

Portable Cellular Phone SAR Test Report

Test Report #: 18029-2

Date of Report: 22-Mar-2006

Date of Test: 10-Mar-2006 through 17-Mar-2006

FCC ID #: IHDT56GE1

Generic Name: N/A

Motorola Mobile Devices Business Product Safety & Compliance Laboratory

600 N. US Highway 45 **Laboratory:**

Libertyville, Illinois 60048

Albert Patapack **Report Author:**

Senior Staff Engineer

This laboratory is accredited to ISO/IEC 17025-1999 to perform the following tests:

Tests: Procedures:

Electromagnetic Specific Absorption Rate ANSI / IEEE C95.1-1992, 1999

> (SAR) IEEE C95.3-1991 IEEE 1528, IEC 62209-1

FCC OET Bulletin 65 (including Supplements A, B, C) **Accreditation:**

Australian Communications Authority Radio

Communications (Electromagnetic Radiation – Human

FCC ID: IHDT56GE1

Exposure) Standard 2003 CENELEC EN 50361 (2001)

Simulated Tissue Preparation APP-0247

RF Power Measurement DOI-0876, 0900, 0902, 0904, 0915

On the following products or types of products:

Wireless Communications Devices (Examples): Two Way Radios; Portable Phones (including

Cellular, Licensed Non-Broadcast and PCS); Low Frequency Readers; and Pagers

A2LA certificate #1651-01

Motorola declares under its sole responsibility that the portable cellular telephone model to which this declaration relates, is in conformity with the appropriate General Population/Uncontrolled RF exposure standards, recommendations and guidelines (FCC 47 CFR §2.1093) as well as with CENELEC en50360:2001 and ANSI / IEEE C95.1. It also declares that the product was tested in accordance with CENELEC en50361:2001, IEEE 1528, as well as other appropriate measurement standards, guidelines and recommended practices. Any deviations from these standards, guidelines and recommended practices are noted below:

Statement of **Compliance:**

(none)

©Motorola, Inc. 2006

This test report shall not be reproduced except in full, without written approval of the laboratory.

The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report.

Motorola encourages all feedback, both positive and negative, on this test report.

Table of Contents

1. Introduction	2
2. Description of the Device Under Test	2
2.1 Antenna description	2
2.2 Device description	2
3. Test Equipment Used	3
3.1 Dosimetric System	3
3.2 Additional Equipment	3
4. Electrical parameters of the tissue simulating liquid	4
5. System Accuracy Verification	5
6. Test Results	6
6.1 Head Adjacent Test Results	6
6.2 Body Worn Test Results	13
References	17
Appendix 1: SAR distribution comparison for system accuracy verification	18
Appendix 2: SAR distribution plots for Phantom Head Adjacent Use	19
Appendix 3: SAR distribution plots for Body Worn Configuration	20
Appendix 4: Probe Calibration Certificate	21
Appendix 5: Measurement Uncertainty Budget	22
Appendix 6: Photographs of the device under test	(See FCC Exhibit 7)
Appendix 7: Dipole Characterization Certificate	31

FCC ID: IHDT56GE1

1. Introduction

The Motorola Mobile Devices Business Product Safety Laboratory has performed measurements of the maximum potential exposure to the user of the portable cellular phone covered by this test report. The Specific Absorption Rate (SAR) of this product was measured. The portable cellular phone was tested in accordance with [1], [4] and [5]. The SAR values measured for the portable cellular phone are below the maximum recommended levels of 1.6 W/kg in a 1g average set in [3] and 2.0W/kg in a 10g average set in [2].

For ICNIRP (10g), the final SAR reading for this phone is 0.95W/kg for head adjacent use and 0.54W/kg for body worn use. For ANSI / IEEE C95.1 (1g), the final SAR reading for this phone is 1.50W/kg for head adjacent use and 0.75W/kg for body worn use. These measurements were performed using a Dasy4TM v4.6 system manufactured by Schmid & Partner Engineering AG (SPEAG), of Zurich Switzerland.

2. Description of the Device Under Test

2.1 Antenna description

Type	External			
Location	Upper Right			
Dimonoiona	Length	94 mm		
Dimensions	Width 3 mm			
Configuration	Extendable Whip			

2.2 Device description

Serial number		1E7540D2		
Mode(s) of Operation	800 AMPS	800 CDMA	1900 CDMA	
Modulation Mode(s)	FM	QPSK	QPSK	
Maximum Output Power Setting	27.80dBm	25.00dBm	25.00dBm	
Duty Cycle	1:1	1:1	1:1	
Transmitting Frequency Rang(s)	824-849MHz	824-849MHz	1851-1909MHz	
Production Unit or Identical Prototype (47 CFR §2908)	Identical Prototype			
Device Category	Portable			
RF Exposure Limits	General	Population / Ur	ncontrolled	

FCC ID: IHDT56GE1

3. Test Equipment Used

3.1 Dosimetric System

The Motorola Mobile Devices Business Product Safety & Compliance Laboratory utilizes a Dosimetric Assessment System (Dasy4TM v4.6) manufactured by Schmid & Partner Engineering AG (SPEAGTM), of Zurich Switzerland. All the SAR measurements are taken within a shielded enclosure. The overall 10g RSS uncertainty of the measurement system is $\pm 10.8\%$ (K=1) with an expanded uncertainty of $\pm 21.6\%$ (K=2). The overall 1g RSS uncertainty of the measurement system is $\pm 11.1\%$ (K=1) with an expanded uncertainty of $\pm 22.2\%$ (K=2). The measurement uncertainty budget is given in Appendix 6. Per IEEE 1528, this uncertainty budget is applicable to the SAR range of 0.4W/kg to 10W/kg.

The list of calibrated equipment used for the measurements is shown in the following table.

Description	Serial Number	Cal Due Date
DASY4™ DAE V1	437	28-Nov-2006
DAS14*** DAE VI	661	26-Aug-2006
E-Field Probe ETDV6	1398	20-Feb-2007
E-Fleid Flobe E1DV0	1513	19-Sept-2006
Dipole Validation Kit, DV900V2	80	02-Jun-2006
S.A.M. Phantom used for 800MHz	TP-1153	
Dipole Validation Kit, DV1800V2	251tr	
S.A.M. Phantom used for 1900MHz	TP-1236	

3.2 Additional Equipment

Description	Serial Number	Cal Due Date
Signal Generator HP8648C	3847A04845	22-Aug-2006
Power Meter E4419B	US39250622	19-Aug-2006
Power Sensor #1 – E9301A	US39211007	29-Aug-2006
Power Sensor #2 - 8481A	US39211013	21-Sept-2006
Network Analyzer HP8753ES	US39171846	22-Aug-2006
Dielectric Probe Kit HP85070B	US99360070	

FCC ID: IHDT56GE1

4. Electrical parameters of the tissue simulating liquid

Prior to conducting SAR measurements, the relative permittivity, ε_r , and the conductivity, σ , of the tissue simulating liquids were measured with a HP85070 Dielectric Probe Kit These values, along with the temperature of the simulated tissue are shown in the table below. The recommended limits for permittivity and conductivity are also shown. A mass density of $\rho=1$ g/cm3 was entered into the system in all the cases. It can be seen that the measured parameters are within tolerance of the recommended limits specified in [1] and [5].

f	Ticcue		Diele	ctric Parameters		
(MHz)	Tissue type	Limits / Measured	$\mathbf{\epsilon}_r$	σ (S/m)	Temp (°C)	
		Measured, 10-Mar-2006	41.7	0.91	20.5	
		Measured, 11-Mar-2006	41.4	0.91	20.0	
	Head	Measured, 11-Mar-2006	41.5	0.91	20.0	
	Body	Measured, 12-Mar-2006	41.5	0.91	20.0	
835		Measured, 17-Mar-2006	42.8	0.92	20.6	
		Recommended Limits	41.5 ±5%	$0.90 \pm 5\%$	18-25	
		Measured, 18-Mar-2006	55.7	0.98	20.1	
		Measured, 19-Mar-2006	55.5	0.97	20.5	
		Recommended Limits	55.2 ±5%	$0.97 \pm 5\%$	18-25	
	Head	Measured, 15-Mar-2006	38.3	1.44	19.5	
	Heau	Recommended Limits	40.0 ±5%	$1.40 \pm 5\%$	18-25	
1880		Measured, 15-Mar-2006	51.5	1.58	19.9	
	Body	Measured, 17-Mar-2006	51.5	1.58	20.0	
		Recommended Limits	53.3 ±5%	1.52 ±5%	18-25	

The list of ingredients and the percent composition used for the tissue simulates are indicated in the table below.

Ingredien t	835MHz / 900 MHz Head	835MHz / 900 MHz Body	1800MHz / 1900 MHz Head	1800 MHz / 1900 MHz Body	2450MHz Head	2450 MHz Body
Sugar	57	44.9				
DGBE	-		47	30.8		30
Diacetin					51	
Water	40.45	53.06	52.62	68.8	48.75	70
Salt	1.45	0.94	0.38	0.4	0.15	
HEC	1	1	-			
Bact.	0.1	0.1			0.1	

FCC ID: IHDT56GE1

5. System Accuracy Verification

A system accuracy verification of the DASY4TM was performed using the measurement equipment listed in Section 3.1. The daily system accuracy verification occurs within the flat section of the SAM phantom.

A SAR measurement was performed to verify the measured SAR was within $\pm 10\%$ from the target SAR indicated in Section 8.3.7 Reference SAR Values in [5] or Appendix 7 for the 900Mhz. These tests were done at 900MHz and 1800MHz. These frequencies are within $\pm 10\%$ of the compliance test mid-band frequency as required in [1] and [5]. The test was conducted on the same days as the measurement of the DUT. Recommended limits for permittivity and conductivity, specified in [5], are shown in the table below. The obtained results from the system accuracy verification are also displayed in the table below. SAR values are normalized to 1W forward power delivered to the dipole. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values. The distributions of SAR compare well with those of the reference measurements (see Appendix 1). The tissue stimulant depth was verified to be 15.0cm ± 0.5 cm. Z-axis scans showing the SAR penetration are also included in Appendix 1.

f		SAR (W/kg),	Dielectric Parameters		Ambient	Tissue
(MHz)	Description	1gram	$\mathbf{\epsilon}_r$	σ (S/m)	Temp (°C)	Temp (°C)
	Measured, 10-Mar-2006	10.88	40.9	0.97	21.2	19.8
	Measured, 11-Mar-2006	10.95	40.6	0.97	21.0	20.0
900	Measured, 12-Mar-2006	10.65	40.7	0.97	21.1	20.0
900 N	Measured, 17-Mar-2006	10.85	42.1	0.98	20.9	20.0
	Measured, 19-Mar-2006	11.18	41.7	0.98	20.8	20.7
	Recommended Limits	11.3	41.5 ±5%	0.97 ±5%	15-30	15-30
	Measured, 15-Mar-2006	38.83	38.7	1.36	20.8	20.0
1800	Measured, 17-Mar-2006	38.28	38.9	1.35	20.7	20.0
	Recommended Limits	38.1	$40.0 \pm 5\%$	1.4 ±5%	15-30	15-30

The following probe conversion factors were used on the E-Field probe(s) used for the system accuracy verification measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe ET3DV6	1398	900	6.21	8 of 9
	1376	1810	5.05	8 of 9
	1513	900	5.83	8 of 9
	1313	1810	4.76	8 of 9

FCC ID: IHDT56GE1

6. Test Results

The test sample was operated using an actual transmission through a base station simulator. The base station simulator was setup to the proper channel, transmitter power level and transmit mode of operation. The phone was tested in the configurations stipulated in [1], [4] and [5]. The phone was positioned into these configurations using the device holder supplied with the DASY4TM SAR measurement system The measured dielectric constant of the material used for the device holder is less than 2.9 and the loss tangent is less than 0.02 (± 30%) at 850MHz. The default settings for the "coarse" and "cube" scans were chosen and used for measurements. The grid spacing of the course scan was set to 15cm as shown in the SAR plots included in Appendix 2 and 3. Please refer to the DASY manual for additional information on SAR scanning procedures and algorithms used.

The Cellular Phone model covered by this report has the following battery options:

SNN5783A - 1100mAH Battery SNN5762A - 850mAH Battery

The battery with the highest capacity is the Model #SNN5783A. This battery was used to do most of the SAR testing. The phone was placed in the SAR measurement system with a fully charged battery. The configuration that resulted in the highest SAR values were tested using the other batteries listed above.

6.1 Head Adjacent Test Results

The SAR results shown in tables 1 through 12 are maximum SAR values averaged over 1 gram of phantom tissue, to demonstrate compliance to [3] and also over 10 grams of phantom tissue, to demonstrate compliance to the [6]. Also shown are the measured conducted output powers, the temperature of the simulated tissue after the test, the measured drift and the extrapolated SAR. The exact method of extrapolation is New SAR = Old SAR * 10^(-drift/10). The SAR reported at the end of the measurement process by the DASY4TM measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test. Note that 800MHz digital mode SAR measurements were performed in accordance with [4].

The left head and right head SAR contour distributions are similar. Because of this similarity, the cheek/touch and 15° tilt test conditions with the highest SAR values in each band are indicated as bold numbers in the following tables and are included in Appendix 2. All other test conditions measured lower SAR values than those included in Appendix 2.

The SAR measurements were performed using the SAM phantoms listed in section 3.1. Since the same phantoms and simulated tissue were used for the system accuracy verification and the device SAR measurements, the Z-axis scans included in Appendix 1 are applicable for verification of simulated tissue depth to be 15.0cm ± 0.5 cm.

The following probe conversion factors were used on the E-Field probe(s) used for the head adjacent measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe ET3DV6	1398	900	6.21	8 of 9
	1376	1810	5.05	8 of 9
	1513	900	5.83	8 of 9
	1313	1810	4.76	8 of 9

Left Head Cheek Position Antenna Retracted									
f (MHz)	Conducted Output			Drift	10g SAR value		1g SAR value		
	Description	-	(°C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)	
	Channel 991	27.83	20.0	0.05	0.774	0.77	1.14	1.14	
Analog 800MHz	Channel 384	27.80	20.6	-0.22	0.897	0.94	1.33	1.40	
OUUNIIIZ	Channel 799	27.99	20.0	-0.04	0.772	0.78	1.16	1.17	
D: 1/ 1	Channel 1013	25.00	20.0	-0.03	0.769	0.77	1.14	1.15	
Digital 800MHz	Channel 384	25.01	20.0	-0.06	0.853	0.86	1.28	1.30	
OUUNIIIZ	Channel 777	24.94	20.0	0.02	0.818	0.82	1.23	1.23	
D: -:4-1	Channel 25	24.93	19.3	-0.11	0.683	0.70	1.26	1.29	
Digital 1900MHz	Channel 600	25.03	19.1	0.03	0.647	0.65	1.21	1.21	
IJUUNIIL	Channel 1175	25.08	19.3	-0.07	0.649	0.66	1.21	1.23	

Table 1: SAR measurement results at the highest possible output power, measured in a head cheek position against the ICNIRP and ANSI SAR Limit.

Left Head Cheek Position Antenna Extended									
f (MHz)	Conducte Output				10g SAR value		1g SAR value		
	Description	-	(°C)	Drift (dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)	
	Channel 991	27.83	20.5	0.07	0.895	0.90	1.34	1.34	
Analog 800MHz	Channel 384	27.80	20.6	-0.08	0.787	0.80	1.17	1.19	
OUUVIIIZ	Channel 799	27.99	20.1	-0.02	0.82	0.83	1.22	1.23	
D: 1/ 1	Channel 1013	25.00	20.0	-0.01	0.76	0.76	1.13	1.13	
Digital 800MHz	Channel 384	25.01	20.0	-0.23	0.845	0.89	1.26	1.33	
OUUVIIIZ	Channel 777	24.94	20.0	-0.03	0.847	0.85	1.28	1.29	
D: '/ I	Channel 25	24.93							
Digital 1900MHz	Channel 600	25.03	19.3	-0.78	0.198	0.24	0.363	0.43	
TOUNTIL	Channel 1175	25.08							

Table 2: SAR measurement results at the highest possible output power, measured in a head cheek position against the ICNIRP and ANSI SAR Limit.

MOTOROLA, INC. Portable Cellular Phone SAR Test Report Number: 18029-2

	Right Head Cheek Position Antenna Retracted										
f	_	Conducted Output	Temp	Drift	10g SA	R value	1g SAR value				
(MHz)	Description	Power (dBm)	(°C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)			
	Channel 991	27.83	19.6	0.14	0.836	0.84	1.22	1.22			
Analog 800MHz	Channel 384	27.80	19.6	-0.06	0.908	0.92	1.35	1.37			
OUUNIIZ	Channel 799	27.99	19.6	0.03	0.809	0.81	1.20	1.20			
Digital	Channel 1013	25.00	20.0	0.03	0.865	0.87	1.28	1.28			
800MHz	Channel 384	25.01	20.0	-0.06	0.938	0.95	1.38	1.40			
	Channel 777	24.94	20.0	0.03	0.864	0.86	1.29	1.29			
D:-:4-1	Channel 25	24.93	19.3	0.11	0.659	0.66	1.16	1.16			
Digital 1900MHz	Channel 600	25.03	19.3	-0.05	0.591	0.60	1.05	1.06			
	Channel 1175	25.08	19.3	0.02	0.577	0.58	1.03	1.03			

Table 3: SAR measurement results at the highest possible output power, measured in a head cheek position against the ICNIRP and ANSI SAR Limit.

	Right Head Cheek Position Antenna Extended										
f		Conducted Output	Temp	•	10g SA	R value	1g SAI	R value			
(MHz)	Description	Power (dBm)	Power (°C)		Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)			
	Channel 991	27.83	19.6	0.07	0.818	0.82	1.18	1.18			
Analog 800MHz	Channel 384	27.80	19.6	-0.09	0.736	0.75	1.07	1.09			
OUUVIIIZ	Channel 799	27.99	19.7	-0.06	0.816	0.83	1.19	1.21			
Digital	Channel 1013	25.00	20.0	0.15	0.807	0.81	1.18	1.18			
800MHz	Channel 384	25.01	20.0	-0.14	0.888	0.92	1.30	1.34			
	Channel 777	24.94	20.0	-0.04	0.852	0.86	1.27	1.28			
D:-:4-1	Channel 25	24.93									
Digital 1900MHz	Channel 600	25.03	19.3	0.01	0.356	0.36	0.643	0.64			
	Channel 1175	25.08									

Table 4: SAR measurement results at the highest possible output power, measured in a head cheek position against the ICNIRP and ANSI SAR Limit.

	Left Head 15° Tilt Position Antenna Retracted										
f		Conducted Output	Temp	Drift	10g SA	R value	1g SAI	R value			
(MHz)	Description	Power (dBm)	(°C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)			
	Channel 991	27.83									
Analog 800MHz	Channel 384	27.80	19.8	-0.12	0.256	0.26	0.351	0.36			
GOOMILE	Channel 799	27.99									
Digital	Channel 1013	25.00									
800MHz	Channel 384	25.01	20.0	0.14	0.219	0.22	0.296	0.30			
	Channel 777	24.94									
D: '4 I	Channel 25	24.93									
Digital 1900MHz	Channel 600	25.03	19.3	-0.44	0.332	0.37	0.554	0.61			
1700MIIZ	Channel 1175	25.08									

Table 5: SAR measurement results at the highest possible output power, measured in a head 15° Tilt position against the ICNIRP and ANSI SAR Limit.

			Left Hea	ad 15° T	ilt Position Anter	nna Extended		
f		Conducted Output	Temp	Drift	10g SA	R value	1g SAI	R value
(MHz)	Description	Power (dBm)	(°C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)
	Channel 991	27.83						
Analog 800MHz	Channel 384	27.80	19.8	-0.09	0.183	0.19	0.251	0.26
OUUNIIZ	Channel 799	27.99						
Digital	Channel 1013	25.00						
800MHz	Channel 384	25.01	20.0	0.01	0.198	0.20	0.269	0.27
	Channel 777	24.94						
D: 14 1	Channel 25	24.93						
Digital 1900MHz	Channel 600	25.03	19.5	-0.11	0.361	0.37	0.584	0.60
1700MIL	Channel 1175	25.08						

Table 6: SAR measurement results at the highest possible output power, measured in a head 15° Tilt position against the ICNIRP and ANSI SAR Limit.

MOTOROLA, INC. Portable Cellular Phone SAR Test Report Number: 18029-2

]	Right He	ad 15° T	ilt Position Ante	nna Retracted		
f		Conducted Output	Temp	Drift	10g SA	R value	1g SAI	R value
(MHz)	Description	Power (dBm)	(°C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)
A 1	Channel 991	27.83						
Analog 800MHz	Channel 384	27.80	20.0	0.24	0.247	0.25	0.333	0.33
OUUNIIIZ	Channel 799	27.99						
Digital	Channel 1013	25.00						
800MHz	Channel 384	25.01	20.0	-0.01	0.232	0.23	0.313	0.31
	Channel 777	24.94						
D: '4 I	Channel 25	24.93						
Digital 1900MHz	Channel 600	25.03	19.3	-0.14	0.296	0.31	0.481	0.50
LOUNTIL	Channel 1175	25.08						

Table 7: SAR measurement results at the highest possible output power, measured in a head 15° Tilt position against the ICNIRP and ANSI SAR Limit.

]	Right He	ead 15° T	Tilt Position Ante	nna Extended		
f		Conducted Output	Temp	Drift (dB)	10g SA	R value	1g SAR value	
(MHz)	Description	Power (dBm)	(°C)		Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)
	Channel 991	27.83						
Analog 800MHz	Channel 384	27.80	20.0	0.185	0.205	0.21	0.273	0.27
OUUNIIZ	Channel 799	27.99						
Digital	Channel 1013	25.00						
800MHz	Channel 384	25.01	20.0	0.00	0.209	0.21	0.277	0.28
	Channel 777	24.94						
D: -:4-1	Channel 25	24.93						
Digital 1900MHz	Channel 600	25.03	19.3	-0.13	0.334	0.34	0.535	0.55
1700MILE	Channel 1175	25.08						

Table 8: SAR measurement results at the highest possible output power, measured in a head 15° Tilt position against the ICNIRP and ANSI SAR Limit.

		Highest Cl	heek Pos	ition An	tenna Retracted	with battery SNN	5762A	
f		Conducted Output	Temp (°C) Drift (dB)	10g SA	R value	1g SAI	R value	
(MHz)	Description	Power (dBm)			Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)
Analog	Channel 991	27.83						
800MHz	Channel 384	27.80	20.0	-0.03	0.929	0.94	1.38	1.39
Left Head	Channel 799	27.99						
Digital	Channel 1013	25.00						
800MHz	Channel 384	25.01	20.0	-0.01	0.86	0.86	1.27	1.27
Right Head	Channel 777	24.94						
Digital	Channel 25	24.93	20.0	0.16	0.803	0.80	1.48	1.48
1900MHz			19.5	-0.46	0.719	0.80	1.35	1.50
Left Head	Channel 1175	25.08	19.4	-0.143	0.689	0.71	1.30	1.34

Table 9: SAR measurement results at the highest possible output power, measured in a head cheek position against the ICNIRP and ANSI SAR Limit.

	Highest Cheek Position Antenna Extended with battery SNN5762A										
f		Conducted Output	Temn	Temp (°C) Drift (dB)	10g SA	R value	1g SA	1g SAR value			
(MHz)	Description	Power (dBm)			Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)			
Analog	Channel 991	27.83	20.0	-0.08	0.881	0.90	1.31	1.33			
800MHz	Channel 384	27.80									
Left Head	Channel 799	27.99									
Digital	Channel 1013	25.00									
800MHz	Channel 384	25.01	20.0	-0.14	0.921	0.95	1.36	1.40			
Right Head	Channel 777	24.94									
Digital	Channel 25	24.93	19.4	-0.22	0.552	0.58	0.997	1.05			
1900MHz	Channel 600		20.0	0.03	0.52	0.52	0.93	0.93			
Right Head	Channel 1175	25.08	19.2	-0.975	0.356	0.45	0.655	0.82			

Table 10: SAR measurement results at the highest possible output power, measured in a head cheek position against the ICNIRP and ANSI SAR Limit.

MOTOROLA, INC. Portable Cellular Phone SAR Test Report Number: 18029-2

		Highest 15°	Tilt Po	sition Ar	tenna Retracted	with battery SNI	N5762A	
f		Conducted Output	Temp	Drift	10g SA	R value	1g SAR value	
(MHz)	Description	Power (dBm)	(°C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)
Analog	Channel 991	27.83						
800MHz	Channel 384	27.80	20.0	-0.06	0.23	0.23	0.314	0.32
Left Head	Channel 799	27.99						
Digital	Channel 1013	25.00						
800MHz	Channel 384	25.01	20.0	-0.11	0.206	0.21	0.276	0.28
Right Head	Channel 777	24.94						
Digital	Channel 25	24.93						
1900MHz			19.4	-0.242	0.411	0.43	0.689	0.73
Left Head	Channel 1175	25.08						

Table 11: SAR measurement results at the highest possible output power, measured in a head 15° Tilt position against the ICNIRP and ANSI SAR Limit.

		Highest 15	° Tilt Po	sition Aı	ntenna Extended	with battery SNN	N5762A		
f		Conducted Output	Temp	Drift	10g SA	R value	1g SAR value		
(MHz)	Description	Power (dBm)		(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)	
Analog	Channel 991	27.83							
800MHz	Channel 384	27.80	20.0	0.01	0.203	0.20	0.266	0.27	
Right Head	Channel 799	27.99							
Digital	Channel 1013	25.00							
800MHz	Channel 384	25.01	20.0	0.23	0.187	0.19	0.248	0.25	
Right Head	Channel 777	24.94							
Digital	Channel 25	24.93	19.5	-0.163	0.56	0.58	0.912	0.95	
1900MHz	Channel 600	25.03	19.4	-0.494	0.595	0.67	0.97	1.09	
Left Head	Channel 1175	25.08	19.4	-0.321	0.292	0.31	0.472	0.51	

Table 12: SAR measurement results at the highest possible output power, measured in a head 15° Tilt position against the ICNIRP and ANSI SAR Limit.

FCC ID: IHDT56GE1

6.2 Body Worn Test Results

The SAR results shown in tables 13 through 18 are maximum SAR values averaged over 1 gram of phantom tissue, to demonstrate compliance to [3] and also over 10 grams of phantom tissue, to demonstrate compliance to the [6]. Also shown are the measured conducted output powers, the temperature of the test facility during the test, the temperature of the tissue simulate after the test, the measured drift and the extrapolated SAR. The exact method of extrapolation is New SAR = Old SAR * 10^(-drift/10). The SAR reported at the end of the measurement process by the DASY4TM measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test. Note that 800MHz digital mode SAR measurements were performed in accordance with [4].

The test conditions that produced the highest SAR values in each band are indicated as bold numbers in the following tables and are included in Appendix 3. All other test conditions measured lower SAR values than those included in Appendix 3.

A "flat" phantom was for the body-worn tests. This "flat" phantom is made out of 1" thick natural High Density Polyethylene with a thickness at the bottom equal to 2.0mm. It measures 52.7cm(long) x 26.7cm(wide) x 21.2cm(tall). The measured dielectric constant of the material used is less than 2.3 and the loss tangent is less than 0.0046 all the way up to 2.184GHz.

The tissue stimulant depth was verified to be $15.0 \, \mathrm{cm} \pm 0.5 \, \mathrm{cm}$. The same device holder described in section 6 was used for positioning the phone. The functional accessories were divided into two categories, the ones with metal components and the ones with non-metal components. For non-metallic component accessories', testing was performed on the accessory that displayed the closest proximity to the flat phantom. Each metallic component accessory, if any, was checked for uniqueness of metal component so that each is tested with the device. If multiple accessories shared an identical metal component, only the accessory that dictates the closest spacing to the body was tested. In addition to accessory testing, the cellular phone was tested with the front and back of the phone facing the phantom. For voice mode operation, the phone was placed as a distance of 25mm from the phantom. The cellular phone was tested with a headset connected to the device for all body-worn SAR measurements.

There are no Body-Worn Accessories available for this phone at the time of testing hence the device was tested per the supplement C testing guidelines for devices that do not have body worn accessories. The phone was placed a maximum of 25mm away from a flat phantom per the supplement C standard guidelines to perform SAR measurement.

The following probe conversion factors were used on the E-Field probe(s) used for the body worn measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
	1398	900	5.91	8 of 9
E-Field Probe	1370	1810	4.60	8 of 9
ET3DV6	1513	900	5.66	8 of 9
	1515	1810	4.16	8 of 9

		Body-Worn	; Front	of Phone	25mm from Pha	ntom Antenna R	etracted	
f		Conducted Output	Temp	Temp Drift	10g SA	R value	1g SAI	R value
(MHz)	Description	Power (dBm)	_	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)
A 1	Channel 991	27.83						
Analog 800MHz	Channel 384	27.80	20.8	-0.20	0.363	0.38	0.489	0.51
OUUVIIIZ	Channel 799	27.99						
D: 1/4 I	Channel 1013	25.00						
Digital 800MHz	Channel 384	25.01	19.9	-0.09	0.173	0.18	0.235	0.24
OUUIVIII	Channel 777	24.94						
D:-:4-1	Channel 25	24.93						
Digital 1900MHz	Channel 600	25.03	19.3	0.02	0.099	0.10	0.154	0.15
	Channel 1175	25.08						

Table 13: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

Body-Worn; Front of Phone 25mm from Phantom Antenna Extended									
f (MHz)	Description	Conducted Output	Temp (°C)	Drift (dB)	10g SA	R value	1g SAR value		
		Power (dBm)			Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)	
	Channel 991	27.83							
Analog 800MHz	Channel 384	27.80	20.5	0.06	0.294	0.29	0.397	0.40	
OUUNIIZ	Channel 799	27.99							
D: 1/ 1	Channel 1013	25.00							
Digital 800MHz	Channel 384	25.01	20.0	0.08	0.245	0.25	0.33	0.33	
OUUNIIIZ	Channel 777	24.94							
D: 1/ I	Channel 25	24.93							
Digital 1900MHz	Channel 600	25.03	19.5	-0.237	0.116	0.12	0.0652	0.07	
	Channel 1175	25.08							

Table 14: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

	Body-Worn; Back of Phone 25mm from Phantom Antenna Retracted									
f (MHz)	Description	Conducted Output	Temp (°C)	Drift (dB)	10g SAR value		1g SAR value			
		Power (dBm)			Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)		
	Channel 991	27.83								
Analog 800MHz	Channel 384	27.80	20.5	-0.04	0.419	0.42	0.58	0.59		
OUUNIIIZ	Channel 799	27.99								
D: '4 I	Channel 1013	25.00								
Digital 800MHz	Channel 384	25.01	19.7	0.04	0.239	0.24	0.337	0.34		
OUUNIIIZ	Channel 777	24.94								
D: -:4-1	Channel 25	24.93								
Digital 1900MHz	Channel 600	25.03	19.9	-0.14	0.224	0.23	0.354	0.37		
	Channel 1175	25.08								

Table 15: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

	Body-Worn; Back of Phone 25mm from Phantom Antenna Extended										
f (MHz)	Description	Conducted Output	Temp (°C)	Drift (dB)	10g SA	R value	1g SAR value				
		Power (dBm)			Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)			
	Channel 991	27.83									
Analog 800MHz	Channel 384	27.80	20.4	-0.05	0.334	0.34	0.463	0.47			
OUUNIIIZ	Channel 799	27.99									
D: -:4-1	Channel 1013	25.00									
Digital 800MHz	Channel 384	25.01	19.2	-0.04	0.325	0.33	0.46	0.46			
OUUNIIIZ	Channel 777	24.94									
Di cital	Channel 25	24.93									
Digital 1900MHz	Channel 600	25.03	19.4	0.22	0.208	0.21	0.355	0.36			
	Channel 1175	25.08									

Table 16: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

	Body-Worn; Back of Phone 25mm from Phantom Antenna Retracted with battery SNN5762A										
f (MHz)	Description	Conducted Output	Temp (°C)	Drift (dB)	10g SAR value		1g SAR value				
		Power (dBm)			Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)			
A 1	Channel 991	27.83									
Analog 800MHz	Channel 384	27.80	20.5	-0.09	0.528	0.54	0.737	0.75			
OUUNIIZ	Channel 799	27.99									
D: 1/ 1	Channel 1013	25.00									
Digital 800MHz	Channel 384	25.01	20.1	-0.09	0.384	0.39	0.533	0.54			
OUUNIIZ	Channel 777	24.94									
D: -:4-1	Channel 25	24.93									
Digital 1900MHz	Channel 600	25.03	20.0	-0.21	0.199	0.21	0.31	0.33			
	Channel 1175	25.08									

Table 17: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

	Body-Worn; Back of Phone 25mm from Phantom Antenna Extended with battery SNN5762A										
f (MHz)	Description	Conducted Output	Temp (°C)	Drift (dB)	10g SAR value		1g SAR value				
		Power (dBm)			Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)			
	Channel 991	27.83									
Analog 800MHz	Channel 384	27.80	20.5	0.01	0.488	0.49	0.673	0.67			
GOOMILE	Channel 799	27.99									
D: '4 I	Channel 1013	25.00									
Digital 800MHz	Channel 384	25.01	20.5	-0.08	0.42	0.43	0.589	0.60			
OUUNIIIZ	Channel 777	24.94									
D: '4 I	Channel 25	24.93									
Digital 1900MHz	Channel 600	25.03	20.0	-0.735	0.187	0.22	0.36	0.43			
	Channel 1175	25.08									

Table 18: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

FCC ID: IHDT56GE1

References

- [1] CENELEC, en50361:2001 "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300MHz 3GHz)"
- [2] CENELEC, en50360:2001 "Product standard to demonstrate the compliance of mobile phones with the basic restrictions related to human exposure to electromagnetic fields (300MHz 3GHz)".
- [3] ANSI / IEEE, C95.1 1999 Edition "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3kHz to 300GHz"
- [4] FCC OET Bulletin 65 Supplement C 01-01
- [5] IEEE 1528 2003 Edition "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques"
- [6] ICNIRP Guidelines "Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic, and Electromagnetic Fields (up to 300 GHz)"

Appendix 1

SAR distribution comparison for the system accuracy verification

Date/Time: 3/10/2006 7:45:03 AM

Test Laboratory: Motorola 031006 900 MHz GOOD -3.8%

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN:xxx;

Procedure Notes: 900 MHz System Performance Check / Dipole Sn# 80 PM1 Power = 200 mW

Sim. Temp@meas = 20 Sim. Temp@SPC = 19.8 Room Temp @ SPC = 21.2

Communication System: CW - Dipole; Frequency: 900 MHz; Channel Number: 4; Duty Cycle: 1:1

Medium: VALIDATION Only;

Medium parameters used: f = 900 MHz; $\sigma = 0.97$ mho/m; $\epsilon_r = 40.9$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ET3DV6 SN1398; ConvF(6.21, 6.21, 6.21); Calibrated: 2/20/2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn437; Calibrated: 11/28/2005
- Phantom: R3: Sugar Water SAM; Type: SAM; Serial: TP-1153;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Daily SPC Check/Dipole Area Scan (4x9x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.19 mW/g

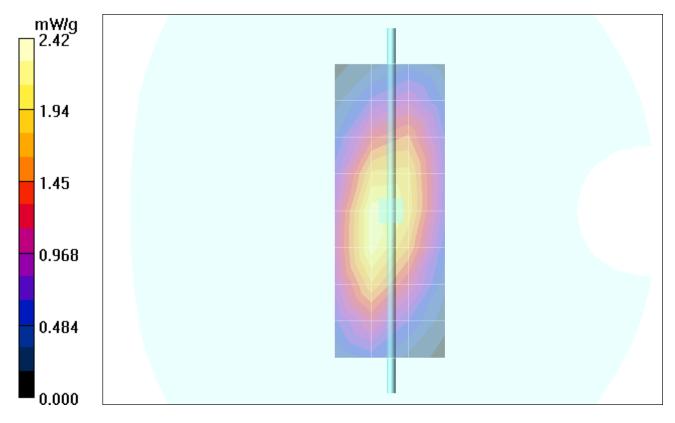
Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0:

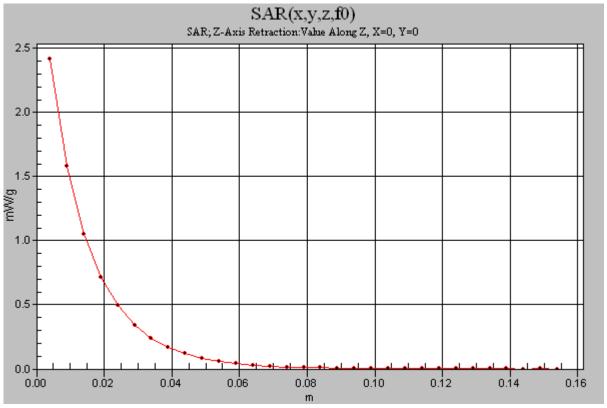
Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 51.4 V/m; Power Drift = 0.029 dB Peak SAR (extrapolated) = 3.37 W/kg

SAR(1 g) = 2.22 mW/g; SAR(10 g) = 1.41 mW/g Maximum value of SAR (measured) = 2.41 mW/g

Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 51.4 V/m; Power Drift = 0.029 dB Peak SAR (extrapolated) = 3.22 W/kg

SAR(1 g) = 2.13 mW/g; SAR(10 g) = 1.37 mW/g Maximum value of SAR (measured) = 2.24 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 2.42 mW/g

Date/Time: 3/11/2006 9:06:28 AM

Test Laboratory: Motorola 031106 900 MHz GOOD -3.1%

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN:xxx;

Procedure Notes: 900 MHz System Performance Check / Dipole Sn# 80 PM1 Power = 199mW

Sim. Temp@meas = 20C Sim. Temp@SPC = 20.0C Room Temp @ SPC = 21C

Communication System: CW - Dipole; Frequency: 900 MHz; Channel Number: 4; Duty Cycle: 1:1

Medium: VALIDATION Only;

Medium parameters used: f = 900 MHz; $\sigma = 0.97 \text{ mho/m}$; $\varepsilon_r = 40.6$; $\rho = 1000 \text{kg/m}^3$

DASY4 Configuration:

- Probe: ET3DV6 SN1398; ConvF(6.21, 6.21, 6.21); Calibrated: 2/20/2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn437; Calibrated: 11/28/2005
- Phantom: R3: Sugar Water SAM; Type: SAM; Serial: TP-1153;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Daily SPC Check/Dipole Area Scan (4x9x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.18 mW/g

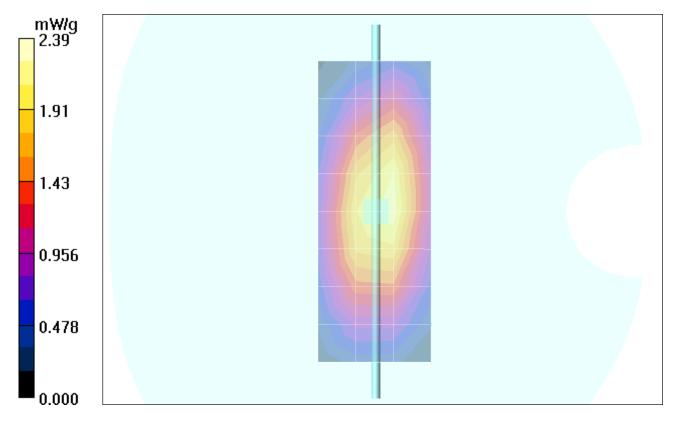
Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0:

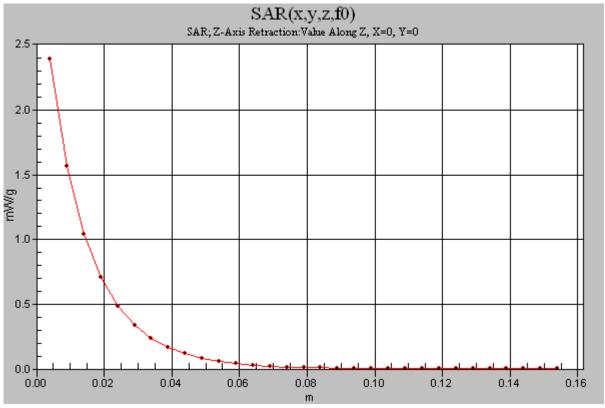
Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 51.5 V/m; Power Drift = -0.021 dB Peak SAR (extrapolated) = 3.36 W/kg

SAR(1 g) = 2.21 mW/g; SAR(10 g) = 1.4 mW/g Maximum value of SAR (measured) = 2.38 mW/g

Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 51.5 V/m; Power Drift = -0.021 dB Peak SAR (extrapolated) = 3.25 W/kg

SAR(1 g) = 2.15 mW/g; SAR(10 g) = 1.37 mW/g Maximum value of SAR (measured) = 2.33 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 2.39 mW/g

Date/Time: 3/12/2006 4:57:12 AM

Test Laboratory: Motorola 031206 900 MHz GOOD -5.8%

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN:xxx;

Procedure Notes: 900 MHz System Performance Check / Dipole Sn# 80 PM1 Power = 201mW

Sim. Temp@meas = 20.1C Sim. Temp@SPC = 20C Room Temp @ SPC = 21.1C

Communication System: CW - Dipole; Frequency: 900 MHz; Channel Number: 4; Duty Cycle: 1:1

Medium: VALIDATION Only;

Medium parameters used: f = 900 MHz; $\sigma = 0.97 \text{ mho/m}$; $\varepsilon_r = 40.7$; $\rho = 1000 \text{kg/m}^3$

DASY4 Configuration:

- Probe: ET3DV6 SN1398; ConvF(6.21, 6.21, 6.21); Calibrated: 2/20/2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn437; Calibrated: 11/28/2005
- Phantom: R3: Sugar Water SAM; Type: SAM; Serial: TP-1153;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Daily SPC Check/Dipole Area Scan (4x9x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.20 mW/g

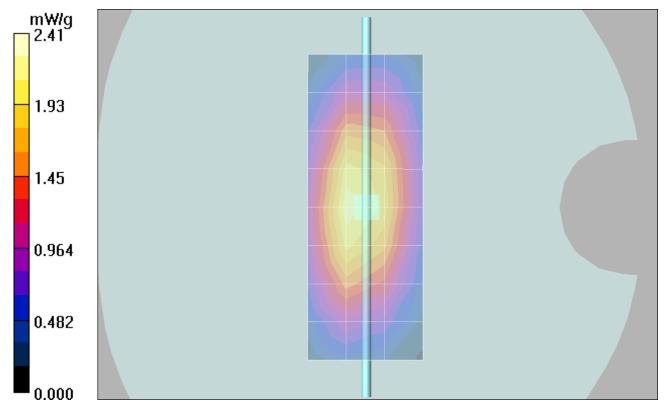
Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0:

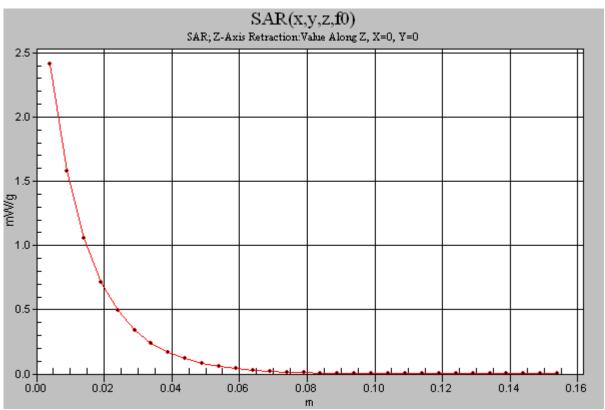
Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 50.9 V/m; Power Drift = 0.007 dB Peak SAR (extrapolated) = 3.31 W/kg

SAR(1 g) = 2.2 mW/g; SAR(10 g) = 1.41 mW/g Maximum value of SAR (measured) = 2.39 mW/g

Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 50.9 V/m; Power Drift = 0.007 dB Peak SAR (extrapolated) = 3.14 W/kg

SAR(1 g) = 2.08 mW/g; SAR(10 g) = 1.34 mW/g Maximum value of SAR (measured) = 2.23 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 2.41 mW/g

Date/Time: 3/15/2006 6:21:48 AM

Test Laboratory: Motorola 031506 1800 MHz GOOD 1.9%

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:xxx;

Procedure Notes: 1800 MHz System Performance Check / Dipole Sn# 251tr PM1 Power = 200 mW

Sim. Temp@meas = 20.1C Sim. Temp@SPC = 20C Room Temp @ SPC = 20.8C

Communication System: CW - Dipole; Frequency: 1800 MHz; Channel Number: 8; Duty Cycle: 1:1

Medium: VALIDATION Only;

Medium parameters used: f = 1800 MHz; $\sigma = 1.36 \text{ mho/m}$; $\varepsilon_r = 38.7$; $\rho = 1000 \text{kg/m}^3$

DASY4 Configuration:

- Probe: ET3DV6 SN1398; ConvF(5.05, 5.05, 5.05); Calibrated: 2/20/2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn437; Calibrated: 11/28/2005
- Phantom: R3: Glycol SAM; Type: SAM; Serial: TP-1236;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Daily SPC Check/Dipole Area Scan (4x9x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 7.13 mW/g

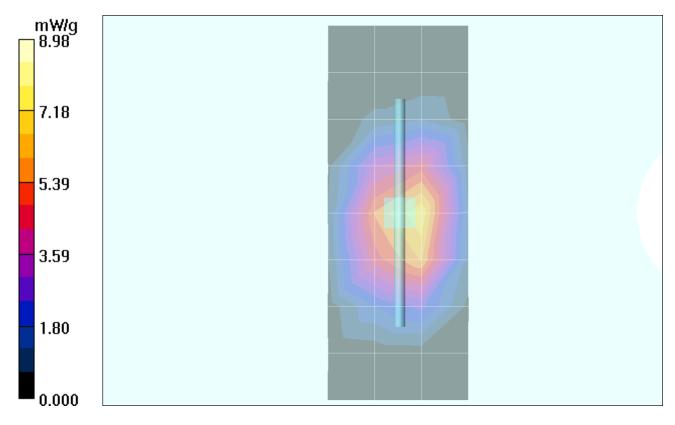
Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0:

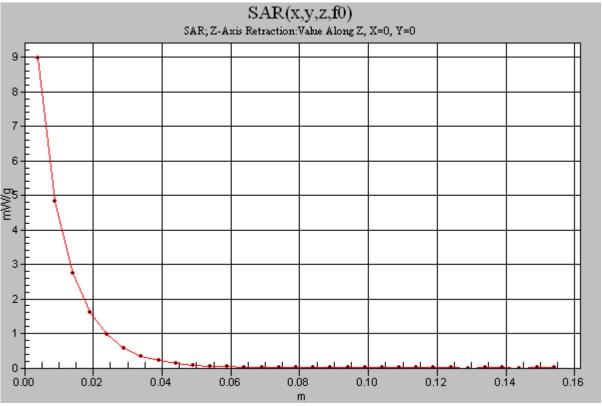
Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 82.2 V/m; Power Drift = -0.035 dB Peak SAR (extrapolated) = 15.4 W/kg

SAR(1 g) = 8.04 mW/g; SAR(10 g) = 4.18 mW/g Maximum value of SAR (measured) = 8.98 mW/g

Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 82.2 V/m; Power Drift = -0.035 dB Peak SAR (extrapolated) = 14.4 W/kg

SAR(1 g) = 7.49 mW/g; SAR(10 g) = 3.9 mW/g Maximum value of SAR (measured) = 8.37 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm

Date/Time: 3/17/2006 8:27:54 AM

Test Laboratory: Motorola 031706 900 MHz GOOD -3.9%

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN:xxx;

Procedure Notes: 900 MHz System Performance Check / Dipole Sn# 80 PM1 Power = 199 mW

Sim. Temp@meas = 20.8C Sim. Temp@SPC = 20C Room Temp @ SPC = 20.9C

Communication System: CW - Dipole; Frequency: 900 MHz; Channel Number: 4; Duty Cycle: 1:1

Medium: VALIDATION Only;

Medium parameters used: f = 900 MHz; $\sigma = 0.98 \text{ mho/m}$; $\varepsilon_r = 42.1$; $\rho = 1000 \text{kg/m}^3$

DASY4 Configuration:

- Probe: ET3DV6R SN1513; ConvF(5.83, 5.83, 5.83); Calibrated: 9/19/2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn437; Calibrated: 11/28/2005
- Phantom: R3: Sugar Water SAM; Type: SAM; Serial: TP-1153;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Daily SPC Check/Dipole Area Scan (4x9x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.13 mW/g

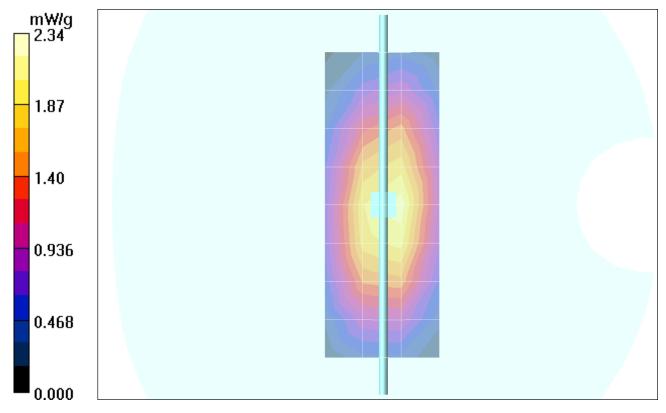
Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0:

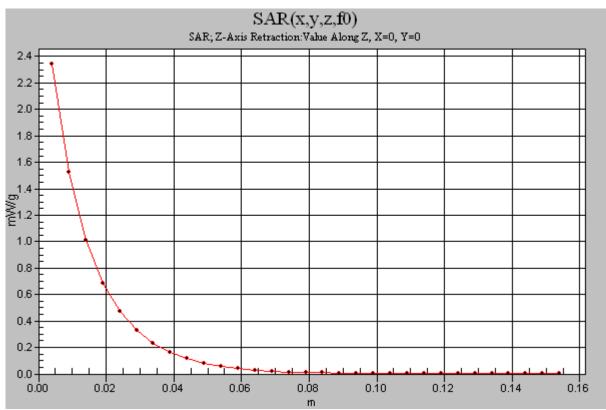
Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 50.5 V/m; Power Drift = -0.043 dB Peak SAR (extrapolated) = 3.34 W/kg

SAR(1 g) = 2.17 mW/g; SAR(10 g) = 1.38 mW/g Maximum value of SAR (measured) = 2.35 mW/g

Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 50.5 V/m; Power Drift = -0.043 dB Peak SAR (extrapolated) = 3.27 W/kg

SAR(1 g) = 2.15 mW/g; SAR(10 g) = 1.36 mW/g Maximum value of SAR (measured) = 2.29 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 2.34 mW/g

Date/Time: 3/17/2006 7:02:03 AM

Test Laboratory: Motorola 031706 1800 MHz GOOD 0.5%

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:xxx;

Procedure Notes: 1800 MHz System Performance Check / Dipole Sn# 251TR PM1 Power = 200 mW

Sim. Temp@meas = 20.3C Sim. Temp@SPC = 20.0C Room Temp@SPC = 20.7C

Communication System: CW - Dipole; Frequency: 1800 MHz; Channel Number: 8; Duty Cycle: 1:1

Medium: VALIDATION Only;

Medium parameters used: f = 1800 MHz; $\sigma = 1.35 \text{ mho/m}$; $\varepsilon_r = 38.9$; $\rho = 1000 \text{kg/m}^3$

DASY4 Configuration:

- Probe: ET3DV6R SN1513; ConvF(4.76, 4.76, 4.76); Calibrated: 9/19/2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn437; Calibrated: 11/28/2005
- Phantom: R3: Sect.1, Amy Twin; Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Daily SPC Check/Dipole Area Scan (9x4x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 7.59mW/g

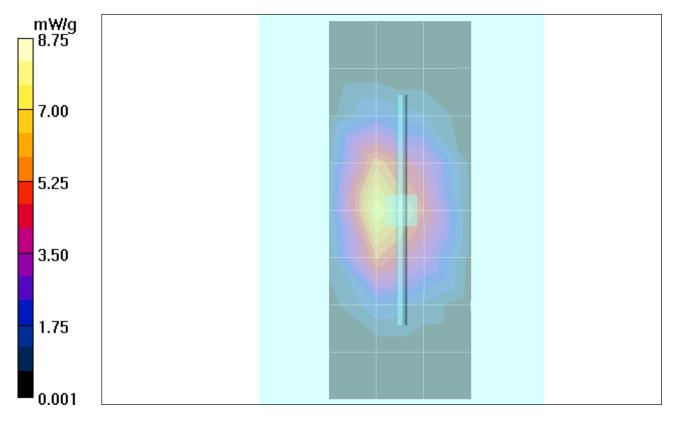
Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0:

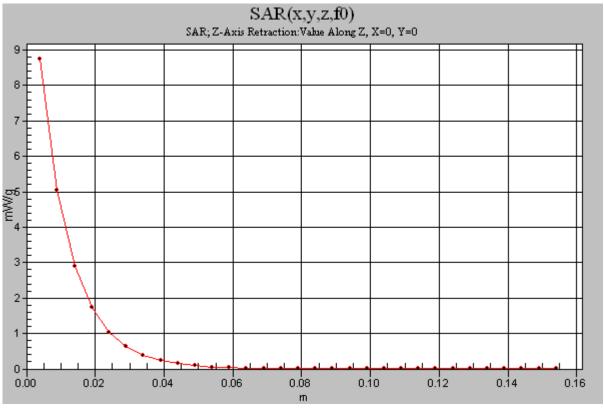
Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 82.3 V/m; Power Drift = 0.015 dB Peak SAR (extrapolated) = 13.2 W/kg

SAR(1 g) = 7.69 mW/g; SAR(10 g) = 4.1 mW/g Maximum value of SAR (measured) = 8.63 mW/g

Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 82.3 V/m; Power Drift = 0.015 dB Peak SAR (extrapolated) = 13.0 W/kg

SAR(1 g) = 7.62 mW/g; SAR(10 g) = 4.07 mW/g Maximum value of SAR (measured) = 8.49 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 8.75 mW/g

Date/Time: 3/19/2006 8:26:22 AM

Test Laboratory: Motorola 031906 900 MHz GOOD -1.1%

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN:080;

Procedure Notes: 900MHz System Performance Check / Dipole Sn# 080 PM1 Power = 200 mW

Sim. Temp@meas = 20.7C Sim. Temp@SPC = 20.7C Room Temp @ SPC = 20.8C

Communication System: CW - Dipole; Frequency: 900 MHz; Channel Number: 4; Duty Cycle: 1:1

Medium: VALIDATION Only;

Medium parameters used: f = 900 MHz; $\sigma = 0.98 \text{ mho/m}$; $\varepsilon_r = 41.7$; $\rho = 1000 \text{kg/m}^3$

DASY4 Configuration:

- Probe: ET3DV6R SN1513; ConvF(5.83, 5.83, 5.83); Calibrated: 9/19/2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 8/26/2005
- Phantom: R3: Sugar Water SAM; Type: SAM; Serial: TP-1153;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Daily SPC Check/Dipole Area Scan (4x9x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.04 mW/g

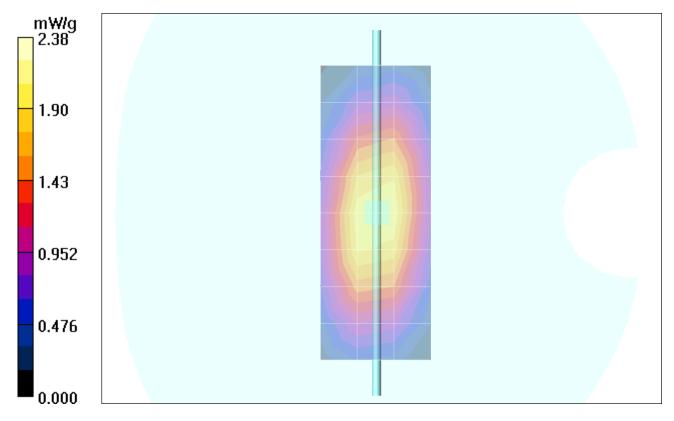
Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0:

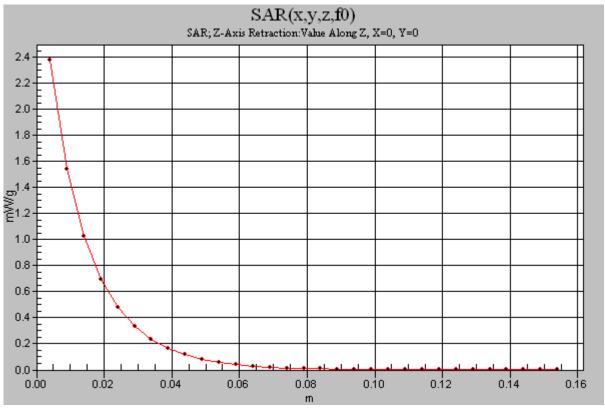
Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 51.1 V/m; Power Drift = -0.030 dB Peak SAR (extrapolated) = 3.38 W/kg

SAR(1 g) = 2.19 mW/g; SAR(10 g) = 1.39 mW/g Maximum value of SAR (measured) = 2.39 mW/g

Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 51.1 V/m; Power Drift = -0.030 dB Peak SAR (extrapolated) = 3.48 W/kg

SAR(1 g) = 2.28 mW/g; SAR(10 g) = 1.45 mW/g Maximum value of SAR (measured) = 2.47 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 2.38 mW/g

Appendix 2

SAR distribution plots for Phantom Head Adjacent Use

AMPS Cheek extended Page 1 of 1

Date/Time: 3/10/2006 7:05:22 PM

Test Laboratory: Motorola AMPS Cheek extended

Serial: 1E7540D2

Procedure Notes: Pwr Step: 2 Antenna Position: extended Accessory Model #: ???

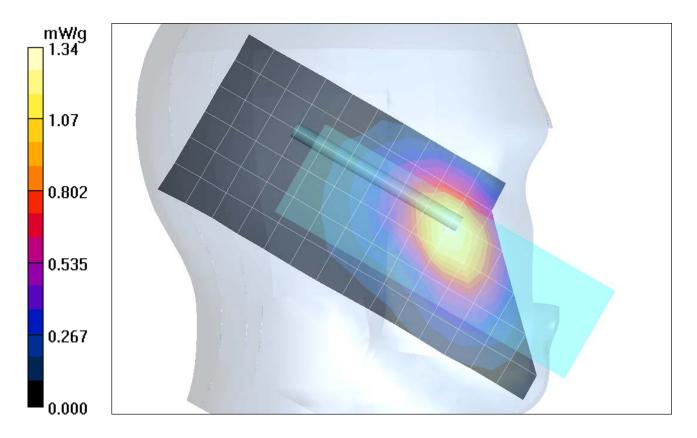
Battery Model #: SNN5783A DEVICE POSITION (cheek or rotated): cheek

Communication System: AMPS 835; Frequency: 824.04 MHz; Channel Number: 991; Duty Cycle: 1:1 Medium: Low Freq Head; Medium parameters used: f = 835 MHz; $\sigma = 0.91$ mho/m; $\varepsilon_r = 41.7$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ET3DV6 SN1398; ConvF(6.21, 6.21, 6.21); Calibrated: 2/20/2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn437; Calibrated: 11/28/2005
- Phantom: R3: Sugar Water SAM; Type: SAM; Serial: TP-1153;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Left Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.34 mW/g

Left Head Template/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 38.6 V/m; **Power Drift = 0.071 dB** Peak SAR (extrapolated) = 1.91 W/kg

SAR(1 g) = 1.34 mW/g; SAR(10 g) = 0.895 mW/g Maximum value of SAR (measured) = 1.44 mW/g

AMPS Cheek retracted Page 1 of 1

Date/Time: 3/17/2006 11:24:44 AM

Test Laboratory: Motorola AMPS Cheek retracted

Serial: 1E7540D2

Procedure Notes: Pwr Step: 2 Antenna Position: RET Accessory Model #: none

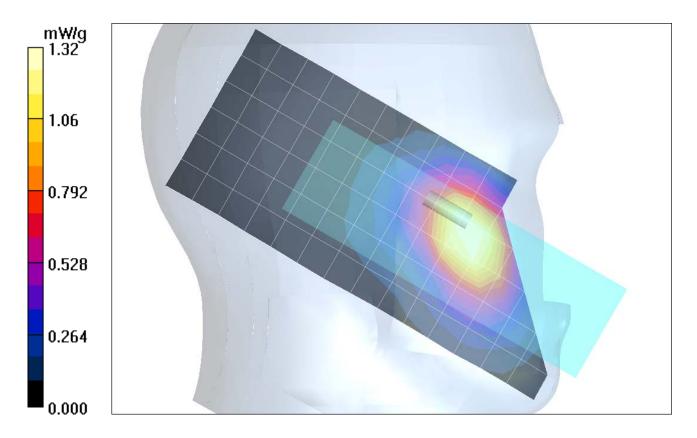
Battery Model #: SNN5783A DEVICE POSITION: CHEEK

Communication System: AMPS 835; Frequency: 836.52MHz; Channel Number: 384; Duty Cycle: 1:1 Medium: Low Freq Head; Medium parameters used: f = 835MHz; $\sigma = 0.92$ mho/m; $\varepsilon_r = 42.8$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ET3DV6R SN1513; ConvF(5.83, 5.83, 5.83); Calibrated: 9/19/2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn437; Calibrated: 11/28/2005
- Phantom: R3: Sugar Water SAM; Type: SAM; Serial: TP-1153;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Left Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.32 mW/g

Left Head Template/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 41.3 V/m; **Power Drift = -0.218 dB** Peak SAR (extrapolated) = 1.89 W/kg

SAR(1 g) = 1.33 mW/g; SAR(10 g) = 0.897 mW/g Maximum value of SAR (measured) = 1.43 mW/g

AMPS Tilt Extended Page 1 of 1

Date/Time: 3/11/2006 10:11:31 AM

Test Laboratory: Motorola AMPS Tilt Extended

Serial: 1E7540D2

Procedure Notes: Pwr Step: 2 Antenna Position: EXT Accessory Model #: none

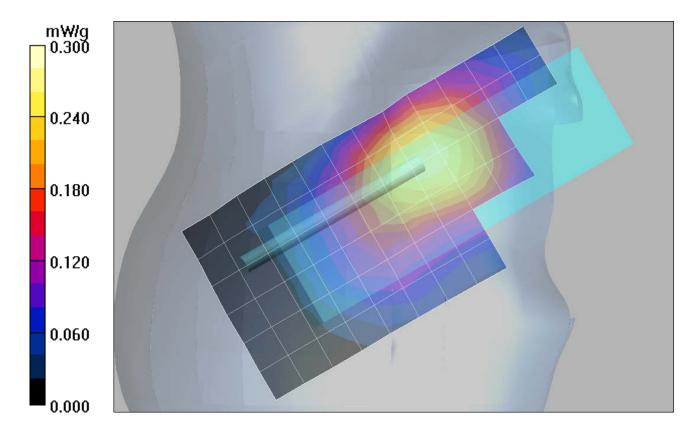
Battery Model #: SNN5783A DEVICE POSITION: TILT

Communication System: AMPS 835; Frequency: 836.52 MHz; Channel Number: 384; Duty Cycle: 1:1 Medium: Low Freq Head; Medium parameters used: f = 835 MHz; $\sigma = 0.91$ mho/m; $\varepsilon_r = 41.4$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ET3DV6 SN1398; ConvF(6.21, 6.21, 6.21); Calibrated: 2/20/2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn437; Calibrated: 11/28/2005
- Phantom: R3: Sugar Water SAM; Type: SAM; Serial: TP-1153;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Right Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.281 mW/g

Right Head Template/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 17.9 V/m; **Power Drift = 0.185 dB** Peak SAR (extrapolated) = 0.348 W/kg

SAR(1 g) = 0.273 mW/g; SAR(10 g) = 0.205 mW/g Maximum value of SAR (measured) = 0.287 mW/g

AMPS Tilt retracted Page 1 of 1

Date/Time: 3/10/2006 9:48:53 PM

Test Laboratory: Motorola AMPS Tilt retracted

Serial: 1E7540D2

Procedure Notes: Pwr Step: 2 Antenna Position:ret Accessory Model #: ???

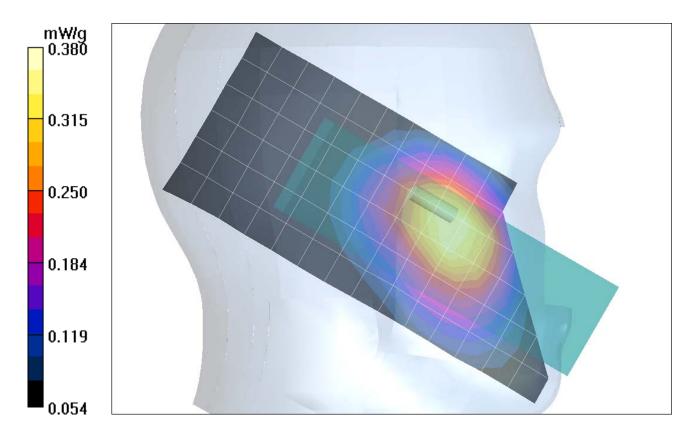
Battery Model #: SNN5783A DEVICE POSITION (cheek or rotated): rotated

Communication System: AMPS 835; Frequency: 836.52 MHz; Channel Number: 384; Duty Cycle: 1:1 Medium: Low Freq Head; Medium parameters used: f = 835 MHz; $\sigma = 0.91$ mho/m; $\varepsilon_r = 41.7$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ET3DV6 SN1398; ConvF(6.21, 6.21, 6.21); Calibrated: 2/20/2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn437; Calibrated: 11/28/2005
- Phantom: R3: Sugar Water SAM; Type: SAM; Serial: TP-1153;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Left Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.357 mW/g

Left Head Template/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 21.0 V/m; **Power Drift = -0.116 dB** Peak SAR (extrapolated) = 0.473 W/kg

SAR(1 g) = 0.351 mW/g; SAR(10 g) = 0.256 mW/g Maximum value of SAR (measured) = 0.374 mW/g

Date/Time: 3/12/2006 4:30:18 PM

Test Laboratory: Motorola 800 CDMA Cheek extended

Serial: 1E7540D2

Procedure Notes: Pwr Step: ALWAYS UP Antenna Position: EXT

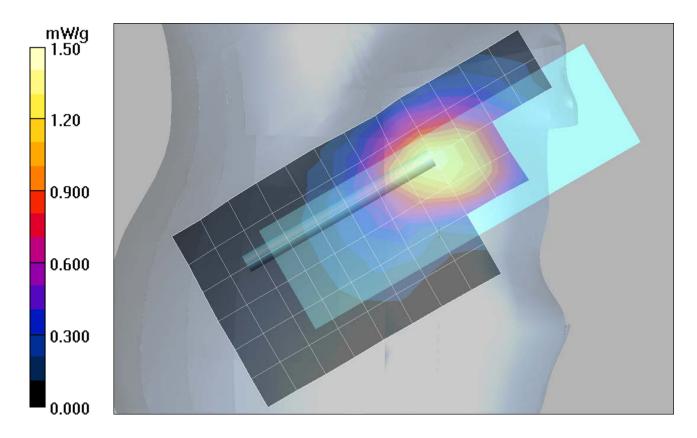
Battery Model #: SNN5762A DEVICE POSITION (cheek or rotated): CHEEK

Communication System: CDMA 835; Frequency: 836.52 MHz; Channel Number: 384; Duty Cycle: 1:1 Medium: Low Freq Head; Medium parameters used: f = 835 MHz; $\sigma = 0.91$ mho/m; $\varepsilon_r = 41.5$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ET3DV6 SN1398; ConvF(6.21, 6.21, 6.21); Calibrated: 2/20/2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn437; Calibrated: 11/28/2005
- Phantom: R3: Sugar Water SAM; Type: SAM; Serial: TP-1153;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Right Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.40 mW/g

Right Head Template/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 41.6 V/m; **Power Drift = -0.137 dB** Peak SAR (extrapolated) = 1.86 W/kg

SAR(1 g) = 1.36 mW/g; SAR(10 g) = 0.921 mW/g Maximum value of SAR (measured) = 1.48 mW/g

Date/Time: 3/11/2006 10:41:00 AM

Test Laboratory: Motorola 800 CDMA Cheek retracted

Serial: 1E7540D2

Procedure Notes: Pwr Step: UP Antenna Position: RET Accessory Model #: none

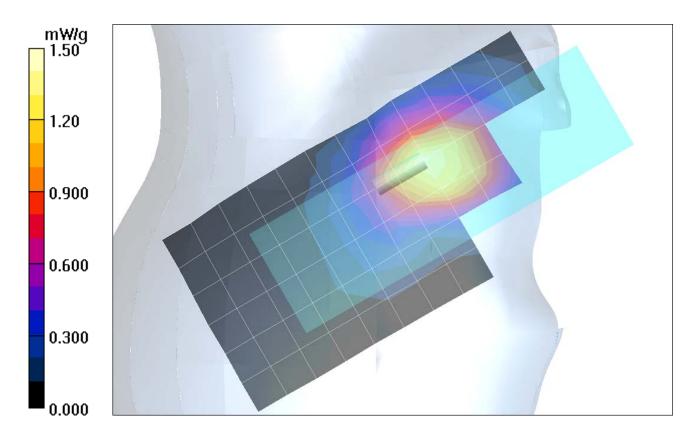
Battery Model #: SNN5783A DEVICE POSITION: CHEEK

Communication System: CDMA 835; Frequency: 836.52MHz; Channel Number: 384; Duty Cycle: 1:1 Medium: Low Freq Head; Medium parameters used: f = 835 MHz; $\sigma = 0.91$ mho/m; $\varepsilon_r = 41.4$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ET3DV6 SN1398; ConvF(6.21, 6.21, 6.21); Calibrated: 2/20/2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn437; Calibrated: 11/28/2005
- Phantom: R3: Sugar Water SAM; Type: SAM; Serial: TP-1153;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Right Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.43 mW/g

Right Head Template/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 41.1 V/m; **Power Drift = -0.055 dB** Peak SAR (extrapolated) = 1.88 W/kg

SAR(1 g) = 1.38 mW/g; SAR(10 g) = 0.938 mW/g Maximum value of SAR (measured) = 1.53 mW/g

800 CDMA Tilt extended Page 1 of 1

Date/Time: 3/11/2006 9:42:30 PM

Test Laboratory: Motorola 800 CDMA Tilt extended

Serial: 1E7540D2

Procedure Notes: Pwr Step: always up Antenna Position: ext

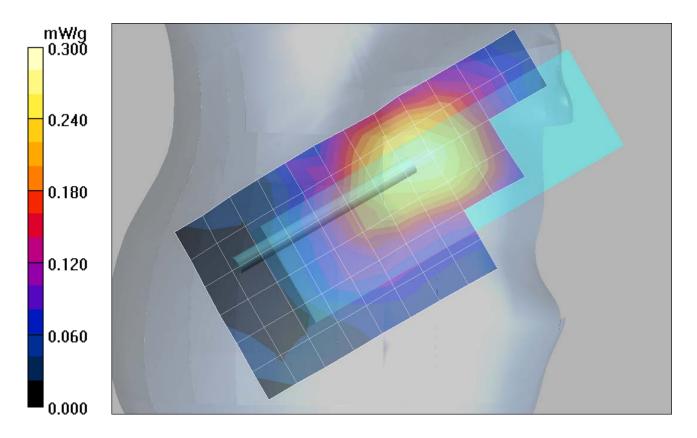
Battery Model #: snn5783a DEVICE POSITION tilt

Communication System: CDMA 835; Frequency: 836.52 MHz; Channel Number: 384; Duty Cycle: 1:1 Medium: Low Freq Head; Medium parameters used: f = 835 MHz; $\sigma = 0.91$ mho/m; $\varepsilon_r = 41.5$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ET3DV6 SN1398; ConvF(6.21, 6.21, 6.21); Calibrated: 2/20/2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn437; Calibrated: 11/28/2005
- Phantom: R3: Sugar Water SAM; Type: SAM; Serial: TP-1153;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Right Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.289 mW/g

Right Head Template/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.6 V/m; **Power Drift = 0.004 \text{ dB}** Peak SAR (extrapolated) = 0.360 W/kg

SAR(1 g) = 0.277 mW/g; SAR(10 g) = 0.209 mW/g Maximum value of SAR (measured) = 0.296 mW/g

800 CDMA Tilt retracted Page 1 of 1

Date/Time: 3/11/2006 10:06:57 PM

Test Laboratory: Motorola 800 CDMA Tilt retracted

Serial: 1E7540D2

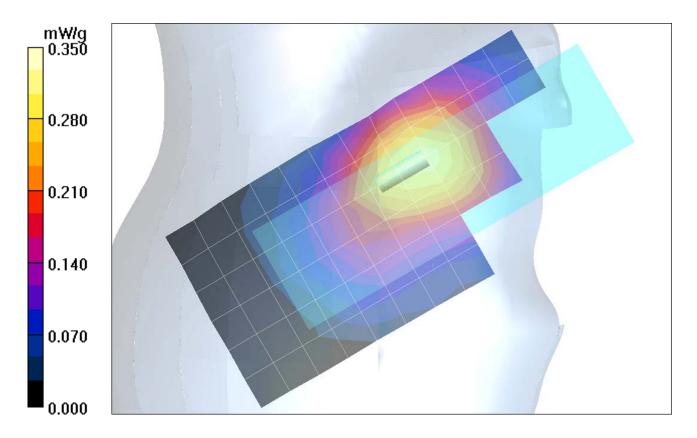
Procedure Notes: Pwr Step: always up Antenna Position: ret Battery Model #: snn5783a DEVICE POSITION tilt

Communication System: CDMA 835; Frequency: 836.52 MHz; Channel Number:384; Duty Cycle: 1:1 Medium: Low Freq Head; Medium parameters used: f = 835 MHz; $\sigma = 0.91$ mho/m; $\varepsilon_r = 41.5$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ET3DV6 SN1398; ConvF(6.21, 6.21, 6.21); Calibrated: 2/20/2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn437; Calibrated: 11/28/2005
- Phantom: R3: Sugar Water SAM; Type: SAM; Serial: TP-1153;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Right Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.329 mW/g

Right Head Template/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 19.7 V/m; **Power Drift = -0.009 dB** Peak SAR (extrapolated) = 0.420 W/kg

SAR(1 g) = 0.313 mW/g; SAR(10 g) = 0.232 mW/g Maximum value of SAR (measured) = 0.340 mW/g

Date/Time: 3/15/2006 6:59:21 PM

Test Laboratory: Motorola 1900 CDMA Cheek extended

Serial: 1E7540D2

Procedure Notes: Pwr Step:all bits up Antenna Position: extended Accessory Model #: ???

Battery Model #: SNN5762A DEVICE POSITION (cheek or rotated): cheek

Communication System: CDMA 1900; Frequency: 1851.25 MHz; Channel Number: 25; Duty Cycle: 1:1

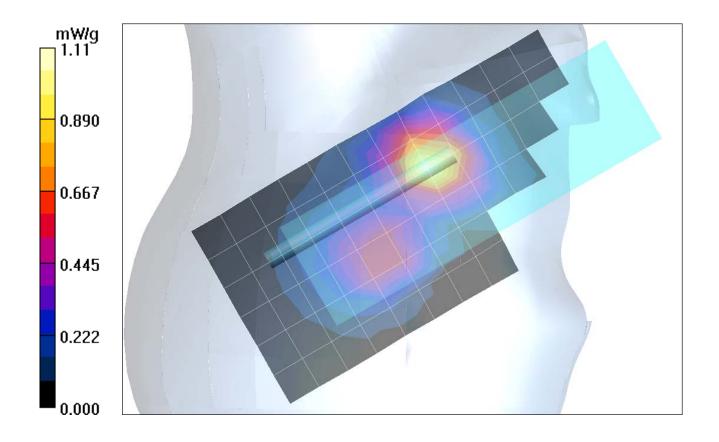
Medium: Back-Up Glycol Head;

Medium parameters used: f = 1880 MHz; $\sigma = 1.44 \text{ mho/m}$; $\varepsilon_r = 38.3$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ET3DV6 SN1398; ConvF(5.05, 5.05, 5.05); Calibrated: 2/20/2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn437; Calibrated: 11/28/2005
 Phantom: R3: Glycol SAM; Type: SAM; Serial: TP-1236;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Right Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.11 mW/g

Right Head Template/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 25.3 V/m; **Power Drift** = **-0.220 dB** Peak SAR (extrapolated) = 1.75 W/kg

SAR(1 g) = 0.997 mW/g; SAR(10 g) = 0.552 mW/g Maximum value of SAR (measured) = 1.09 mW/g

Date/Time: 3/15/2006 3:34:52 PM

Test Laboratory: Motorola 1900 CDMA Cheek retracted

Serial: 1E7540D2

Procedure Notes: Pwr Step: Always UP Antenna Position: RET Accessory Model #:

Battery Model #: SNN5762A DEVICE POSITION: CHEEK

Communication System: CDMA 1900; Frequency: 1880MHz; Channel Number: 600; Duty Cycle: 1:1

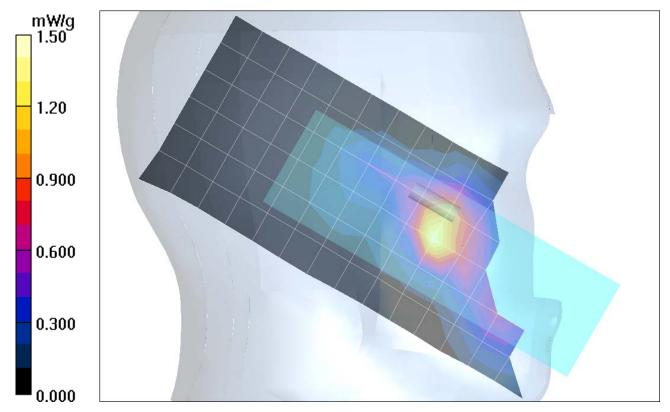
Medium: Back-Up Glycol Head;

Medium parameters used: f = 1880 MHz; s = 1.44 mho/m; er = 38.3; r = 1000 kg/m3

DASY4 Configuration:

- Probe: ET3DV6 SN1398; ConvF(5.05, 5.05, 5.05); Calibrated: 2/20/2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn437; Calibrated: 11/28/2005
- Phantom: R3: Glycol SAM; Type: SAM; Serial: TP-1236;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Left Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.43 mW/g

Left Head Template/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 26.8 V/m; **Power Drift** = **-0.462 dB** Peak SAR (extrapolated) = 2.52 W/kg

SAR(1 g) = 1.35 mW/g; SAR(10 g) = 0.719 mW/g Maximum value of SAR (measured) = 1.46 mW/g

Date/Time: 3/15/2006 9:09:00 PM

Test Laboratory: Motorola 1900 CDMA Tilt extended

Serial: 1E7540D2

Procedure Notes: wr Step:all bits up Antenna Position: extended Accessory Model #: ???

Battery Model #: SNN5762A DEVICE POSITION (cheek or rotated): rotated

Communication System: CDMA 1900; Frequency: 1880 MHz; Channel Number: 600; Duty Cycle: 1:1

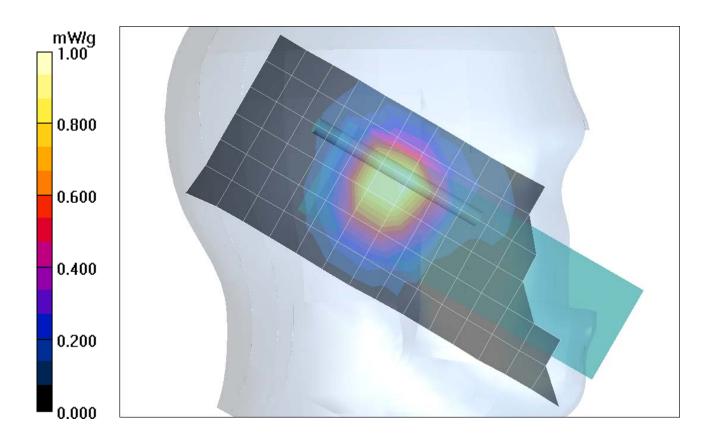
Medium: Back-Up Glycol Head;

Medium parameters used: f = 1880 MHz; $\sigma = 1.44 \text{ mho/m}$; $\varepsilon_r = 38.3$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ET3DV6 SN1398; ConvF(5.05, 5.05, 5.05); Calibrated: 2/20/2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn437; Calibrated: 11/28/2005
- Phantom: R3: Glycol SAM; Type: SAM; Serial: TP-1236;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Left Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.00 mW/g

Left Head Template/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 29.0 V/m; **Power Drift = -0.494 dB** Peak SAR (extrapolated) = 1.55 W/kg

SAR(1 g) = 0.970 mW/g; SAR(10 g) = 0.595 mW/g Maximum value of SAR (measured) = 1.06 mW/g

Date/Time: 3/15/2006 5:50:59 PM

Test Laboratory: Motorola 1900 CDMA Tilt retracted

Serial: 1E7540D2

Procedure Notes: Pwr Step: Always UP Antenna Position: RET Accessory Model #:

Battery Model #: SNN5762A DEVICE POSITION: rotated

Communication System: CDMA 1900; Frequency: 1880MHz; Channel Number: 600; Duty Cycle: 1:1

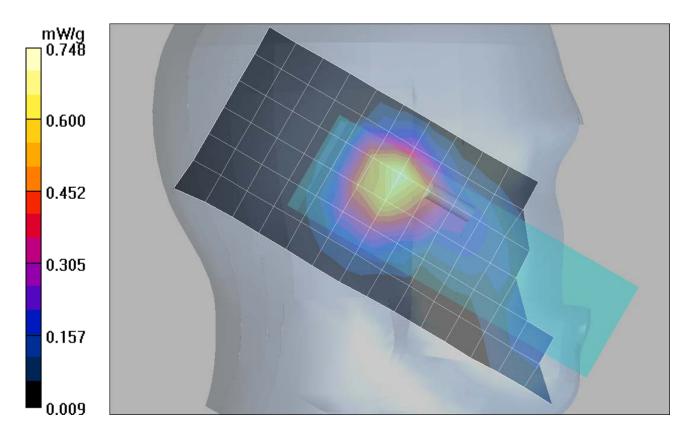
Medium: Back-Up Glycol Head;

Medium parameters used: f = 1880 MHz; $\sigma = 1.44$ mho/m; $\varepsilon_r = 38.3$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ET3DV6 SN1398; ConvF(5.05, 5.05, 5.05); Calibrated: 2/20/2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn437; Calibrated: 11/28/2005
- Phantom: R3: Glycol SAM; Type: SAM; Serial: TP-1236;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Left Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.720 mW/g

Left Head Template/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 23.9 V/m; **Power Drift = -0.242 dB** Peak SAR (extrapolated) = 1.14 W/kg

SAR(1 g) = 0.689 mW/g; SAR(10 g) = 0.411 mW/g Maximum value of SAR (measured) = 0.748 mW/g

Appendix 3

SAR distribution plots for Body Worn Configuration

Date/Time: 3/19/2006 9:19:29 AM

Test Laboratory: Motorola AMPS Body Worn extended

Serial: 1E7540D2

Procedure Notes: Pwr Step: 2 Antenna Position: EXT

Battery Model #: SNN5762A Accessory Model # = back 25mm

Communication System: AMPS 835; Frequency: 836.52 MHz; Channel Number: 384; Duty Cycle: 1:1

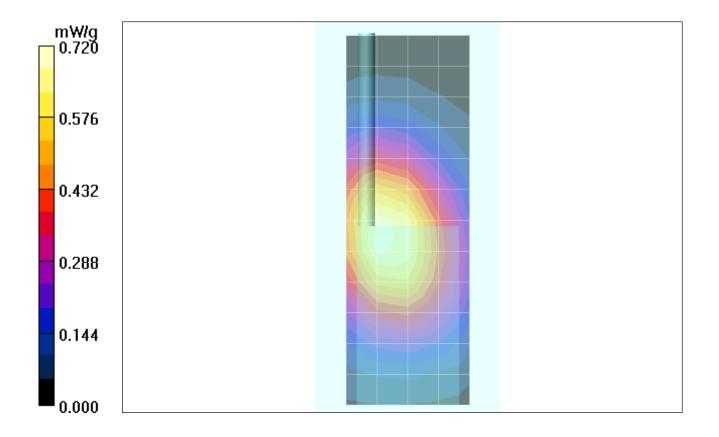
Medium: Low Freq Body;

Medium parameters used: f = 835 MHz; $\sigma = 0.97 \text{mho/m}$; $\varepsilon_r = 55.5$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ET3DV6R SN1513; ConvF(5.66, 5.66, 5.66); Calibrated: 9/19/2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 8/26/2005
- Phantom: R3: Sect.2, Amy Twin; Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Amy Twin Phone Template/Area Scan - Normal Body (15mm) (13x7x1):


Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.695 mW/g

Amy Twin Phone Template/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 26.0 V/m; **Power Drift = 0.013 dB** Peak SAR (extrapolated) = 0.876 W/kg

SAR(1 g) = 0.673 mW/g; SAR(10 g) = 0.488 mW/g Maximum value of SAR (measured) = 0.713 mW/g

Date/Time: 3/19/2006 8:56:48 AM

Test Laboratory: Motorola AMPS Body Worn retracted

Serial: 1E7540D2

Procedure Notes: Pwr Step: 2 Antenna Position: RET

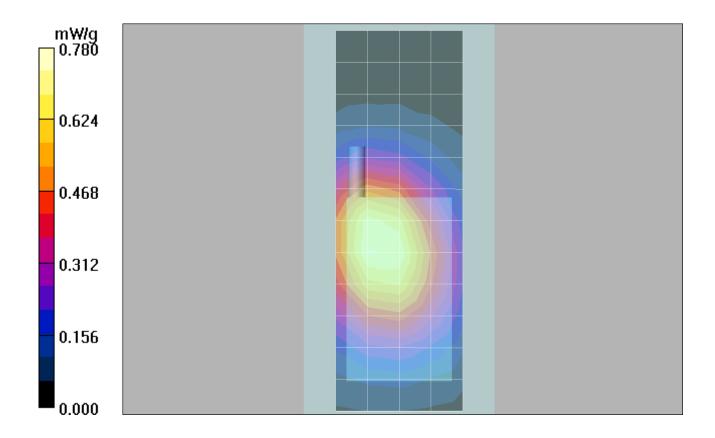
Battery Model #: SNN5762A Accessory Model # = back 25mm

Communication System: AMPS 835; Frequency: 836.52 MHz; Channel Number: 384; Duty Cycle: 1:1 Medium: Low Freq Body; Medium parameters used: f = 835 MHz; $\sigma = 0.97$ mho/m; $\varepsilon_r = 55.5$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ET3DV6R SN1513; ConvF(5.66, 5.66, 5.66); Calibrated: 9/19/2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 8/26/2005
- Phantom: R3: Sect.2, Amy Twin; Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Amy Twin Phone Template/Area Scan - Normal Body (15mm) (13x7x1):


Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.731 mW/g

Amy Twin Phone Template/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 27.4 V/m; **Power Drift = -0.090 dB** Peak SAR (extrapolated) = 0.978 W/kg

SAR(1 g) = 0.737 mW/g; SAR(10 g) = 0.528 mW/g Maximum value of SAR (measured) = 0.786 mW/g

Date/Time: 3/18/2006 5:49:31 AM

Test Laboratory: Motorola 800 CDMA Body Worn extended

Serial: 1E7540D2

Procedure Notes: Pwr Step: up Antenna Position: EXT

Battery Model #: SNN5762A Accessory Model # = back 25mm

Communication System: CDMA 835; Frequency: 836.52 MHz; Channel Number: 384; Duty Cycle: 1:1

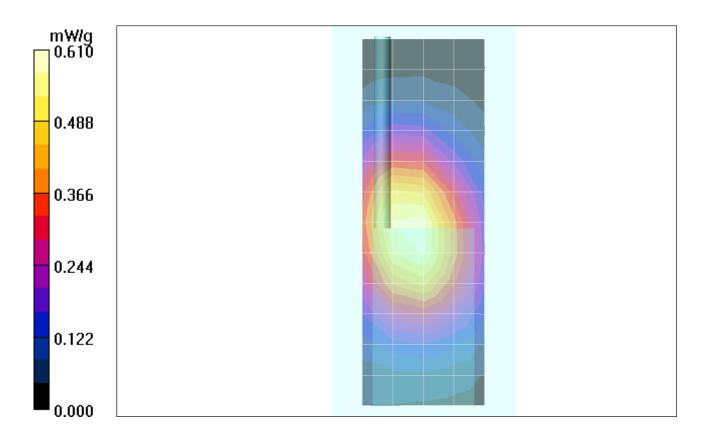
Medium: Low Freq Body;

Medium parameters used: f = 835 MHz; $\sigma = 0.98 \text{mho/m}$; $\varepsilon_r = 55.7$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ET3DV6R SN1513; ConvF(5.66, 5.66, 5.66); Calibrated: 9/19/2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 8/26/2005
- Phantom: R3: Sect.2, Amy Twin; Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Amy Twin Phone Template/Area Scan - Normal Body (15mm) (13x7x1):


Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.586 mW/g

Amy Twin Phone Template/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 25.2 V/m; **Power Drift = -0.083 dB** Peak SAR (extrapolated) = 0.807 W/kg

SAR(1 g) = 0.589 mW/g; SAR(10 g) = 0.420 mW/g Maximum value of SAR (measured) = 0.634 mW/g

Date/Time: 3/18/2006 5:27:45 AM

Test Laboratory: Motorola 800 CDMA Body Worn retracted

Serial: 1E7540D2

Procedure Notes: Pwr Step: up Antenna Position: RET

Battery Model #: SNN5762A Accessory Model # = back 25mm

Communication System: CDMA 835; Frequency: 836.52 MHz; Channel Number: 384; Duty Cycle: 1:1

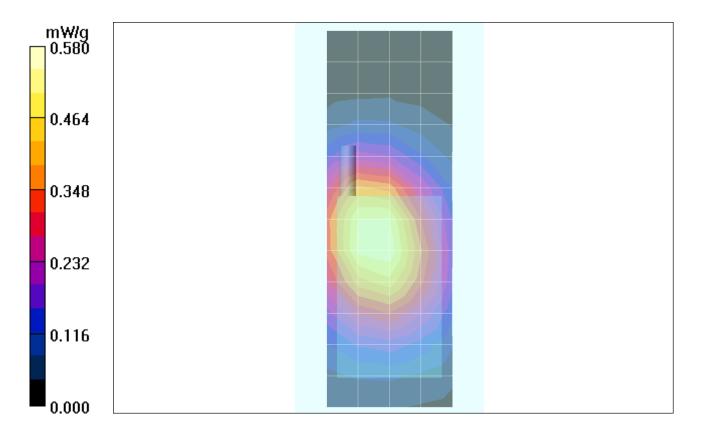
Medium: Low Freq Body;

Medium parameters used: f = 835 MHz; $\sigma = 0.98 \text{mho/m}$; $\varepsilon_r = 55.7$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ET3DV6R SN1513; ConvF(5.66, 5.66, 5.66); Calibrated: 9/19/2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 8/26/2005
- Phantom: R3: Sect.2, Amy Twin; Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Amy Twin Phone Template/Area Scan - Normal Body (15mm) (13x7x1):


Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.534 mW/g

Amy Twin Phone Template/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 23.0 V/m; **Power Drift = -0.093 dB** Peak SAR (extrapolated) = 0.708 W/kg

SAR(1 g) = 0.533 mW/g; SAR(10 g) = 0.384 mW/g Maximum value of SAR (measured) = 0.561 mW/g

Date/Time: 3/17/2006 10:30:30 AM

Test Laboratory: Motorola 1900 CDMA Body Worn extended

Serial: 1E7540D2

Procedure Notes: Pwr Step: allup Antenna Position: EXT Battery Model #: SNN5762A Accessory Model # = back 25mm

Communication System: CDMA 1900; Frequency: 1880 MHz; Channel Number: 600; Duty Cycle: 1:1

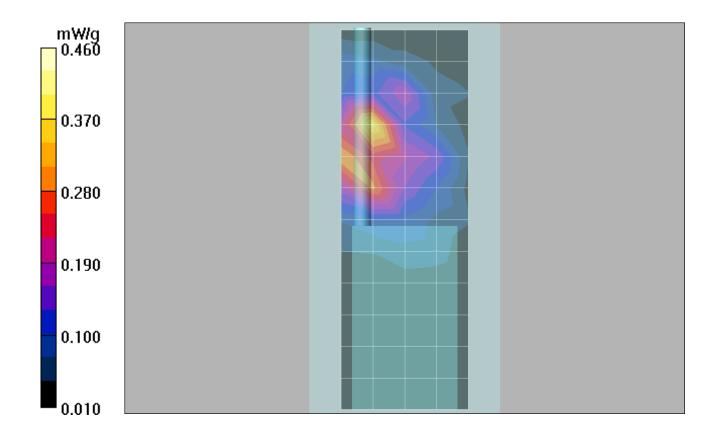
Medium: Regular Glycol Body;

Medium parameters used: f = 1880 MHz; $\sigma = 1.58 \text{ mho/m}$; $\varepsilon_r = 51.5$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ET3DV6R SN1513; ConvF(4.16, 4.16, 4.16); Calibrated: 9/19/2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn437; Calibrated: 11/28/2005
- Phantom: R3: Sect.1, Amy Twin; Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Amy Twin Phone Template/Area Scan - Normal Body (15mm) (13x7x1):


Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.383 mW/g

Amy Twin Phone Template/Zoom Scan - to correct max out (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.8 V/m; **Power Drift = -0.735 dB** Peak SAR (extrapolated) = 2.02 W/kg

SAR(1 g) = 0.360 mW/g; SAR(10 g) = 0.187 mW/g Maximum value of SAR (measured) = 0.489 mW/g

Date/Time: 3/15/2006 1:56:14 PM

Test Laboratory: Motorola 1900 CDMA Body Worn retracted

Serial: 1E7540D2

Procedure Notes: Pwr Step: Always UP Antenna Position: RET

Battery Model #: SNN5783A Accessory Model # = BACK of Phone 25mm Away

Communication System: CDMA 1900; Frequency: 1880 MHz; Channel Number: 600; Duty Cycle: 1:1

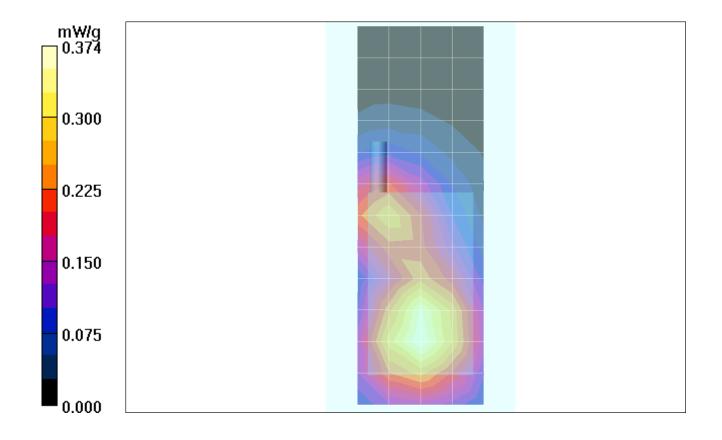
Medium: Regular Glycol Body; Medium

parameters used: f = 1880 MHz; $\sigma = 1.58 \text{ mho/m}$; $\varepsilon_r = 51.5$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ET3DV6 SN1398; ConvF(4.6, 4.6, 4.6); Calibrated: 2/20/2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn437; Calibrated: 11/28/2005
- Phantom: R3: Sect.1, Amy Twin; Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Amy Twin Phone Template/Area Scan - Normal Body (15mm) (13x7x1):


Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.374 mW/g

Amy Twin Phone Template/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.4 V/m; **Power Drift = -0.141 dB** Peak SAR (extrapolated) = 0.576 W/kg

SAR(1 g) = 0.354 mW/g; SAR(10 g) = 0.224 mW/g Maximum value of SAR (measured) = 0.380 mW/g

Appendix 4

Probe Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

Meterola MDb

certificate Nov ETG4 398 Feb06

Object OA CAL-01.v5 Calibration procedure(s) Calibration procedure for dosimetric E-field probes Calibration date: Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards Scheduled Calibration Cal Date (Calibrated by, Certificate No.) Power meter E4419B GB41293874 3-May-05 (METAS, No. 251-00466) May-06 Power sensor E4412A MY41495277 3-May-05 (METAS, No. 251-00466) May-06 Power sensor E4412A MY41498087 3-May-05 (METAS, No. 251-00466) May-06 Reference 3 dB Attenuator SN: S5054 (3c) 11-Aug-05 (METAS, No. 251-00499) Aug-06 Reference 20 dB Attenuator SN: S5086 (20b) 3-May-05 (METAS, No. 251-00467) May-06 Reference 30 dB Attenuator SN: S5129 (30b) Aug-06 11-Aug-05 (METAS, No. 251-00500) Reference Probe ES3DV2 SN: 3013 Jan-07 2-Jan-06 (SPEAG, No. ES3-3013_Jan06) DAE4 SN: 654 Feb-07 2-Feb-06 (SPEAG, No. DAE4-654_Feb06) Secondary Standards ID# Check Date (in house) Scheduled Check US3642U01700 RF generator HP 8648C in house check: Nov-07 4-Aug-99 (SPEAG, in house check Nov-05) Network Analyzer HP 8753E US37390585 18-Oct-01 (SPEAG, in house check Nov-05) In house check: Nov 06 Name **Function** Signature Calibrated by: Katja Pokovic Technical Manager Approved by: Quality Manager Issued: February 20, 2006

Certificate No: ET3-1398 Feb06

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConF sensitivity in TSL / NORMx,y,z

DCP diode compression point Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power-sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1398_Feb06 Page 2 of 9

ET3DV6 SN:1398 February 20, 2006

Probe ET3DV6

SN:1398

Manufactured:

October 24, 1999

Last calibrated:

February 24, 2005

Recalibrated:

February 20, 2006

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ET3DV6 SN:1398

Sensitivity in Free	Diode Compression ^B				
NormX	1.49 ± 10.1%	μV/(V/m) ²	DCP X	92 mV	
NormY	1.64 ± 10.1%	μ V/(V/m) ²	DCP Y	92 mV	
NormZ	1.58 ± 10.1%	μ V/(V/m) ²	DCP Z	92 mV	

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL 900 MHz Typical SAR gradient: 5 % per mm

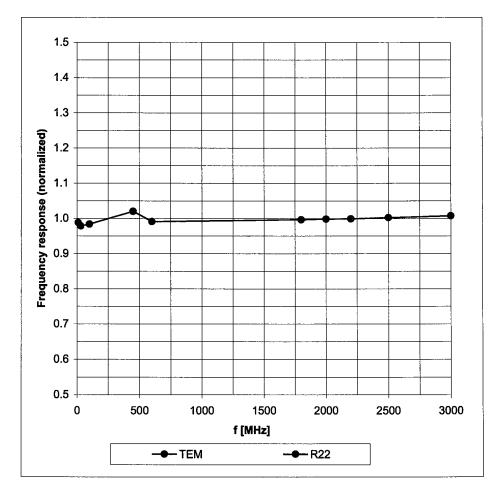
Sensor Center to	o Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	8.8	4.8
SAR _{be} [%]	With Correction Algorithm	0.1	0.2

TSL 1810 MHz Typical SAR gradient: 10 % per mm

Sensor Center to	o Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	7.5	4.2
SAR _{be} [%]	With Correction Algorithm	0.2	0.3

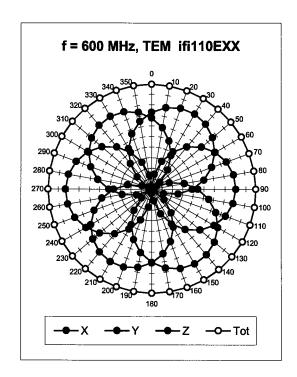
Sensor Offset

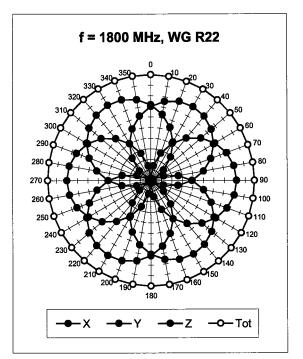
Probe Tip to Sensor Center 2.7 mm

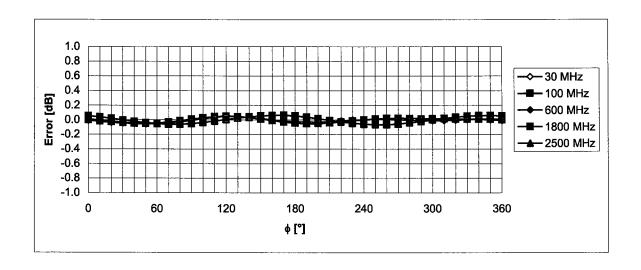

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

^B Numerical linearization parameter: uncertainty not required.

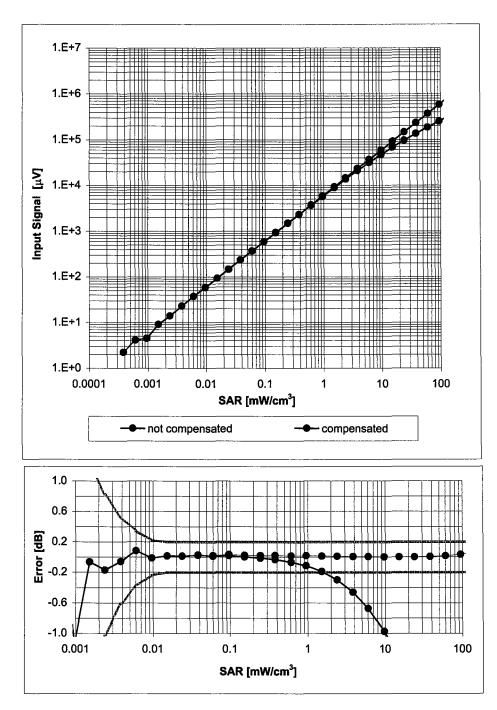

Frequency Response of E-Field


(TEM-Cell:ifi110 EXX, Waveguide: R22)

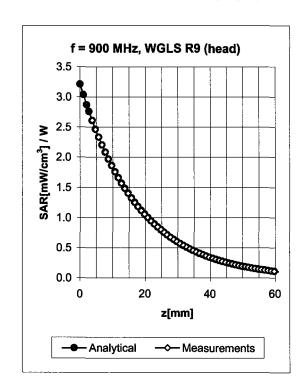


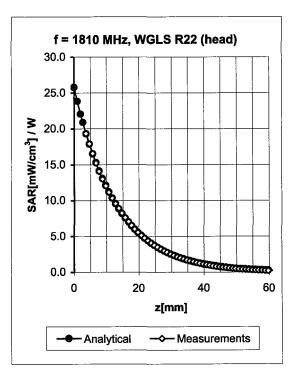
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$



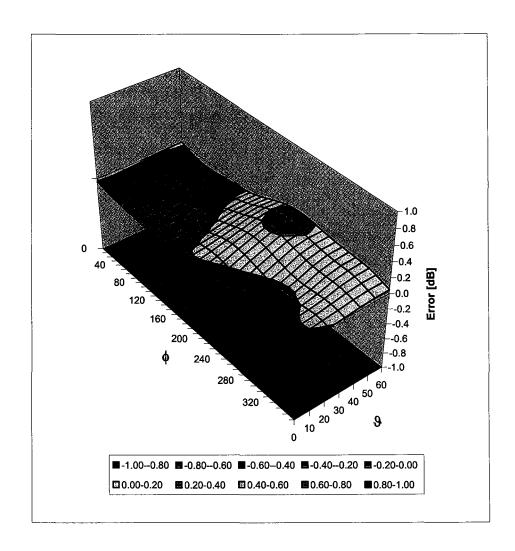
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head})


(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment



f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.56	1.90	6.21 ± 11.0% (k=2)
1810	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.62	1.68	5.05 ± 11.0% (k=2)
1950	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.74	1.52	4.90 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.89	1.21	4.44 ± 11.8% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.50	2.12	5.91 ± 11.0% (k=2)
1810	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.67	2.03	4.60 ± 11.0% (k=2)
1950	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.56	2.37	4.42 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.71	1.47	4.14 ± 11.8% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

Client

Motorola MDb

Certificate No: ET3-1513_Sep05

CALIBRATION CERTIFICATE

Object ET3DV6R - SN:1513

Calibration procedure(s) QA CAL-01.v5

Calibration procedure for dosimetric E-field probes

Calibration date: September 19, 2005

Condition of the calibrated item In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

	and the second s		,
Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	3-May-05 (METAS, No. 251-00466)	May-06
Power sensor E4412A	MY41495277	3-May-05 (METAS, No. 251-00466)	May-06
Power sensor E4412A	MY41498087	3-May-05 (METAS, No. 251-00466)	May-06
Reference 3 dB Attenuator	SN: S5054 (3c)	11-Aug-05 (METAS, No. 251-00499)	Aug-06
Reference 20 dB Attenuator	SN: S5086 (20b)	3-May-05 (METAS, No. 251-00467)	May-06
Reference 30 dB Attenuator	SN: S5129 (30b)	11-Aug-05 (METAS, No. 251-00500)	Aug-06
Reference Probe ES3DV2	SN: 3013	7-Jan-05 (SPEAG, No. ES3-3013_Jan05)	Jan-06
DAE4	SN: 654	29-Nov-04 (SPEAG, No. DAE4-654_Nov04)	Nov-05
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (SPEAG, in house check Dec-03)	In house check: Dec-05
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Nov-04)	In house check: Nov 05
	Name	Function	Signature
Calibrated by:	Nico Vetterli	Laboratory Technician	D.VESTEET
Adb			and the second
Approved by:	Katja Pokovic	Technical Manager	Havi- Kalf

Issued: September 19, 2005

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ET3-1513_Sep05

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConF sensitivity in TSL / NORMx,y,z DCP diode compression point

Polarization φ

φ rotation around probe axis

Polarization ϑ ϑ rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of
 the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1513_Sep05 Page 2 of 9

ET3DV6R SN:1513

Probe ET3DV6R

SN:1513

Manufactured:

May 3, 2002

Last calibrated:

September 24, 2004

Recalibrated:

September 19, 2005

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ET3DV6R SN:1513

Sensitivity in Fre	Diode Compression				
NormX	2.31 ± 10.1%	μ V/(V/m) ²	DCP X	94 mV	
NormY	1.98 ± 10.1%	μ V/(V/m) ²	DCP Y	94 mV	
NormZ	2.11 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	94 mV	

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL 900 MHz Typical SAR gradient: 5 % per mm

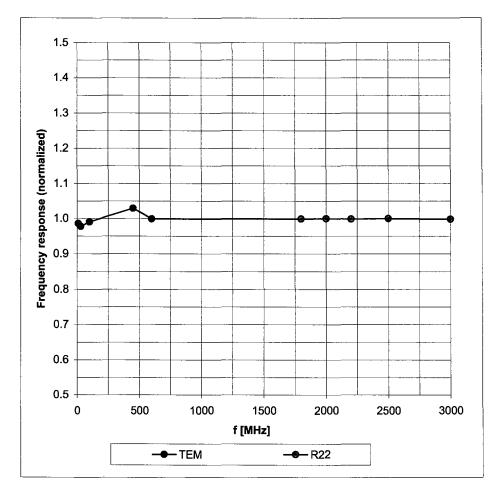
Sensor Center t	o Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	8.7	4.7
SAR _{be} [%]	With Correction Algorithm	0.1	0.2

TSL 1810 MHz Typical SAR gradient: 10 % per mm

Sensor Center to	3.7 mm	4.7 mm	
SAR _{be} [%]	Without Correction Algorithm	13.1	8.7
SAR _{be} [%]	With Correction Algorithm	1.0	0.1

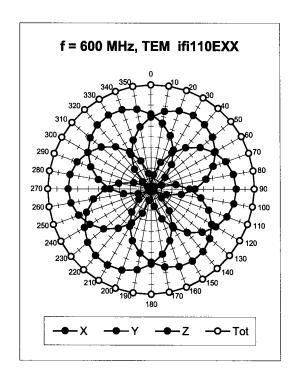
Sensor Offset

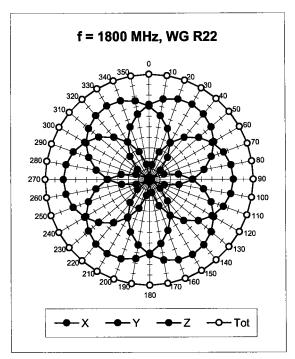
Probe Tip to Sensor Center 2.7 mm

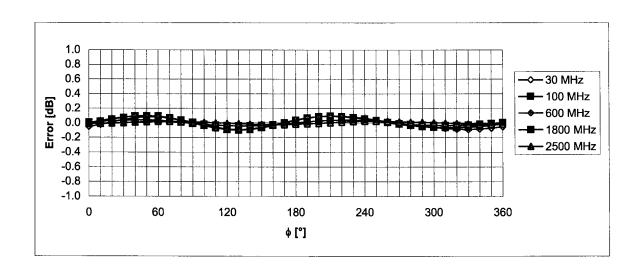

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

^B Numerical linearization parameter: uncertainty not required.

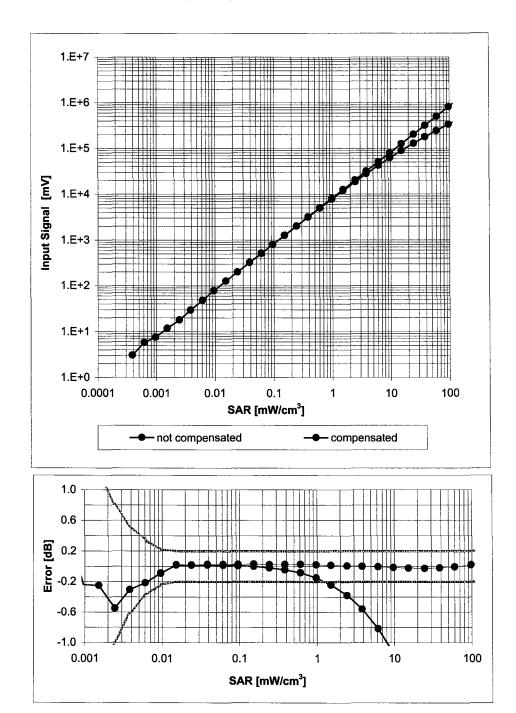

Frequency Response of E-Field


(TEM-Cell:ifi110 EXX, Waveguide: R22)

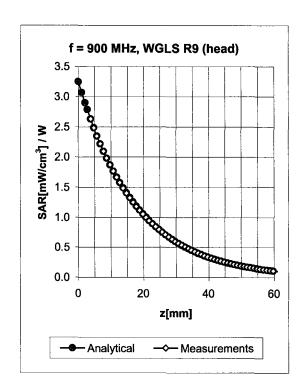


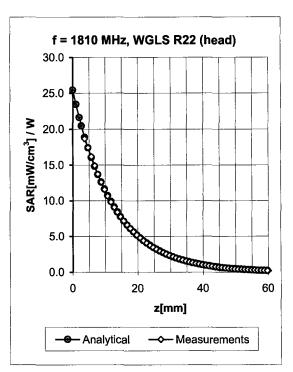
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$



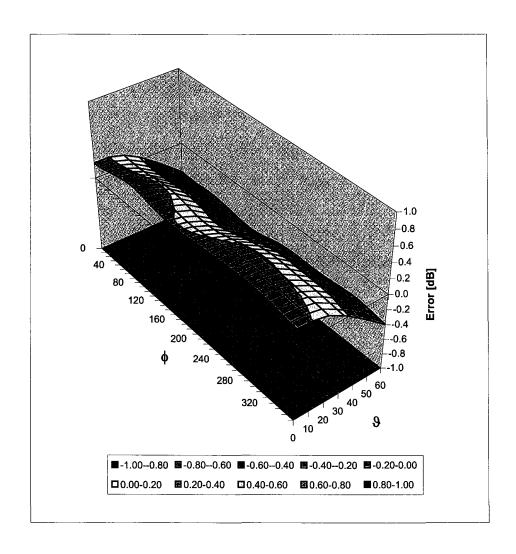
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head})


(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment



f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.57	1.87	5.83 ± 11.0% (k=2)
1810	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.66	2.22	4.76 ± 11.0% (k=2)
1950	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.61	2.40	4.41 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.77	2.04	4.10 ± 11.8% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.53	2.03	5.66 ± 11.0% (k=2)
1810	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.60	2.59	4.16 ± 11.0% (k=2)
1950	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.66	2.37	3.99 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.92	1.69	3.90 ± 11.8% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Appendix 5

Measurement Uncertainty Budget

				e =			h= cxf	i =	
a a	b	С	d	f(d,k)	f	g	/e	cxg /e	k
	IEEE	Tol.	Prob		Ci	Ci	1 g	10 g	
	1528	(± %)	Dist		(1 g)	(10 g)	u i	u i	
Uncertainty Component	section	(= 70)	Dist	Div.	(19)	9/	(±%)	(±%)	V _i
Measurement System							())		
Probe Calibration	E.2.1	5.9	N	1.00	1	1	5.9	5.9	8
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	8
Hemispherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	8
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	8
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	8
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	8
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3	8
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	8
Integration Time	E.2.8	1.1	R	1.73	1	1	0.6	0.6	8
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	8
RF Ambient Conditions -									
Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	8
Probe Positioner Mech.									
Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	8
Probe Positioning w.r.t	- 0.0	4.4	-	4.70	_		0.0	0.0	
Phantom May SAR Freduction (aut	E.6.3	1.4	R	1.73	1	1	8.0	8.0	∞
Max. SAR Evaluation (ext., int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	8
Test sample Related	L.J	3.4	IX	1.73	I	ı	2.0	2.0	
Test Sample Positioning	E.4.2	3.2	N	1.00	1	1	3.2	3.2	29
Device Holder Uncertainty	E.4.1	4.0	N	1.00	1	1	4.0	4.0	8
SAR drift	6.6.2	5.0	R	1.73	1	1	2.9	2.9	8
Phantom and Tissue	0.0.2	3.0	IX	1.73	I	ı	2.9	2.3	8
Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	8
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	8
Liquid Conductivity									-
(measurement)	E.3.3	3.3	N	1.00	0.64	0.43	2.1	1.4	8
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	8
Liquid Permittivity									
(measurement)	E.3.3	1.9	N	1.00	0.6	0.49	1.1	0.9	∞
Combined Standard			566					400	
Uncertainty			RSS				11.1	10.8	411
Expanded Uncertainty								24.2	
(95% CONFIDENCE LEVEL)			<i>k</i> =2				22.2	21.6	

Appendix 7

Dipole Characterization Certificate

NOTE: See FCC Exhibit 7 for Appendix 6

Certification of System Performance Check Targets Based on APP-0396

-Historical Data-

	900MHz	
IEEE1528 Target:	10.8	(W/k
Measurement Uncertainty (k=1):	9 ()%	
Measurement Period:	9-Nov-04 to 2-June-05	
# of tests performed:	813	
Grand Average:	11.3	(W/k
% Delta (Average - IEEE1528 Target)	4.4%	
Is % Delta <= Expanded Measurement Uncertainty (k=2)?	Yes	
Accept/Reject <u>Average</u> as new system performance check target?		
•	Historic data included the following 900MHz Dipoles:	
	69, 77	1
		_
	79, 80 91, 94	

-New System Performance Check Targets- per APP-0396

(based on analysis of historical data)

Frequency	SAR Target (W/kg)	Permittivity	Conductivity (S/m)	
900MHz	11.3	41.5 ± 5%	0.97 ± 5%	

ovals- Submitted by:	Marge Kaunas	Date: 2-Jun-05
Signed:	Manga Kanna	
Comments:	Spreadsheet detailing referenced historical measureme	ents is available upon request.
Approved by:	Mark Douglas	Date: 2-Jun-05
Signed:	Mark Payla	
_		