

HAC Test Report for Near Field Emissions IHDT56GP1

Date of test: Feb-08-2007 to Feb-09-2007

Date of Report: Feb-28-2007

Motorola Mobile Devices Business Product Safety & Compliance Laboratory

600 N. US Highway 45

Laboratory: Room: MW113

Libertyville, Illinois 60048

Test Responsible: Thomas Nipple

RF Engineer

Motorola declares under its sole responsibility that portable cellular telephone FCC IHDT56GP1 to

FCC ID: IHDT56GP1

which this declaration relates, complies with recommendations and guidelines FCC 47 CFR

Statement of §20.19. The measurements were performed to ensure compliance to ANSI C63.19-2006. It also declares that the product was tested in accordance with the appropriate measurement standards,

guidelines and recommended practices. Any deviations from these standards, guidelines and

recommended practices are noted below:

(none)

Results Summary: M Category = M4

©Motorola, Inc. 2007

This test report shall not be reproduced except in full, without written approval of the laboratory.

The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report.

Motorola encourages all feedback, both positive and negative, on this test report.

Page 1 Exhibit 6B - 1

Table of Contents

1. INTRODUCTION	3
2. DESCRIPTION OF THE DEVICE UNDER TEST	3
3. TEST EQUIPMENT USED	4
4. VALIDATION	5
5. PROBE MODULATION FACTOR	6
6. TEST RESULTS	8
7. MEASUREMENTS FOR CERTIFICATION OF 3G DEVICES	12
APPENDIX 1: DETAILS JUSTIFYING THE CONVERSION TO PEAK	13
A1.1 Procedure for PMF measurements	14
A1.2 0-Span Spectrum Plots for PMF measurements	15
APPENDIX 2: HAC DISTRIBUTION PLOTS FOR VALIDATION	16
APPENDIX 3: HAC DISTRIBUTION PLOTS FOR E-FIELD AND H-FIELD	17
APPENDIX 4: MOTOROLA UNCERTAINTY BUDGET	18
A4.1 Motorola Uncertainty Budget for RF HAC Testing	19
A4.2 Probe Rotation Contributions to Isotropy Error	19
APPENDIX 5: PICTURES OF TEST SETUP	20
APPENDIX 6: PROBE CALIBRATION CERTIFICATES	22
APPENDIX 7. DIPOLE CHARACTERIZATION CERTIFICATE	23

1. Introduction

The Motorola Mobile Devices Business Product Safety Laboratory has performed Hearing Aid Compatibility (HAC) measurements for the portable cellular phone (FCC ID IHDT56GP1). The portable cellular phone was tested in accordance with ANSI PC63.19-2006 standard. The test results presented herein clearly demonstrate compliance FCC 47 CFR § 20.19. This report demonstrates compliance for near field emissions only and not for T-coil performance compliance.

FCC ID: IHDT56GP1

2. Description of the Device Under Test

Table 1: Information for the Device Under Test

Serial number	364AGY01M8			
Mode(s) of Operation	CDMA 1900	Bluetooth		
Modulation Mode(s)	QPSK	GFSK		
Maximum Output Power Setting	24.7 dBm	4.00 dBm		
Duty Cycle	1:1	1:1		
Transmitting Frequency Range(s)	1851.25 – 1908.75 MHz	2400.0 - 2483.5 MHz		
Production Unit or Identical Prototype (47 CFR §2908)	Identical Prototype			
Device Category	Port	able		

Note: No Bluetooth profile exists in this phone that will allow a Bluetooth link while in a cellular call that passes audio to the earpiece. If the user had Bluetooth enabled and a link established, they could not be listening to the phone through the earpiece.

Page 3 Exhibit 6B - 1

3. Test Equipment Used

The Motorola Mobile Devices Business Product Safety & Compliance Laboratory utilizes a Dosimetric Assessment System (DASY4TM v4.7) manufactured by Schmid & Partner Engineering AG (SPEAGTM), of Zurich Switzerland. All the HAC measurements are taken within a shielded enclosure. The measurement uncertainty budget is given in Appendix 5. The list of calibrated equipment used for the measurements is shown below.

Table 2: Dosimetric System Equipment

Tubic 2: Boshneti e System Equipment						
Description	Serial Number	Cal Due Date				
E-Field Probe ER3DV6R	2245	Sep-20-2007				
H-Field Probe H3DV6	6074	Apr-27-2007				
DAE4	702	May-30-2007				
DAE4	639	Nov-13-2007				
1880 MHz Dipole CD1880V3	1059	Jun-14-2007				

Table 3: Additional Test Equipment

Description	Serial Number	Cal Due Date
Power Supply 6623a	US37360829	Mar-07-2007
Signal Generator E4438C	MY45090104	Aug-08-2007
Amplifier ZHL-42-SMA	1040	
3 db Attenuator 8491A	50577	Jun-30-2007
Directional Coupler 778D	18610	Jun-30-2007
Power Meter E4417A	MY45100501	Jun-26-2007
Power Sensor #1 – E9323A	MY44420845	Jul-25-2007
Power Sensor #2 - E9323A	MY44420850	Jul-25-2007
10 db attenuator 8491A	3929M50773	Aug-10-2007
Spectrum Analyzer E4403B	MY45107934	May-30-2007

4. Validation

Validations of the DASY4 v4.7 test system were performed using the measurement equipment listed in Section 3.1. All validations occur in free space using the DASY4 test arch. Note that the 10 mm probe to dipole separation is measured from the top edge of the dipole to the calibration reference point of the probe. SPEAG uses the center point of the probe sensor(s) as the reference point when establishing targets for their dipoles. Therefore, because SPEAG's dipoles and targets are used, it is appropriate to measure the 10 mm separation distance to the center of the sensors as they do. This reference point was used for validation only. Validations were performed at 835 MHz and/or 1880 MHz. These frequencies are within each operating band and are within 2 MHz of the mid-band frequency of the test device. The obtained results from the validations are displayed in the table below. The field contour plots are included in Appendix 3.

FCC ID: IHDT56GP1

Validations were performed to verify that measured E-field and H-field values are within +/- 25% from the target reference values provided by the manufacturer (Ref: Appendix 8). Per Section 4.3.2.1 of the C63.19 standard, "Values within +/-25% are acceptable, of which 12% is deviation and 13% is measurement uncertainty." Therefore, the E- and H-Field dipole verification results, shown in Table 4, are in accordance with the acceptable parameters defined by the standard.

Table 4: Dipole Measurement Summary

Dipole	F (MHz)	Protocol	Input Power (mW)	E-Field Results (V/m)	Target for Dipole (V/m)	% Deviation
SN 1059	1880	CW	100	139.4	137.8	1.2%

Dipole	F (MHz)	Protocol	Input Power (mW)	H-Field Results (A/m)	Target for Dipole (A/m)	% Deviation
SN 1059	1880	CW	100	0.468	0.454	3.1%

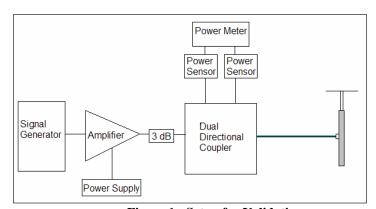


Figure 1: Setup for Validation

Page 5 Exhibit 6B - 1

5. Probe Modulation Factor

After every probe calibration, the response of the probe to each applicable modulated signal (CDMA, GSM, etc) must be assessed at both 835 MHz and 1880 MHz. The response of the probe system to a CW field at the frequency(s) of interest is compared to its response to a modulated signal with equal peak amplitude. For each PMF assessment, a Signal Generator was used to replace the original CW signal with the desired modulated signal. The PMF results applicable to this test document are shown in Tables 5.

RF Field Probe Modulation Response was measured with the field probe and associated measurement equipment. The PMF was measured using a signal generator as follows:

- 1. Illuminate a dipole with a CW signal at the intended measured frequency.
- 2. Fix the probe at a set location relative to the dipole; typically located at the field reference point.

FCC ID: IHDT56GP1

- 3. Record the reading of the probe measurement system of the CW signal.
- 4. Substitute a modulated signal of the same amplitude, using the same modulation as that used by the intended WD for the CW signal.
- 5. Record the reading of the probe measurement system of the modulated signal.
- 6 The ratio of the CW to modulated signal reading is the probe modulation factor.

Using dual directional coupler, the forward power and reverse power are measured and adjusted when connected to the dipole.

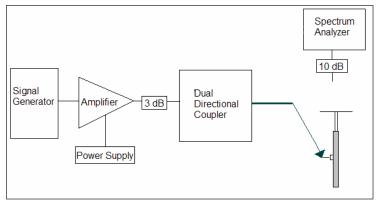


Figure 2a: Setup to Dipole

A spectrum analyzer was then used to set the peak amplitude of the modulated signal equal to the amplitude of the CW signal. The procedure, used to ensure that the amplitude is the same, is shown in Appendix 2. The 0-span spectrum plots are also provided in Appendix 2.

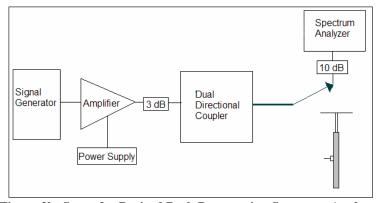


Figure 2b: Setup for Desired Peak Power using Spectrum Analyzer

Page 6 Exhibit 6B - 1

Table 5a: PMF Measurement Summary

FCC ID: IHDT56GP1

Tuble Su. I wil Wieusurement Summary							
f	c			-Field SN 2245	H-Field Probe SN 6074		
(MHz)	Protocol	Power (dBm)	E-Field (V/m)	E-Field Modulation Factor	H-Field (A/m)	H-Field Modulation Factor	
	CW	25.0	292.9		0.9205		
1880	CDMA, Full Rate	25.0	267.7	1.09	1.014	0.91	
	CDMA, 1/8 Rate	25.0	104.6	2.80	0.5203	1.77	

Table 5b: PMF Measurement Summary

f	£			-Field e SN 2245	H-Field Probe SN 6074	
(MHz)	Protocol	Power (dBm)	E-Field (V/m)	E-Field Modulation Factor	H-Field (A/m)	H-Field Modulation Factor
1880	CW	20.0	164.0		0.5077	
1000	80% AM	20.0	101.6	1.61	0.3416	1.49

6. Test Results

The phone was tested in all normal configurations for the ear use. When applicable, configurations are tested with the antenna in its fully extended position. These test configurations are tested at the high, middle and low frequency channels of each applicable operating mode; for example, GSM, CDMA, and TDMA.

FCC ID: IHDT56GP1

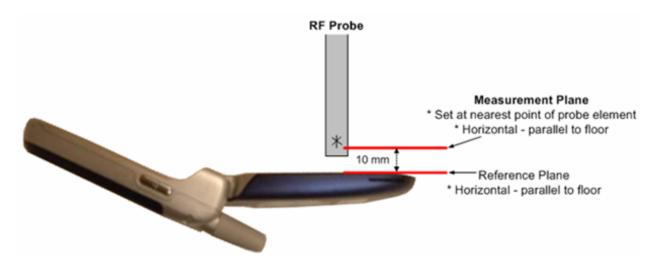
The signal was set up by creating and maintaining an over-the-air connection between the DUT and an Agilent 8960 Wireless Communications Test Set. The CDMA radio is available on CDMA 2000(1X) and IS-95. The test equipment was configured to use "All Up Bits" for RC1 / SO2 on J-STD-008 for CDMA 1900 and TSB-84 for CDMA 800 MHz. The wideband and 0-span spectrum analyzer plots are shown in Appendix 1.

The Cellular Phone model covered by this report has the following battery options:

Battery #1 - Model SNN5759A 1640 mAh Battery

Battery #2 - Model SNN5782A 1100 mAh Battery

Battery #3 - Model SNN5771A 850 mAh Battery


The battery with the highest capacity is the Model SNN5759A. This battery was tested for HAC in all applicable configurations. The phone was placed in the HAC measurement system with a fully charged battery. The configurations that resulted in the highest HAC field values per band, field type, and vocoder rate were tested using the other batteries listed above.

The DASY4 v4.7 measurement system specified in section 3.1 was utilized within the intended operations as set by the SPEAGTM setup. The default settings for the grid spacing of the scan were set to 5mm as shown in the Field plots included in Appendix 3 and 4. The 5 cm x 5 cm area measurement grid is centered on the acoustic output of the device. The Test Arch provided by SPEAG is used to position the DUT. The WD reference plane is parallel to the device and contains the highest point on its contour in the area of the phone that normally rests against the user's ear. The measurement plane contains the nearest point on the probe sensor(s) relative to the WD. The pictures of the setup are included in Appendix 6.

The device is positioned such that the WD reference plane is located 10 mm from, and parallel to, the measurement plane. This is in accordance with section 4.4 of the standard, which states that "The WD reference plane is a plane parallel with the front "face" of the WD and containing the highest point on its contour in the area of the phone that normally rests against the user's ear."

Page 8 Exhibit 6B - 1

The following figure shows the position of the measurement grid with respect to the device under test.

FCC ID: IHDT56GP1

Figure 4: Clarification of Figure A-2 from the Standard

The HAC Rating results for E-Field and H-field are shown in Tables 6 through 9. Also shown are the measured conducted output powers, the measured drifts, excluded areas, and the peak fields. PMF measurements are taken from Section 5. The worst-case test conditions are indicated with **bold numbers** in the tables and are detailed in Appendix 4: HAC distribution plots for E-Field and H-Field.

Drift was measured using the typical DASY4 v4.7 measurement routines. The field is measured at the reference location (center of the ear piece) at the beginning of the test. Then after completion of the E or H field measurement, the probe returns to the same reference location and takes another measurement. The drift is the delta between these two values and is included in the test report scans.

Per SPEAG's recommendation, the phone plots in Appendix 4 use the standard GSM transmitter ratio 1:8 and standard CDMA transmitter ratio 1:1 as "Duty Cycle." Per SPEAG's recommendation, in order to account for probe modulation response, PMF is applied during the SEMCAD (post-processing) portion. PMF also appears in the phone plots in Appendix 4.

Page 9 Exhibit 6B - 1

CDMA 1900 Emissions Limits		
Rating	E-Field	
МЗ	63.1 – 112.2 V/m	
M4	< 63.1 V/m	

FCC ID: IHDT56GP1

Table 6: HAC E-Field measurement results for the portable cellular telephone at highest possible output power (Full Rate).

Frequency Band (MHz)	Antenna position	Channel Setting	Measured PMF	Drift (dB)	Excluded Cells	Peak Field (V/m)	Rating	
		25		0.05	1,2	42.0	M4	
CDM		600		-0.05	2,3	40.9	M4	
CDMA 1900 MHz	Extended	1175	1.09	-0.01	2,3	42.0	M4	
190011111		w/ Battery #2	w/ Battery #2		0.03	3,6	52.3	M4
		w/ Battery #3		-0.10	3,6	51.1	M4	

Table 7: HAC E-Field measurement results for the portable cellular telephone at highest possible output power (1/8 Rate).

Frequency Band (MHz)	Antenna position	Channel Setting	Measured PMF	Drift (dB)	Excluded Cells	Peak Field (V/m)	Rating
		25		-0.15	1,4,7	39.7	M4
GD144		600		0.03	1,4,7	34.5	M4
CDMA 1900 MHz	Extended	1175	2.80	0.02	1,4,7	39.9	M4
1,001,111		w/ Battery #2		0.009	2,3,6	49.9	M4
		w/ Battery #3		-0.03	2,3,6	48.0	M4

CDMA 1900 Emissions Limits			
Rating	H-Field		
М3	0.19 – 0.34 A/m		
M4	< 0.19 A/m		

FCC ID: IHDT56GP1

Table 8: HAC H-Field measurement results for the portable cellular telephone at highest possible output power (Full Rate).

Frequency Band (MHz)	Antenna position	Channel Setting	Measured PMF	Drift (dB)	Excluded Cells	Peak Field (A/m)	Rating
		25		-0.17	6,8,9	0.091	M4
GD15.		600		-0.10	7,8,9	0.082	M4
CDMA 1900 MHz	Extended	1175	0.91	-0.01	7,8,9	0.075	M4
1,001,1112		w/ Battery #2		-0.33	7,8,9	0.094	M4
		w/ Battery #3		0.079	7,8,9	0.097	M4

Table 9: HAC H-Field measurement results for the portable cellular telephone at highest possible output power (1/8 Rate).

Frequency Band (MHz)	Antenna position	Channel Setting	Measured PMF	Drift (dB)	Excluded Cells	Peak Field (A/m)	Rating
		25		-0.03	7,8	0.065	M4
GD144		600		-0.08	7,8	0.058	M4
CDMA 1900 MHz	Extended	1175	1.77	-0.05	7,8	0.057	M4
1500 14112	w/ Battery #2		-0.12	8,9	0.070	M4	
		w/ Battery #3		0.006	7,8	0.071	M4

7. Measurements for Certification of 3G Devices

Per the "Preliminary Guidance for Reviewing Applications for Certifications of 3G Devices" released on May 9, 2006, RC1 and RC3 CDMA modes are considered in S055 service option (steps 3 & 4 of section 4.4.5.2 of 3GPP2 C.5.011 / TIA). In addition, RC1 and RC3 modes are considered in S02 service option. The conducted power measurements for each mode are shown in the table below.

FCC ID: IHDT56GP1

Conducted Power (dBm) for CDMA modes							
	RC1 RC3						
	Channel	SO2	SO55	SO2	SO55		
	25	24.79	24.82	24.70	24.70		
CDMA 1900	600	24.76	24.75	24.63	24.63		
	1175	24.75	24.76	24.64	24.67		

Page 12 Exhibit 6B - 1

Appendix 1

FCC ID: IHDT56GP1

Details justifying the conversion to peak

Page 13 Exhibit 6B - 1

A1.1 Procedure for PMF measurements

1. Setup the HAC validation rack as you would for a normal CW HAC validation with forward power = 100 mW

FCC ID: IHDT56GP1

- 2. Setup the dipole and phantom as you would for a normal CW HAC validation.
- **3.** Open the "HAC Probe Mod Factor" template and verify the following parameters:

Medium = "Air";

Communication System = "HAC – Dipole";

Ensure the proper probe & DAE are installed and laser aligned

- 4. MEASURE CW: Using the original CW signal, run the jobs in the "CW Measurement" procedure.
- **5.** Do <u>not</u> turn off the signal generator power
- **6. Setting the CW Reference Level on the Spectrum Analyzer:** To set the Reference level on the Spectrum Analyzer, remove the Validation Rack's Main Cable from the dipole and connect to the Spectrum Analyzer INPUT using a 10 dB attenuator and an adapter.
- 7. Set-Up the Spectrum Analyzer for the following Settings:

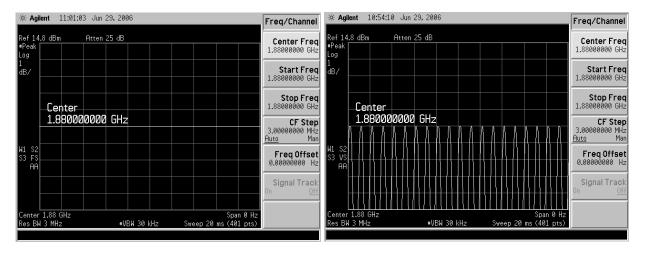
Frequency: Freq. being tested (EX: 835/1880)

Span: Zero-Span

Res BW: iDEN – 100 kHz; GSM – 300 kHz; CDMA – 3 MHz; WCDMA – 5 MHz; Video BW: iDEN – 300 kHz; GSM – 1MHz; CDMA and WCDMA – 30 kHz**;

Sweep Time: 20 ms; 120 ms for iDEN

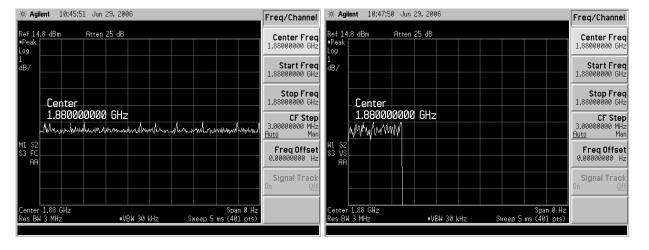
Scale: 1 dB


Detector: PEAK / Manual

- **8.** Adjust REF level until the CW signal is aligned with the Center Line (approx. 15 dB). NOTE: After this point, the Reference Line must remain fixed. Do not change it.
- 9. MEASURE THE MODULATED SIGNAL(S):
 - 9.1. Change the signal generator to the desired modulation.
 - 9.2. Set the Spectrum Analyzer Sweep Time to 20 ms.
 - 9.3. With the Main cable still connected to the Spectrum Analyzer, adjust the amplitude of the power on the signal generator so that the PEAK of the modulated signal is at the CW Reference Line:
 - 9.3.1 On the Spectrum Analyzer, press the [View Trace] button and then select (Max Hold), this will show only the Peak output.
 - 9.3.2 Press (Clear Write) and then (Max Hold) each time an amplitude adjustment is made.
 - 9.4. Allow the Max Hold line to stabilize. Then check that the highest peak of the Max Hold line corresponds with the CW Reference Line (without going over). If not correct, repeat section 6.
 - 9.5. Remove the validation main cable from the spectrum analyzer and re-connect it to the Dipole.
- 10. Repeat 9 until all remaining modulation(S) have been completed.

Page 14 Exhibit 6B - 1

^{**} The use of 30 kHz VBW is validated. The power measurements are verified using an average power meter.


A1.2 0-Span Spectrum Plots for PMF measurements

CW 1880 MHz

80% AM 1880 MHz

FCC ID: IHDT56GP1

CDMA 1880 MHz (full rate)

CDMA 1880 MHz (1/8 rate)

Page 15 Exhibit 6B - 1

Appendix 2

FCC ID: IHDT56GP1

HAC distribution plots for Validation

Page 16 Exhibit 6B - 1

Date/Time: 2/8/2007 10:00:50 AM

Test Laboratory: Motorola - 020807, E - 1880 CW +1.2% GOOD

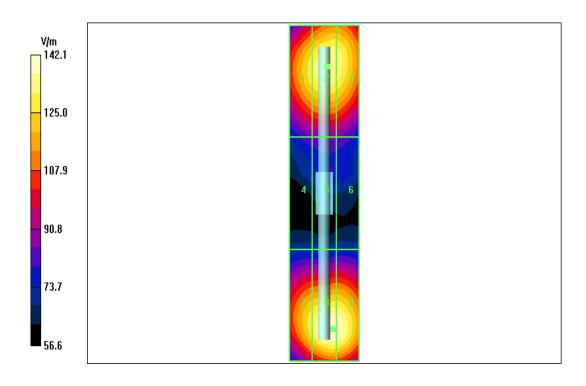
DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: 1059

Procedure Notes: 1880 MHz HAC Validation; Dipole Sn# 1059; Input Power = 100 mW

Communication System: CW - HAC; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: Air; Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

DASY4 Configuration:

- Probe: ER3DV6R SN2245; ConvF(1, 1, 1); Calibrated: 9/20/2006
- Sensor-Surface: 0mm (Fix Surface)Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn702; Calibrated: 5/30/2006
- Phantom: PCS-5, HAC Test Arch with Coil; Type: SD HAC P01 BA; Serial: 1036;
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171


E Scan - Probe center 10mm above CD1880 Dipole/Hearing Aid Compatibility Test (41x181x1):

Measurement grid: dx=5mm, dy=5mm; Probe Modulation Factor = 1.00 Reference Value = 151.3 V/m; Power Drift = 0.032 dB Maximum value of Total (interpolated) = 142.1 V/m

Average value of Total (interpolated) = (136.7 + 142.1) / 2 = 139.4 V/m

Peak E-field in V/m

Grid 1 130.0		
Grid 4 85.3		
Grid 7 130.9	Grid 8	Grid 9

Date/Time: 2/8/2007 9:17:49 AM

Test Laboratory: Motorola - 020807, H - 1880 CW +3.0% GOOD

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: 1059

Procedure Notes: 1880 MHz HAC Validation; Dipole Sn# 1059; Input Power = 100 mW

Communication System: CW - HAC; Frequency: 1880 MHz; Channel Number: 3; Duty Cycle: 1:1

Medium: Air; Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

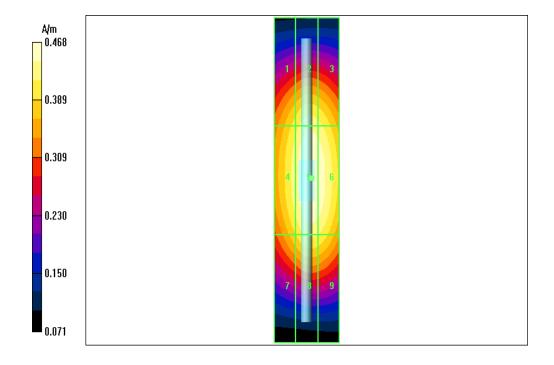
DASY4 Configuration:

• Probe: H3DV6 - SN6074; ; Calibrated: 4/27/2006

• Sensor-Surface: 0mm (Fix Surface)Sensor-Surface: (Fix Surface)

• Electronics: DAE4 Sn639; Calibrated: 11/13/2006

• Phantom: PCS-5, HAC Test Arch with Coil; Type: SD HAC P01 BA; Serial: 1036;


• Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

H Scan - Probe center 10mm above CD1880 Dipole/Hearing Aid Compatibility Test (41x181x1):

Measurement grid: dx=5mm, dy=5mm; Probe Modulation Factor = 1.00 Reference Value = 0.493 A/m; Power Drift = -0.019 dB Maximum value of Total (interpolated) = 0.468 A/m

Peak H-field in A/m

Grid 1		
0.403	0.435	0.426
Grid 4	Grid 5	Grid 6
0.431	0.468	0.460
Grid 7		
0.387	0.423	0.416

Appendix 3

FCC ID: IHDT56GP1

HAC distribution plots for E-Field and H-Field

Page 17 Exhibit 6B - 1

Date/Time: 2/8/2007 6:56:51 PM

Test Laboratory: Motorola - CDMA 1900 E-Field Full Rate

Serial: 364AGY01M8

Procedure Notes: Pwr Step: All Up Bits; Antenna Position: Extended; Accessory Model #: None

Battery Model #: SNN5782B; Vocoder Rate: Full; Value: 1.09

Communication System: CDMA 1900; Frequency: 1851.25 MHz; Channel Number: 25; Duty Cycle: 1:1

Medium: Air; Medium parameters used: σ = 0 mho/m, ϵ_{r} = 1; ρ = 0 kg/m 3

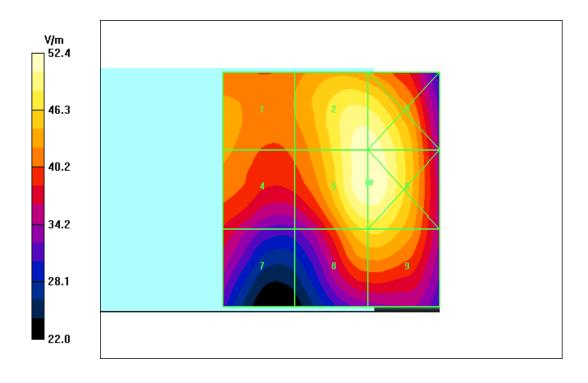
DASY4 Configuration:

• Probe: ER3DV6R - SN2245; ConvF(1, 1, 1); Calibrated: 9/20/2006

• Sensor-Surface: (Fix Surface)

• Electronics: DAE4 Sn702; Calibrated: 5/30/2006

• Phantom: PCS-5, HAC Test Arch with Coil; Type: SD HAC P01 BA; Serial: 1036;


• Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

E Scan - Sensor tip 10mm above WD Ref/Hearing Aid Compatibility Test (101x101x1):

Measurement grid: dx=5mm, dy=5mm; Maximum value of peak Total field = 52.3 V/m Probe Modulation Factor = 1.09; Reference Value = 44.5 V/m; Power Drift = 0.030 dB

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
43.5	51.6	51.6
Grid 4	Grid 5	Grid 6
43.1	52.3	52.4
Grid 7	Grid 8	Grid 9
38.0	46.9	47.0

Date/Time: 2/8/2007 7:05:58 PM

Test Laboratory: Motorola - CDMA 1900 E-Field 1/8th Rate

Serial: 364AGY01M8

Procedure Notes: Pwr Step: All Up Bits; Antenna Position: Extended; Accessory Model #: None

Battery Model #: SNN5782B; Vocoder Rate: 1/8th; PMF Value: 2.8;

Communication System: CDMA 1900; Frequency: 1908.75 MHz; Channel Number: 1175; Duty Cycle: 1:8

Medium: Air; Medium parameters used: σ = 0 mho/m, ϵ_{r} = 1; ρ = 0 kg/m 3

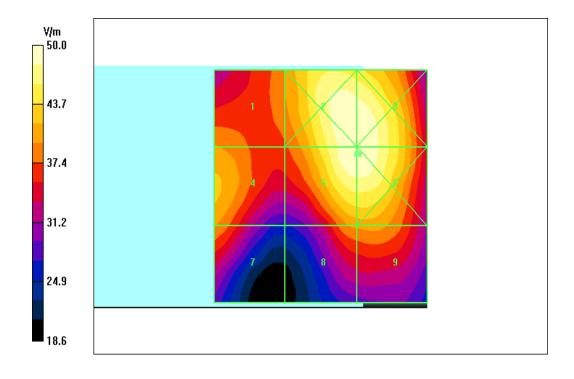
DASY4 Configuration:

• Probe: ER3DV6R - SN2245; ConvF(1, 1, 1); Calibrated: 9/20/2006

• Sensor-Surface: (Fix Surface)

• Electronics: DAE4 Sn702; Calibrated: 5/30/2006

• Phantom: PCS-5, HAC Test Arch with Coil; Type: SD HAC P01 BA; Serial: 1036;


• Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

E Scan - Sensor tip 10mm above WD Ref/Hearing Aid Compatibility Test (101x101x1):

Measurement grid: dx=5mm, dy=5mm; Maximum value of peak Total field = 49.9 V/m Probe Modulation Factor = 2.80; Reference Value = 15.4 V/m; Power Drift = 0.009 dB

Peak E-field in V/m

		Grid 3
39.8	49.9	49.9
Grid 4	Grid 5	Grid 6
42.2	49.9	50.0
Grid 7	Grid 8	Grid 9
39.6	40.1	40.4

Date/Time: 2/9/2007 1:16:06 AM

Test Laboratory: Motorola - CDMA 1900 H-Field Full Rate

Serial: 364AGY01M8

Procedure Notes: Pwr Step: All Up Bits; Antenna Position: Extended; Accessory Model #: None

Battery Model #: SNN5771A; Vocoder Rate: Full; PMF Value: 0.91

Communication System: CDMA 1900; Frequency: 1851.25 MHz; Channel Number: 25; Duty Cycle: 1:1

Medium: Air; Medium parameters used: σ = 0 mho/m, ϵ_{r} = 1; ρ = 0 kg/m 3

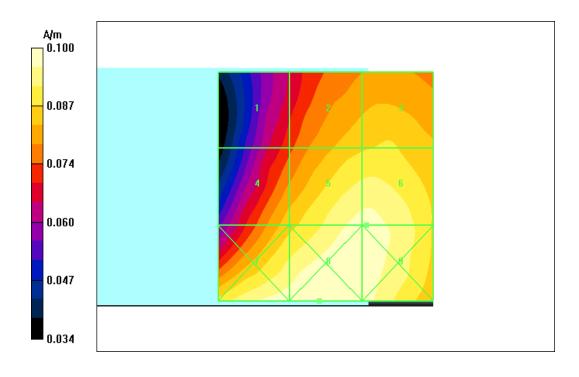
DASY4 Configuration:

• Probe: H3DV6 - SN6074; ; Calibrated: 4/27/2006

• Sensor-Surface: (Fix Surface)

• Electronics: DAE4 Sn639; Calibrated: 11/13/2006

• Phantom: PCS-5, HAC Test Arch with Coil; Type: SD HAC P01 BA; Serial: 1036;


• Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

H Scan - Sensor tip 10mm above WD Ref/Hearing Aid Compatibility Test (101x101x1):

Measurement grid: dx=5mm, dy=5mm; Maximum value of peak Total field = 0.097 A/m Probe Modulation Factor = 0.910; Reference Value = 0.098 A/m; Power Drift = 0.079 dB

Peak H-field in A/m

Grid 1	Grid 2	Grid 3
0.072	0.086	0.088
		Grid 6
0.085	0.097	0.097
Grid 7	Grid 8	Grid 9
0.000	0.100	0.099

Date/Time: 2/9/2007 1:23:29 AM

Test Laboratory: Motorola - CDMA 1900 H-Field 1/8th Rate

Serial: 364AGY01M8

Procedure Notes: Pwr Step: All Up Bits; Antenna Position: Extended; Accessory Model #: None

Battery Model #: SNN5771A; Vocoder Rate: 1/8th; PMF Value: 1.77

Communication System: CDMA 1900; Frequency: 1851.25 MHz; Channel Number: 25; Duty Cycle: 1:8

Medium: Air; Medium parameters used: σ = 0 mho/m, ϵ_{r} = 1; ρ = 0 kg/m 3

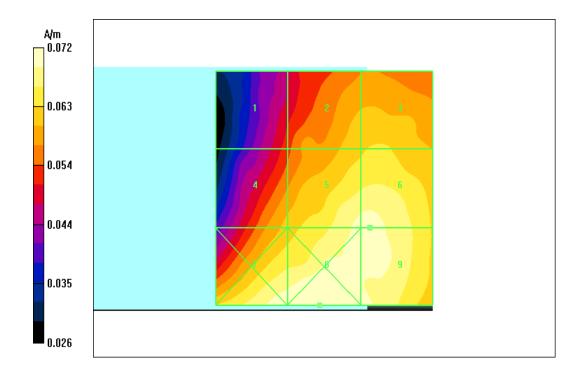
DASY4 Configuration:

• Probe: H3DV6 - SN6074; ; Calibrated: 4/27/2006

• Sensor-Surface: (Fix Surface)

• Electronics: DAE4 Sn639; Calibrated: 11/13/2006

• Phantom: PCS-5, HAC Test Arch with Coil; Type: SD HAC P01 BA; Serial: 1036;


• Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

H Scan - Sensor tip 10mm above WD Ref/Hearing Aid Compatibility Test (101x101x1):

Measurement grid: dx=5mm, dy=5mm; Maximum value of peak Total field = 0.071 A/m Probe Modulation Factor = 1.77; Reference Value = 0.036 A/m; Power Drift = 0.006 dB

Peak H-field in A/m

Grid 1 0.053		
Grid 4	Grid 5	Grid 6
0.061	0.070 Grid 8	
0.071		

Appendix 4

Measurement Uncertainty Budget

Page 18 Exhibit 6B - 1

A4.1 Motorola Uncertainty Budget for RF HAC Testing

TABLE A4.1: Motorola Uncertainty Budget

UNCERTAINTY DESCRIPTION	Uncertainty Value (+/- %)	Prob. Dist.	Div.	(ci) E	(ci) H	Std. Unc. E	Std. Unc. H
MEASUREMENT SYSTEM							
Probe Calibration	5.1%	N	1.0000	1	1	5.1%	5.1%
Axial Isotropy	7.8%	R	1.7321	1	0.786	4.5%	3.5%
Sensor Displacement	16.5%	R	1.7321	1	0.145	9.5%	1.4%
Boundary Effects	2.4%	R	1.7321	1	1	1.4%	1.4%
Linearity	4.7%	R	1.7321	1	1	2.7%	2.7%
Scaling to Peak Envelope Power	2.0%	R	1.7321	1	1	1.2%	1.2%
System Detection Limit	1.0%	R	1.7321	1	1	0.6%	0.6%
Readout Electronics	0.3%	N	1.0000	1	1	0.3%	0.3%
Response Time	0.8%	R	1.7321	1	1	0.5%	0.5%
Integration Time	2.6%	R	1.7321	1	1	1.5%	1.5%
RF Reflections	5.6%	R	1.7321	1	1	3.2%	3.2%
Probe Positioner	1.2%	R	1.7321	1	0.67	0.7%	0.5%
Probe Positioning	4.7%	R	1.7321	1	0.67	2.7%	1.8%
Extrap. & Interpolation	1.0%	R	1.7321	1	1	0.6%	0.6%
TEST SAMPLE RELATED							
Total Device Positioning	3.2%	R	1.7321	1	1.306	1.8%	2.4%
Device Holder & Phantom	2.4%	R	1.7321	1	1	1.4%	1.4%
Power Drift	5.0%	R	1.7321	1	1	2.9%	2.9%
PHANTOM AND SETUP RELATED							
Phantom Thickness	2.4%	R	1.7321	1	0.67	1.4%	0.9%
Combined Std.Uncertainty							9.2%
Expanded Std. Uncertainty on Power	_				-	27.2%	18.4%

A4.2 Probe Rotation Contributions to Isotropy Error

Probe rotation data was taken "for special focus on spherical isotropicity in measurement uncertainty and perturbation of EM fields." This data was taken at the interpolated maximum and directly accounted for in the uncertainty budget as "Axial Isotropy." Thirteen mobile devices were used to determine the probe isotropy uncertainty factors in section A4.1. Based on the resulting 82 E-Field probe rotations and 82 H-Field probe rotations, the upper 95% confidence interval value was calculated for each. These values represent a conservative assessment of the effect of the probe isotropy and have been appropriately included in the respective E- and H-uncertainty budgets.

TABLE A4.2: Probe Rotation Data Summary

	AVE	ST.DEV	Sample Size (n)	2σ	(ci)	Standard Uncertainty
E-field	4.4%	1.7%	82	7.8%	1	4.5%
H-field	3.8%	1.2%	82	6.1%	0.786	3.5%

Isotropy error measurements were taken for 13 products across the respective frequency bands. The $+2\sigma$ values of all measurements was used as a worst case value for the uncertainty budget. Any significant differences between bands were also evaluated.

Page 19 Exhibit 6B - 1

Appendix 5

Pictures of Test Setup

Page 20 Exhibit 6B - 1

FCC ID: IHDT56GP1

Figure A5-1. Phone Open - Orientation of Wireless Device and Measurement Plane

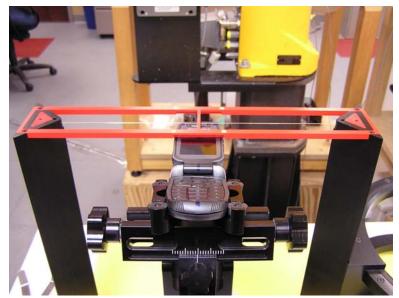


Figure A5-2. View from the front

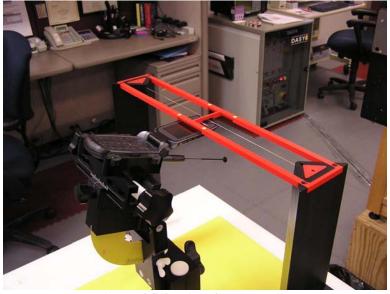


Figure A5-3. View from the side

Page 21 Exhibit 6B - 1

Appendix 6

Probe Calibration Certificates

Page 22 Exhibit 6B - 1

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client

Motorola MDb

Certificate No. ER3-2245_Sep06

CALIBRATION CERTIFICATE Object ER3DV6R - SN.2245 Calibration procedure(s) QA CAL-02 v4. Calibration procedure for E-field probes optimized for close near field evaluations in air Calibration date: September 20, 2006 Condition of the calibrated item In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	5-Apr-06 (METAS, No. 251-00557)	Apr-07
Power sensor E4412A	MY41495277	5-Apr-06 (METAS, No. 251-00557)	Apr-07
Power sensor E4412A	MY41498087	5-Apr-06 (METAS, No. 251-00557)	Apr-07
Reference 3 dB Attenuator	SN: S5054 (3c)	10-Aug-06 (METAS, No. 217-00592)	Aug-07
Reference 20 dB Attenuator	SN: S5086 (20b)	4-Apr-06 (METAS, No. 251-00558)	Apr-07
Reference 30 dB Attenuator	SN: S5129 (30b)	10-Aug-06 (METAS, No. 217-00593)	Aug-07
Reference Probe ER3DV6	SN: 2328	3-Oct-05 (SPEAG, No. ER3-2328_Oct05)	Oct-06
DAE4	SN: 654	21-Jun-06 (SPEAG, No. DAE4-654_Jun06)	Jun-07
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (SPEAG, in house check Nov-05)	In house check: Nov-07
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Nov-05)	In house check: Nov 06
terresia. Per			
	Name	Function	Signature
Calibrated by:	Katja Pokovic	Technical Manager	20 101
			faly there
	22.2000	\	1111
Approved by:	Niels Kuster –	Quality Manager — 🐰 🖊	1/10th

Issued: September 20, 2006

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ER3-2245_Sep06 Page 1 of 9

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S wiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

DCP

NORMx,y,z

sensitivity in free space diode compression point

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Connector Angle

information used in DASY system to align probe sensor X to the robot

coordinate system

Calibration is Performed According to the Following Standards:

a) IEEE Std 1309-1996, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", 1996.

Methods Applied and Interpretation of Parameters:

- *NORMx,y,z:* Assessed for E-field polarization 9 = 0 for XY sensors and 9 = 90 for Z sensor (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
- NORM(f)x, y, z = NORMx, y, z * frequency response (see Frequency Response Chart).
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency.
- Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide setup.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: ER3-2245 Sep06

Probe ER3DV6R

SN:2245

Manufactured:

February 1, 2000

Last calibrated:

September 19, 2005

Recalibrated:

September 20, 2006

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ER3DV6R SN:2245

Sensitivity in Free Space $[\mu V/(V/m)^2]$

Diode Compression^A

NormX

1.59 ± 10.1 % (k=2)

DCP X

94 mV

NormY

1.53 ± 10.1 % (k=2)

DCP Y

94 mV

NormZ

1.99 ± 10.1 % (k=2)

DCP Z

97 mV

Frequency Correction

Х

0.0

Υ

0.0

7

0.0

Sensor Offset

(Probe Tip to Sensor Center)

Х

2.5 mm

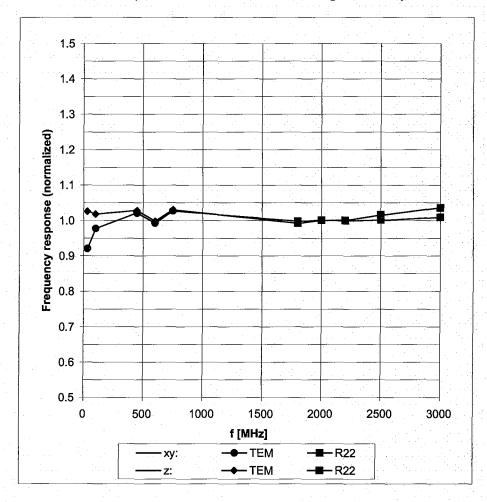
Υ

2.5 mm

Ζ

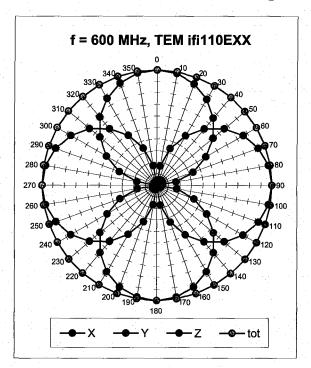
2.5 mm

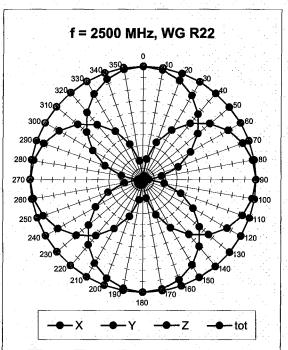
Connector Angle

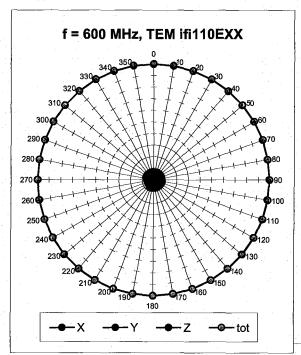

36°

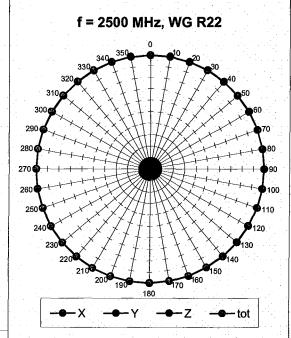
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

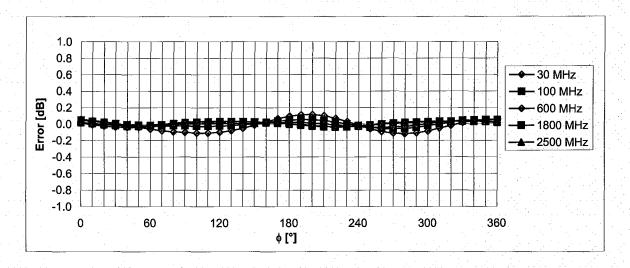
A numerical linearization parameter: uncertainty not required


Frequency Response of E-Field

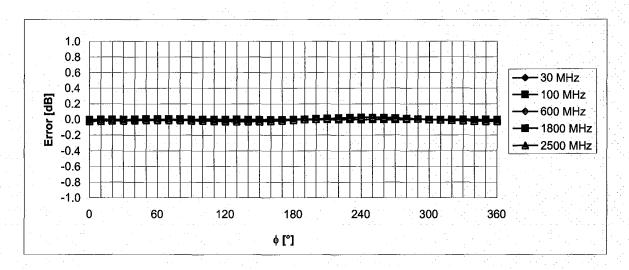

(TEM-Cell:ifi110 EXX, Waveguide R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), θ = 0°

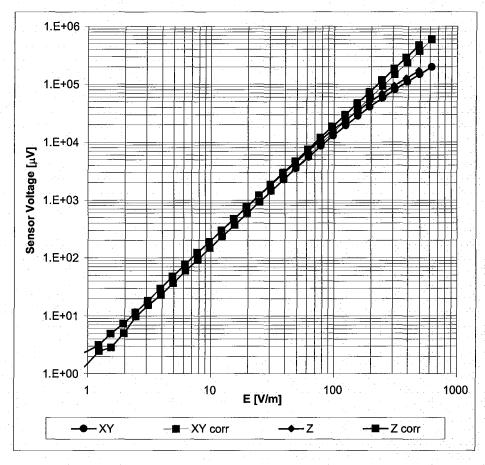


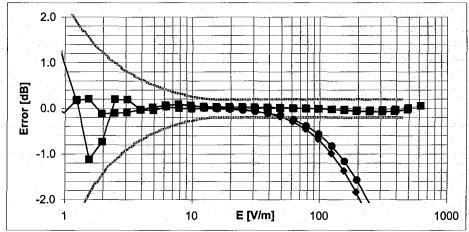
Receiving Pattern (ϕ), θ = 90°



Receiving Pattern (ϕ), θ = 0°

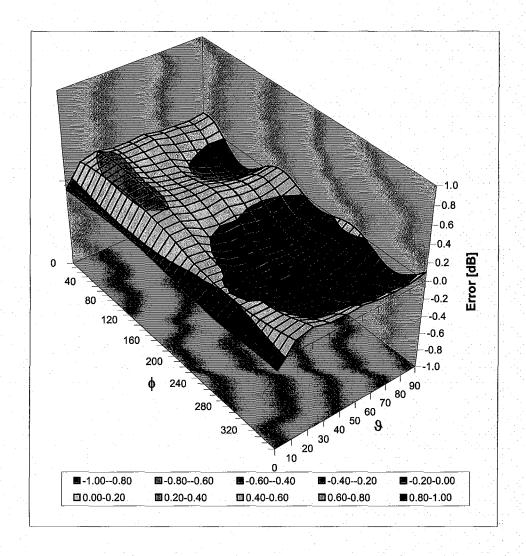
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Receiving Pattern (ϕ), θ = 90°



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(E-field)


(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Deviation from Isotropy in Air Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

Client

Motorola MDb

Carminate No. 1540074 Aprillo

CALIBRATION CERTIFICAT Object H3DV6 - SN: 6074 Calibration procedure(s) QA CAL-03:v4 Calibration procedure for Halield probes commized for close near field evaluations in air Calibration date: Condition of the calibrated item This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) **Primary Standards** ID# Cal Date (Calibrated by, Certificate No.) Scheduled Calibration Power meter E4419B GB41293874 5-Apr-06 (METAS, No. 251-00557) Apr-07 Power sensor E4412A MY41495277 5-Apr-06 (METAS, No. 251-00557) Apr-07 Power sensor E4412A MY41498087 5-Apr-06 (METAS, No. 251-00557) Apr-07 Reference 3 dB Attenuator SN: S5054 (3c) 11-Aug-05 (METAS, No. 251-00499) Aug-06 Reference 20 dB Attenuator SN: S5086 (20b) 4-Apr-06 (METAS, No. 251-00558) Apr-07 Reference 30 dB Attenuator SN: S5129 (30b) 11-Aug-05 (METAS, No. 251-00500) Aug-06 Reference Probe H3DV6 SN: 6182 3-Oct-05 (SPEAG, No. H3-6182_Oct05) Oct-06 DAE4 SN: 654 2-Feb-06 (SPEAG, No. DAE4-654_Feb06) Feb-07 ID# Secondary Standards Check Date (in house) Scheduled Check RF generator HP 8648C US3642U01700 4-Aug-99 (SPEAG, in house check Nov-05) In house check: Nov-07 US37390585 Network Analyzer HP 8753E In house check: Nov 06 18-Oct-01 (SPEAG, in house check Nov-05) Name **Function** Signature Katja Pokovic Calibrated by: Technical Manager Approved by: Niels Kuster Issued: May 2, 2006

Certificate No: H3-6074_Apr06

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

A

S

C

S

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

NORMx,y,z

DCP

sensitivity in free space diode compression point

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Connector Angle

information used in DASY system to align probe sensor X to the robot

coordinate system

Calibration is Performed According to the Following Standards:

a) IEEE Std 1309-1996, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", 1996.

Methods Applied and Interpretation of Parameters:

- X,Y,Z_a0a1a2: Assessed for E-field polarization 9 = 90 for XY sensors and 9 = 0 for Z sensor (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
- X,Y,Z(f)_a0a1a2= X,Y,Z_a0a1a2* frequency_response (see Frequency Response Chart).
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency.
- Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide setup.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the X_a0a1a2 (no uncertainty required).

Certificate No: H3-6074_Apr06 Page 2 of 8

Probe H3DV6

SN:6074

Manufactured:

October 2, 2000

Last calibrated:

July 20, 2005

Recalibrated:

April 27, 2006

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: H3-6074_Apr06

DASY - Parameters of Probe: H3DV6 SN:6074

Sensitivity in Free Space [A/m / $\sqrt{(\mu V)}$]

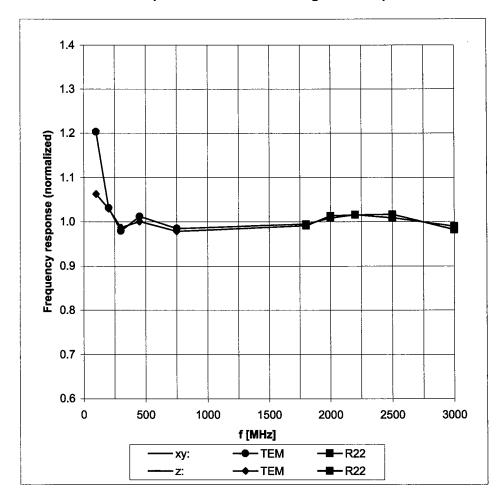
a0 a1 a2 X **2.622E-03 2.520E-5 5.519E-7** ± 5.1 % (k=2) Y **2.661E-03 -7.609E-5 -6.451E-5** ± 5.1 % (k=2) Z **3.173E-03 -2.612E-4 -2.508E-5** ± 5.1 % (k=2)

Diode Compression¹

DCP X **85** mV DCP Y **85** mV DCP Z **86** mV

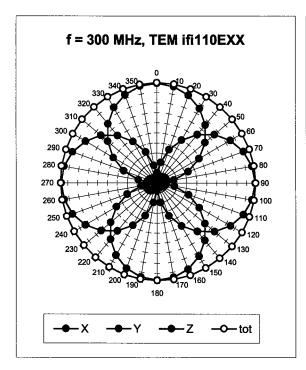
Sensor Offset (Probe Tip to Sensor Center)

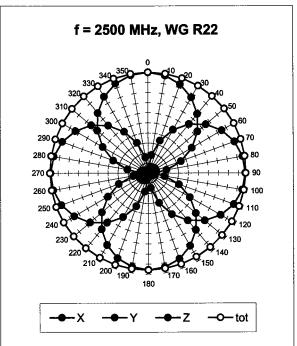
X 3.0 mm Y 3.0 mm Z 3.0 mm

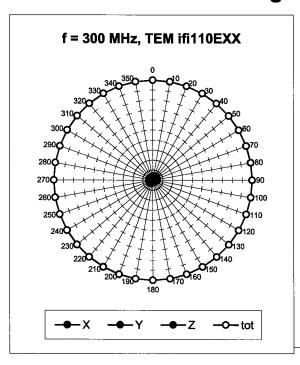

Connector Angle 12 °

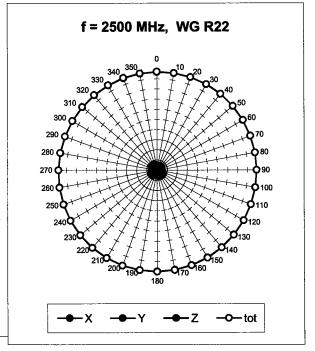
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

¹ numerical linearization parameter: uncertainty not required

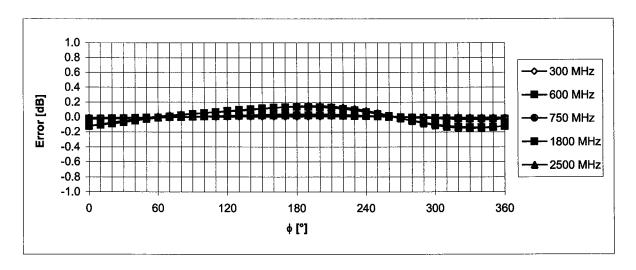

Frequency Response of H-Field


(TEM-Cell:ifi110, Waveguide R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

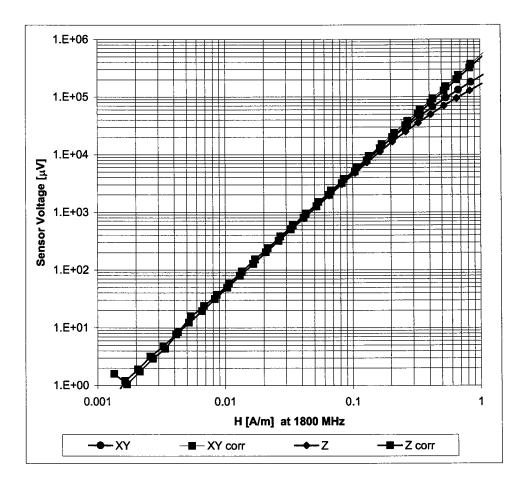

Receiving Pattern (ϕ), θ = 90°

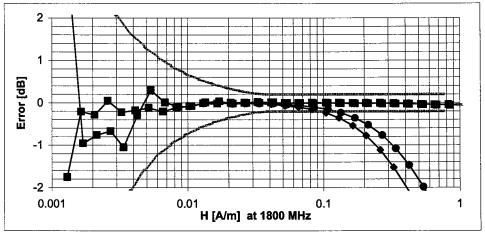
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$



Receiving Pattern (ϕ), ϑ = 90°

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(H-field)

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Appendix 7

Dipole Characterization Certificate

Page 23 Exhibit 6B - 1

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service**

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Motorola Korea Client

Accreditation No.: SCS 108

Certificate No: CD1880V3-1059_Jun06

CALIBRATION CERTIFICATE

Object CD1880V3 - SN: 1059

QA CAL-20.v4 Calibration procedure(s)

Calibration procedure for dipoles in air

Calibration date:

In Tolerance Condition of the calibrated item

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

GB37480704	04-Oct-05 (METAS, No. 251-00516)	Oct-06
1		Out-00
US37292783	04-Oct-05 (METAS, No. 251-00516)	Oct-06
SN: 5086 (20g)	11-Aug-05 (METAS, No 251-00498)	Aug-06
SN: 5047.2 (10r)	11-Aug-05 (METAS, No 251-00498)	Aug-06
SN: 660	1-Mar-06 (SPEAG, No. DAE4-660_Mar06)	Calibration, Mar-07
SN: 2336	20-Dec-05 (SPEAG, No. ER3-2336_Dec05)	Calibration, Dec-06
SN: 6065	20-Dec-05 (SPEAG, No. H3-6065-Dec05)	Calibration, Dec-06
ID#	Check Date (in house)	Scheduled Check
GB43310788	12-Aug-03 (SPEAG, in house check Oct-05)	In house check: Oct-06
MY41093312	10-Aug-03 (SPEAG, in house check Oct-05)	In house check: Oct-07
MY41093315	10-Aug-03 (SPEAG, in house check Oct-05)	In house check: Oct-06
US37390585	18-Oct-01 (SPEAG, in house check Nov-05)	In house check: Nov-06
SN: 100005	26-Jul-04 (SPEAG, in house check Nov-05)	In house check: Nov-07
Name	Function	Signature
Mike Meili	Laboratory Technician	n.Teili
Fin Bomholt	Technical Director	t Rudall
_	SN: 5047.2 (10r) SN: 660 SN: 2336 SN: 6065 ID # GB43310788 MY41093312 MY41093315 US37390585 SN: 100005 Name Mike Meili	SN: 5047.2 (10r) SN: 660 SN: 660 SN: 2336 SN: 6065 SN: 6065 ID# Check Date (in house) GB43310788 SPEAG, in house check Oct-05) MY41093315 US37390585 SN: 100005 SN: 100005 ID# Check Date (in house) GB43310788 SPEAG, in house check Oct-05) MY41093315 SPEAG, in house check Oct-05) US37390585 SN: 100005 SN: 100005 Function Mike Meili Mike Meili Mike Meili I-Aug-05 (METAS, No 251-00498) I-Aug-06 (SPEAG, No. DAE4-660_Mar06) SPEAG, No. ER3-2336_Dec05) SPEAG, No. ER3-2336_Dec05) SPEAG, in house check Oct-05) MY41093315 SPEAG, in house check Nov-05) SN: 100005 SPEAG, in house check Nov-05) SN: 100005 SPEAG, in house check Nov-05) Laboratory Technician

Issued: June 14, 2006

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

References

[1] ANSI-PC63.19-2001 (Draft 3.x, 2005)
American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with standard [1], the measurement planes (probe sensor center) are selected to be at a distance of 10 mm above the top edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate.
 All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY4 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- E- field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 10 mm (in z) above the top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, 10mm above the dipole surface.
- H-field distribution: H-field is measured with an isotropic H-field probe with 100mW forward power to the
 antenna feed point, in the x-y-plane. The scan area and sensor distance is equivalent to the E-field
 scan. The maximum of the field is available at the center (subgrid 5) above the feed point. The H-field
 value stated as calibration value represents the maximum of the interpolated H-field, 10mm above the
 dipole surface at the feed point.

1 Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7B43
DASY PP Version	SEMCAD	V1.8 B171
Phantom	HAC Test Arch	SD HAC P01 BA, #1002
Distance Dipole Top - Probe Center	10 mm	
Scan resolution	dx, dy = 5 mm	area = 20 x 90 mm
Frequency	1880 MHz ± 1 MHz	
Forward power at dipole connector	20.0 dBm = 100mW	
Input power drift	< 0.05 dB	

2 Maximum Field values

H-field 10 mm above dipole surface	condition	Interpolated maximum
Maximum measured	100 mW forward power	0.454 A/m

Uncertainty for H-field measurement: 8.2% (k=2)

E-field 10 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW forward power	140.3 V/m
Maximum measured above low end	100 mW forward power	135.3 V/m
Averaged maximum above arm	100 mW forward power	137.8 V/m

Uncertainty for E-field measurement: 12.8% (k=2)

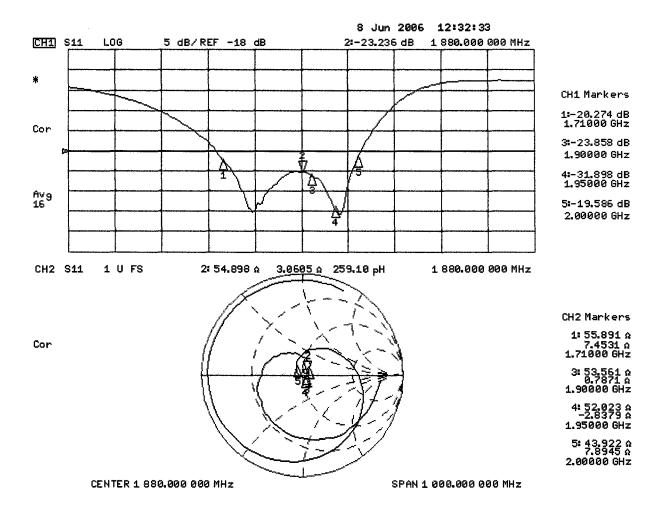
3 Appendix

3.1 Antenna Parameters

Frequency	Return Loss	Impedance
1710 MHz	20.3 dB	(55.9 + j7.5) Ohm
1880 MHz	23.2 dB	(54.9 + j3.1) Ohm
1900 MHz	23.9 dB	(53.6 + j0.8) Ohm
1950 MHz	31.9 dB	(52.0 – j2.8) Ohm
2000 MHz	19.6 dB	(43.9 + j7.9) Ohm

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.


The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

3.3 Measurement Sheets

3.3.1 Return Loss and Smith Chart

Date/Time: 6/14/2006 12:01:39 PM

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: 1059

Communication System: CW; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Phantom section: H Dipole Section

DASY4 Configuration:

• Probe: H3DV6 - SN6065; ; Calibrated: 12/20/2005

• Sensor-Surface: (Fix Surface)

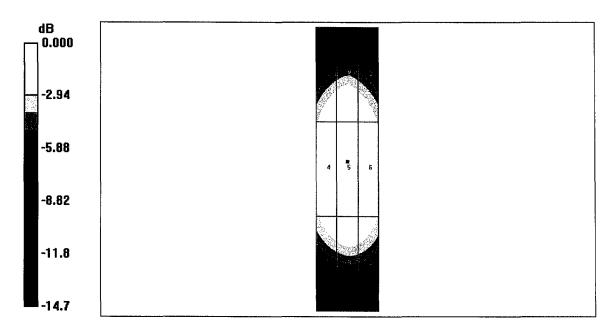
• Electronics: DAE4 Sn660; Calibrated: 3/1/2006

Phantom: HAC Test Arch 4.6; Type: SD HAC P01 BA; Serial: 1002

Measurement SW: DASY4, V4.7 Build 43; Postprocessing SW: SEMCAD, V1.8 Build 171

H Scan - Sensor Center 10mm above CD1880V3 Dipole/Hearing Aid Compatibility Test (41x181x1):

Measurement grid: dx=5mm, dy=5mm


Maximum value of peak Total field = 0.454 A/m

Probe Modulation Factor = 1.00

Reference Value = 0.480 A/m; Power Drift = -0.004 dB Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak H-field in A/m

Grid 1	Grid 2	Grid 3
0.404	0.424	0.402
Grid 4	Grid 5	Grid 6
0.434	0.454	0.435
Grid 7	Grid 8	Grid 9
0.390	0.411	0.395

0 dB = 0.454 A/m

Date/Time: 6/14/2006 9:56:56 AM

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: 1059

Communication System: CW; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: E Dipole Section

DASY4 Configuration:

• Probe: ER3DV6 - SN2336; ConvF(1, 1, 1); Calibrated: 12/20/2005

• Sensor-Surface: (Fix Surface)

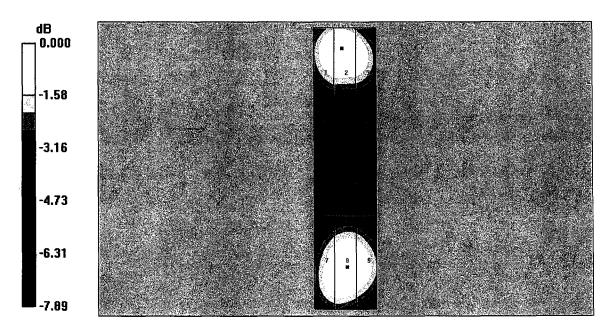
• Electronics: DAE4 Sn660; Calibrated: 3/1/2006

Phantom: HAC Test Arch 4.6; Type: SD HAC P01 BA; Serial: 1002

• Measurement SW: DASY4, V4.7 Build 43; Postprocessing SW: SEMCAD, V1.8 Build 171

E Scan - Sensor Center 10mm above CD1880V3 Dipole 2/Hearing Aid Compatibility Test (41x181x1):

Measurement grid: dx=5mm, dy=5mm


Maximum value of peak Total field = 140.3 V/m

Probe Modulation Factor = 1.00

Reference Value = 137.2 V/m; Power Drift = -0.009 dB Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
137.7	140.3	132.7
Grid 4	Grid 5	Grid 6
88.0	92.4	91.0
Grid 7	Grid 8	Grid 9
131.0	135.3	132.5

0 dB = 140.3 V/m

Certificate No: CD1880V3-1059 Jun06