

Exhibit 11: SAR Test Report IHDT56GT1

Date of test: 6/9/2006 through 6/23/2006

Date of Report: 7/5/2006

Motorola Mobile Devices Business Product Safety & Compliance Laboratory

600 N. US Highway 45

Laboratory: Room: MW113

Libertyville, Illinois 60048

Paul Ma **Test Responsible:** RF Engineer

This laboratory is accredited to ISO/IEC 17025-1999 to perform the following tests: Accreditation:

ACCREDITED

Tests: **Procedures**:

Electromagnetic Specific Absorption Rate ANSI/IEEE C95.1-1992, 1999

> (SAR) IEEE C95.3-1991 IEEE 1528, IEC 62209-1

FCC OET Bulletin 65 (including Supplements A, B, C)

FCC ID: IHDT56GT1

Australian Communications Authority Radio

Communications (Electromagnetic Radiation – Human

Exposure) Standard 1999 CENELEC EN 50361 (2001)

Simulated Tissue Preparation APP-0247

RF Power Measurement DOI-0876, 0900, 0902, 0904, 0915

On the following products or types of products:

Wireless Communications Devices (Examples): Two Way Radios; Portable Phones (including

Cellular, Licensed Non-Broadcast and PCS); Low Frequency Readers; and Pagers

A2LA certificate #1651-01

Motorola declares under its sole responsibility that portable cellular telephone FCC ID IHDT56GT1 to which this declaration relates, is in conformity with the appropriate General

Statement of **Compliance:** Population/Uncontrolled RF exposure standards, recommendations and guidelines (FCC 47 CFR §2.1093). It also declares that the product was tested in accordance with the appropriate measurement standards, guidelines and recommended practices. Any deviations from these standards, guidelines and recommended practices are noted below:

(none)

©Motorola, Inc. 2006

This test report shall not be reproduced except in full, without written approval of the laboratory.

The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report.

Motorola encourages all feedback, both positive and negative, on this test report.

Table of Contents

1. INTRODUCTION	3
2. DESCRIPTION OF THE DEVICE UNDER TEST	3
2.1 Antenna description	3
2.2 Device description	3
3. TEST EQUIPMENT USED	4
3.1 Dosimetric System	4
3.2 Additional Equipment	4
4. ELECTRICAL PARAMETERS OF THE TISSUE SIMULATING LIQUID	4
5. SYSTEM ACCURACY VERIFICATION	5
6. TEST RESULTS	6
6.1 Head Adjacent Test Results	7
6.2 Body Worn Test Results	9
APPENDIX 1: SAR DISTRIBUTION COMPARISON FOR SYSTEM ACCURACY VERIFICATION	.11
APPENDIX 2: SAR DISTRIBUTION PLOTS FOR PHANTOM HEAD ADJACENT USE	.12
APPENDIX 3: SAR DISTRIBUTION PLOTS FOR BODY WORN CONFIGURATION	.13
APPENDIX 4: PROBE CALIBRATION CERTIFICATE	.14
APPENDIX 5: MEASUREMENT UNCERTAINTY BUDGET	.15
APPENDIX 6: PHOTOGRAPHS OF DEVICE UNDER TEST	.18
APPENDIX 7: DIPOLE CHARACTERIZATION CERTIFICATE	22

1 Introduction

The Motorola Mobile Devices Business Product Safety Laboratory has performed measurements of the maximum potential exposure to the user of portable cellular phone (FCC ID IHDT56GT1). The Specific Absorption Rate (SAR) of this product was measured. The portable cellular phone was tested in accordance with FCC OET Bulletin 65 Supplement C 01-01.

FCC ID: IHDT56GT1

2 Description of the Device Under Test

2.1 Antenna description

Type	Internal			
Location	Bottom of Phone			
Dimensions	Length	37 mm		
Difficusions	Width 7.5 mm			
Configuration				

2.2 Device description

FCC ID Number	IHDT56GT1												
Serial number(s)	LCYA3D0017												
Mode(s) of Operation	GSM 850												
Modulation Mode(s)	GMSK	GMSK	GMSK	GMSK	GMSK	GMSK	GMSK	GMSK	8PSK	8PSK	8PSK	8PSK	
Maximum Output Power Setting	33.00 dBm	33.00 dBm	30.50 dBm	30.50 dBm	33.00 dBm	33.00 dBm	30.50 dBm	30.50 dBm	27.00 dBm	27.00 dBm	26.00 dBm	26.00 dBm	
Duty Cycle	1:8	1:8	1:8	1:8	4:8	4:8	4:8	4:8	4:8	4:8	4:8	4:8	
Transmitting Frequency Rang(s)	824.2- 848.8 MHz	880.2- 914.8 MHz	1710.2- 1784.8 MHz	1850.2 – 1909.8 Mhz	824.2- 848.8 MHz	880.2- 914.8 MHz	1710.2- 1784.8 MHz	1850.2 – 1909.8 MHz	824.2- 848.8 MHz	880.2- 914.8 MHz	1710.2- 1784.8 MHz	1850.2 – 1909.8 MHz	
Production Unit or Identical Prototype (47 CFR §2908)						Identi	cal Prototy	/pe					
Device Category						I	Portable						
RF Exposure Limits					Ge	neral Popu	lation / Ur	controlled					

3 Test Equipment Used

3.1 Dosimetric System

The Motorola Mobile Devices Business Product Safety & Compliance Laboratory utilizes a Dosimetric Assessment System (Dasy4TM v4.6) manufactured by Schmid & Partner Engineering AG (SPEAGTM), of Zurich Switzerland. All the SAR measurements are taken within a shielded enclosure. The overall RSS uncertainty of the measurement system is $\pm 11.1\%$ (K=1) with an expanded uncertainty of $\pm 22.2\%$ (K=2). The measurement uncertainty budget is given in Appendix 6. Per IEEE 1528, this uncertainty budget is applicable to the SAR range of 0.4 W/kg to 10 W/kg. The list of calibrated equipment used for the measurements is shown below.

Description	Serial Number	Cal Due Date
DASY4 DAE4	376	9/5/2006
DASY4 DAE3	378	5/22/2007
E-Field Probe ES3DV3	3037	11/17/2006
E-Field Probe ET3DV6R	1513	9/19/2006
Dipole Validation Kit, D900V2	96	
Dipole Validation Kit, D900V2	80	
S.A.M. Phantom used for 800MHz	TP-1131	
S.A.M. Phantom used for 800MHz	TP-1153	
S.A.M. Phantom used for 1900MHz	TP-1250	
Dipole Validation Kit, D1800V2	272TR	

3.2 Additional Equipment

Description	Serial Number	Cal Due Date
Signal Generator HP8648C	3847A04632	9/20/2006
Power Meter E4419B	GB39511084	8/19/2006
Power Sensor #1 – E9301A	US39210918	9/21/2006
Power Sensor #2 - E9301A	US39210934	9/21/2006
Network Analyzer HP8753ES	US39171846	8/22/2006
Dielectric Probe Kit HP85070C	US99360070	

4 Electrical parameters of the tissue simulating liquid

Prior to conducting SAR measurements, the relative permittivity, ε_r , and the conductivity, σ , of the tissue simulating liquids were measured with the HP85070 Dielectric Probe Kit These values, along with the temperature of the tissue simulate are shown in the table below. The recommended limits for maximum permittivity and minimum conductivity are also shown. These come from the Federal Communication Commission, OET Bulletin 65 Supplement C 01-01. It is seen that the measured parameters are satisfactory for compliance testing.

f	Tissue		Diele	ctric Parame	eters
(MHz)	type	Limits / Measured	$\mathbf{\epsilon}_r$	σ (S/m)	Temp (°C)
	Head	Measured, 6/14/2006	42.3	0.91	20.0
	пеац	Recommended Limits	41.5 ±5%	$0.90 \pm 5\%$	18-25
835	Dody	Measured , 6/22/2006	53.9	0.98	20.5
	Body	Recommended Limits	55.2 ±5%	$0.97 \pm 5\%$	18-25
	Head	Measured, 6/15/2006	39.0	1.43	20.1
	пеац	Recommended Limits	40.0 ±5%	$1.40 \pm 5\%$	18-25
1880	Dode	Measured, 6/16/2006	52.7	1.57	20.3
	Body	Recommended Limits	53.3 ±5%	1.52 ±5%	18-25

FCC ID: **IHDT56GT1**

The list of ingredients and the percent composition used for the tissue simulates are indicated in the table below.

Ingredien t	800MHz Head	800MHz Body	1900MHz Head	1900MHz Body
Sugar	57.0	44.9		
DGBE	-	-	47.0	30.80
Water	40.45	53.06	52.8	68.91
Salt	1.45	0.94	0.2	0.29
HEC	1.0	1.0	-	
Bact.	0.1	0.1	-	

5 System Accuracy Verification

A system accuracy verification of the DASY4 v4.6 was performed using the measurement equipment listed in Section 3.1. The daily system accuracy verification occurs within center section of the SAM phantom.

A SAR measurement was performed to see if the measured SAR was within +/- 10% from the target SAR indicated in Section 8.3.7 Reference SAR Values in IEEE 1528. These tests were done at 900MHz and/or 1800MHz. These frequencies are within 100MHz of the mid-band frequency of the test device. This is within the allowable window given in Supplement C 01-01 *Appendix D System Verification* section item #5. The test was conducted on the same days as the measurement of the DUT. Recommended limits for maximum permittivity, minimum conductivity are shown in the table below. These come from the Federal Communication Commission, OET Bulletin 65 Supplement C 01-01. The obtained results from the system accuracy verification are displayed in the table below. The distributions of SAR compare well with those of the reference measurements (see Appendix 1). The tissue stimulant depth was verified to be 15.0cm ±0.5cm. Z-axis scans showing the SAR penetration are also included in Appendix 1. SAR values are normalized to 1W forward power delivered to the dipole.

f (MHz)	Description	SAR (W/kg), 1gram	Dielectric ε_r	Parameters σ (S/m)	Ambient Temp (°C)	Tissue Temp (°C)
	Measured , 6/14/2006	11.3	41.5	0.97	21.5	20.0
900	Measured, 6/22/2006	11.1	40.9	0.97	21.2	20.9
	Recommended Limits	11.3	41.5 ±5%	$0.97 \pm 5\%$	18-25	18-25
	Measured, 6/15/2006	40.6	38.7	1.34	21.5	20.0
1800	Measured, 6/16/2006	40.8	39.5	1.35	21.2	20.0
	Recommended Limits	38.1	40.0 ±5%	1.4 ±5%	18-25	18-25

The following probe conversion factors were used on the E-Field probe(s) used for the system accuracy verification measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe	SN3037	900	6.07	8 of 9
ES3DV3	5113037	1800	5.01	8 of 9
E-Field Probe ET3DV6R	SN1513	900	5.83	8 of 9
	5111313	1800	4.76	8 of 9

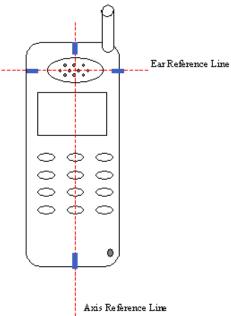
6 Test Results

The test sample was operated in a test mode that allows control of the transmitter without the need to place actual phone calls. For the purposes of this test the unit is commanded to test mode and manually set to the proper channel, transmitter power level and transmit mode of operation. The phone was tested in the configurations stipulated in OET Bulletin 65 Supplement C 01-01. Motorola also followed the requirements in Supplement. C / Appendix D: SAR Measurement Procedures, section titled "Devices Operating Next To A Person's Ear". These directions state "The device should be tested on the left and right side of the head phantom in the "Cheek/Touch" and "Ear/Tilt" positions. When applicable, each configuration should be tested with the antenna in its fully extended and fully retracted positions. These test configurations should be tested at the high, middle and low frequency channels of each operating mode; for example, AMPS, CDMA, and TDMA. If the SAR measured at the middle channel for each test configuration (left, right, Cheek/Touch, Tile/Ear, extended and retracted) is at least 2.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s)."

FCC ID: IHDT56GT1

The DASY4 v4.6 SAR measurement system specified in section 3.1 was utilized within the intended operations as set by the SPEAGTM setup. The phone was positioned into the measurement configurations using the positioner supplied with the DASY4 v4.6 SAR measurement system. The measured dielectric constant of the material used for the positioner is less than 2.9 and the loss tangent is less than 0.02 (± 30%) at 850MHz. The default settings for the "coarse" and "cube" scans were chosen and use for measurements. The grid spacing of the course scan was set to 15cm as shown in the SAR plots included in appendix 2 and 3. Please refer to the DASY manual for additional information on SAR scanning procedures and algorithms used.

The Cellular Phone (FCC ID IHDT56GT1) has the battery SNN5779A as the only battery option. This battery was used to do all of the SAR testing. The phone was placed in the SAR measurement system with a fully charged battery.


6.1 Head Adjacent Test Results

To aid in positioning repeatability, the ear reference line of the device and the axis reference line of the device have been physically added using a non-metallic marker.

FCC ID: IHDT56GT1

- Per Figure 1, the "Ear Reference Line" is centered vertically through the center of the listening area (as defined by the speaker holes in the housing).
- The "Axis Reference Line" bisects the front surface of the device at its top and bottom edges.
- The intersection of these two lines defines the location of the "Ear Reference Point".

The lines drawn on the device extended to the outside edges, as shown in blue in the figure below, & wrap around the sides of the device.

The SAR results shown in tables 1 and 2 are maximum SAR values averaged over 1 gram of phantom tissue. Also shown are the measured conducted output powers, the temperature of the test facility during the test, the temperature of the tissue simulate after the test, the measured drift and the extrapolated SAR. The exact method of extrapolation is New SAR = Old SAR * 10^(-drift/10). The SAR reported at the end of the measurement process by the DASYTM measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test.

The left head and right head SAR contour distributions are similar. Because of this similarity, the cheek/touch and 15° tilt test conditions with the highest SAR values in each band are indicated as bold numbers in the following tables and are included in Appendix 2. All other test conditions measured lower SAR values than those included in Appendix 2.

The SAR measurements were performed using the SAM phantoms listed in section 3.1. Since the same phantoms and tissue simulate are used for the system accuracy verification as the device SAR measurements, the Z-axis scans included in within Appendix 1 are applicable for verification of tissue simulate depth to be 15.0cm ± 0.5 cm.

The following probe conversion factors were used on the E-Field probe(s) used for the head adjacent measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe	SN3037	900	6.07	8 of 9
ES3DV3	5143037	1800	5.01	8 of 9
E-Field Probe ET3DV6R	SN1513	900	5.83	8 of 9
	5111313	1800	4.76	8 of 9

f (MHz)	Conducted Cheek / Touch Position									
	Description	Output		Le	eft Head		Right Head			
	Description	Power (dBm)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)
	Channel 128	32.94	0.724	0.01	0.72	20.0	0.84	-0.04	0.85	20.0
Digital 850MHz	Channel 190	32.88	0.904	-0.02	0.91	20.0	0.95	-0.05	0.96	20.2
03011112	Channel 251	32.80	0.92	0.01	0.92	20.2	1.0	0.03	1.0	20.0
D	Channel 512	30.37								
Digital 1900MHz	Channel 661	30.37	0.33	-0.02	0.33	20.7	0.51	-0.01	0.51	20.2
1,0000112	Channel 810	30.30								

Table 1: SAR measurement results for the portable cellular telephone FCC ID IHDT56GT1 at highest possible output power. Measured against the head in the Cheek/Touch Position.

		Conducted	15° Tilt Position								
f (MHz)	D : (Output		Le	eft Head			Right Head			
	Description	Power (dBm)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)	
	Channel 128	32.94									
Digital 850MHz	Channel 190	32.88	0.44	0.05	0.44	20.0	0.43	0.01	0.43	19.9	
OSONITIZ	Channel 251	32.80									
	Channel 512	30.37									
Digital 1900MHz	Channel 661	30.37	0.2	0.04	0.2	20.1	0.12	0	0.12	20.4	
1700141112	Channel 810	30.30									

Table 2: SAR measurement results for the portable cellular telephone FCC ID IHDT56GT1 at highest possible output power. Measured against the head in the 15 degrees Tilt Position.

6.2 Body Worn Test Results

The SAR results shown in tables 3 through 5 are the maximum SAR values averaged over 1 gram of phantom tissue. Also shown are the measured conducted output powers, the temperature of the test facility during the test, the temperature of the tissue simulate after the test, the measured drift and the extrapolated SAR. The exact method of extrapolation is New SAR = Old SAR * 10^(-drift/10). The SAR reported at the end of the measurement process by the DASYTM measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test.

The test conditions that produced the highest SAR values in each band are indicated as bold numbers in the following tables and are included in Appendix 3. All other test conditions measured lower SAR values than those included in Appendix 3.

A "flat" phantom was for the body-worn tests. This "flat" phantom is made out of 1" thick natural High Density Polyethylene with a thickness at the bottom equal to 2.0mm. It measures 52.7cm(long) x 26.7cm(wide) x 21.2cm(tall). The measured dielectric constant of the material used is less than 2.3 and the loss tangent is less than 0.0046 all the way up to 2.184GHz.

The tissue stimulant depth was verified to be $15.0 \,\mathrm{cm} \pm 0.5 \,\mathrm{cm}$. The same device holder described in section 6 was used for positioning the phone. The functional accessories were divided into two categories, the ones with metal components and the ones with non-metal components. For non-metallic component accessories', testing was performed on the accessory that displayed the closest proximity to the flat phantom. Each metallic component accessory, if any, was checked for uniqueness of metal component so that each is tested with the device. If multiple accessories shared an identical metal component, only the accessory that dictates the closest spacing to the body was tested. The cellular phone was tested with a headset connected to the device for all body-worn SAR measurements.

The following probe conversion factors were used on the E-Field probe(s) used for the body worn measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe	SN3037	900	5.93	8 of 9
ES3DV3	SN3037	1800	4.65	8 of 9
E-Field Probe	SN1513	900	5.66	8 of 9
ET3DV6R	5111313	1800	4.16	8 of 9

Channel 810

30.30

APPLICANT: MOTOROLA, INC.						FCC ID: IHDT56GT1				
			Body Worn							
f		Conducted Output	Front of phone 15 mm away from phantom (GSM)			Back of phone 15 mm away from phantom (GSM)				
(MHz)	Bescription	Power (dBm)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)
D:::4-1	Channel 128	32.94					0.96	-0.02	0.97	20.3
Digital 850MHz	Channel 190	32.88	0.58	0	0.58	20.3	0.97	-0.02	0.98	20.7
OSOIVITE	Channel 251	32.80					0.9	-0.01	0.9	20.3
D:::4-1	Channel 512	30.37								
Digital 1900MHz	Channel 661	30.37	0.49	0.03	0.49	20.3	0.33	-0.05	0.33	20.1
1 / UUIVII IZ										

Table 3: SAR measurement results for the portable cellular telephone FCC ID IHDT56GT1 at highest possible output power. Measured against the body.

			Body Worn								
f	f Description Conducted Output		15 mm away from phantom (GSM & Bluetooth enabled)				25 mm away from phantom (GPRS Class 12)				
(MHz)	Description	Power (dBm)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)	
Digital	Channel 128	32.94	1.18	-0.04	1.19	20.5	0.84	-0.03	0.84	20.3	
850MHz	Channel 190	32.88	1.15	-0.06	1.17	20.4	0.85	-0.02	0.85	20.2	
Back of Phone	Channel 251	32.80	1.08	-0.04	1.09	20.3	0.8	-0.1	0.82	20.4	
Digital	Channel 512	30.37									
1900MHz	Channel 661	30.37	0.44	-0.03	0.45	20.5	0.1	0.06	0.11	20.1	
Front of Phone	Channel 810	30.30									

Table 4: SAR measurement results for the portable cellular telephone FCC ID IHDT56GT1 at highest possible output power. Measured against the body.

						Body	Worn			
f	f Description Conducted Output		25 mm away from phantom (Edge Class 12)							
(MHz)	Description	Power (dBm)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)
Digital	Channel 128	32.94								
850MHz	Channel 190	32.88	0.14	0.01	0.14	21.2				
Back of Phone	Channel 251	32.80								
Digital	Channel 512	30.37								
1900MHz	Channel 661	30.37	0.07	0.03	0.07	20.2				
Front of Phone	Channel 810	30.30								

Table 5: SAR measurement results for the portable cellular telephone FCC ID IHDT56GT1 at highest possible output power. Measured against the body.

Appendix 1

SAR distribution comparison for the system accuracy verification

Date/Time: 6/14/2006 8:28:06 AM

Test Laboratory: Motorola

061406 900MHz Good at +0.0%

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN:96 Procedure Notes: 900 MHz System Performance Check / Dipole Sn# 96

PM1 Power = 200mW Sim.Temp@meas = 20*C Sim.Temp@SPC = 20*C Room Temp @ SPC = 21.5*C

Communication System: CW - Dipole; Frequency: 900 MHz; Channel Number: 4; Duty Cycle: 1:1 Medium: VALIDATION Only; Medium parameters used: f = 900 MHz; $\sigma = 0.97$ mho/m; $\varepsilon_r = 41.5$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3037; ConvF(6.07, 6.07, 6.07); Calibrated: 11/17/2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 9/5/2005
- Phantom: R4: Sugar Water SAM; Type: SAM; Serial: TP-1131;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Daily SPC Check/Dipole Area Scan (4x9x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 2.23 mW/g

Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 50.9 V/m; Power Drift = -0.040 dB

Peak SAR (extrapolated) = 3.39 W/kg

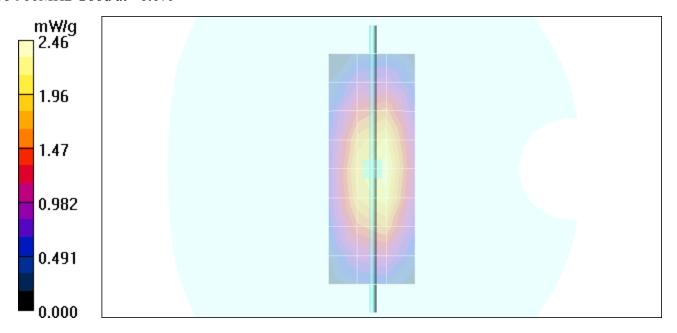
SAR(1 g) = 2.24 mW/g; SAR(10 g) = 1.44 mW/g

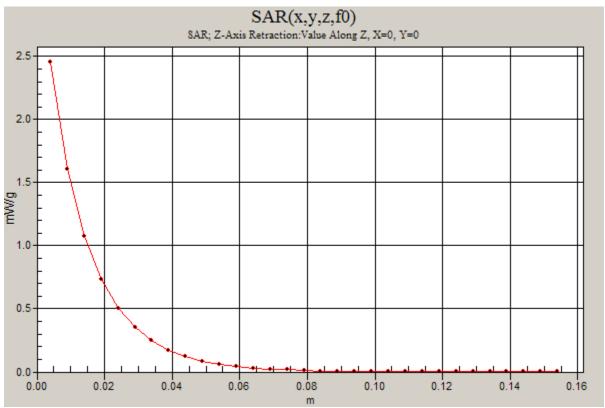
Maximum value of SAR (measured) = 2.42 mW/g

Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 50.9 V/m; Power Drift = -0.040 dB


Peak SAR (extrapolated) = 3.47 W/kg


SAR(1 g) = 2.28 mW/g; SAR(10 g) = 1.46 mW/g

Maximum value of SAR (measured) = 2.45 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 2.46 mW/g

Date/Time: 6/15/2006 8:19:53 AM

Test Laboratory: Motorola

061506 1800MHz Good at +6.4%

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:272(TR)

Procedure Notes: 1800 MHz System Performance Check / Dipole Sn# 272(TR)

PM1 Power = 200mW Sim.Temp@meas = 20.5*C Sim.Temp@SPC = 20*C Room Temp @ SPC = 21.5*C

Communication System: CW - Dipole; Frequency: 1800 MHz; Channel Number: 8; Duty Cycle: 1:1

Medium: VALIDATION Only; Medium parameters used: f = 1800 MHz; $\sigma = 1.34 \text{ mho/m}$; $\varepsilon_r = 38.7$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ES3DV3 SN3037; ConvF(5.01, 5.01, 5.01); Calibrated: 11/17/2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 9/5/2005
- Phantom: R4 : Sect.2, Amy Twin; Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Daily SPC Check/Dipole Area Scan (9x4x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 8.62 mW/g

Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 79.0 V/m; Power Drift = 0.012 dB

Peak SAR (extrapolated) = 14.3 W/kg

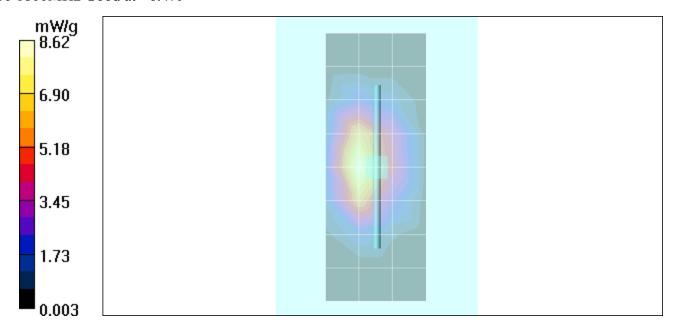
SAR(1 g) = 8.08 mW/g; SAR(10 g) = 4.3 mW/g

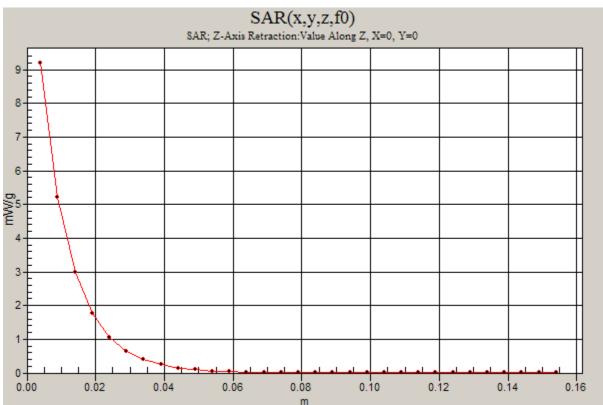
Maximum value of SAR (measured) = 8.99 mW/g

Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 79.0 V/m; Power Drift = 0.012 dB


Peak SAR (extrapolated) = 14.3 W/kg


SAR(1 g) = 8.14 mW/g; SAR(10 g) = 4.33 mW/g

Maximum value of SAR (measured) = 9.12 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 9.20 mW/g

Date/Time: 6/16/2006 8:36:42 AM

Test Laboratory: Motorola

061606 1800MHz Good at +7.1%

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:272(TR)

Procedure Notes: 1800 MHz System Performance Check / Dipole Sn# 272(TR) PM1 Power = 200mW

Sim. Temp@meas = 20.7*C Sim. Temp@SPC = 20*C Room Temp @ SPC = 21.2*C

Communication System: CW - Dipole; Frequency: 1800 MHz; Channel Number: 8; Duty Cycle: 1:1

Medium: VALIDATION Only; Medium parameters used: f = 1800 MHz; $\sigma = 1.35 \text{ mho/m}$; $\varepsilon_r = 39.5$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ES3DV3 SN3037; ConvF(5.01, 5.01, 5.01); Calibrated: 11/17/2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 9/5/2005
- Phantom: R4 : Sect.2, Amy Twin; Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Daily SPC Check/Dipole Area Scan (9x4x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 8.05 mW/g

Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 81.9 V/m; Power Drift = 0.003 dB

Peak SAR (extrapolated) = 14.4 W/kg

SAR(1 g) = 8.19 mW/g; SAR(10 g) = 4.36 mW/g

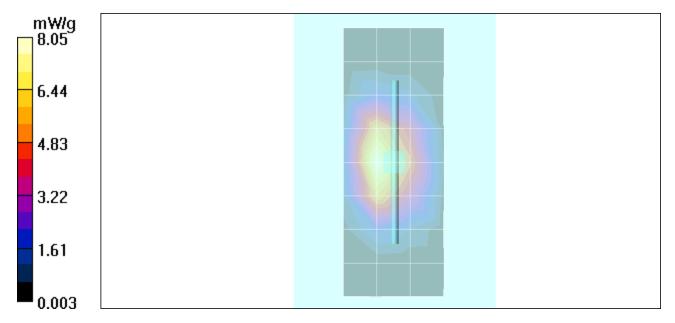
Maximum value of SAR (measured) = 9.05 mW/g

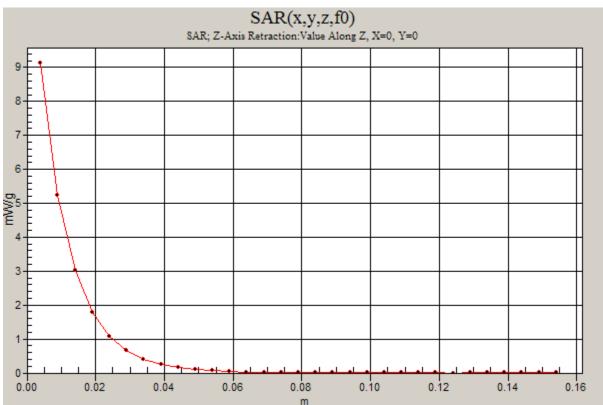
Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 81.9 V/m; Power Drift = 0.003 dB

Peak SAR (extrapolated) = 14.2 W/kg


SAR(1 g) = 8.13 mW/g; SAR(10 g) = 4.35 mW/g


Maximum value of SAR (measured) = 8.77 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm

Maximum value of SAR (measured) = 9.13 mW/g

Date/Time: 6/22/2006 6:08:32 PM

Test Laboratory: Motorola

062206 900MHz Good at -2.2%

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN:080 Procedure Notes: 900MHz System Performance Check / Dipole Sn# 080

PM1 Power = 200mW Sim.Temp@meas = 21.8 Sim.Temp@SPC = 20.9 Room Temp @ SPC = 21.2

Communication System: CW - Dipole; Frequency: 900 MHz; Channel Number: 4; Duty Cycle: 1:1 Medium: VALIDATION Only; Medium parameters used: f = 900 MHz; $\sigma = 0.97$ mho/m; $\varepsilon_r = 40.9$; $\rho = 1000$ kg/m³

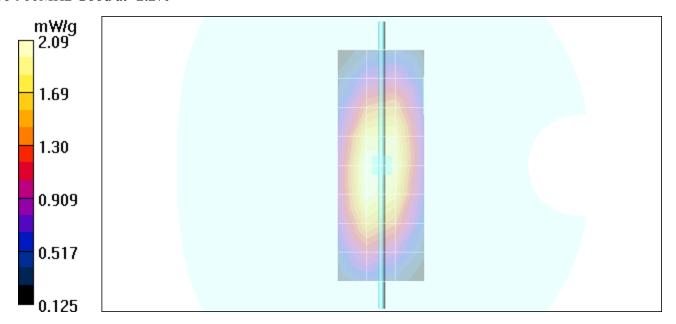
DASY4 Configuration:

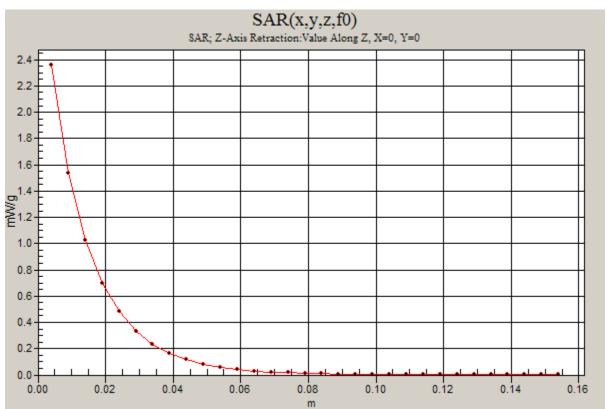
- Probe: ET3DV6R SN1513; ConvF(5.83, 5.83, 5.83); Calibrated: 9/19/2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn378; Calibrated: 5/22/2006
- Phantom: R3: Sugar Water SAM; Type: SAM; Serial: TP-1153;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Daily SPC Check/Dipole Area Scan (4x9x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.09 mW/g

Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 51.0 V/m; Power Drift = -0.007 dB Peak SAR (extrapolated) = 3.32 W/kg SAR(1 g) = 2.17 mW/g; SAR(10 g) = 1.39 mW/g Maximum value of SAR (measured) = 2.35 mW/g


Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 51.0 V/m; Power Drift = -0.007 dB Peak SAR (extrapolated) = 3.44 W/kg SAR(1 g) = 2.25 mW/g; SAR(10 g) = 1.44 mW/g Maximum value of SAR (measured) = 2.42 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 2.36 mW/g

Appendix 2

FCC ID: IHDT56GT1

SAR distribution plots for Phantom Head Adjacent Use

Date/Time: 6/15/2006 5:20:21 PM

Test Laboratory: Motorola 1900 LH Tilt

Serial: LCYA3D0017

Procedure Notes: Pwr Step: 0 Antenna Position: Internal

Battery Model #: SNN5779A DEVICE POSITION (cheek or rotated): Rotated

Communication System: GSM 1900; Frequency: 1880 MHz; Channel Number: 661; Duty Cycle: 1:8

Medium: Back-Up Glycol Head; Medium parameters used: f = 1880 MHz; $\sigma = 1.43$ mho/m; $\varepsilon_r = 39$; $\rho = 1000$ kg/m³

DASY4 Configuration:

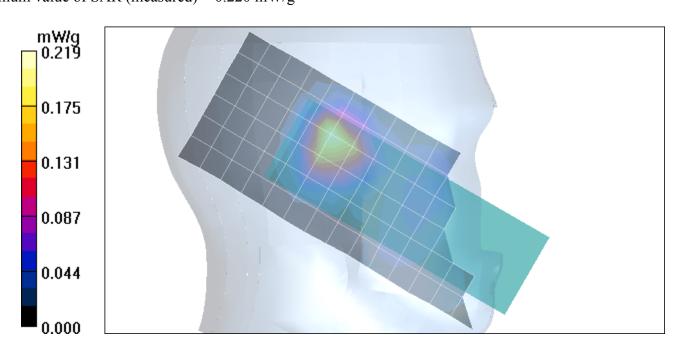
- Probe: ES3DV3 SN3037; ConvF(5.01, 5.01, 5.01); Calibrated: 11/17/2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 9/5/2005
- Phantom: R4: Glycol SAM; Type: SAM; Serial: TP-1250;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Left Head Template/Area Scan - Normal (15mm) (7x17x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.219 mW/g

Left Head Template/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.7 V/m; Power Drift = 0.036 dB

Peak SAR (extrapolated) = 0.317 W/kg

SAR(1 g) = 0.200 mW/g; SAR(10 g) = 0.116 mW/g

Maximum value of SAR (measured) = 0.220 mW/g

Date/Time: 6/14/2006 8:20:20 PM

Test Laboratory: Motorola

850 RH Cheek

Serial: LCYA3D0017

Procedure Notes: Pwr Step: 5 Antenna Position: Internal

Battery Model #: SNN5779A DEVICE POSITION (cheek or rotated): Cheek

Communication System: GSM 850; Frequency: 848.8 MHz; Channel Number: 251; Duty Cycle: 1:8

Medium: Low Freq Head; Medium parameters used: f = 835 MHz; $\sigma = 0.91$ mho/m; $\varepsilon_r = 42.3$; $\rho = 1000$ kg/m³

DASY4 Configuration:

• Probe: ES3DV3 - SN3037; ConvF(6.07, 6.07, 6.07); Calibrated: 11/17/2005

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn376; Calibrated: 9/5/2005

• Phantom: R4: Sugar Water SAM; Type: SAM; Serial: TP-1131;

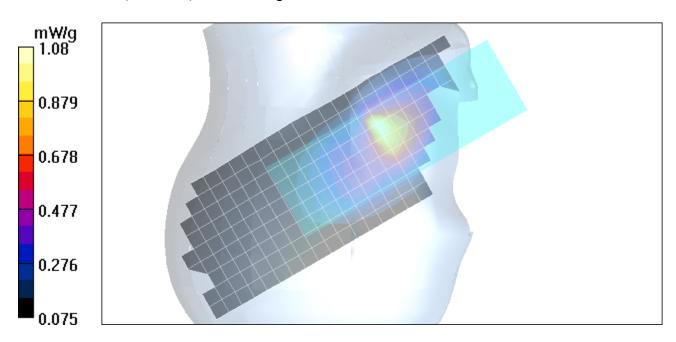
• Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Right Head Template/Area Scan - Normal Extended (10mm) (10x25x1):

Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 1.17 mW/g

Right Head Template/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 35.6 V/m; Power Drift = 0.028 dB

Peak SAR (extrapolated) = 2.52 W/kg

SAR(1 g) = 1.000 mW/g; SAR(10 g) = 0.588 mW/g

Maximum value of SAR (measured) = 1.08 mW/g

Date/Time: 6/14/2006 5:42:54 PM

Test Laboratory: Motorola 850 LH Tilt

Serial: LCYA3D0017

Procedure Notes: Pwr Step: 5 Antenna Position: Internal

Battery Model #: SNN5779A DEVICE POSITION (cheek or rotated): Rotated

Communication System: GSM 850; Frequency: 836.6 MHz; Channel Number: 190; Duty Cycle: 1:8

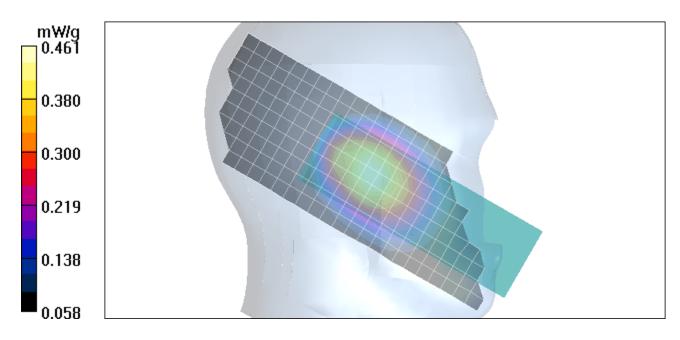
Medium: Low Freq Head; Medium parameters used: f = 835 MHz; $\sigma = 0.91 \text{ mho/m}$; $\varepsilon_r = 42.3$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

Probe: ES3DV3 - SN3037; ConvF(6.07, 6.07, 6.07); Calibrated: 11/17/2005

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 9/5/2005
- Phantom: R4: Sugar Water SAM; Type: SAM; Serial: TP-1131;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Left Head Template/Area Scan - Normal Extended (10mm) (10x25x1):


Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.452 mW/g

Left Head Template/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 21.4 V/m; Power Drift = 0.048 dB

Peak SAR (extrapolated) = 0.566 W/kg

SAR(1 g) = 0.436 mW/g; SAR(10 g) = 0.323 mW/gMaximum value of SAR (measured) = 0.461 mW/g

Date/Time: 6/15/2006 5:51:45 PM

Test Laboratory: Motorola 1900 RH Cheek

Serial: LCYA3D0017

Procedure Notes: Pwr Step: 0 Antenna Position: Internal

Battery Model #: SNN5779A DEVICE POSITION (cheek or rotated): Cheek

Communication System: GSM 1900; Frequency: 1880 MHz; Channel Number: 661; Duty Cycle: 1:8

Medium: Back-Up Glycol Head; Medium parameters used: f = 1880 MHz; $\sigma = 1.43$ mho/m; $\varepsilon_r = 39$; $\rho = 1000$ kg/m³

DASY4 Configuration:

• Probe: ES3DV3 - SN3037; ConvF(5.01, 5.01, 5.01); Calibrated: 11/17/2005

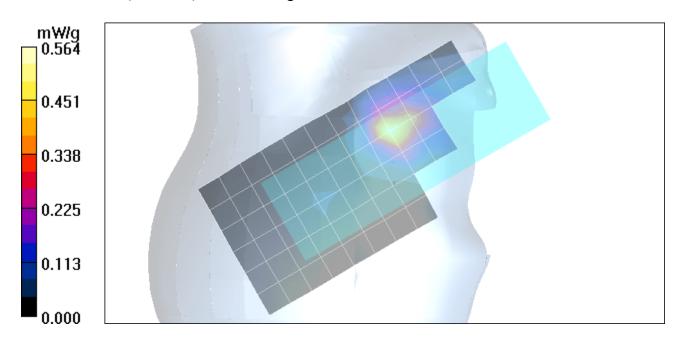
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 9/5/2005
- Phantom: R4: Glycol SAM; Type: SAM; Serial: TP-1250;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Right Head Template/Area Scan - Normal (15mm) (7x17x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.564 mW/g

Right Head Template/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.4 V/m; Power Drift = -0.010 dB

Peak SAR (extrapolated) = 0.935 W/kg

SAR(1 g) = 0.513 mW/g; SAR(10 g) = 0.279 mW/g

Maximum value of SAR (measured) = 0.570 mW/g

Appendix 3

FCC ID: IHDT56GT1

SAR distribution plots for Body Worn Configuration

Date/Time: 6/22/2006 8:29:46 PM

Test Laboratory: Motorola

850 Bodyworn Bluetooth

Serial: LCYA3D0017

Procedure Notes: Pwr Step: 5 Antenna Position:internal

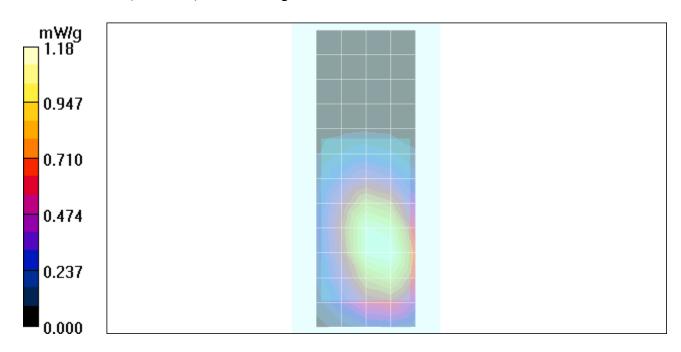
Battery Model #: SNN5779A Accessory Model # = Bluetooth Bodyworn 15mm Away From Phantom (Back of Phone)

Communication System: GSM 850; Frequency: 824.2 MHz; Channel Number: 128; Duty Cycle: 1:8 Medium: Low Freq Body; Medium parameters used: f = 835 MHz; $\sigma = 0.98$ mho/m; $\varepsilon_r = 53.9$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ET3DV6R SN1513; ConvF(5.66, 5.66, 5.66); Calibrated: 9/19/2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn378; Calibrated: 5/22/2006
- Phantom: R3: Sect.2, Amy Twin; Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Amy Twin Phone Template/Area Scan - Normal Body (15mm) (13x7x1):


Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.18 mW/g

Amy Twin Phone Template/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 34.2 V/m; Power Drift = -0.038 dB

Peak SAR (extrapolated) = 1.58 W/kg

SAR(1 g) = 1.18 mW/g; SAR(10 g) = 0.835 mW/gMaximum value of SAR (measured) = 1.27 mW/g

Date/Time: 6/16/2006 12:55:30 PM

Test Laboratory: Motorola 1900 Bodyworn

Serial: LCYA3D0017

Procedure Notes: Pwr Step: 0 Antenna Position: internal

Communication System: GSM 1900; Frequency: 1880 MHz; Channel Number: 661; Duty Cycle: 1:8

Medium: Regular Glycol Body; Medium parameters used: f = 1880 MHz; $\sigma = 1.57 \text{ mho/m}$; $\varepsilon_r = 52.7$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

• Probe: ES3DV3 - SN3037; ConvF(4.65, 4.65, 4.65); Calibrated: 11/17/2005

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 9/5/2005
- Phantom: R4: Sect.2, Amy Twin; Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Amy Twin Phone Template/Area Scan - Normal Body (15mm) (13x7x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.463 mW/g

Amy Twin Phone Template/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 17.4 V/m; Power Drift = 0.034 dB

Peak SAR (extrapolated) = 0.773 W/kg

SAR(1 g) = 0.485 mW/g; SAR(10 g) = 0.286 mW/g

Maximum value of SAR (measured) = 0.534 mW/g

Appendix 4

Probe Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client Motorola MDb

Certificate No: ES3-3037_Nov05

Object	ES3DV3 - SN:30	037	
Calibration procedure(s)	QA CAL-01.v5 Calibration proce	edure for dosimetric E-field probes	
Calibration date:	November 17, 2	005	
Condition of the calibrated item	In Tolerance		
		probability are given on the following pages and are ory facility: environment temperature (22 ± 3)°C and	
		,	
Calibration Equipment used (M&		Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Calibration Equipment used (M&	TE critical for calibration)		·
Calibration Equipment used (M& Primary Standards Power meter E4419B	TE critical for calibration)	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A	ID # GB41293874	Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466)	Scheduled Calibration May-06
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A	ID # GB41293874 MY41495277	Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466)	Scheduled Calibration May-06 May-06
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator	ID # GB41293874 MY41495277 MY41498087	Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466)	Scheduled Calibration May-06 May-06 May-06
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c)	Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00499)	Scheduled Calibration May-06 May-06 May-06 Aug-06 Aug-06
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b)	Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 11-Aug-05 (METAS, No. 251-00499) 3-May-05 (METAS, No. 251-00467)	Scheduled Calibration May-06 May-06 May-06 Aug-06 Aug-06 May-06
Calibration Equipment used (M&Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b)	Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 11-Aug-05 (METAS, No. 251-00499) 3-May-05 (METAS, No. 251-00467) 11-Aug-05 (METAS, No. 251-00500)	Scheduled Calibration May-06 May-06 May-06 Aug-06 May-06 May-06 Aug-06 Aug-06
Calibration Equipment used (M&Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013	Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 11-Aug-05 (METAS, No. 251-00499) 3-May-05 (METAS, No. 251-00467) 11-Aug-05 (METAS, No. 251-00500) 7-Jan-05 (SPEAG, No. ES3-3013_Jan05)	Scheduled Calibration May-06 May-06 May-06 Aug-06 May-06 Aug-06 Aug-06 Jan-06
Calibration Equipment used (M&Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654	Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 11-Aug-05 (METAS, No. 251-00499) 3-May-05 (METAS, No. 251-00467) 11-Aug-05 (METAS, No. 251-00500) 7-Jan-05 (SPEAG, No. ES3-3013_Jan05) 27-Oct-05 (SPEAG, No. DAE4-654_Oct05)	Scheduled Calibration May-06 May-06 May-06 Aug-06 May-06 Aug-06 Jan-06 Oct-06
Calibration Equipment used (M&Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654	Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00499) 3-May-05 (METAS, No. 251-00467) 11-Aug-05 (METAS, No. 251-00500) 7-Jan-05 (SPEAG, No. ES3-3013_Jan05) 27-Oct-05 (SPEAG, No. DAE4-654_Oct05) Check Date (in house)	Scheduled Calibration May-06 May-06 May-06 Aug-06 May-06 Aug-06 Jan-06 Oct-06 Scheduled Check
Calibration Equipment used (M&Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID # US3642U01700	Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 11-Aug-05 (METAS, No. 251-00499) 3-May-05 (METAS, No. 251-00467) 11-Aug-05 (METAS, No. 251-00500) 7-Jan-05 (SPEAG, No. ES3-3013_Jan05) 27-Oct-05 (SPEAG, No. DAE4-654_Oct05) Check Date (in house) 4-Aug-99 (SPEAG, in house check Dec-03)	Scheduled Calibration May-06 May-06 May-06 Aug-06 May-06 Aug-06 Jan-06 Oct-06 Scheduled Check In house check: Dec-05
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID # US3642U01700 US37390585	Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 11-Aug-05 (METAS, No. 251-00499) 3-May-05 (METAS, No. 251-00467) 11-Aug-05 (METAS, No. 251-00500) 7-Jan-05 (SPEAG, No. ES3-3013_Jan05) 27-Oct-05 (SPEAG, No. DAE4-654_Oct05) Check Date (in house) 4-Aug-99 (SPEAG, in house check Dec-03) 18-Oct-01 (SPEAG, in house check Nov-04)	Scheduled Calibration May-06 May-06 May-06 Aug-06 May-06 Aug-06 Jan-06 Oct-06 Scheduled Check In house check: Dec-05 In house check: Nov 05

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ES3-3037_Nov05

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConF sensitivity in TSL / NORMx,y,z

DCP Polarization φ diode compression point

Polarization φ φ rotation around probe axis

Polarization ϑ ϑ rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3037 Nov05 Page 2 of 9

Probe ES3DV3

SN:3037

Manufactured:

August 21, 2003

Last calibrated:

November 25, 2005

Recalibrated:

November 17, 2005

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ES3DV3 SN:3037

Sensitivity	in	Free	Space ^A
-------------	----	------	--------------------

Diode Compression^B

NormX	1.15 ± 10.1%	μ V/(V/m) ²	DCP X	97 mV
NormY	0.84 ± 10.1%	μ V/(V/m) ²	DCP Y	97 mV
NormZ	0.95 ± 10.1%	μ V/(V/m) ²	DCP Z	97 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL

900 MHz

Typical SAR gradient: 5 % per mm

Sensor Center t	o Phantom Surface Distance	3.0 mm	4.0 mm
SAR _{be} [%]	Without Correction Algorithm	5.1	2.3
SAR _{be} [%]	With Correction Algorithm	0.0	0.1

TSL

1810 MHz

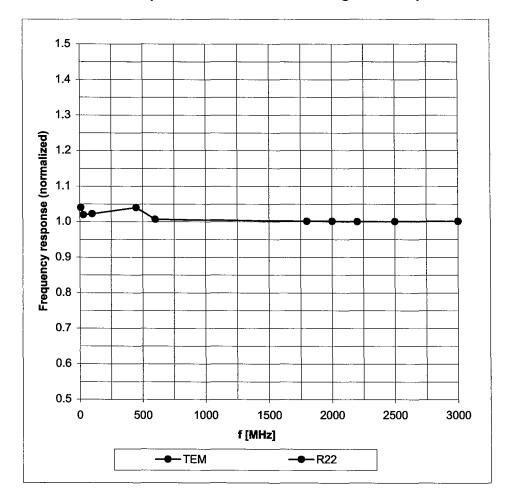
Typical SAR gradient: 10 % per mm

Sensor Center to	o Phantom Surface Distance	3.0 mm	4.0 mm
SAR _{be} [%]	Without Correction Algorithm	8.4	5.2
SAR _{be} [%]	With Correction Algorithm	0.0	0.1

Sensor Offset

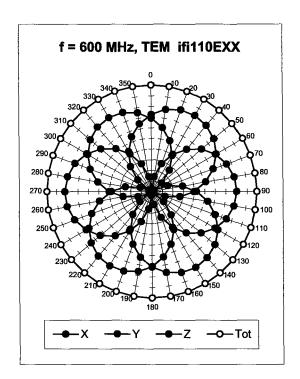
Probe Tip to Sensor Center

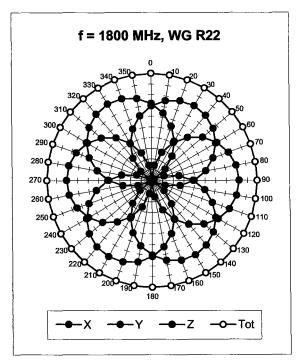
2.0 mm

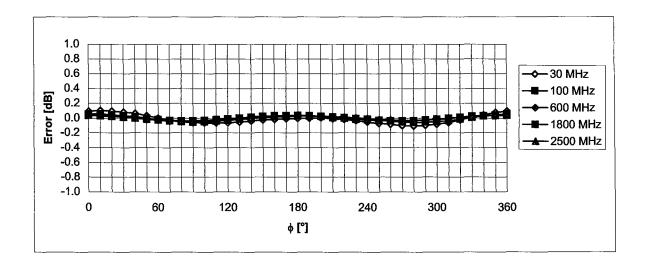

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

^B Numerical linearization parameter: uncertainty not required.

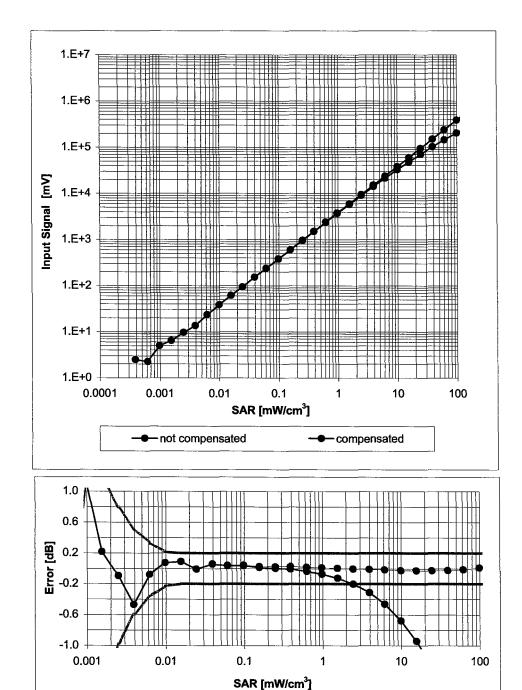

Frequency Response of E-Field


(TEM-Cell:ifi110 EXX, Waveguide: R22)

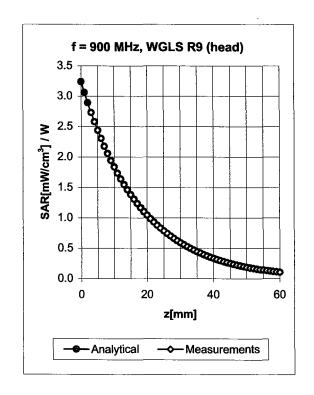


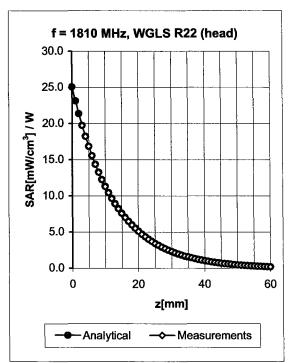
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$



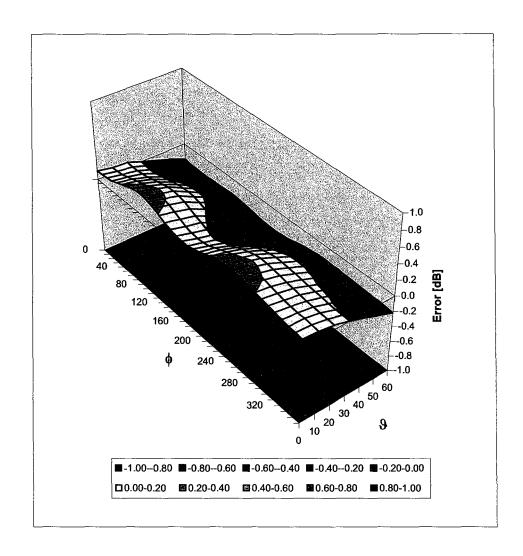
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head})


(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment



f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.44	1.35	6.07 ± 11.0% (k=2)
1810	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.27	2.38	5.01 ± 11.0% (k=2)
1950	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.28	2.21	4.66 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.48	1.52	4.31 ± 11.8% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.52	1.27	5.93 ± 11.0% (k=2)
1810	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.27	2.51	4.65 ± 11.0% (k=2)
1950	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.33	2.04	4.44 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.49	1.53	4.30 ± 11.8% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

Client

Motorola MDb

Certificate No: ET3-1513 Sep05

CALIBRATION CERTIFICATE

Object ET3DV6R - SN:1513

Calibration procedure(s) QA CAL-01.v5

Calibration procedure for dosimetric E-field probes

Calibration date: September 19, 2005

Condition of the calibrated item In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

	and the second s		,
Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	3-May-05 (METAS, No. 251-00466)	May-06
Power sensor E4412A	MY41495277	3-May-05 (METAS, No. 251-00466)	May-06
Power sensor E4412A	MY41498087	3-May-05 (METAS, No. 251-00466)	May-06
Reference 3 dB Attenuator	SN: S5054 (3c)	11-Aug-05 (METAS, No. 251-00499)	Aug-06
Reference 20 dB Attenuator	SN: S5086 (20b)	3-May-05 (METAS, No. 251-00467)	May-06
Reference 30 dB Attenuator	SN: S5129 (30b)	11-Aug-05 (METAS, No. 251-00500)	Aug-06
Reference Probe ES3DV2	SN: 3013	7-Jan-05 (SPEAG, No. ES3-3013_Jan05)	Jan-06
DAE4	SN: 654	29-Nov-04 (SPEAG, No. DAE4-654_Nov04)	Nov-05
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (SPEAG, in house check Dec-03)	In house check: Dec-05
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Nov-04)	In house check: Nov 05
	Name	Function	Signature
Calibrated by:	Nico Vetterli	Laboratory Technician	D.VESTEET
Adb			and the second
Approved by:	Katja Pokovic	Technical Manager	Havi- Kalf

Issued: September 19, 2005

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ET3-1513_Sep05

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConF sensitivity in TSL / NORMx,y,z DCP diode compression point

Polarization φ

φ rotation around probe axis

Polarization ϑ ϑ rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1513_Sep05 Page 2 of 9

ET3DV6R SN:1513

Probe ET3DV6R

SN:1513

Manufactured:

May 3, 2002

Last calibrated:

September 24, 2004

Recalibrated:

September 19, 2005

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ET3DV6R SN:1513

Sensitivity in Fre	Diode Compressio				
NormX	2.31 ± 10.1%	μ V/(V/m) ²	DCP X	94 mV	
NormY	1.98 ± 10.1%	μ V/(V/m) ²	DCP Y	94 mV	
NormZ	2.11 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	94 mV	

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL 900 MHz Typical SAR gradient: 5 % per mm

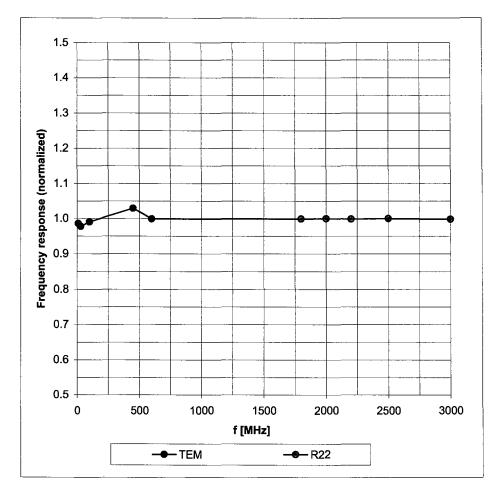
Sensor Center to Phantom Surface Distance			4.7 mm
SAR _{be} [%]	Without Correction Algorithm	8.7	4.7
SAR _{be} [%]	With Correction Algorithm	0.1	0.2

TSL 1810 MHz Typical SAR gradient: 10 % per mm

Sensor Center to	3.7 mm	4.7 mm	
SAR _{be} [%]	Without Correction Algorithm	13.1	8.7
SAR _{be} [%]	With Correction Algorithm	1.0	0.1

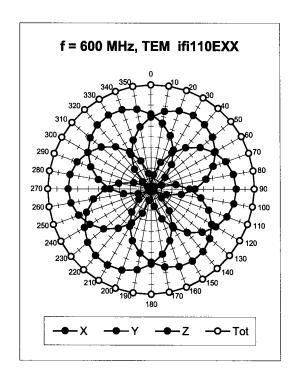
Sensor Offset

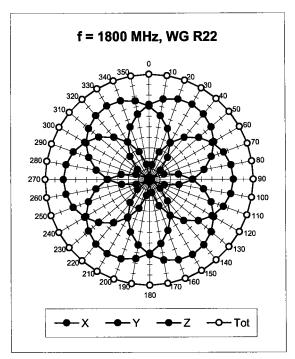
Probe Tip to Sensor Center 2.7 mm

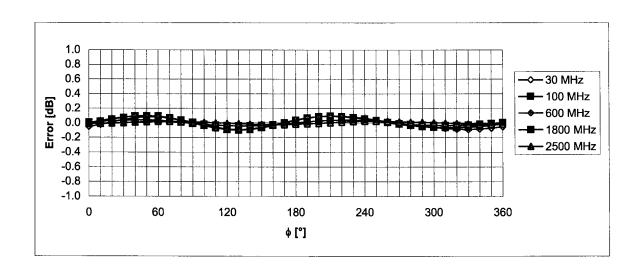

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

^B Numerical linearization parameter: uncertainty not required.

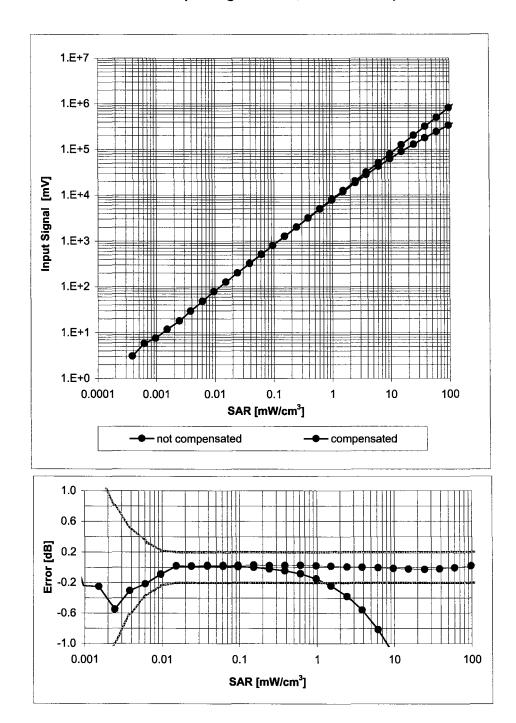

Frequency Response of E-Field


(TEM-Cell:ifi110 EXX, Waveguide: R22)

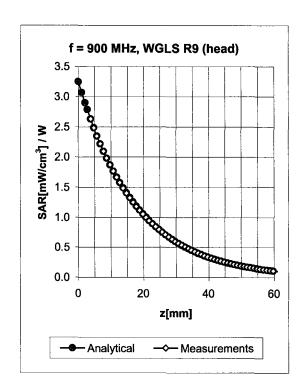


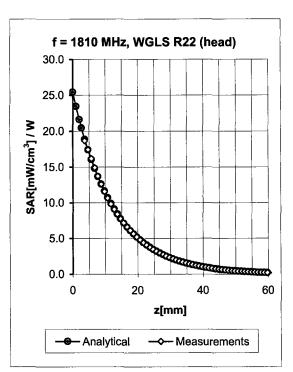
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$



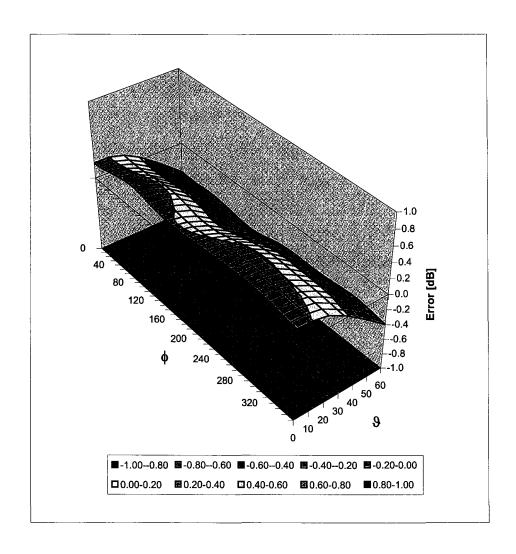
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head})


(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment



f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.57	1.87	5.83 ± 11.0% (k=2)
1810	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.66	2.22	4.76 ± 11.0% (k=2)
1950	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.61	2.40	4.41 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.77	2.04	4.10 ± 11.8% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.53	2.03	5.66 ± 11.0% (k=2)
1810	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.60	2.59	4.16 ± 11.0% (k=2)
1950	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.66	2.37	3.99 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.92	1.69	3.90 ± 11.8% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Appendix 5

FCC ID: IHDT56GT1

Measurement Uncertainty Budget

Uncertainty Budget for Device Under Test: 30 – 3000 MHz

							h=	i =	
				e =			c _x f	cxg	,
<u>a</u>	b	С	d	f(d,k)	f	g	/e	/e	k
	IEEE	Tol.	Prob		Ci	Ci	1 g	10 g	
	1528	(±			(4 a)	(10			
Unacriainty Commonant	section	%)	Dist	D:v	(1 g)	g)	<i>u_i</i>	<i>u_i</i>	.,
Uncertainty Component				Div.			(±%)	(±%)	Vi
Measurement System	F 2.4	F 0	N.	1.00	4	1	F 0	F 0	
Probe Calibration	E.2.1	5.9	N	1.00	1		5.9	5.9	∞
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	∞
Hemispherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	∞
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	∞
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	∞
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	∞
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3	∞
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	∞
Integration Time	E.2.8	1.1	R	1.73	1	1	0.6	0.6	∞
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	∞
RF Ambient Conditions -									
Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	∞
Probe Positioner Mech.	- 0 0	0.4	_	4.70		_	0.0	0.0	
Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	∞
Probe Positioning w.r.t Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8	80
Max. SAR Evaluation (ext.,	L.0.3	1.4	IX.	1.73	1	ı	0.0	0.0	
int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	∞
Test sample Related		0.1		11.0			2.0	2.0	
Test Sample Positioning	E.4.2	3.2	N	1.00	1	1	3.2	3.2	29
Device Holder Uncertainty	E.4.1	4.0	N	1.00	1	1	4.0	4.0	8
SAR drift	6.6.2	5.0	R	1.73	1	1	2.9	2.9	 ∞
Phantom and Tissue	0.0.2	3.0	11	1.70	1	'	2.5	2.0	
Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	~
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity		2.0	.,	0	0.01	5.10			-
(measurement)	E.3.3	3.3	N	1.00	0.64	0.43	2.1	1.4	∞
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	∞
Liquid Permittivity				<u> </u>	-				
(measurement)	E.3.3	1.9	N	1.00	0.6	0.49	1.1	0.9	∞
Combined Standard									
Uncertainty			RSS				11.1	10.8	411
Expanded Uncertainty									
(95% CONFIDENCE LEVEL)			<i>k</i> =2				22.2	21.6	

FCC ID: IHDT56GT1

Uncertainty Budget for System Check: 30 – 3000 MHz

							h=	i=	
	b	С	d	e = f(d,k)	f	~	cxf/	cxg/	k
Uncertainty Component	IEEE 1528 section	Tol. (± %)	Prob.	Div.	(1 g)	g c _i (10 g)	e 1 g	e 10 g <i>u_i</i>	
Measurement System				DIV.			(±%)	(±%)	V _i
Probe Calibration	E.2.1	5.9	N	1.00	1	1	5.9	5.9	∞
Axial Isotropy	E.2.2	4.7	R	1.73	1	1	2.7	2.7	∞ ∞
Spherical Isotropy	E.2.2	9.6	R	1.73	0	0	0.0	0.0	8
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	<u>∞</u>
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	<u>∞</u>
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	8
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3	∞ ∞
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	
Integration Time	E.2.8	0.0	R	1.73	1	1	0.0	0.0	00
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	∞
RF Ambient Conditions - Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	∞
Probe Positioner Mechanical									
Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	∞
Probe Positioning w.r.t. Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8	∞
Max. SAR Evaluation (ext., int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	∞
Dipole									
Dipole Axis to Liquid Distance Input Power and SAR Drift	8, E.4.2	2.0	R	1.73	1	1	1.2	1.2	∞
Measurement	8, 6.6.2	5.0	R	1.73	1	1	2.9	2.9	∞
Phantom and Tissue Parameters	0.0.2	0.0		111.0			2.0	2.0	32
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	∞
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity (measurement)	E.3.3	3.3	R	1.73	0.64	0.43	1.2	0.8	~
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	∞
Liquid Permittivity (measurement)	E.3.3	1.9	R	1.73	0.6	0.49	0.6	0.5	∞
									9999
Combined Standard Uncertainty			RSS				9.0	8.8	9
Expanded Uncertainty (95% CONFIDENCE LEVEL)			<i>k</i> =2				17.7	17.3	

FCC ID: IHDT56GT1

Appendix 6

FCC ID: IHDT56GT1

Photographs of the device under test

Figure 1. Front of Phone

Figure 2. Back of Phone

Figure 3. Front of Phone Open

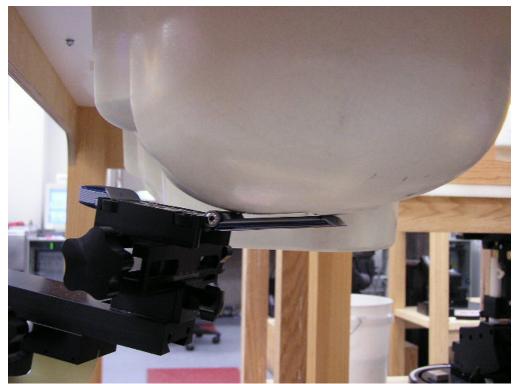


Figure 4. Phone Against the Head Phantom (Cheek Touch)

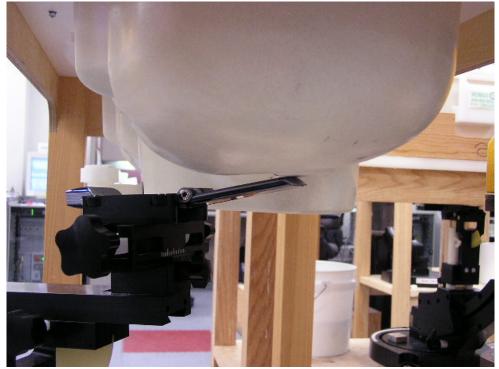


Figure 5. Phone Against the Head Phantom (15 degrees Tilt)

Figure 6. Phone Against the Flat Phantom

Appendix 7

FCC ID: IHDT56GT1

Dipole Characterization Certificate

Certification of System Performance Check TargetsBased on WI-0396

-Historical Data-

	900MHz	Ī
IEEE1528 Target:	10.8	(W/kg)
Measurement Uncertainty (k=1):	9.0%	
Measurement Period:	3-June-05 to 10-May-06	1
# of tests performed:	1571	
Grand Average:	11.3	(W/kg)
% Delta (Average - IEEE1528 Target)	4.3%	
Is % Delta <= Expanded Measurement Uncertainty (k=2)?	Yes	-
Accept/Reject <u>Average</u> as new system performance check target?	ACCEPT	
	Applies to Dipole SN's: 55, 69, 77, 78, 79, 80, 91, 92, 93, 94, 95, 96, 97	

-New System Performance Check Targets- per WI-0396

(based on analysis of historical data)

Frequency	SAR Target (W/kg)	Permittivity	Conductivity (S/m)
900MHz	11.3	41.5 ± 5%	0.97 ± 5%

-Approvals-			
Sub	mitted by:	Marge Kaunas	Date: 12-May-06
	Signed:	anga Kaura	
С	comments:	Spreadsheet detailing referenced historical measurement	ents is available upon request.
Арр	roved by:	Mark Douglas	Date: 22-May-06
	Signed:	Mark Monglas	
Co	omments:		

Certification of System Performance Check Targets Based on WI-0396

-Historical Data-

	1900MHz	
IEEE1528 Target:	39.7	(W/kg
Measurement Uncertainty (k=1):	9.0%	
Measurement Period:	3-June-05 to 10-May-06	
# of tests performed:	145	
Grand Average:	40.9	(W/kg
% Delta (Average - IEEE1528 Target)	3.0%	
Is % Delta <= Expanded Measurement Uncertainty (k=2)?	Y 2 9	
Accept/Reject <u>Average</u> as new system performance check target?		
	Applies to Dipole SN's: 513TR, 514TR, 518TR, 519TR, 520TR, 523TR, 524TR, 526TR, 527TR, 528TR, 529TR, 530TR, 533TR	

-New System Performance Check Targets- per WI-0396

(based on analysis of historical data)

Frequency	SAR Target (W/kg)	Permittivity	Conductivity (S/m)
1900MHz	40.9	40.0 ± 5%	1.40 ± 5%

-Approvals-				
-Approvais-	Submitted by:	Marge Kaunas	Date:	12-May-06
	Signed:	Manga Kaura		
	Comments:	Comments: Spreadsheet detailing referenced historical measurements is available upon request.		
	Approved by:	Mark Douglas	Date:	22-May-06
	<u>Signed:</u>	Mark Mongla		
	Comments:			