞ Liquid Permittivity (measurement) E.3.2 5.0 R 1.73 0.6 0.49 1.7 1.4 ∞ Combined Standard Uncertainty RSS 11.1 10.8 411										
Device Holder Uncertainty E.4.1 4.0 N 1.00 1 1 4.0 4.0 8 SAR drift 6.6.2 5.0 R 1.73 1 1 2.9 2.9 ∞ Phantom and Tissue Parameters Phantom Uncertainty E.3.1 4.0 R 1.73 1 1 2.3 2.3 ∞ Liquid Conductivity (target) E.3.2 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Conductivity (measurement) E.3.3 3.3 N 1.00 0.64 0.43 2.1 1.4 ∞ Liquid Permittivity (target) E.3.2 5.0 R 1.73 0.6 0.49 1.7 1.4 ∞ Liquid Permittivity (measurement) E.3.3 1.9 N 1.00 0.6 0.49 1.1 0.9 ∞ Combined Standard Uncertainty RSS 11.1 10.8 411		E.4.2	3.2	N	1.00	1	1	3.2	3.2	29
SAR drift 6.6.2 5.0 R 1.73 1 1 2.9 2.9 ∞ Phantom and Tissue Parameters Phantom Uncertainty E.3.1 4.0 R 1.73 1 1 2.3 2.3 ∞ Liquid Conductivity (target) E.3.2 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Conductivity (measurement) E.3.3 3.3 N 1.00 0.64 0.43 2.1 1.4 ∞ Liquid Permittivity (target) E.3.2 5.0 R 1.73 0.6 0.49 1.7 1.4 ∞ Liquid Permittivity (measurement) E.3.3 1.9 N 1.00 0.6 0.49 1.1 0.9 ∞ Combined Standard Uncertainty RSS 11.1 10.8 411 Expanded Uncertainty 11.1 10.8 411	•	E.4.1	4.0	N	1.00	1	1	4.0	4.0	8
Parameters E.3.1 4.0 R 1.73 1 1 2.3 2.3 ∞ Liquid Conductivity (target) E.3.2 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Conductivity (measurement) E.3.3 3.3 N 1.00 0.64 0.43 2.1 1.4 ∞ Liquid Permittivity (target) E.3.2 5.0 R 1.73 0.6 0.49 1.7 1.4 ∞ Liquid Permittivity (measurement) E.3.3 1.9 N 1.00 0.6 0.49 1.1 0.9 ∞ Combined Standard Uncertainty RSS 11.1 10.8 411 Expanded Uncertainty RSS 11.1 10.8 411										8
Phantom Uncertainty E.3.1 4.0 R 1.73 1 1 2.3 2.3 ∞ Liquid Conductivity (measurement) E.3.2 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Conductivity (measurement) E.3.3 3.3 N 1.00 0.64 0.43 2.1 1.4 ∞ Liquid Permittivity (target) E.3.2 5.0 R 1.73 0.6 0.49 1.7 1.4 ∞ Liquid Permittivity (measurement) E.3.3 1.9 N 1.00 0.6 0.49 1.1 0.9 ∞ Combined Standard Uncertainty RSS 11.1 10.8 411 Expanded Uncertainty RSS 11.1 10.8 411	Phantom and Tissue									
Liquid Conductivity (target) E.3.2 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Conductivity (measurement) E.3.3 3.3 N 1.00 0.64 0.43 2.1 1.4 ∞ Liquid Permittivity (measurement) E.3.2 5.0 R 1.73 0.6 0.49 1.7 1.4 ∞ Combined Standard Uncertainty RSS N 1.00 0.6 0.49 1.1 0.9 ∞	Parameters									
Liquid Conductivity (measurement) E.3.3 3.3 N 1.00 0.64 0.43 2.1 1.4 ∞ Liquid Permittivity (target) E.3.2 5.0 R 1.73 0.6 0.49 1.7 1.4 ∞ Liquid Permittivity (measurement) E.3.3 1.9 N 1.00 0.6 0.49 1.1 0.9 ∞ Combined Standard Uncertainty RSS 11.1 10.8 411 Expanded Uncertainty RSS 11.1 10.8 411	Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	∞
(measurement) E.3.3 3.3 N 1.00 0.64 0.43 2.1 1.4 ∞ Liquid Permittivity (measurement) E.3.2 5.0 R 1.73 0.6 0.49 1.7 1.4 ∞ Combined Standard Uncertainty Expanded Uncertainty RSS 11.1 10.8 411	7 (0 /	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	8
Liquid Permittivity (target) E.3.2 5.0 R 1.73 0.6 0.49 1.7 1.4 ∞ Liquid Permittivity (measurement) E.3.3 1.9 N 1.00 0.6 0.49 1.1 0.9 ∞ Combined Standard Uncertainty RSS 11.1 10.8 411 Expanded Uncertainty 11.1 10.8 411					_		_			
Liquid Permittivity (measurement) E.3.3 1.9 N 1.00 0.6 0.49 1.1 0.9 ∞ Combined Standard Uncertainty RSS 11.1 10.8 411 Expanded Uncertainty 11.1 10.8 411										8
(measurement) E.3.3 1.9 N 1.00 0.6 0.49 1.1 0.9 ∞ Combined Standard Uncertainty RSS 11.1 10.8 411 Expanded Uncertainty RSS 11.1 10.8 411		E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	∞
Combined Standard Uncertainty RSS 11.1 10.8 411 Expanded Uncertainty		F 2 2	10	N.	1.00	0.0	0.40	4.4	0.0	
Uncertainty RSS 11.1 10.8 411 Expanded Uncertainty		□. 3.3	1.9	IN	1.00	0.6	0.49	1.1	0.9	
Expanded Uncertainty				RSS				11 1	10.8	411
				1100				11.1	10.0	711
	(95% CONFIDENCE LEVEL)			k=2				22.2	21.6	

Appendix 6

Photographs of the device under test

Figure 1 – Front of Transceiver

Figure 2 – Back of Transceiver

Figure 3 – Transceiver against head, Cheek Touch position, Slider Extended

Figure 4 – Transceiver against head, Cheek Touch position, Slider Extended

Figure 5 – Transceiver against head, Cheek Touch position, Slider Retracted

Figure 6 – Transceiver against head, Cheek Touch position, Slider Retracted

Figure 7 – Transceiver against head, 15° Tilt position, Slider Extended

Figure 8 – Transceiver against head, 15° Tilt position, Slider Extended

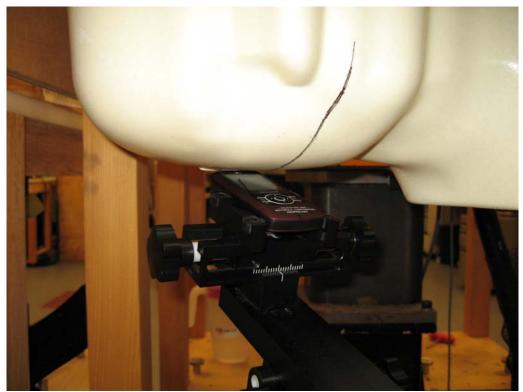


Figure 9 – Transceiver against head, 15° Tilt position, Slider Retracted

Figure 10 – Transceiver against head, 15° Tilt position, Slider Retracted

Figure 11 – Transceiver against body, Back of Phone 15mm from Phantom position

Figure 12 – Transceiver against body with Accessory

Appendix 7

Dipole Characterization Certificate

Certification of System Performance Check TargetsBased on WI-0396

-Historical Data-

	900MHz	
IEEE/IEC Target:	10.8	(W/kg)
Measurement Uncertainty (k=1):	9.0%	
Measurement Period:	10-May-06 to 18-April-07	
# of tests performed:	1,562	
Grand Average:	11.24	(W/kg)
% Delta (Average - IEEE1528 Target)	4.1%	
Is % Delta <= Expanded Measurement Uncertainty (k=2)?	Yes	
Accept/Reject <u>Average</u> as new system performance check target?	ACCEPT	
	Applies to Dipole SN's: 55, 69, 77, 78, 79, 80, 91, 92, 93, 94, 95, 96, 97, 1d034, 1d035	

-New System Performance Check Targets- per WI-0396

(based on analysis of historical data)

Frequency	SAR Target (W/kg)	Permittivity	Conductivity (S/m)
900MHz	11.24	41.5 ± 5%	0.97 ± 5%

Approvals-		
Submitted by:	Marge Kaunas	Date: 24-Apr-07
Signed:	Manga Kauma	
Comments:	Spreadsheet detailing referenced historical measuremen	ts is available upon request.
Approved by:	Mark Douglas	Date: 1-May-07
<u>Signed:</u>	Mark Douglas	
Comments:		