

## Exhibit 11: Class II Permissive Change SAR Test Report IHDT56FR2 v. 2

**Date of test:** 21 - 24 November 2005 and 16 - 19 December 2005

**Date of Report:** 19-Dec-2005

Motorola Mobile Devices Business Product Safety & Compliance Laboratory

600 N. US Highway 45

Laboratory: Room: MW113

Libertyville, Illinois 60048

**Test Responsible:** Steven Hauswirth

Principal Staff Engineer

**Accreditation:** This laboratory is accredited to ISO/IEC 17025-1999 to perform the following tests:

ACCREDITED

Statement of

**Compliance:** 

<u>Tests</u>: <u>Procedures</u>:

Electromagnetic Specific Absorption Rate ANSI/IEEE C95.1-1992, 1999

(SAR) IEEE C95.3-1991 IEEE 1528, IEC 62209-1

FCC OET Bulletin 65 (including Supplements A, B, C)

FCC ID: IHDT56FR2

Australian Communications Authority Radio

Communications (Electromagnetic Radiation – Human

Exposure) Standard 1999 CENELEC EN 50361 (2001)

Simulated Tissue Preparation APP-0247

RF Power Measurement DOI-0876, 0900, 0902, 0904, 0915

On the following products or types of products:

Wireless Communications Devices (Examples): Two Way Radios; Portable Phones (including

Cellular, Licensed Non-Broadcast and PCS); Low Frequency Readers; and Pagers

A2LA certificate #1651-01

Motorola declares under its sole responsibility that portable cellular telephone FCC ID IHDT56FR2 to which this declaration relates, is in conformity with the appropriate General Population/Uncontrolled RF exposure standards, recommendations and guidelines (FCC 47 CFR §2.1093). It also declares that the product was tested in accordance with the appropriate measurement standards, guidelines and recommended practices. Any deviations from these

standards, guidelines and recommended practices are noted below:

(none)

©Motorola, Inc. 2005

This test report shall not be reproduced except in full, without written approval of the laboratory.

The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report.

Motorola encourages all feedback, both positive and negative, on this test report.

## **Table of Contents**

| 1. INTRODUCTION                                                      | 3       |
|----------------------------------------------------------------------|---------|
| 2. DESCRIPTION OF THE DEVICE UNDER TEST                              | 3       |
| 2.1 Antenna description                                              | 3       |
| 3. TEST EQUIPMENT USED                                               | 3       |
| 3.1 Dosimetric System                                                | 3       |
| 3.2 Additional Equipment                                             | 4       |
| 4. ELECTRICAL PARAMETERS OF THE TISSUE SIMULATING LIQUID             | 4       |
| 5. SYSTEM ACCURACY VERIFICATION                                      | 5       |
| 6. TEST RESULTS                                                      | 6       |
| 6.1 Head Adjacent Test Results                                       | 6       |
| 6.2 Body Worn Test Results                                           | 9       |
| APPENDIX 1: SAR DISTRIBUTION COMPARISON FOR SYSTEM ACCURACY VERIFICA | ATION11 |
| APPENDIX 2: SAR DISTRIBUTION PLOTS FOR PHANTOM HEAD ADJACENT USE     | 12      |
| APPENDIX 3: SAR DISTRIBUTION PLOTS FOR BODY WORN CONFIGURATION       | 13      |
| APPENDIX 4: PROBE CALIBRATION CERTIFICATE                            | 14      |
| APPENDIX 5: MEASUREMENT UNCERTAINTY BUDGET                           | 15      |
| APPENDIX 6: PHOTOGRAPHS OF DEVICE UNDER TEST                         | 18      |
| APPENDIX 7: DIPOLE CHARACTERIZATION CERTIFICATE                      | 22      |

#### 1 Introduction

The Motorola Mobile Devices Business Product Safety Laboratory has performed measurements of the maximum potential exposure to the user of portable cellular phone (FCC ID IHDT56FR2). The Specific Absorption Rate (SAR) of this product was measured. The portable cellular phone was tested in accordance with FCC OET Bulletin 65 Supplement C 01-01.

FCC ID: IHDT56FR2

## 2 Description of the Device Under Test

## 2.1 Antenna description

| Type          | Intern                          | al Antenna |  |  |
|---------------|---------------------------------|------------|--|--|
| Location      | Top of Transceiver Back Housing |            |  |  |
| Dimensions    | Length                          | 79.0mm     |  |  |
| Dimensions    | Width 3.0mm                     |            |  |  |
| Configuration | FJA                             |            |  |  |

## 2.2 Device description

| FCC ID Number                                            |                        | IHDT56FR2              |                          |                             |                        |                        |                          |                             |
|----------------------------------------------------------|------------------------|------------------------|--------------------------|-----------------------------|------------------------|------------------------|--------------------------|-----------------------------|
| Serial number                                            |                        | G00B22000M             |                          |                             |                        |                        |                          |                             |
| Mode(s) of Operation                                     | GSM<br>850             | GSM<br>900             | GSM<br>1800              | GSM<br>1900                 | GPRS<br>850            | GPRS<br>900            | GPRS<br>1800             | GPRS<br>1900                |
| <b>Modulation Mode</b> (s)                               | GMSK                   | GMSK                   | GMSK                     | GMSK                        | GMSK                   | GMSK                   | GMSK                     | GMSK                        |
| Maximum Output Power<br>Setting                          | 32.60<br>dBm           | 32.30<br>dBm           | 30.00<br>dBm             | 30.00<br>dBm                | 32.50<br>dBm           | 32.30<br>dBm           | 30.00<br>dBm             | 30.00<br>dBm                |
| Duty Cycle                                               | 1:8                    | 1:8                    | 1:8                      | 1:8                         | 2:8                    | 2:8                    | 2:8                      | 2:8                         |
| Transmitting Frequency<br>Rang(s)                        | 824.2-<br>848.8<br>MHz | 880.2-<br>914.8<br>MHz | 1710.2-<br>1784.8<br>MHz | 1850.20 –<br>1909.80<br>MHz | 824.2-<br>848.8<br>MHz | 880.2-<br>914.8<br>MHz | 1710.2-<br>1784.8<br>MHz | 1850.20 –<br>1909.80<br>MHz |
| Production Unit or Identical<br>Prototype (47 CFR §2908) | Identical Prototype    |                        |                          |                             |                        |                        |                          |                             |
| Device Category                                          |                        |                        |                          | Port                        | able                   |                        |                          |                             |
| RF Exposure Limits                                       |                        |                        | Gener                    | al Populati                 | on / Uncor             | trolled                |                          |                             |

## 3 Test Equipment Used

## 3.1 Dosimetric System

The Motorola Mobile Devices Business Product Safety & Compliance Laboratory utilizes a Dosimetric Assessment System (Dasy4<sup>TM</sup> v4.5) manufactured by Schmid & Partner Engineering AG (SPEAG<sup>TM</sup>), of Zurich Switzerland. All the SAR measurements are taken within a shielded enclosure. The overall RSS uncertainty of the measurement system is  $\pm 11.1\%$  (K=1) with an expanded uncertainty of  $\pm 22.2\%$  (K=2). The measurement uncertainty budget is given in Appendix 6. Per IEEE 1528, this uncertainty budget is applicable to the SAR range of 0.4 W/kg to 10 W/kg. The list of calibrated equipment used for the measurements is shown below.

FCC ID: **IHDT56FR2** 

## 3.2 Additional Equipment

| Description                   | Serial Number | Cal Due Date |
|-------------------------------|---------------|--------------|
| Signal Generator HP8648C      | 3847A04840    | 26-Feb-2006  |
| Power Meter E4419B            | GB39511085    | 01-Dec-2005  |
| Power Sensor #1 - E9301A      | US39211012    | 31-May-2006  |
| Power Sensor #2 - 8481A       | 2702A82671    | 17-Dec-2005  |
| Signal Generator HP8648C      | 3847A04630    | 2-Mar-2007   |
| Power Meter E4419B            | 3125U09525    | 2-Mar-2006   |
| Power Sensor #1 - E9301A      | MY41095452    | 9-Mar-2006   |
| Power Sensor #2 - 8481A       | MY41095450    | 9-Mar-2006   |
| Network Analyzer HP8753ES     | US39172714    | 04-Apr-2006  |
| Dielectric Probe Kit HP85070C | US99360207    |              |

## 4 Electrical parameters of the tissue simulating liquid

Prior to conducting SAR measurements, the relative permittivity,  $\varepsilon_r$ , and the conductivity,  $\sigma$ , of the tissue simulating liquids were measured with the HP85070 Dielectric Probe Kit These values, along with the temperature of the tissue simulate are shown in the table below. The recommended limits for maximum permittivity and minimum conductivity are also shown. These come from the Federal Communication Commission, OET Bulletin 65 Supplement C 01-01. It is seen that the measured parameters are satisfactory for compliance testing.

| f          | Tissue |                       | Diele                 | ctric Parame   | eters        |
|------------|--------|-----------------------|-----------------------|----------------|--------------|
| (MHz) type |        | Limits / Measured     | $\mathbf{\epsilon}_r$ | σ (S/m)        | Temp<br>(°C) |
|            | Head   | Measured, 16-Dec-2005 | 42.3                  | 0.92           | 20.6         |
|            | пеац   | Recommended Limits    | 41.5 ±5%              | $0.90 \pm 5\%$ | 18-25        |
| 835        | Dody   | Measured, 19-Dec-2005 | 55.7                  | 1.0            | 21.0         |
|            | Body   | Recommended Limits    | 55.2 ±5%              | $0.97 \pm 5\%$ | 18-25        |
|            |        | Measured, 23-Nov-2005 | 39.5                  | 1.45           | 21.3         |
|            | Head   | Measured, 23-Nov-2005 | 39.2                  | 1.47           | 20.3         |
| 1880       |        | Recommended Limits    | 40.0 ±5%              | $1.40 \pm 5\%$ | 18-25        |
| 1000       | Dody   | Measured, 23-Nov-2005 | 52.4                  | 1.58           | 21.4         |
|            | Body   | Recommended Limits    | 53.3 ±5%              | 1.52 ±5%       | 18-25        |

The list of ingredients and the percent composition used for the tissue simulates are indicated in the table below.

|            | 800MHz | 800MHz | 1900MHz | 1900MHz |
|------------|--------|--------|---------|---------|
| Ingredient | Head   | Body   | Head    | Body    |
| Sugar      | 57.0   | 44.9   |         |         |
| DGBE       |        |        | 47.0    | 30.80   |
| Water      | 40.45  | 53.06  | 52.8    | 68.91   |
| Salt       | 1.45   | 0.94   | 0.2     | 0.29    |
| HEC        | 1.0    | 1.0    |         |         |
| Bact.      | 0.1    | 0.1    |         |         |

## 5 System Accuracy Verification

A system accuracy verification of the DASY4 v4.5 was performed using the measurement equipment listed in Section 3.1. The daily system accuracy verification occurs within center section of the SAM phantom.

A SAR measurement was performed to see if the measured SAR was within +/- 10% from the target SAR indicated in Section 8.3.7 Reference SAR Values in IEEE 1528. These tests were done at 900MHz and/or 1800MHz. These frequencies are within 100MHz of the mid-band frequency of the test device. This is within the allowable window given in Supplement C 01-01 *Appendix D System Verification* section item #5. The test was conducted on the same days as the measurement of the DUT. Recommended limits for maximum permittivity, minimum conductivity are shown in the table below. These come from the Federal Communication Commission, OET Bulletin 65 Supplement C 01-01. The obtained results from the system accuracy verification are displayed in the table below. The distributions of SAR compare well with those of the reference measurements (see Appendix 1). The tissue stimulant depth was verified to be 15.0cm ±0.5cm. Z-axis scans showing the SAR penetration are also included in Appendix 1. SAR values are normalized to 1W forward power delivered to the dipole.

| f<br>(MHz) | Description           | SAR<br>(W/kg), | Dielectric   | Parameters | Ambien<br>t Temp | Tissue<br>Temp |
|------------|-----------------------|----------------|--------------|------------|------------------|----------------|
| (IVITIZ)   |                       | 1gram          | $\epsilon_r$ | σ (S/m)    | (°C)             | (°C)           |
|            | Measured, 16-Dec-2005 | 11.8           | 41.5         | 0.98       | 22               | 21.0           |
| 900        | Measured, 19-Dec-2005 | 11.7           | 41.3         | 0.98       | 22               | 21.1           |
|            | Recommended Limits    | 11.3           | 41.5 ±5%     | 0.97 ±5%   | 15-30            | 15-30          |
|            | Measured, 22-Nov-2005 | 38.68          | 39.8         | 1.36       | 22.0             | 22.1           |
| 1800       | Measured, 23-Nov-2005 | 38.10          | 39.6         | 1.38       | 22.0             | 20.9           |
|            | Recommended Limits    | 38.1           | 40.0 ±5%     | 1.4 ±5%    | 15-30            | 15-30          |

The following probe conversion factors were used on the E-Field probe(s) used for the system accuracy verification measurements:

| Description             | Serial f<br>Number (MHz) |      | Conversion<br>Factor | Cal Cert<br>pg # |
|-------------------------|--------------------------|------|----------------------|------------------|
| E-Field Probe<br>ET3DV6 | 1515                     | 900  | 6.09                 | 8 of 9           |
|                         | 1313                     | 1810 | 5.07                 | 8 of 9           |

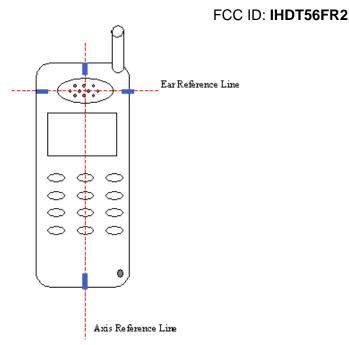
#### 6 Test Results

The test sample was operated in a test mode that allows control of the transmitter without the need to place actual phone calls. For the purposes of this test the unit is commanded to test mode and manually set to the proper channel, transmitter power level and transmit mode of operation. The phone was tested in the configurations stipulated in OET Bulletin 65 Supplement C 01-01. Motorola also followed the requirements in Supplement. C / Appendix D: SAR Measurement Procedures, section titled "Devices Operating Next To A Person's Ear". These directions state "The device should be tested on the left and right side of the head phantom in the "Cheek/Touch" and "Ear/Tilt" positions. When applicable, each configuration should be tested with the antenna in its fully extended and fully retracted positions. These test configurations should be tested at the high, middle and low frequency channels of each operating mode; for example, AMPS, CDMA, and TDMA. If the SAR measured at the middle channel for each test configuration (left, right, Cheek/Touch, Tile/Ear, extended and retracted) is at least 2.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s)."

FCC ID: IHDT56FR2

The DASY4 v4.5 SAR measurement system specified in section 3.1 was utilized within the intended operations as set by the SPEAG<sup>TM</sup> setup. The phone was positioned into the measurement configurations using the positioner supplied with the DASY4 v4.5 SAR measurement system. The measured dielectric constant of the material used for the positioner is less than 2.9 and the loss tangent is less than 0.02 (± 30%) at 850MHz. The default settings for the "coarse" and "cube" scans were chosen and use for measurements. The grid spacing of the course scan was set to 15cm as shown in the SAR plots included in appendix 2 and 3. Please refer to the DASY manual for additional information on SAR scanning procedures and algorithms used.

The Cellular Phone (FCC ID IHDT56FR2) has the following battery options: Model SNN5744A - 1000mAH Battery Model SNN5766A - 810mAH Battery


The battery with the highest capacity is the SNN5744A. This battery was used to do most of the SAR testing. The configuration that resulted in the highest SAR values were tested using the other batteries listed above. The phone was placed in the SAR measurement system with a fully charged battery.

## **6.1 Head Adjacent Test Results**

To aid in positioning repeatability, the ear reference line of the device and the axis reference line of the device have been physically added using a non-metallic marker.

- Per Figure 1, the "Ear Reference Line" is centered vertically through the center of the listening area (as defined by the speaker holes in the housing).
- The "Axis Reference Line" bisects the front surface of the device at its top and bottom edges.
- The intersection of these two lines defines the location of the "Ear Reference Point".

The lines drawn on the device extended to the outside edges, as shown in blue in the figure below, and wrap around the sides of the device.



The SAR results shown in tables 1 through 3 are maximum SAR values averaged over 1 gram of phantom tissue. Also shown are the measured conducted output powers, the temperature of the test facility during the test, the temperature of the tissue simulate after the test, the measured drift and the extrapolated SAR. The exact method of extrapolation is New SAR = Old SAR \* 10^(-drift/10). The SAR reported at the end of the measurement process by the DASY<sup>TM</sup> measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test.

The left head and right head SAR contour distributions are similar. Because of this similarity, the cheek/touch and 15° tilt test conditions with the highest SAR values in each band are indicated as bold numbers in the following tables and are included in Appendix 2. All other test conditions measured lower SAR values than those included in Appendix 2.

The SAR measurements were performed using the SAM phantoms listed in section 3.1. Since the same phantoms and tissue simulate are used for the system accuracy verification as for the device SAR measurements, the Z-axis scans included in Appendix 1 are applicable for verification of tissue simulate depth to be  $15.0 \text{cm} \pm 0.5 \text{cm}$ .

The following probe conversion factors were used on the E-Field probe(s) used for the head adjacent measurements:

| Description             | Description Serial Number |      | Conversion<br>Factor | Cal Cert<br>pg # |
|-------------------------|---------------------------|------|----------------------|------------------|
| E-Field Probe<br>ET3DV6 | 1515                      | 900  | 6.09                 | 8 of 9           |
|                         | 1313                      | 1810 | 5.07                 | 8 of 9           |

| FCC ID: IHDT56FR | 2 |
|------------------|---|
|------------------|---|

| Conducto       |             |                     | Cheek / Touch Position |            |                     |                          |                 |            |                     |                          |
|----------------|-------------|---------------------|------------------------|------------|---------------------|--------------------------|-----------------|------------|---------------------|--------------------------|
| f<br>(MHz)     |             | Conducted<br>Output |                        | Le         | ft Head             |                          |                 | Rig        | ght Head            |                          |
|                | Description | D                   | Measured (W/kg)        | Drift (dB) | Extrapolated (W/kg) | Simulate<br>Temp<br>(°C) | Measured (W/kg) | Drift (dB) | Extrapolated (W/kg) | Simulate<br>Temp<br>(°C) |
| CGM            | Channel 128 | 32.65               | 1.23                   | -0.03      | 1.24                | 20.9                     | 1.47            | -0.07      | 1.49                | 20.6                     |
| GSM<br>850MHz  | Channel 190 | 32.65               | 1.23                   | -0.03      | 1.24                | 21.0                     | 1.51            | -0.03      | 1.52                | 20.6                     |
| OSOWITZ        | Channel 251 | 32.64               | 1.23                   | -0.03      | 1.24                | 20.9                     | 1.40            | -0.03      | 1.41                | 20.7                     |
| CGM            | Channel 512 | 29.86               |                        |            |                     |                          | 0.859           | 0.00       | 0.86                | 20.4                     |
| GSM<br>1900MHz | Channel 661 | 29.90               | 0.769                  | -0.17      | 0.80                | 21.6                     | 0.968           | -0.08      | 0.99                | 21.0                     |
| 1700141112     | Channel 810 | 30.15               |                        |            |                     |                          | 1.13            | 0.00       | 1.13                | 20.4                     |

Table 1: SAR measurement results for the portable cellular telephone FCC ID IHDT56FR2 at highest possible output power. Measured against the head in the Cheek/Touch Position.

|                |             | Canduated        | 15° Tilt Position |            |                     |                          |                 |               |                     |                          |
|----------------|-------------|------------------|-------------------|------------|---------------------|--------------------------|-----------------|---------------|---------------------|--------------------------|
|                |             | Conducted Output |                   | Le         | ft Head             |                          |                 | Rig           | tht Head            |                          |
| f<br>(MHz)     | Description | Power (dBm)      | Measured (W/kg)   | Drift (dB) | Extrapolated (W/kg) | Simulate<br>Temp<br>(°C) | Measured (W/kg) | Drift<br>(dB) | Extrapolated (W/kg) | Simulate<br>Temp<br>(°C) |
| CGM            | Channel 128 | 32.65            |                   |            |                     |                          |                 |               |                     |                          |
| GSM<br>850MHz  | Channel 190 | 32.65            | 0.371             | 0.05       | 0.37                | 20.7                     | 0.388           | 0.05          | 0.39                | 20.7                     |
| OSOWITZ        | Channel 251 | 32.64            |                   |            |                     |                          |                 |               |                     |                          |
| CGM            | Channel 512 | 29.86            |                   |            |                     |                          |                 |               |                     |                          |
| GSM<br>1900MHz | Channel 661 | 29.90            | 0.425             | -0.035     | 0.43                | 21.3                     | 0.417           | 0.02          | 0.42                | 20.3                     |
| 1700IVIIIZ     | Channel 810 | 30.15            |                   |            |                     |                          |                 |               |                     |                          |

Table 2: SAR measurement results for the portable cellular telephone FCC ID IHDT56FR2 at highest possible output power. Measured against the left head in the  $15^{\circ}$  Tilt Position.

|                |             | Conducted   | Cheek Position with SNN5766A |            |                     |                          |  |  |  |
|----------------|-------------|-------------|------------------------------|------------|---------------------|--------------------------|--|--|--|
|                |             | Output      | Right Head                   |            |                     |                          |  |  |  |
| f<br>(MHz)     | Description | Power (dBm) | Measured (W/kg)              | Drift (dB) | Extrapolated (W/kg) | Simulate<br>Temp<br>(°C) |  |  |  |
| CCM            | Channel 128 | 32.65       | 1.47                         | -0.04      | 1.48                | 20.7                     |  |  |  |
| GSM<br>850MHz  | Channel 190 | 32.65       | 1.43                         | -0.03      | 1.44                | 20.7                     |  |  |  |
| OSOWITZ        | Channel 251 | 32.64       | 1.46                         | -0.06      | 1.48                | 20.7                     |  |  |  |
| GSM<br>1900MHz | Channel 512 | 29.86       | 0.877                        | 0.00       | 0.88                | 20.4                     |  |  |  |
|                | Channel 661 | 29.90       | 0.966                        | 0.01       | 0.97                | 20.3                     |  |  |  |
|                | Channel 810 | 30.15       | 1.15                         | -0.03      | 1.16                | 20.3                     |  |  |  |

Table 3: SAR measurement results for the portable cellular telephone FCC ID IHDT56FR2 at highest possible output power. Measured against the right head in the Cheek/Touch Position.

## **6.2 Body Worn Test Results**

The SAR results shown in tables 4 through 6 are the maximum SAR values averaged over 1 gram of phantom tissue. Also shown are the measured conducted output powers, the temperature of the test facility during the test, the temperature of the tissue simulate after the test, the measured drift and the extrapolated SAR. The exact method of extrapolation is New SAR = Old SAR \* 10^(-drift/10). The SAR reported at the end of the measurement process by the DASY<sup>TM</sup> measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test.

The test conditions that produced the highest SAR values in each band are indicated as bold numbers in the following tables and are included in Appendix 3. All other test conditions measured lower SAR values than those included in Appendix 3.

A "flat" phantom was for the body-worn tests. This "flat" phantom is made out of 1" thick natural High Density Polyethylene with a thickness at the bottom equal to 2.0mm. It measures 52.7cm(long) x 26.7cm(wide) x 21.2cm(tall). The measured dielectric constant of the material used is less than 2.3 and the loss tangent is less than 0.0046 all the way up to 2.184GHz.

The tissue stimulant depth was verified to be  $15.0 \text{cm} \pm 0.5 \text{cm}$ . The same device holder described in section 6 was used for positioning the phone. There are no Body-Worn Accessories available for this phone at the time of testing hence the device was tested per the supplement C testing guidelines for devices that do not have body worn accessories. The phone was placed a maximum of 25mm away from a flat phantom per the supplement C standard guidelines to perform SAR measurement. The cellular phone was tested with a headset connected to the device for all body-worn SAR measurements.

The following probe conversion factors were used on the E-Field probe(s) used for the body worn measurements:

| Description   | Serial<br>Number | f<br>(MHz) | Conversion<br>Factor | Cal Cert<br>pg # |  |
|---------------|------------------|------------|----------------------|------------------|--|
| E-Field Probe | 1515             | 900        | 5.98                 | 8 of 9           |  |
| ET3DV6        | 1313             | 1810       | 4.47                 | 8 of 9           |  |

|                |             |       | GSM Body-Worn                    |            |                     |                          |                                 |            |                     |                          |
|----------------|-------------|-------|----------------------------------|------------|---------------------|--------------------------|---------------------------------|------------|---------------------|--------------------------|
|                |             |       | Front of Phone 15mm from Phantom |            |                     |                          | Back of Phone 15mm from Phantom |            |                     |                          |
| f<br>(MHz)     | Description |       | Measured (W/kg)                  | Drift (dB) | Extrapolated (W/kg) | Simulate<br>Temp<br>(°C) | Measured (W/kg)                 | Drift (dB) | Extrapolated (W/kg) | Simulate<br>Temp<br>(°C) |
| CGM            | Channel 128 | 32.65 |                                  |            |                     |                          |                                 |            |                     |                          |
| GSM<br>850MHz  | Channel 190 | 32.65 | 0.122                            | -0.03      | 0.12                | 21.2                     | 0.382                           | 0.01       | 0.38                | 21.2                     |
| OSOWITZ        | Channel 251 | 32.64 |                                  |            |                     |                          |                                 |            |                     |                          |
| CGM            | Channel 512 | 29.86 |                                  |            |                     |                          |                                 |            |                     |                          |
| GSM<br>1900MHz | Channel 661 | 29.90 | 0.0846                           | -0.08      | 0.09                | 21.4                     | 0.307                           | -0.04      | 0.31                | 21.4                     |
|                | Channel 810 | 30.15 |                                  |            |                     |                          |                                 |            |                     |                          |

Table 4: SAR measurement results for the portable cellular telephone FCC ID IHDT56FR2 at highest possible output power. Measured against the body.

| _  | _ | _ | - |   | _ |           |   |           | _ |
|----|---|---|---|---|---|-----------|---|-----------|---|
|    | - | • | ш | ш | п | <b>T5</b> |   |           | 2 |
| гι |   |   |   | ш |   |           | n | $-\kappa$ |   |
|    |   |   |   |   |   |           |   |           |   |

|                |             | Candustad        | GPRS Body-Worn; Back of Phone 25mm from Phantom |            |                     |                          |                 |               |                     |                          |  |
|----------------|-------------|------------------|-------------------------------------------------|------------|---------------------|--------------------------|-----------------|---------------|---------------------|--------------------------|--|
|                |             | Conducted Output |                                                 | With S     | SNN5744A            |                          |                 | With SNN5766A |                     |                          |  |
| f<br>(MHz)     | Description | Down             | Measured (W/kg)                                 | Drift (dB) | Extrapolated (W/kg) | Simulate<br>Temp<br>(°C) | Measured (W/kg) | Drift (dB)    | Extrapolated (W/kg) | Simulate<br>Temp<br>(°C) |  |
| CCM            | Channel 128 | 32.65            |                                                 |            |                     |                          |                 |               |                     |                          |  |
| GSM<br>850MHz  | Channel 190 | 32.65            | 0.401                                           | -0.06      | 0.41                | 21.0                     | 0.396           | -0.08         | 0.40                | 20.8                     |  |
| OSOWITZ        | Channel 251 | 32.64            |                                                 |            |                     |                          |                 |               |                     |                          |  |
| CCM            | Channel 512 | 29.86            |                                                 |            |                     |                          |                 |               |                     |                          |  |
| GSM<br>1900MHz | Channel 661 | 29.90            | 0.179                                           | -0.02      | 0.18                | 21.3                     |                 |               |                     |                          |  |
|                | Channel 810 | 30.15            |                                                 |            |                     |                          |                 |               |                     |                          |  |

Table 5: SAR measurement results for the portable cellular telephone FCC ID IHDT56FR2 at highest possible output power. Measured against the body.

| f<br>(MHz)     | Description | Conducted<br>Output | GSM Body-Worn; Back of Phone<br>15mm from Phantom<br>With SNN5766A |            |                     |                          |  |  |
|----------------|-------------|---------------------|--------------------------------------------------------------------|------------|---------------------|--------------------------|--|--|
|                | Description | Power (dBm)         | Measured (W/kg)                                                    | Drift (dB) | Extrapolated (W/kg) | Simulate<br>Temp<br>(°C) |  |  |
| CCM            | Channel 128 | 32.65               |                                                                    |            |                     |                          |  |  |
| GSM<br>850MHz  | Channel 190 | 32.65               |                                                                    |            |                     |                          |  |  |
| 03011112       | Channel 251 | 32.64               |                                                                    |            |                     |                          |  |  |
| CCIM           | Channel 512 | 29.86               |                                                                    |            |                     |                          |  |  |
| GSM<br>1900MHz | Channel 661 | 29.90               | 0.285                                                              | -0.03      | 0.29                | 21.3                     |  |  |
|                | Channel 810 | 30.15               |                                                                    |            |                     |                          |  |  |

Table 6: SAR measurement results for the portable cellular telephone FCC ID IHDT56FR2 at highest possible output power. Measured against the body.

FCC ID: IHDT56FR2

SAR distribution comparison for the system accuracy verification

Appendix 1

Date/Time: 12/16/2005 8:16:54 AM

## **Test Laboratory: Motorola**

#### 900 MHz Validation

## DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN: 094;

Procedure Notes: 900 MHz System Performance Check PM2 Power = 200 mW Refl.Pwr PM3 = -23.31 dB Sim.Temp@SPC = 21C Room Temp @ SPC = 22C

Communication System: CW - Dipole; Frequency: 900 MHz; Communication System Channel Number: 4; Duty Cycle: 1:1

Medium: VALIDATION Only; Medium parameters used: f = 900 MHz;  $\sigma = 0.98$  mho/m;  $\epsilon_r = 41.5$ ;  $\rho = 1000$  kg/m<sup>3</sup>

## DASY4 Configuration:

- Probe: ET3DV6 SN1515; ConvF(6.09, 6.09, 6.09); Calibrated: 8/30/2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn383; Calibrated: 8/18/2005
- Phantom: PCS8: Sugar Water SAM; Type: SAM; Serial: TP-1168;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

# **Daily SPC Check/Dipole Area Scan (4x9x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.27 mW/g

# **Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

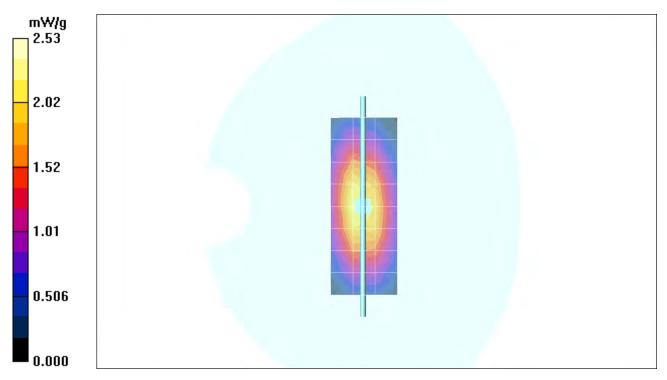
Reference Value = 52.2 V/m; Power Drift = 0.006 dB

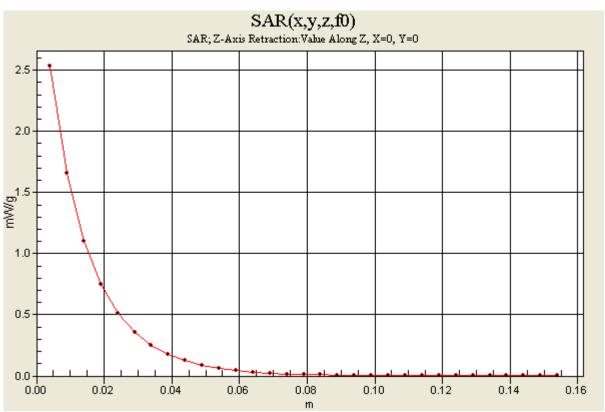
Peak SAR (extrapolated) = 3.51 W/kg

SAR(1 g) = 2.31 mW/g; SAR(10 g) = 1.47 mW/g

Maximum value of SAR (measured) = 2.50 mW/g

# **Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 52.2 V/m; Power Drift = 0.006 dB


Peak SAR (extrapolated) = 3.65 W/kg

SAR(1 g) = 2.41 mW/g; SAR(10 g) = 1.54 mW/g

Maximum value of SAR (measured) = 2.59 mW/g

# **Daily SPC Check/Z-Axis Retraction (1x1x31):** Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 2.53 mW/g





Date/Time: 12/19/2005 7:57:01 AM

## **Test Laboratory: Motorola**

## 900 MHz Validation

## **DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN:094;**

Procedure Notes: 900 MHz System Performance Check / PM2 Power = 200 mW Refl.Pwr PM3 = -23.30 dB  $\underline{\text{Sim.Temp@SPC}}$  = 21.1  $_{\Gamma}\text{C}$  Room Temp @ SPC = 22  $_{\Gamma}\text{C}$ 

Communication System: CW - Dipole; Frequency: 900 MHz; Communication System Channel Number: 4; Duty Cycle: 1:1

Medium: VALIDATION Only; Medium parameters used: f = 900 MHz;  $\sigma = 0.98$  mho/m;  $\epsilon_r = 41.3$ ;  $\rho = 1000$  kg/m<sup>3</sup>

## DASY4 Configuration:

- Probe: ET3DV6 SN1515; ConvF(6.09, 6.09, 6.09); Calibrated: 8/30/2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn383; Calibrated: 8/18/2005
- Phantom: PCS8: Sugar Water SAM; Type: SAM; Serial: TP-1168;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

# **Daily SPC Check/Dipole Area Scan (4x9x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.21 mW/g

# **Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

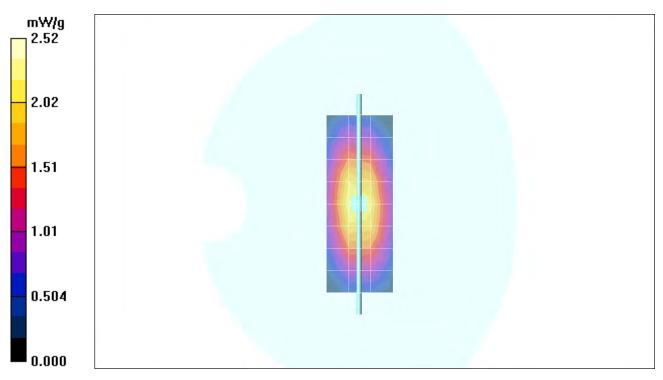
Reference Value = 52.2 V/m; Power Drift = 0.052 dB

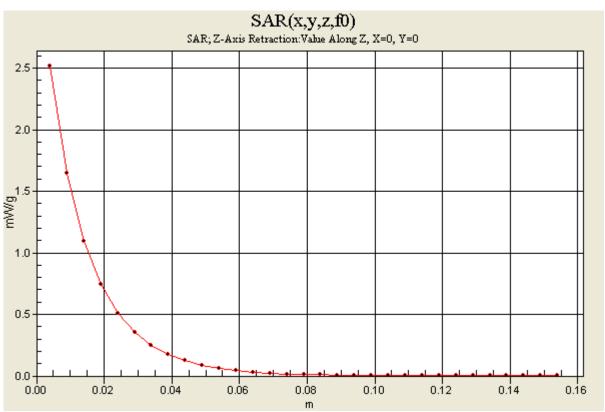
Peak SAR (extrapolated) = 3.43 W/kg

SAR(1 g) = 2.28 mW/g; SAR(10 g) = 1.46 mW/g

Maximum value of SAR (measured) = 2.45 mW/g

# **Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 52.2 V/m; Power Drift = 0.052 dB


Peak SAR (extrapolated) = 3.66 W/kg

SAR(1 g) = 2.41 mW/g; SAR(10 g) = 1.53 mW/g

Maximum value of SAR (measured) = 2.60 mW/g

# **Daily SPC Check/Z-Axis Retraction (1x1x31):** Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 2.52 mW/g





Date/Time: 11/22/2005 3:00:51 PM

## Test Laboratory: Motorola 20051122 1800MHz\_Good +1.5%

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:276tr;

Procedure Notes: 1800 MHz System Performance Check / Dipole Sn# 276tr PM1 Power = 200 mW

Sim.Temp@meas = 22.34C Sim.Temp@SPC = 22.1C Room Temp @ SPC = 22C

Communication System: CW - Dipole; Frequency: 1800 MHz; Channel Number: 8; Duty Cycle: 1:1

Medium: VALIDATION Only;

Medium parameters used: f = 1800 MHz;  $\sigma = 1.36 \text{ mho/m}$ ;  $\varepsilon_r = 39.8$ ;  $\rho = 1000 \text{kg/m}^3$ 

## DASY4 Configuration:

- Probe: ET3DV6 SN1515; ConvF(5.07, 5.07, 5.07); Calibrated: 8/30/2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn383; Calibrated: 8/18/2005
- Phantom: PCS8\_ Section 2, Amy Twin, Rev2 (23-June-04); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

## Daily SPC Check/Dipole Area Scan (9x4x1):

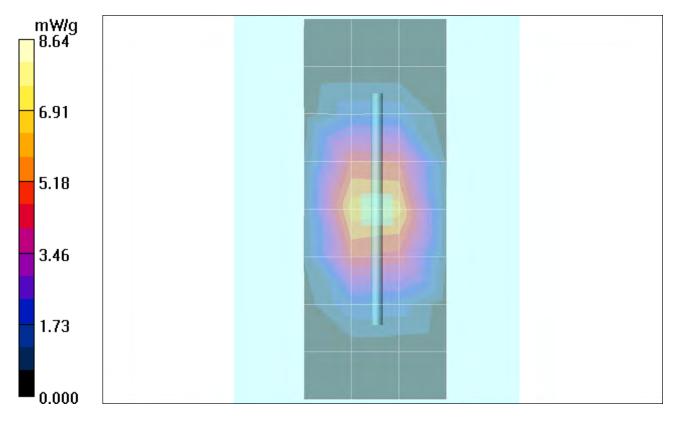
Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 6.15 mW/g

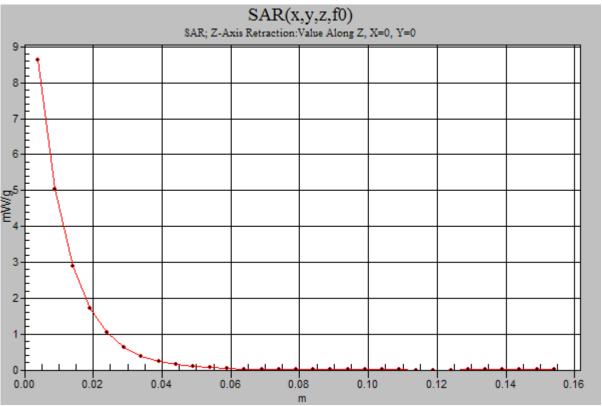
## Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 83.4 V/m; Power Drift = 0.102 dB Peak SAR (extrapolated) = 12.7 W/kg

SAR(1 g) = 7.55 mW/g; SAR(10 g) = 4.07 mW/g Maximum value of SAR (measured) = 8.50 mW/g


## Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 83.4 V/m; Power Drift = 0.102 dB Peak SAR (extrapolated) = 13.4 W/kg

SAR(1 g) = 7.92 mW/g; SAR(10 g) = 4.26 mW/g Maximum value of SAR (measured) = 8.94 mW/g

**Daily SPC Check/Z-Axis Retraction (1x1x31):** Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 8.64 mW/g





Date/Time: 11/23/2005 2:40:17 PM

## Test Laboratory: Motorola 20051123 1800MHz\_Good +0.0%

## **DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:276tr;**

Procedure Notes: 1800 MHz System Performance Check / Dipole Sn# 276tr PM1 Power = 200 mW

Sim.Temp@meas = 20.86C Sim.Temp@SPC = 20.9C Room Temp @ SPC = 22C

Communication System: CW - Dipole; Frequency: 1800 MHz; Channel Number: 8; Duty Cycle: 1:1

Medium: VALIDATION Only;

Medium parameters used: f = 1800 MHz;  $\sigma = 1.38 \text{ mho/m}$ ;  $\varepsilon_r = 39.6$ ;  $\rho = 1000 \text{kg/m}^3$ 

#### DASY4 Configuration:

- Probe: ET3DV6 SN1515; ConvF(5.07, 5.07, 5.07); Calibrated: 8/30/2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn383; Calibrated: 8/18/2005
- Phantom: PCS8: Glycol Water SAM; Type: SAM; Serial: TP-1138;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

## Daily SPC Check/Dipole Area Scan (4x9x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 6.28 mW/g

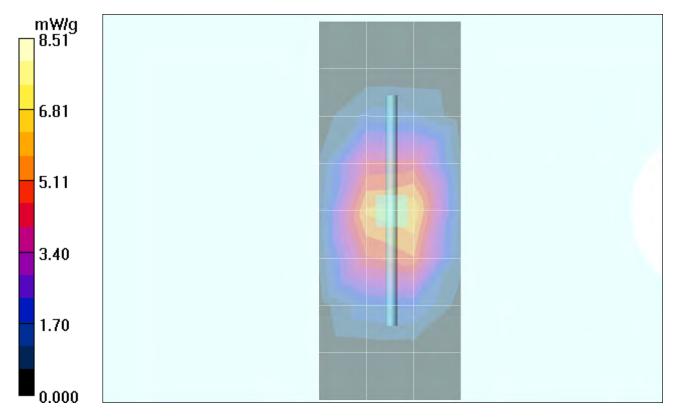
## Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0:

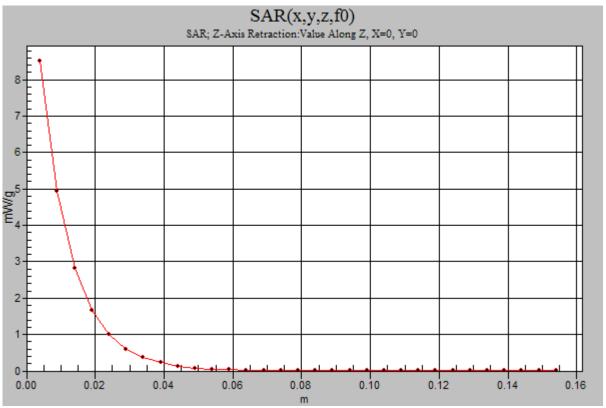
Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 81.5 V/m; Power Drift = 0.133 dB Peak SAR (extrapolated) = 12.7 W/kg

SAR(1 g) = 7.46 mW/g; SAR(10 g) = 4.01 mW/g Maximum value of SAR (measured) = 8.37 mW/g

## Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 81.5 V/m; Power Drift = 0.133 dB Peak SAR (extrapolated) = 13.2 W/kg

SAR(1 g) = 7.78 mW/g; SAR(10 g) = 4.18 mW/g Maximum value of SAR (measured) = 8.48 mW/g

## **Daily SPC Check/Z-Axis Retraction (1x1x31):**

Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 8.51 mW/g





FCC ID: IHDT56FR2

## SAR distribution plots for Phantom Head Adjacent Use

Appendix 2

Date/Time: 12/16/2005 4:44:30 PM

## **Test Laboratory: Motorola**

## GSM 850 MHz Cheek

**Serial: G00B22000M:** 

Procedure Notes: Pwr Step: 05(OTA) Antenna Position: Internal Battery Model #: SNN5744A DEVICE

POSITION (cheek or rotated): cheek

Communication System: GSM 850; Frequency: 836.6 MHz; Communication System Channel Number: 190;

Duty Cycle: 1:8

Medium: Low Freq Head; Medium parameters used: f = 835 MHz;  $\sigma = 0.92$  mho/m;  $\varepsilon_r = 42.3$ ;  $\rho = 1000$  kg/m<sup>3</sup>

## DASY4 Configuration:

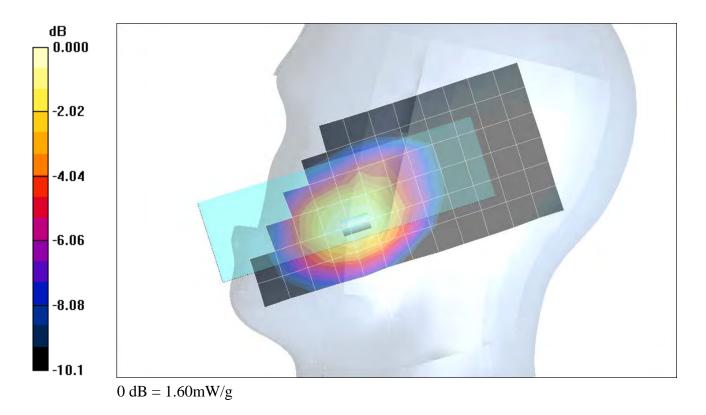
• Probe: ET3DV6 - SN1515; ConvF(6.09, 6.09, 6.09); Calibrated: 8/30/2005

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn383; Calibrated: 8/18/2005
- Phantom: PCS8: Sugar Water SAM; Type: SAM; Serial: TP-1168;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

## Right Head Template/Area Scan - Normal (15mm) (7x17x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (measured) = 1.64 mW/g


**Right Head Template/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 42.0 V/m; Power Drift = -0.028 dB

Peak SAR (extrapolated) = 2.25 W/kg

SAR(1 g) = 1.51 mW/g; SAR(10 g) = 1 mW/g

Maximum value of SAR (measured) = 1.60 mW/g



Date/Time: 12/16/2005 8:04:51 PM

## **Test Laboratory: Motorola**

## GSM 850 MHz Tilt

**Serial: G00B22000M:** 

Procedure Notes: Pwr Step: 05(OTA) Antenna Position: Internal Battery Model #: SNN5744A DEVICE

POSITION (cheek or rotated): Rotated

Communication System: GSM 850; Frequency: 836.6 MHz; Communication System Channel Number: 190;

Duty Cycle: 1:8

Medium: Low Freq Head; Medium parameters used: f = 835 MHz;  $\sigma = 0.92$  mho/m;  $\varepsilon_r = 42.3$ ;  $\rho = 1000$  kg/m<sup>3</sup>

## DASY4 Configuration:

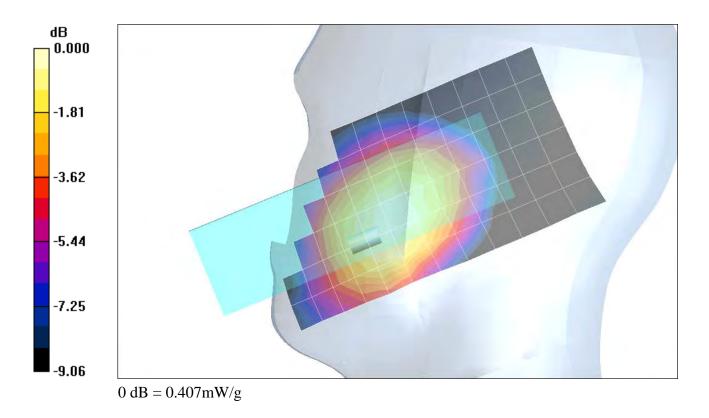
• Probe: ET3DV6 - SN1515; ConvF(6.09, 6.09, 6.09); Calibrated: 8/30/2005

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn383; Calibrated: 8/18/2005
- Phantom: PCS8: Sugar Water SAM; Type: SAM; Serial: TP-1168;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

## Right Head Template/Area Scan - Normal (15mm) (7x17x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (measured) = 0.398 mW/g


**Right Head Template/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 21.4 V/m; Power Drift = 0.052 dB

Peak SAR (extrapolated) = 0.493 W/kg

SAR(1 g) = 0.388 mW/g; SAR(10 g) = 0.289 mW/g

Maximum value of SAR (measured) = 0.407 mW/g



1900 cheek Page 1 of 1

Date/Time: 11/23/2005 4:51:19 PM

## Test Laboratory: Motorola 1900 cheek

## **Serial: G00B22000M**

Procedure Notes: Pwr Step: 00 (OTA) Antenna Position: Internal Accessory Model #: N/A

Battery Model #: SNN5766A DEVICE POSITION (cheek or rotated): Cheek

Communication System: GSM 1900; Frequency: 1909.8 MHz; Channel Number: 810; Duty Cycle: 1:8

Medium: Regular Glycol Head;

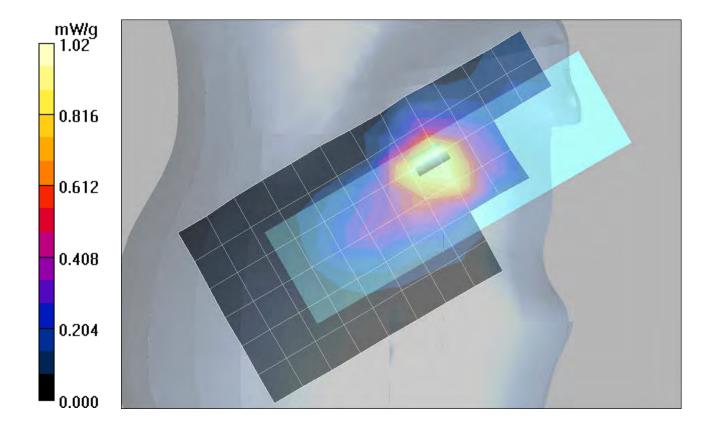
Medium parameters used: f = 1880 MHz;  $\sigma = 1.47 \text{ mho/m}$ ;  $\epsilon_r = 39.2$ ;  $\rho = 1000 \text{kg/m}^3$ 

## DASY4 Configuration:

• Probe: ET3DV6 - SN1515; ConvF(5.07, 5.07, 5.07); Calibrated: 8/30/2005

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn383; Calibrated: 8/18/2005
- Phantom: PCS8: Glycol Water SAM; Type: SAM; Serial: TP-1138;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

## **Right Head Template/Area Scan - Normal (15mm) (7x17x1):**


Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.02 mW/g

## **Right Head Template/Zoom Scan (7x7x7)/Cube 0:**

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 31.9 V/m; **Power Drift = -0.029 dB** Peak SAR (extrapolated) = 1.96 W/kg

SAR(1 g) = 1.15 mW/g; SAR(10 g) = 0.600 mW/g Maximum value of SAR (measured) = 1.28 mW/g



1900 tilt Page 1 of 1

Date/Time: 11/23/2005 10:58:26 AM

## Test Laboratory: Motorola 1900 tilt

## Serial: G00B22000M

Procedure Notes: Pwr Step: 00(OTA) Antenna Position: Internal Accessory Model #: N/A

Battery Model #: SNN5744A DEVICE POSITION (cheek or rotated): rotated

Communication System: GSM 1900; Frequency: 1880 MHz; Channel Number: 661; Duty Cycle: 1:8

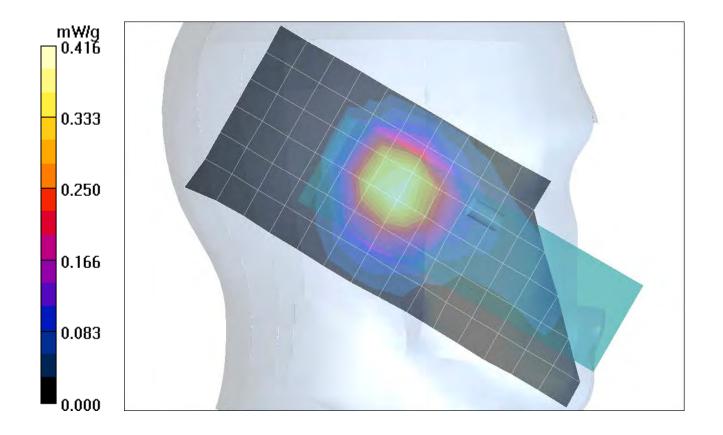
Medium: Regular Glycol Head; Medium parameters used: f = 1880 MHz;  $\sigma = 1.45 \text{ mho/m}$ ;  $\varepsilon_r = 39.5$ ;  $\rho = 1000 \text{kg/m}^3$ 

#### DASY4 Configuration:

• Probe: ET3DV6 - SN1515; ConvF(5.07, 5.07, 5.07); Calibrated: 8/30/2005

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn383; Calibrated: 8/18/2005
- Phantom: PCS8: Glycol Water SAM; Type: SAM; Serial: TP-1138;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

## Left Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.416 mW/g

## **Left Head Template/Zoom Scan (7x7x7)/Cube 0:**

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.6 V/m; **Power Drift = -0.035 dB** Peak SAR (extrapolated) = 0.624 W/kg

SAR(1 g) = 0.425 mW/g; SAR(10 g) = 0.263 mW/g Maximum value of SAR (measured) = 0.461 mW/g



## Appendix 3

FCC ID: IHDT56FR2

## **SAR** distribution plots for Body Worn Configuration

Date/Time: 12/19/2005 8:28:53 AM

## **Test Laboratory: Motorola**

## **GSM 850MHz Body**

#### **Serial: G00B22000M;**

Procedure Notes: Pwr Step: 05 (OTA) Antenna Position: Internal Battery Model #: SNN5744A Acessory

Model # = Back of Phone 25mm from Phantom

Communication System: GPRS 850 - Class 10; Frequency: 836.6 MHz; Communication System Channel

Number: 190; Duty Cycle: 1:4

Medium: Low Freq Body; Medium parameters used: f = 835 MHz;  $\sigma = 1$  mho/m;  $\epsilon_r = 55.7$ ;  $\rho = 1000$  kg/m<sup>3</sup>

## DASY4 Configuration:

• Probe: ET3DV6 - SN1515; ConvF(5.98, 5.98, 5.98); Calibrated: 8/30/2005

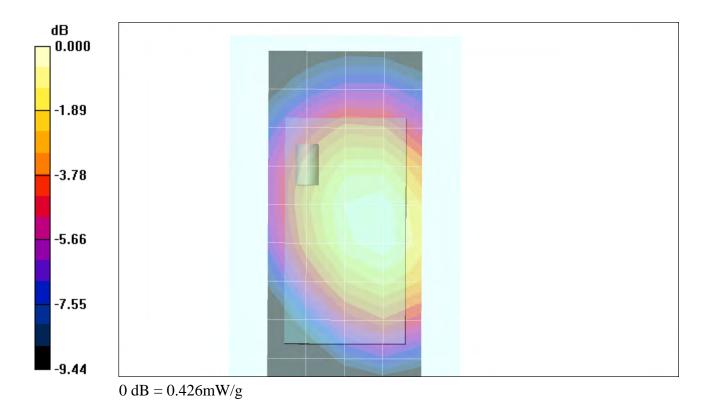
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn383; Calibrated: 8/18/2005
- Phantom: PCS8\_ Section 1, Amy Twin, Rev2 (23-June-04); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

## Amy Twin Phone Template/Area Scan - Normal Body (15mm) (13x7x1): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.410 mW/g

## Amy Twin Phone Template/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 20.2 V/m; Power Drift = -0.059 dB

Peak SAR (extrapolated) = 0.527 W/kg

SAR(1 g) = 0.401 mW/g; SAR(10 g) = 0.286 mW/g

Maximum value of SAR (measured) = 0.426 mW/g



1900 body worn Page 1 of 1

Date/Time: 11/23/2005 5:55:18 PM

## Test Laboratory: Motorola 1900 body worn

Serial: G00B22000M

Procedure Notes: Pwr Step: 00 (OTA) Antenna Position: Internal Battery Model #: SNN5744A Accessory Model # = 15mm\_Back

Communication System: GSM 1900; Frequency: 1880 MHz; Channel Number: 661; Duty Cycle: 1:8

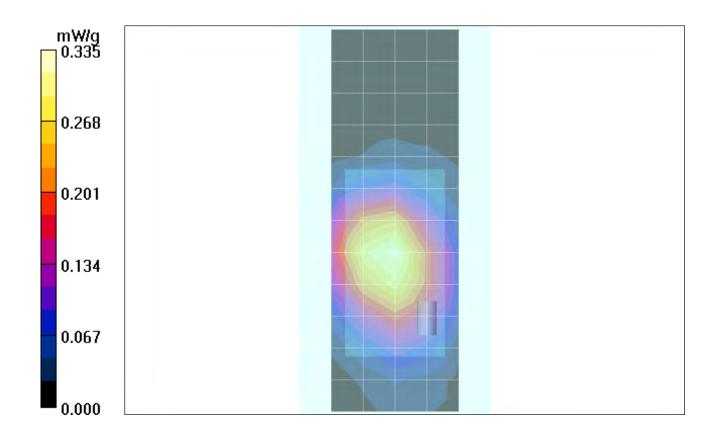
Medium: Regular Glycol Body;

Medium parameters used: f = 1880 MHz;  $\sigma = 1.58 \text{ mho/m}$ ;  $\varepsilon_r = 52.4$ ;  $\rho = 1000 \text{kg/m}^3$ 

## **DASY4** Configuration:

- Probe: ET3DV6 SN1515; ConvF(4.47, 4.47, 4.47); Calibrated: 8/30/2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn383; Calibrated: 8/18/2005
- Phantom: PCS8\_ Section 2, Amy Twin, Rev2 (23-June-04); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

## Amy Twin Phone Template/Area Scan - Normal Body (15mm) (13x7x1):


Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.324 mW/g

## **Amy Twin Phone Template/Zoom Scan (7x7x7)/Cube 0:**

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.9 V/m; **Power Drift = -0.040 dB** Peak SAR (extrapolated) = 0.494 W/kg

SAR(1 g) = 0.307 mW/g; SAR(10 g) = 0.193 mW/g Maximum value of SAR (measured) = 0.329 mW/g



## Appendix 4

## **Probe Calibration Certificate**

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

## IMPORTANT NOTICE

## USAGE OF PROBES IN ORGANIC SOLVENTS

Diethylene Gycol Monobuthy Ether (the basis for liquids above 1 GHz), as many other organic solvents, is a very effective softener for synthetic materials. These solvents can cause irreparable damage to certain SPEAG products, except those which are explicitly declared as compliant with organic solvents.

## **Compatible Probes:**

- ET3DV6
- ET3DV6R
- ES3DVx
- EX3DVx
- ER3DV6
- H3DV6

## **Important Note for ET3DV6 Probes:**

The ET3DV6 probes shall not be exposed to solvents longer than necessary for the measurements and shall be cleaned daily after use with warm water and stored dry.

s p e a g

Schmid & Pertner Engineering AG Zeughausstresse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 Info@speag.com, http://www.speag.com

Schmid & Partner Engineering AG

## Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurlch, Switzerland



S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

CALIBRATION CERTIFICATE

Accreditation No.: SCS 108

Client Motorola MDb Certificate No: ET3-1515\_Aug05

#### ET3DV6 - SN:1515 Object QA CAL-01.v5 Calibration procedure(s) Calibration procedure for dosimetric E-field probes Calibration date: August 30, 2005 In Tolerance Condition of the calibrated item This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration Primary Standards ID# Cal Date (Calibrated by, Certificate No.) Power meter E4419B GB41293874 3-May-05 (METAS, No. 251-00466) May-06 Power sensor E4412A MY41495277 3-May-05 (METAS, No. 251-00466) May-06 Power sensor E4412A MY41498087 3-May-05 (METAS, No. 251-00466) May-06 Reference 3 dB Attenuator SN: S5054 (3c) 11-Aug-05 (METAS, No. 251-00499) Aug-06 Reference 20 dB Attenuator SN: S5086 (20b) May-06 3-May-05 (METAS, No. 251-00467) Reference 30 dB Attenuator SN: S5129 (30b) Aug-06 11-Aug-05 (METAS, No. 251-00500) Reference Probe ES3DV2 SN: 3013 Jan-06 7-Jan-05 (SPEAG, No. ES3-3013 Jan05) DAE4 Nov-05 SN: 654 29-Nov-04 (SPEAG, No. DAE4-654\_Nov04) Secondary Standards ID# Scheduled Check Check Date (in house) RF generator HP 8648C US3642U01700 4-Aug-99 (SPEAG, in house check Dec-03) In house check: Dec-05 Network Analyzer HP 8753E US37390585 18-Oct-01 (\$PEAG, in house check Nov-04) In house check: Nov 05 Name Function Calibrated by: Nico Vetterli Laboratory Technician Katja Pokovic Technical Manager Approved by: Issued: August 30, 2005 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

## **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland



S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConF sensitivity in TSL / NORMx,y,z
DCP diode compression point
Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

## Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

#### Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1515 Aug05 Page 2 of 9

ET3DV6 SN:1515 August 30, 2005

# Probe ET3DV6

SN:1515

Manufactured: February 1, 2000 Last calibrated: August 25, 2004 Recalibrated: August 30, 2005

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ET3-1515\_Aug05 Page 3 of 9

ET3DV6 SN:1515 August 30, 2005

## DASY - Parameters of Probe: ET3DV6 SN:1515

| Sensitivity in Free | Diode Compression <sup>B</sup> |                            |       |       |  |
|---------------------|--------------------------------|----------------------------|-------|-------|--|
| NormX               | <b>1.73</b> ± 10.1%            | $\mu V/(V/m)^2$            | DCP X | 95 mV |  |
| NormY               | <b>1.93</b> ± 10.1%            | $\mu$ V/(V/m) <sup>2</sup> | DCP Y | 95 mV |  |
| NormZ               | <b>1.72</b> ± 10.1%            | $\mu V/(V/m)^2$            | DCP Z | 95 mV |  |

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

## **Boundary Effect**

TSL 900 MHz Typical SAR gradient: 5 % per mm

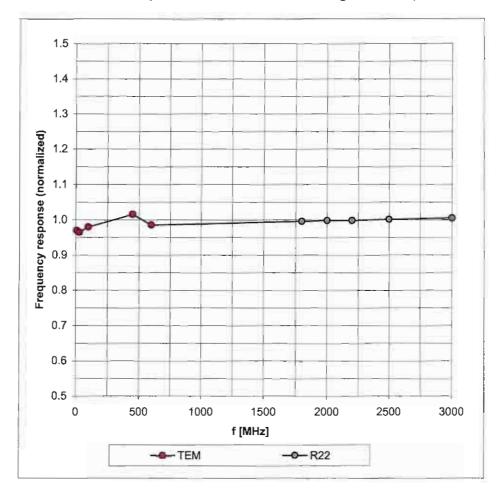
| Sensor Center to      | Phantom Surface Distance     | 3.7 mm | 4.7 mm |
|-----------------------|------------------------------|--------|--------|
| SAR <sub>be</sub> [%] | Without Correction Algorithm | 8.4    | 4.5    |
| SAR <sub>be</sub> [%] | With Correction Algorithm    | 0.1    | 0.2    |

TSL 1810 MHz Typical SAR gradient: 10 % per mm

| Sensor Center t       | o Phantom Surface Distance   | 3.7 mm | 4.7 mm |
|-----------------------|------------------------------|--------|--------|
| SAR <sub>be</sub> [%] | Without Correction Algorithm | 13.3   | 9.2    |
| SAR <sub>be</sub> [%] | With Correction Algorithm    | 1.0    | 0.2    |

## Sensor Offset

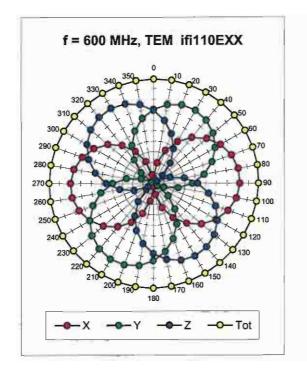
Probe Tip to Sensor Center 2.7 mm


The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

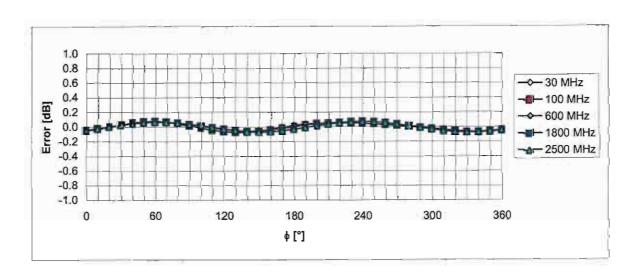
A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Page 8).

<sup>&</sup>lt;sup>8</sup> Numerical linearization parameter; uncertainty not required.

# Frequency Response of E-Field


(TEM-Cell:ifi110 EXX, Waveguide: R22)

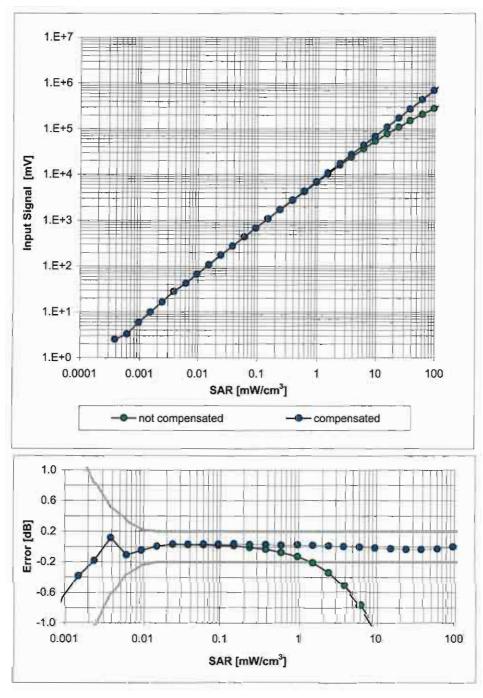



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

ET3DV6 SN:1515 August 30, 2005

Receiving Pattern ( $\phi$ ),  $\vartheta = 0^{\circ}$ 

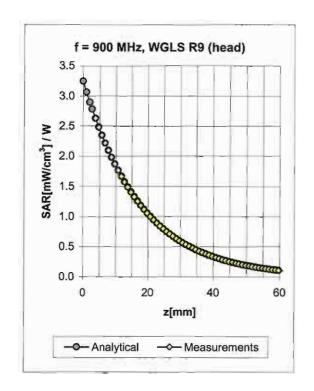


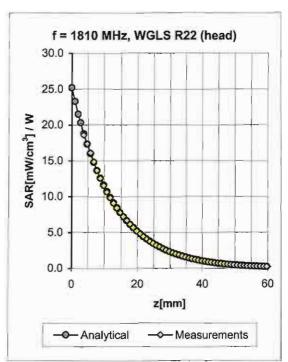





Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

# Dynamic Range f(SAR<sub>head</sub>)


(Waveguide R22, f = 1800 MHz)

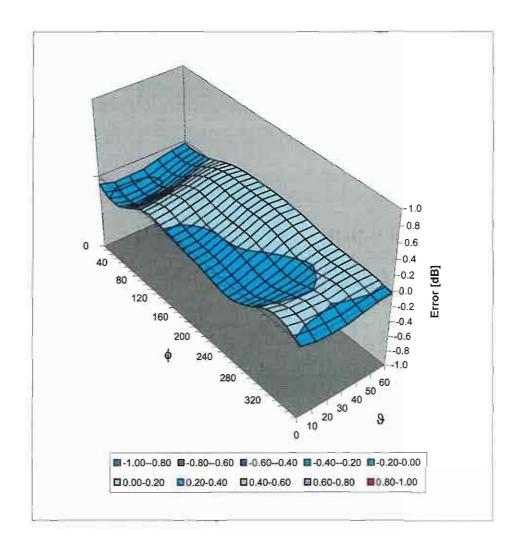



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

ET3DV6 SN:1515 August 30, 2005

#### **Conversion Factor Assessment**






| f [MHz] | Validity [MHz] <sup>c</sup> | TSL  | Permittivity | Conductivity | Alpha | Depth | ConvF Uncertainty  |
|---------|-----------------------------|------|--------------|--------------|-------|-------|--------------------|
| 900     | ± 50 / ± 100                | Head | 41.5 ± 5%    | 0.97 ± 5%    | 0.54  | 1.90  | 6.09 ± 11.0% (k=2) |
| 1810    | ± 50 / ± 100                | Head | 40.0 ± 5%    | 1.40 ± 5%    | 0.61  | 2.34  | 5.07 ± 11.0% (k=2) |
| 1950    | ± 50 / ± 100                | Head | 40.0 ± 5%    | 1.40 ± 5%    | 0.59  | 2.48  | 4.77 ± 11.0% (k=2) |
| 2450    | ± 50 / ± 100                | Head | 39.2 ± 5%    | 1.80 ± 5%    | 0.77  | 2.07  | 4.44 ± 11.8% (k=2) |
|         |                             |      |              |              |       |       |                    |
|         |                             |      |              |              |       |       |                    |
| 900     | ± 50 / ± 100                | Body | 55.0 ± 5%    | 1.05 ± 5%    | 0.49  | 2.08  | 5.98 ± 11.0% (k=2) |
| 1810    | ± 50 / ± 100                | Body | 53.3 ± 5%    | 1.52 ± 5%    | 0.58  | 2.62  | 4.47 ± 11.0% (k=2) |
| 1950    | ± 50 / ± 100                | Body | 53.3 ± 5%    | 1.52 ± 5%    | 0.62  | 2.42  | 4.25 ± 11.0% (k=2) |
| 2450    | ± 50 / ± 100                | Body | 52.7 ± 5%    | 1.95 ± 5%    | 0.92  | 1.66  | 4.24 ± 11.8% (k=2) |

<sup>&</sup>lt;sup>c</sup> The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

# **Deviation from Isotropy in HSL**

Error (♦, ३), f = 900 MHz



Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

### Appendix 5

FCC ID: IHDT56FR2

#### **Measurement Uncertainty Budget**

# **Uncertainty Budget for Device Under Test: 30 – 3000 MHz**

FCC ID: IHDT56FR2

|                                     |         |            |             | e =          |       |                | h=<br>cxf  | i=                    |                |
|-------------------------------------|---------|------------|-------------|--------------|-------|----------------|------------|-----------------------|----------------|
| <b>a</b>                            | b       | С          | d           | f(d,k)       | f     | g              | /e         | cxg<br>/e             | k              |
|                                     |         | Tol.       | Prob        |              | Ci    | C <sub>i</sub> | 1 g        | 10 g                  |                |
|                                     | IEEE    | (±         | 1100        |              |       | (10            | . 9        | . • 9                 |                |
|                                     | 1528    | %)         | Dist        |              | (1 g) | g)             | <b>u</b> i | <b>u</b> <sub>i</sub> |                |
| Uncertainty Component               | section |            | i           | Div.         |       |                | (±%)       | (±%)                  | V <sub>i</sub> |
| Measurement System                  |         |            |             |              |       |                |            |                       |                |
| Probe Calibration                   | E.2.1   | 5.9        | N           | 1.00         | 1     | 1              | 5.9        | 5.9                   | 8              |
| Axial Isotropy                      | E.2.2   | 4.7        | R           | 1.73         | 0.707 | 0.707          | 1.9        | 1.9                   | 8              |
| Hemispherical Isotropy              | E.2.2   | 9.6        | R           | 1.73         | 0.707 | 0.707          | 3.9        | 3.9                   | 8              |
| Boundary Effect                     | E.2.3   | 1.0        | R           | 1.73         | 1     | 1              | 0.6        | 0.6                   | ∞              |
| Linearity                           | E.2.4   | 4.7        | R           | 1.73         | 1     | 1              | 2.7        | 2.7                   | 8              |
| System Detection Limits             | E.2.5   | 1.0        | R           | 1.73         | 1     | 1              | 0.6        | 0.6                   | 8              |
| Readout Electronics                 | E.2.6   | 0.3        | N           | 1.00         | 1     | 1              | 0.3        | 0.3                   | ∞              |
| Response Time                       | E.2.7   | 1.1        | R           | 1.73         | 1     | 1              | 0.6        | 0.6                   | 8              |
| Integration Time                    | E.2.8   | 1.1        | R           | 1.73         | 1     | 1              | 0.6        | 0.6                   | 8              |
| RF Ambient Conditions - Noise       | E.6.1   | 3.0        | R           | 1.73         | 1     | 1              | 1.7        | 1.7                   | 8              |
| RF Ambient Conditions -             |         |            |             |              | -     | -              |            |                       |                |
| Reflections                         | E.6.1   | 0.0        | R           | 1.73         | 1     | 1              | 0.0        | 0.0                   | $\infty$       |
| Probe Positioner Mech.              |         |            |             |              |       |                |            |                       |                |
| Tolerance                           | E.6.2   | 0.4        | R           | 1.73         | 1     | 1              | 0.2        | 0.2                   | 8              |
| Probe Positioning w.r.t             |         |            | _           |              |       |                |            |                       |                |
| Phantom                             | E.6.3   | 1.4        | R           | 1.73         | 1     | 1              | 8.0        | 8.0                   | $\infty$       |
| Max. SAR Evaluation (ext.,          | E.5     | 3.4        | R           | 1.73         | 1     | 1              | 2.0        | 2.0                   | **             |
| int., avg.) Test sample Related     | E.3     | 3.4        | K           | 1.73         | I     | I              | 2.0        | 2.0                   | 8              |
| Test Sample Positioning             | E.4.2   | 3.2        | N           | 1.00         | 1     | 1              | 3.2        | 3.2                   | 29             |
|                                     |         |            |             |              | 1     |                |            |                       | 8              |
| Device Holder Uncertainty SAR drift | E.4.1   | 4.0<br>5.0 | N<br>R      | 1.00<br>1.73 | 1     | 1              | 4.0<br>2.9 | 4.0<br>2.9            |                |
| Phantom and Tissue                  | 6.6.2   | 5.0        | K           | 1.73         | I     | -              | 2.9        | 2.9                   | 8              |
| Parameters Parameters               |         |            |             |              |       |                |            |                       |                |
| Phantom Uncertainty                 | E.3.1   | 4.0        | R           | 1.73         | 1     | 1              | 2.3        | 2.3                   | 8              |
| Liquid Conductivity (target)        | E.3.2   | 5.0        | R           | 1.73         | 0.64  | 0.43           | 1.8        | 1.2                   | 8              |
| Liquid Conductivity                 |         |            | - ` `       | 0            | 0.01  | 5.10           |            |                       | -              |
| (measurement)                       | E.3.3   | 3.3        | N           | 1.00         | 0.64  | 0.43           | 2.1        | 1.4                   | $\infty$       |
| Liquid Permittivity (target)        | E.3.2   | 5.0        | R           | 1.73         | 0.6   | 0.49           | 1.7        | 1.4                   | 8              |
| Liquid Permittivity                 |         |            |             |              |       |                |            |                       |                |
| (measurement)                       | E.3.3   | 1.9        | N           | 1.00         | 0.6   | 0.49           | 1.1        | 0.9                   | 8              |
| Combined Standard                   |         |            |             |              |       |                |            |                       |                |
| Uncertainty                         |         |            | RSS         |              |       |                | 11.1       | 10.8                  | 411            |
| Expanded Uncertainty                |         |            |             |              |       |                |            |                       |                |
| (95% CONFIDENCE LEVEL)              |         |            | <i>k</i> =2 |              |       |                | 22.2       | 21.6                  |                |

# Uncertainty Budget for System Check: 30 – 3000 MHz

|                                             |                         |                  |             | e =    |                            |                             | h = c x f/                          | i=                                   |                |
|---------------------------------------------|-------------------------|------------------|-------------|--------|----------------------------|-----------------------------|-------------------------------------|--------------------------------------|----------------|
| <b>a</b>                                    | b                       | С                | d           | f(d,k) | f                          | g                           | e e                                 | cxg/<br>e                            | k              |
| Uncertainty Component                       | IEEE<br>1528<br>section | Tol.<br>(±<br>%) | Prob.       | Div.   | c <sub>i</sub><br>(1<br>g) | c <sub>i</sub><br>(10<br>g) | 1 g<br><i>u<sub>i</sub></i><br>(±%) | 10 g<br><i>u<sub>i</sub></i><br>(±%) | V <sub>i</sub> |
| Measurement System                          |                         |                  |             |        |                            |                             |                                     |                                      |                |
| Probe Calibration                           | E.2.1                   | 5.9              | N           | 1.00   | 1                          | 1                           | 5.9                                 | 5.9                                  | × ×            |
| Axial Isotropy                              | E.2.2                   | 4.7              | R           | 1.73   | 1                          | 1                           | 2.7                                 | 2.7                                  | ∞              |
| Spherical Isotropy                          | E.2.2                   | 9.6              | R           | 1.73   | 0                          | 0                           | 0.0                                 | 0.0                                  | ×              |
| Boundary Effect                             | E.2.3                   | 1.0              | R           | 1.73   | 1                          | 1                           | 0.6                                 | 0.6                                  | ×              |
| Linearity                                   | E.2.4                   | 4.7              | R           | 1.73   | 1                          | 1                           | 2.7                                 | 2.7                                  | × ×            |
| System Detection Limits                     | E.2.5                   | 1.0              | R           | 1.73   | 1                          | 1                           | 0.6                                 | 0.6                                  | 80             |
| Readout Electronics                         | E.2.6                   | 0.3              | N           | 1.00   | 1                          | 1                           | 0.3                                 | 0.3                                  | × ×            |
| Response Time                               | E.2.7                   | 1.1              | R           | 1.73   | 1                          | 1                           | 0.6                                 | 0.6                                  | 8              |
| Integration Time                            | E.2.8                   | 0.0              | R           | 1.73   | 1                          | 1                           | 0.0                                 | 0.0                                  | ∞              |
| RF Ambient Conditions - Noise               | E.6.1                   | 3.0              | R           | 1.73   | 1                          | 1                           | 1.7                                 | 1.7                                  | 8              |
| RF Ambient Conditions - Reflections         | E.6.1                   | 0.0              | R           | 1.73   | 1                          | 1                           | 0.0                                 | 0.0                                  | 8              |
| Probe Positioner Mechanical                 |                         |                  |             |        |                            |                             |                                     |                                      |                |
| Tolerance                                   | E.6.2                   | 0.4              | R           | 1.73   | 1                          | 1                           | 0.2                                 | 0.2                                  | ∞              |
| Probe Positioning w.r.t. Phantom            | E.6.3                   | 1.4              | R           | 1.73   | 1                          | 1                           | 0.8                                 | 0.8                                  | ∞              |
| Max. SAR Evaluation (ext., int., avg.)      | E.5                     | 3.4              | R           | 1.73   | 1                          | 1                           | 2.0                                 | 2.0                                  | ∞              |
| Dipole                                      |                         |                  |             |        |                            |                             |                                     |                                      |                |
| Dipole Axis to Liquid Distance              | 8,<br>E.4.2             | 2.0              | R           | 1.73   | 1                          | 1                           | 1.2                                 | 1.2                                  | ∞              |
| Input Power and SAR Drift Measurement       | 8,<br>6.6.2             | 5.0              | R           | 1.73   | 1                          | 1                           | 2.9                                 | 2.9                                  | ∞              |
| Phantom and Tissue Parameters               |                         |                  |             |        |                            |                             |                                     |                                      |                |
| Phantom Uncertainty                         | E.3.1                   | 4.0              | R           | 1.73   | 1                          | 1                           | 2.3                                 | 2.3                                  | ∞              |
| Liquid Conductivity (target)                | E.3.2                   | 5.0              | R           | 1.73   | 0.64                       | 0.43                        | 1.8                                 | 1.2                                  | 8              |
| Liquid Conductivity (measurement)           | E.3.3                   | 3.3              | R           | 1.73   | 0.64                       | 0.43                        | 1.2                                 | 0.8                                  | ∞              |
| Liquid Permittivity (target)                | E.3.2                   | 5.0              | R           | 1.73   | 0.6                        | 0.49                        | 1.7                                 | 1.4                                  | 8              |
| Liquid Permittivity (measurement)           | E.3.3                   | 1.9              | R           | 1.73   | 0.6                        | 0.49                        | 0.6                                 | 0.5                                  | ∞              |
|                                             |                         |                  |             |        |                            |                             |                                     |                                      | 9999           |
| Combined Standard Uncertainty               |                         |                  | RSS         |        |                            |                             | 9.0                                 | 8.8                                  | 9              |
| Expanded Uncertainty (95% CONFIDENCE LEVEL) |                         |                  | <i>k</i> =2 |        |                            |                             | 17.7                                | 17.3                                 |                |

FCC ID: IHDT56FR2

#### Appendix 6

#### Photographs of the device under test



Figure 1. Front of Phone



Figure 2. Phone Open



Figure 3. Back of Phone



Figure 4. Phone Against the Flat Phantom



Figure 5. Phone Against the Head Phantom (Cheek Touch)



Figure 6. Phone Against the Head Phantom (15°Tilt)

FCC ID: IHDT56FR2

#### Appendix 7

#### **Dipole Characterization Certificate**

# **Certification of System Performance Check Targets Based on APP-0396**

-Historical Data-

|                                                                            | 900MHz                                               |       |
|----------------------------------------------------------------------------|------------------------------------------------------|-------|
| IEEE1528 Target:                                                           | 10.8                                                 | (W/kg |
| Measurement Uncertainty<br>(k=1):                                          | 9.0%                                                 |       |
| Measurement Period:                                                        | 9-Nov-04 to 2-June-05                                |       |
| # of tests performed:                                                      | 813                                                  |       |
| Grand Average:                                                             | 11.3                                                 | (W/kg |
| <b>% Delta</b> (Average - IEEE1528 Target)                                 | 4.4%                                                 |       |
| Is % Delta <= Expanded<br>Measurement Uncertainty (k=2)?                   | Yes                                                  | -     |
| Accept/Reject <u>Average</u> as new<br>system performance check<br>target? | ACCEPT                                               | _     |
| _                                                                          | Historic data included the following 900MHz Dipoles: |       |
|                                                                            | 69, 77                                               |       |
|                                                                            | 79, 80                                               | 4     |
|                                                                            | 91, 94<br>96, 97                                     | -     |
|                                                                            | ,                                                    |       |
|                                                                            |                                                      | J     |

#### -New System Performance Check Targets- per APP-0396

(based on analysis of historical data)

| Frequency | SAR Target (W/kg) | Permittivity | Conductivity (S/m) |
|-----------|-------------------|--------------|--------------------|
| 900MHz    | 11.3              | 41.5 ± 5%    | 0.97 ± 5%          |

| Submitted by: | Marge Kaunas                                         | Date: 2-Jun-05                   |
|---------------|------------------------------------------------------|----------------------------------|
| Signed:       | Manga Kanna                                          |                                  |
| Comments:     | Spreadsheet detailing referenced historical measurem | nents is available upon request. |
| Approved by:  | Mark Douglas                                         | Date: 2-Jun-05                   |
| Signed:       | Mark Tougla                                          |                                  |
|               |                                                      |                                  |