

Exhibit 11: Class II Permissive Change SAR Test Report IHDT56EH1

Date of test: 12 - 26 July, 2004 4 August, 2004 **Date of Report:**

Motorola Personal Communications Sector Product Safety & Compliance Laboratory

600 N. US Highway 45

Laboratory: Room: MW113

Libertyville, Illinois 60048

Steven Hauswirth **Test Responsible:** Principal Staff Engineer

Accreditation: This laboratory is accredited to ISO/IEC 17025-1999 to perform the following tests:

ACCREDITED

Tests: Procedures:

Electromagnetic Specific Absorption Rate ANSI/IEEE C95.1-1992, 1999

(SAR) IEEE C95.3-1991 IEEE P1528 (DRAFT)

FCC OET Bulletin 65 (including Supplements A, B, C)

FCC ID: IHDT56EH1

Australian Communications Authority Radio

Communications (Electromagnetic Radiation – Human

Exposure) Standard 1999 CENELEC EN 50361 (2001)

Simulated Tissue Preparation APP-0247

RF Power Measurement DOI-0876, 0900, 0902, 0904, 0915

On the following products or types of products:

Wireless Communications Devices (Examples): Two Way Radios; Portable Phones (including

Licensed Non-Broadcast and PCS); Low Frequency Readers; and Pagers

A2LA certificate #1651-01

Motorola declares under its sole responsibility that portable cellular telephone FCC ID IHDT56EH1 to which this declaration relates, is in conformity with the appropriate General Population/Uncontrolled RF exposure standards, recommendations and guidelines (FCC 47 CFR

Statement of **Compliance:** §2.1093). It also declares that the product was tested in accordance with the appropriate measurement standards, guidelines and recommended practices. Any deviations from these standards, guidelines and recommended practices are noted below:

(none)

©Motorola, Inc. 2004

This test report shall not be reproduced except in full, without written approval of the laboratory.

The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report.

Motorola encourages all feedback, both positive and negative, on this test report.

Table of Contents

1. INTRODUCTION	3
2. DESCRIPTION OF THE DEVICE UNDER TEST	3
2.1 Antenna description	3
2.2 Device description	3
3. TEST EQUIPMENT USED	3
3.1 Dosimetric System	3
3.2 Additional Equipment	4
4. ELECTRICAL PARAMETERS OF THE TISSUE SIMULATING LIQUID	4
5. SYSTEM ACCURACY VERIFICATION	5
6. TEST RESULTS	5
6.1 Body Worn Test Results	6
APPENDIX 1: SAR DISTRIBUTION COMPARISON FOR SYSTEM ACCURACY VERIFICATION	8
APPENDIX 2: SAR DISTRIBUTION PLOTS FOR BODY WORN CONFIGURATION	9
APPENDIX 3: PROBE CALIBRATION CERTIFICATE	11
APPENDIX 4: DIPOLE CHARACTERIZATION CERTIFICATE	12
APPENDIX 5: MEASUREMENT UNCERTAINTY BUDGET	13
APPENDIX 6: PHOTOGRAPHS OF DEVICE UNDER TEST	16

1 Introduction

The Motorola Personal Communications Sector Product Safety Laboratory has performed measurements of the maximum potential exposure to the user of portable cellular phone (FCC ID IHDT56EH1). The Specific Absorption Rate (SAR) of this product was measured. The portable cellular phone was tested in accordance with FCC OET Bulletin 65 Supplement C 01-01.

2 Description of the Device Under Test 2.1 Antenna description

Type	Ext	ternal		
Location	Upper Right Corner			
Dimensions	Length	20mm		
Dimensions	Width 10mm			
Configuration	Helix			

2.2 Device description

FCC ID Number		IHDT56EH1						
Serial number(s)		4400005723356						
Mode(s) of Operation	GSM 850							
Modulation Mode(s)	GSM	GSM	GSM	GSM	GSM	GSM	GSM	GSM
Maximum Output Power Setting	32.50 dBm	32.50 dBm	30.00 dBm	30.00 dBm	32.50 dBm	32.50 dBm	30.00 dBm	30.00 dBm
Duty Cycle	1:8	1:8	1:8	1:8	2:8	2:8	2:8	2:8
Transmitting Frequency Rang(s)	824.2- 848.8 MHz	880.2- 914.8 MHz	1710.2- 1784.8 MHz	1850.2 – 1909.8 MHz	824.2- 848.8 MHz	880.2- 914.8 MHz	1710.2- 1784.8 MHz	1850.2 – 1909.8 MHz
Production Unit or Identical Prototype (47 CFR §2908)		Identical Prototype						
Device Category				Port	able			
RF Exposure Limits			Gene	ral Populatio	on / Unco	ntrolled		

3 Test Equipment Used

3.1 Dosimetric System

The Motorola Personal Communications Sector Product Safety & Compliance Laboratory utilizes a Dosimetric Assessment System (Dasy3TM v3.1d) manufactured by Schmid & Partner Engineering AG (SPEAGTM), of Zurich Switzerland. All the SAR measurements are taken within a shielded enclosure. The overall RSS uncertainty of the measurement system is $\pm 11.7\%$ (K=1) with an expanded uncertainty of $\pm 23.0\%$ (K=2). The measurement uncertainty budget is given in Appendix 6. Per IEEE 1528, this uncertainty budget is applicable to the SAR range of 0.4 W/kg to 10 W/kg. The list of calibrated equipment used for the measurements is shown below.

Description	Serial Number	Cal Due Date
DASY3 DAE V1	SN376	22-Dec-04
E-Field Probe ET3DV6	SN1391	24-Nov-04
Dipole Validation Kit, D900V2	SN078	2-Apr-05
Dipole Validation Kit, D1800V2	SN273TR	2-Apr-05
DASY3 DAE V1	SN375	17-Jun-05
E-Field Probe ET3DV6	SN1522	23-Mar-05
Dipole Validation Kit, D1800V2	SN272TR	2-Apr-05

3.2 Additional Equipment

Description	Serial Number	Cal Due Date
Signal Generator HP8648C	3847A04633	11-Oct-04
Power Meter E4419B	GB39511090	5-Apr-05
Power Sensor #1 - E9301A	US39210916	5-Aug-04
Power Sensor #2 - E9301A	US39211008	5-Aug-04
Network Analyzer HP8753ES	US39171846	29-Oct-04
Dielectric Probe Kit HP85070B	US99360070	N/A

4 Electrical parameters of the tissue simulating liquid

Prior to conducting SAR measurements, the relative permittivity, ε_r , and the conductivity, σ , of the tissue simulating liquids were measured with the HP85070 Dielectric Probe Kit These values, along with the temperature of the tissue simulate are shown in the table below. The recommended limits for maximum permittivity and minimum conductivity are also shown. These come from the Federal Communication Commission, OET Bulletin 65 Supplement C 01-01. It is seen that the measured parameters are satisfactory for compliance testing.

			Dielec	Dielectric Parameter			
f (MHz)	Tissue type	Limits / Measured	$\mathbf{\epsilon}_r$	σ (S/m)	Temp (°C)		
		Measured, 23-Jul-04	53.1	0.96	19.9		
835	Body	Measured, 26-Jul-04	54.0	0.97	20.0		
		Recommended Limits	55.2 ±5%	0.97 ±5%	18-25		
		Measured, 12-Jul-04	53.7	1.59	19.5		
1880	Body	Measured, 16-Jul-04	52.8	1.59	19.8		
		Recommended Limits	53.3 ±5%	1.52 ±5%	18-25		

The list of ingredients and the percent composition used for the tissue simulates are indicated in the table below.

	800MHz	800MHz	1900MHz	1900MHz
Ingredient	Head	Body	Head	Body
Sugar	57.0	44.9		30.80
DGBE			47.0	
Water	40.45	53.06	52.8	68.91
Salt	1.45	0.94	0.2	0.29
HEC	1.0	1.0	-	
Bact.	0.1	0.1		

5 System Accuracy Verification

A system accuracy verification of the DASY3 was performed using the measurement equipment listed in Section 3.1. The daily system accuracy verification occurs within center section of the SAM phantom.

FCC ID: IHDT56EH1

A SAR measurement was performed to see if the measured SAR was within +/- 10% from the target SAR indicated on the dipole certification sheet. These tests were done at 900MHz and/or 1800MHz. These frequencies are within 100MHz of the mid-band frequency of the test device. This is within the allowable window given in Supplement C 01-01 *Appendix D System Verification* section item #5. The test was conducted on the same days as the measurement of the DUT. Recommended limits for maximum permittivity, minimum conductivity are shown in the table below. These come from the Federal Communication Commission, OET Bulletin 65 Supplement C 01-01. The obtained results from the system accuracy verification are displayed in the table below. The distributions of SAR compare well with those of the reference measurements (see Appendix 1). The tissue stimulant depth was verified to be 15.0cm ±0.5cm. Z-axis scans showing the SAR penetration are also included in Appendix 1. SAR values are normalized to 1W forward power delivered to the dipole.

f (MHz)	Description	SAR (W/kg), 1gram	Dielectric ε_r	Parameters σ (S/m)	Ambient Temp (°C)	Tissue Temp (°C)
	Measured, 23-Jul-04	11.17	42.1	0.97	20	20.3
900	Measured, 26-Jul-04	11.49	42.2	0.98	20	20.2
	Recommended Limits	11.40	41.5 ±5%	0.97 ±5%	18-25	18-25
	Measured, 12-Jul-04	41.6	39.2	1.37	20	19.5
1800	Measured, 16-Jul-04	39.2	39.4	1.37	20	19.3
	Recommended Limits	40.7	40.0 ±5%	1.4 ±5%	18-25	18-25

The following probe conversion factors were used on the E-Field probe(s) used for the system accuracy verification measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe ET3DV6	SN1391	900	6.50	7 of 8
	5111591	1800	5.30	7 of 8
L13D V0	SN1522	1800	3.41	7 of 8

6 Test Results

The test sample was operated in a test mode that allows control of the transmitter without the need to place actual phone calls. For the purposes of this test the unit is commanded to test mode and manually set to the proper channel, transmitter power level and transmit mode of operation. The phone was tested in the configurations stipulated in OET Bulletin 65 Supplement C 01-01. Motorola also followed the requirements in Supplement. C / Appendix D: SAR Measurement Procedures, section titled "Devices Operating Next To A Person's Ear". These directions state "The device should be tested on the left and right side of the head phantom in the "Cheek/Touch" and "Ear/Tilt" positions. When applicable, each configuration should be tested with the antenna in its fully extended and fully retracted positions. These test configurations should be tested at the high, middle and low frequency channels of each operating mode; for example, AMPS, CDMA, and TDMA. If the SAR measured at the middle channel for each test configuration (left, right, Cheek/Touch, Tile/Ear, extended and retracted) is at least 2.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s)."

The DASY v3.1d SAR measurement system specified in section 3.1 was utilized within the intended operations as set by the SPEAGTM setup. The phone was positioned into the measurement configurations using the positioner

supplied with the DASY 3.1d SAR measurement system. The measured dielectric constant of the material used for the positioner is less than 2.9 and the loss tangent is less than $0.02 (\pm 30\%)$ at 850MHz. The default settings for the "coarse" and "cube" scans were chosen and use for measurements. The grid spacing of the course scan was set to 15cm as shown in the SAR plots included in appendix 2 and 3. Please refer to the DASY manual for additional information on SAR scanning procedures and algorithms used.

FCC ID: IHDT56EH1

The Cellular Phone (FCC ID IHDT56EH1) has the AANN4285A as the only available battery option. This battery was used to do all of the SAR testing. The phone was placed in the SAR measurement system with a fully charged battery.

6.1 Body Worn Test Results

The SAR results shown in tables 3 and 4 are the maximum SAR values averaged over 1 gram of phantom tissue. Also shown are the measured conducted output powers, the temperature of the test facility during the test, the temperature of the tissue simulate after the test, the measured drift and the extrapolated SAR. The exact method of extrapolation is New SAR = Old SAR * 10^(-drift/10). The SAR reported at the end of the measurement process by the DASYTM measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test. The test conditions indicated as bold numbers in the following table are included in Appendix 3. Note that 800MHz digital mode SAR measurements were performed in accordance with OET Bulletin 65 Supplement C 01-01. All other test conditions measured lower SAR values than those included in Appendix 3.

A "flat" phantom was for the body-worn tests. This "flat" phantom is made out of 1" thick natural High Density Polyethylene with a thickness at the bottom equal to 2.0mm. It measures 52.7cm(long) x 26.7cm(wide) x 21.2cm(tall). The measured dielectric constant of the material used is less than 2.3 and the loss tangent is less than 0.0046 all the way up to 2.184GHz.

The tissue stimulant depth was verified to be $15.0 \text{cm} \pm 0.5 \text{cm}$. The same device holder described in section 6 was used for positioning the phone. There are no Body-Worn Accessories available for this phone at the time of testing hence the device was tested per the supplement C testing guidelines for devices that do not have body worn accessories. The phone was placed a maximum of 1 inch away from a flat phantom per the supplement C standard guidelines to perform SAR measurement. The cellular phone was tested with a headset connected to the device for all body-worn SAR measurements

The following probe conversion factors were used on the E-Field probe(s) used for the body worn measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe ET3DV6	SN1391	800	6.20	7 of 8
	5111591	1900	4.90	7 of 8
LISDVO	SN1522	1900	2.93	7 of 8

			Body Worn with SYN1072A case and Wishbone Belt clip							
		Conducted Output		Voi	ice Mode			GPRS C	lass 10 Mode	
f (MHz)	Description	Power (dBm)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)
	Channel 128	32.46								
Digital 850MHz	Channel 190	32.44	0.0211	-0.16	0.02	20.0	0.0473	-0.21	0.05	19.9
	Channel 251	32.45								
	Channel 512	29.95								
Digital 1900MHz	Channel 661	29.97	0.178	-0.11	0.18	19.8	0.29	-0.27	0.31	19.8
	Channel 810	29.95								

FCC ID: IHDT56EH1

Table 1: SAR measurement results for the portable cellular telephone FCC ID IHDT56EH1 at highest possible output power. Measured against the body.

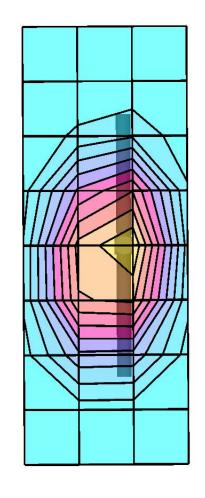
				Body Worn with SYN1072A case and Universal Belt clip						
			Voice Mode				GPRS Class 10 Mode			
f (MHz)	Description	Output Power (dBm)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)
	Channel 128	32.46								
Digital 850MHz	Channel 190	32.44	0.0121	-0.08	0.01	20.0	0.0313	-0.40	0.03	20.0
	Channel 251	32.45								
	Channel 512	29.95					1.13	-0.15	1.17	19.5
Digital 1900MHz	Channel 661	29.97	0.553	-0.12	0.57	19.5	1.06	-0.31	1.14	19.5
	Channel 810	29.95					0.978	-0.19	1.02	19.5

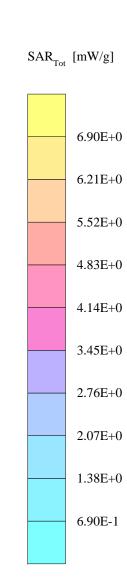
Table 2: SAR measurement results for the portable cellular telephone FCC ID IHDT56EH1 at highest possible output power. Measured against the body.

Appendix 1

FCC ID: IHDT56EH1

SAR distribution comparison for the system accuracy verification


1800 MHz System Performance Check / Dipole Sn# 272tr PM2 Power = 200mW Refl.Pwr PM3= -22.9dB Sim.Temp@SPC = 19.5*C Room Temp @ SPC = 20*C R4 - Amy Twin Phantom Rev.4 (22Aug02); section 2


Probe: ET3DV6R - SN1522 - Validation4; ConvF(3.41,3.41,3.41); Crest factor: 1.0; 1800 MHz VALIDATION: σ = 1.37 mho/m ϵ_r = 39.2 ρ = 1.00 g/cm³

Cubes (2): Peak: 15.6 $\text{mW/g} \pm 0.00 \text{ dB}$, SAR (1g): 8.31 $\text{mW/g} \pm 0.00 \text{ dB}$, SAR (10g): 4.36 $\text{mW/g} \pm 0.01 \text{ dB}$, (Worst-case extrapolation)

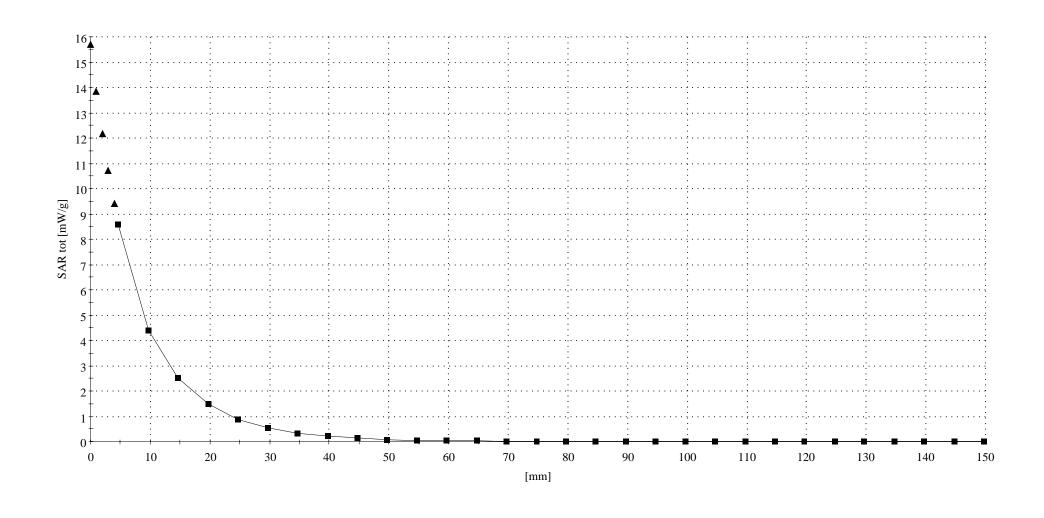
Penetration depth: 8.0 (7.6, 9.0) [mm]

Powerdrift: -0.06 dB

1800 MHz System Performance Check / Dipole Sn# 272tr

PM2 Power = 200 mW Refl.Pwr PM3= -22.9 dB

Sim.Temp@SPC = 19.5*C Room Temp @ SPC = 20*C


R4 - Amy Twin Phantom Rev.4 (22Aug02) Phantom; Section; Position: ; Frequency: 1800 MHz

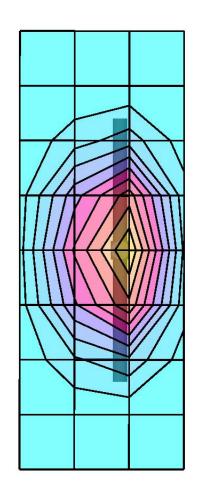
Probe: ET3DV6R - SN1522 - Validation4; ConvF(3.41,3.41,3.41); Crest factor: 1.0; 1800 MHz VALIDATION: σ = 1.37 mho/m ϵ_r = 39.2 ρ = 1.00 g/cm³

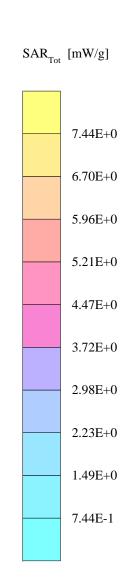
:,,()

Z-Axis: Dx = 0.0, Dy = 0.0, Dz = 5.0

Penetration depth: 8.0 (7.6, 8.9) [mm]

1800 MHz System Performance Check / Dipole Sn# 273tr PM2 Power = 204mW Refl.Pwr PM3= -23.8dB Sim.Temp@SPC = 19.3C Room Temp @ SPC = 20*C


R2 Amy Twin Phantom Rev.3; section 1


Probe: ET3DV6 - SN1391 - Validation.4; ConvF(5.30,5.30,5.30); Crest factor: 1.0; 1800 MHz VALIDATION: σ = 1.37 mho/m ϵ_r = 39.4 ρ = 1.00 g/cm³

Cubes (2): Peak: 14.6 $\,$ mW/g \pm 0.04 dB, SAR (1g): 7.99 $\,$ mW/g \pm 0.04 dB, SAR (10g): 4.26 $\,$ mW/g \pm 0.03 dB, (Worst-case extrapolation)

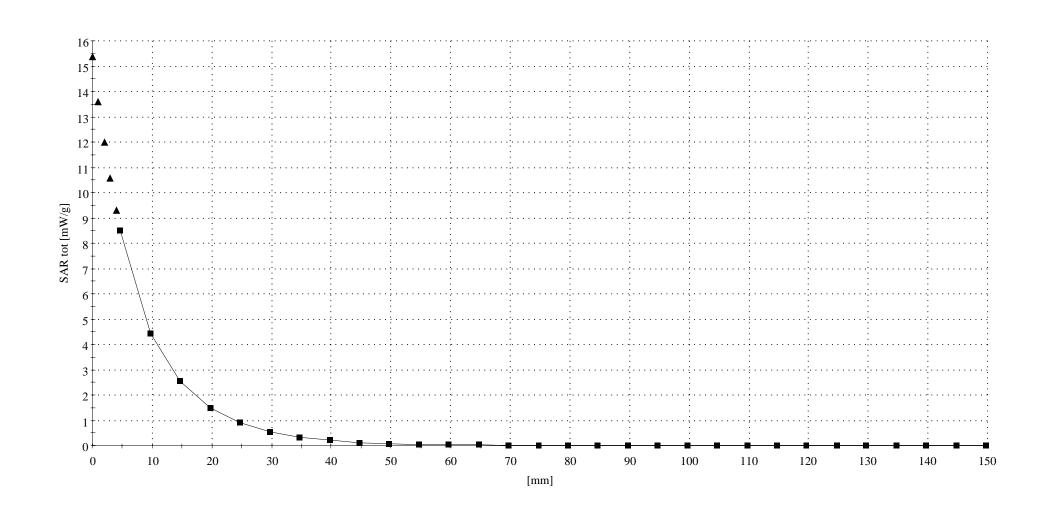
Penetration depth: 8.5 (8.2, 9.3) [mm]

Powerdrift: 0.04 dB

1800 MHz System Performance Check / Dipole Sn# 273tr

PM2 Power = 204mW Refl.Pwr PM3= -23.8dB

Sim.Temp@SPC = 19.3C Room Temp @ SPC = 20*C

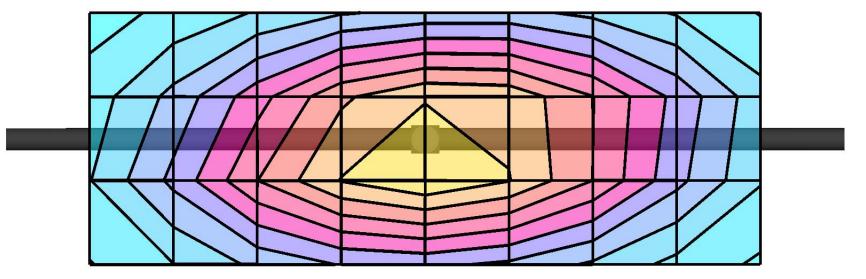

R2 Amy Twin Phantom Rev.3 Phantom; Section; Position: ; Frequency: 1800 MHz

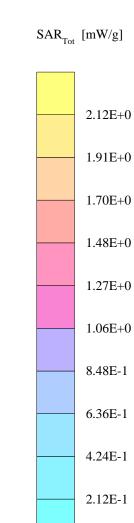
Probe: ET3DV6 - SN1391 - Validation.4; ConvF(5.30,5.30,5.30); Crest factor: 1.0; 1800 MHz VALIDATION: $\sigma = 1.37$ mho/m $\epsilon_r = 39.4$ $\rho = 1.00$ g/cm³

:,,()

Z-Axis: Dx = 0.0, Dy = 0.0, Dz = 5.0

Penetration depth: 8.1 (7.7, 9.0) [mm]

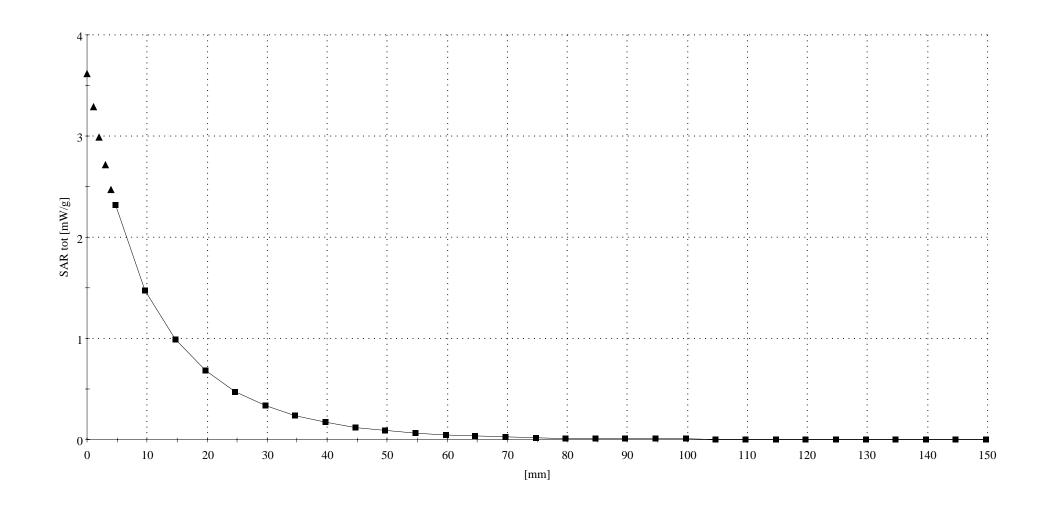

900 MHz System Performance Check / Dipole Sn# 78
PM2 Power = 205mW Refl.Pwr PM3= -23.38dB
Sim.Temp@SPC = 20.3°C Room Temp @ SPC = 20°C
R# 2 TP-1106 SUGAR SAM Expanded (Rev. 2)-9Jan03; Flat


Probe: ET3DV6 - SN1391 - Validation.4; ConvF(6.50,6.50,6.50); Crest factor: 1.0; 900 MHz VALIDATION: σ = 0.97 mho/m ϵ_r = 42.1 ρ = 1.00 g/cm³

Cubes (2): Peak: 3.62 $\text{mW/g} \pm 0.00 \text{ dB}$, SAR (1g): 2.29 $\text{mW/g} \pm 0.00 \text{ dB}$, SAR (10g): 1.45 $\text{mW/g} \pm 0.01 \text{ dB}$, (Worst-case extrapolation)

Penetration depth: 11.6 (10.7, 12.8) [mm]

Powerdrift: 0.00 dB

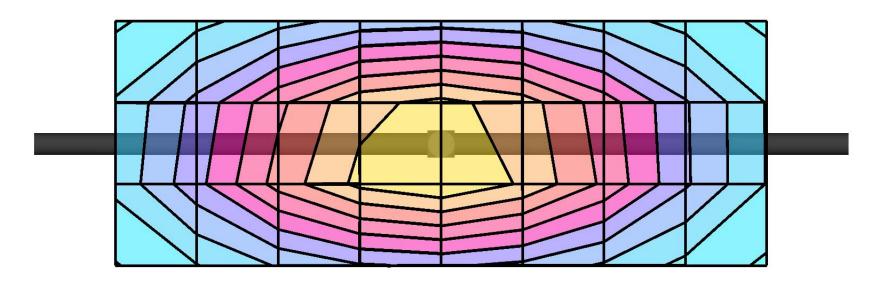

900 MHz System Performance Check / Dipole Sn# 78 PM2 Power = 205mW Refl.Pwr PM3= -23.38dB Sim.Temp@SPC = 20.3°C Room Temp @ SPC = 20°C

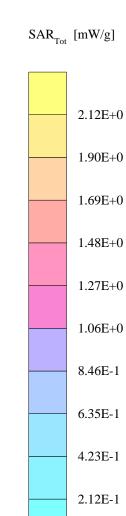
R# 2 TP-1106 SUGAR SAM Expanded (Rev. 2)-9Jan03 Phantom; Section; Position: ; Frequency: 900 MHz

Probe: ET3DV6 - SN1391 - Validation.4; ConvF(6.50,6.50,6.50); Crest factor: 1.0; 900 MHz VALIDATION: $\sigma = 0.97$ mho/m $\epsilon_r = 42.1$ $\rho = 1.00$ g/cm³

:,,()

Z-Axis: Dx = 0.0, Dy = 0.0, Dz = 5.0Penetration depth: 11.6 (10.7, 12.8) [mm]


900 MHz System Performance Check / Dipole Sn# 78
PM2 Power = 202mW Refl.Pwr PM3= -23.95dB
Sim.Temp@SPC = 20.2°C Room Temp @ SPC = 20°C
R# 2 TP-1106 SUGAR SAM Expanded (Rev. 2)-9Jan03; Flat


Probe: ET3DV6 - SN1391 - Validation.4; ConvF(6.50,6.50,6.50); Crest factor: 1.0; 900 MHz VALIDATION: σ = 0.98 mho/m ϵ_r = 42.2 ρ = 1.00 g/cm³

Cubes (2): Peak: 3.68 $\text{mW/g} \pm 0.02 \text{ dB}$, SAR (1g): 2.32 $\text{mW/g} \pm 0.01 \text{ dB}$, SAR (10g): 1.46 $\text{mW/g} \pm 0.00 \text{ dB}$, (Worst-case extrapolation)

Penetration depth: 11.5 (10.6, 12.7) [mm]

Powerdrift: -0.03 dB

900 MHz System Performance Check / Dipole Sn# 78 PM2 Power = 202mW Refl.Pwr PM3= -23.95dB Sim.Temp@SPC = 20.2°C Room Temp @ SPC = 20°C

R# 2 TP-1106 SUGAR SAM Expanded (Rev. 2)-9Jan03 Phantom; Section; Position: ; Frequency: 900 MHz

Probe: ET3DV6 - SN1391 - Validation.4; ConvF(6.50,6.50,6.50); Crest factor: 1.0; 900 MHz VALIDATION: $\sigma = 0.98$ mho/m $\epsilon_r = 42.2$ $\rho = 1.00$ g/cm³

:,,()

Z-Axis: Dx = 0.0, Dy = 0.0, Dz = 5.0Penetration depth: 11.5 (10.6, 12.8) [mm]

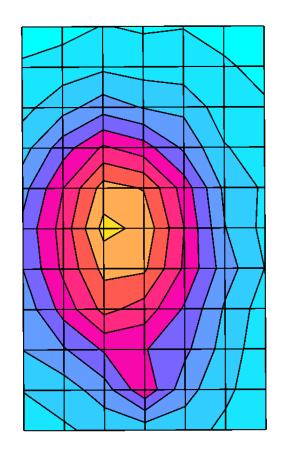
.....

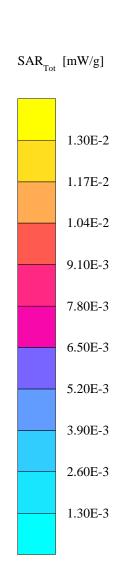
Appendix 2

FCC ID: IHDT56EH1

SAR distribution plots for Body Worn Configuration

Ch# 190 / Pwr Step: 5 Antenna Position: Fixed
Type of Modulation: GSM850 Battery Model #: AANN4285A
Accessory Model #: Half Leather Case SYN1072A with Universal Beltclip


R2 Amy Twin Phantom Rev.3 Phantom; section 2 Section; Position: (0°,0°); Frequency: 837 MHz


Probe: ET3DV6 - SN1391 - FCC Body.2; ConvF(6.20,6.20,6.20); Crest factor: 8.0; 835 MHz Head & Body: $\sigma = 0.96$ mho/m $\epsilon_r = 53.1$ $\rho = 1.00$ g/cm³

Cube 7x7x7: SAR (1g): 0.0121 mW/g, SAR (10g): 0.0087 mW/g, (Worst-case extrapolation)

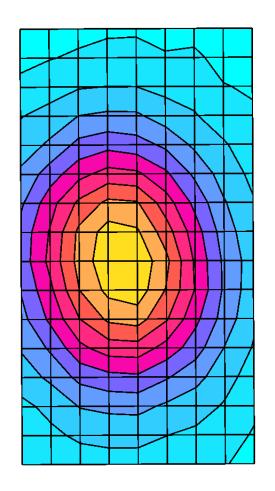
Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0 Penetration depth: 15.2 (14.9, 15.9) [mm]

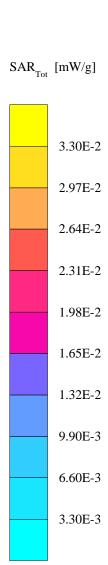
Powerdrift: -0.08 dB

Ch# 190 / Pwr Step: 5 Antenna Position: Fixed

Type of Modulation: GPRS850 Battery Model #: AANN4285A

Accessory Model #: Half Leather Case SYN1072A with Universal Beltclip


R2 Amy Twin Phantom Rev.3 Phantom; section 2 Section; Position: (0°,0°); Frequency: 837 MHz


Probe: ET3DV6 - SN1391 - FCC Body.2; ConvF(6.20,6.20,6.20); Crest factor: 4.0; 835 MHz Head & Body: $\sigma = 0.96$ mho/m $\epsilon_r = 53.1$ $\rho = 1.00$ g/cm³

Cube 7x7x7: SAR (1g): 0.0313 mW/g, SAR (10g): 0.0225 mW/g, (Worst-case extrapolation)

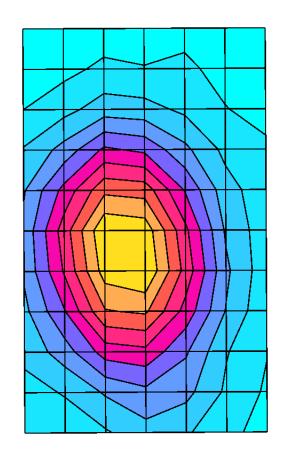
Coarse: Dx = 10.0, Dy = 10.0, Dz = 10.0Penetration depth: 19.5 (18.4, 21.0) [mm]

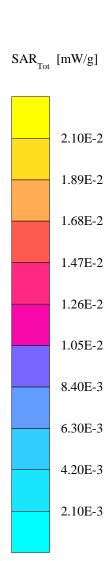
Powerdrift: -0.40 dB

Ch# 190 / Pwr Step: 5 Antenna Position: Fixed

Type of Modulation: GSM 850 Battery Model #: AANN4285A

Accessory Model #: Half Leather Case SYN1072A with Wishbone Beltclip


R2 Amy Twin Phantom Rev.3 Phantom; section 2 Section; Position: (0°,0°); Frequency: 837 MHz

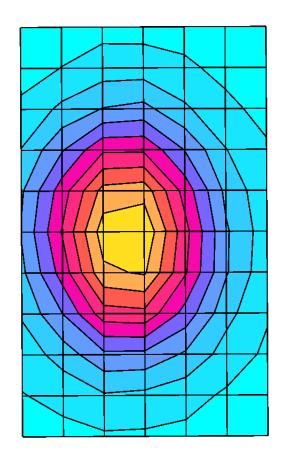

Probe: ET3DV6 - SN1391 - FCC Body.2; ConvF(6.20,6.20,6.20); Crest factor: 8.0; 835 MHz Head & Body: $\sigma = 0.96$ mho/m $\epsilon_r = 53.1$ $\rho = 1.00$ g/cm³

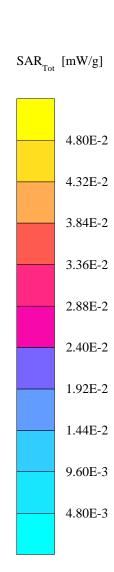
Cube 7x7x7: SAR (1g): 0.0211 mW/g, SAR (10g): 0.0150 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0 Penetration depth: 16.5 (16.4, 16.7) [mm]

Powerdrift: -0.16 dB

Ch# 190 / Pwr Step: 5 Antenna Position: Fixed
Type of Modulation: GPRS850 Battery Model #: AANN4285A
Accessory Model #: Half Leather Case SYN1072A with Wishbone Beltclip


R2 Amy Twin Phantom Rev.3 Phantom; section 2 Section; Position: (0°,0°); Frequency: 837 MHz


Probe: ET3DV6 - SN1391 - FCC Body.2; ConvF(6.20,6.20,6.20); Crest factor: 4.0; 835 MHz Head & Body: $\sigma = 0.97$ mho/m $\epsilon_r = 54.0$ $\rho = 1.00$ g/cm³

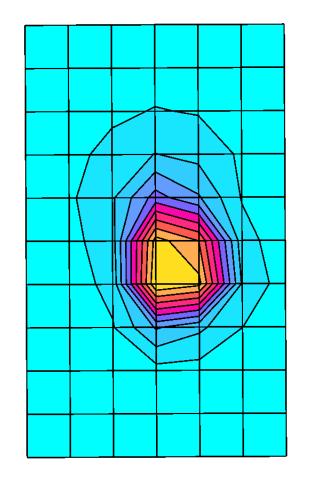
Cube 7x7x7: SAR (1g): 0.0473 mW/g, SAR (10g): 0.0335 mW/g, (Worst-case extrapolation)

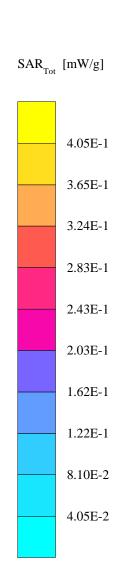
Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0 Penetration depth: 16.0 (15.3, 17.0) [mm]

Powerdrift: -0.21 dB

Ch# 661 Pwr Step: 0 ota Antenna Position: FIXED
Type of Modulation: GSM1900 Battery Model #: AANN4285A

Accessory Model #: Half Leather Case SYN1072A with Universal Beltclip


R4 - Amy Twin Phantom Rev.4 (22Aug02) Phantom; section 2 Section; Position: (0°,0°); Frequency: 1880 MHz


Probe: ET3DV6R - SN1522 - FCC Body2; ConvF(2.93,2.93,2.93); Crest factor: 8.0; 1880 MHz Head & Body: $\sigma = 1.59 \text{ mho/m} \ \epsilon_r = 53.7 \ \rho = 1.00 \ \text{g/cm}^3$

Cube 7x7x7: SAR (1g): 0.553 mW/g, SAR (10g): 0.276 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0 Penetration depth: 8.0 (7.6, 8.9) [mm]

Powerdrift: -0.12 dB

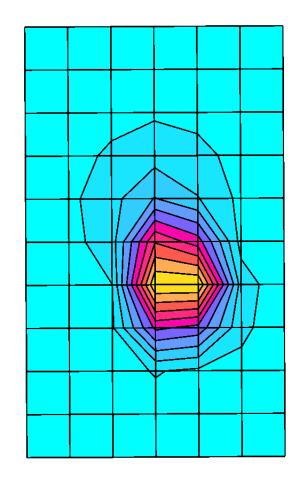
Ch# 512 Pwr Step: 0 ota

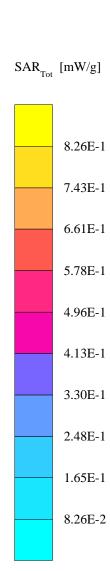
Type of Modulation: GPRS1900

Antenna Position: FIXED

Battery Model #: AANN4285A

Accessory Model #: Half Leather Case SYN1072A with Universal Beltclip


R4 - Amy Twin Phantom Rev.4 (22Aug02) Phantom; section 2 Section; Position: (0°,0°); Frequency: 1850 MHz


Probe: ET3DV6R - SN1522 - FCC Body2; ConvF(2.93,2.93,2.93); Crest factor: 4.0; 1880 MHz Head & Body: σ = 1.59 mho/m ϵ_r = 53.7 ρ = 1.00 g/cm³

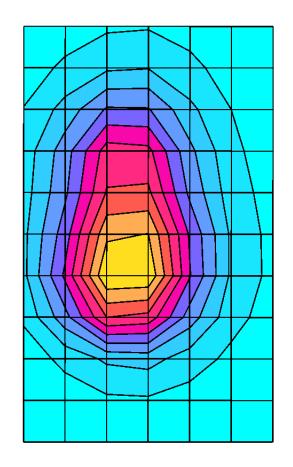
Cube 7x7x7: SAR (1g): 1.13 mW/g, SAR (10g): 0.546 mW/g, (Worst-case extrapolation)

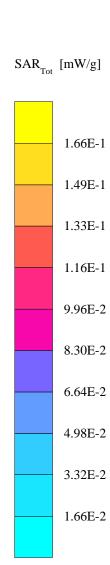
Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0 Penetration depth: 7.7 (7.3, 8.7) [mm]

Powerdrift: -0.15 dB

Ch# 661 / Pwr Step: 0 Antenna Position: FIXED
Type of Modulation: GSM1900 Battery Model #: AANN4285A

Accessory Model #: Half Leather Case SYN1072A WISHBONE CLIP


R2 Amy Twin Phantom Rev.3 Phantom; section 1 Section; Position: (0°,0°); Frequency: 1880 MHz


Probe: ET3DV6 - SN1391 - FCC Body.2; ConvF(4.90,4.90,4.90); Crest factor: 8.0; 1880 MHz Head & Body: σ = 1.59 mho/m ϵ_r = 52.8 ρ = 1.00 g/cm³

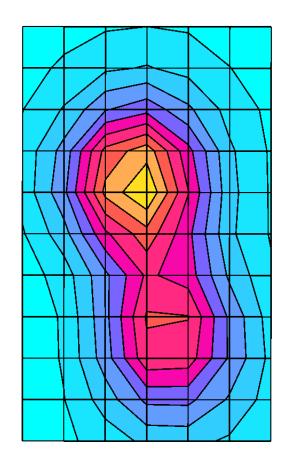
Cube 7x7x7: SAR (1g): 0.178 mW/g, SAR (10g): 0.109 mW/g, (Worst-case extrapolation)

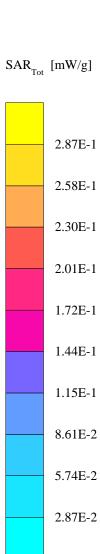
Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0 Penetration depth: 10.6 (9.3, 12.4) [mm]

Powerdrift: -0.11 dB

Ch# 661 / Pwr Step: 0 Antenna Position: FIXED
Type of Modulation: GPRS 1900 Battery Model #: AANN4285A

Accessory Model #: Half Leather Case SYN1072A WISHBONE CLIP


R2 Amy Twin Phantom Rev.3 Phantom; section 1 Section; Position: (0°,0°); Frequency: 1880 MHz


Probe: ET3DV6 - SN1391 - FCC Body.2; ConvF(4.90,4.90,4.90); Crest factor: 4.0; 1880 MHz Head & Body: $\sigma = 1.59$ mho/m $\epsilon_r = 52.8$ $\rho = 1.00$ g/cm³

Cube 7x7x7: SAR (1g): 0.290 mW/g, SAR (10g): 0.175 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0 Penetration depth: 10.3 (9.1, 12.1) [mm]

Powerdrift: -0.27 dB

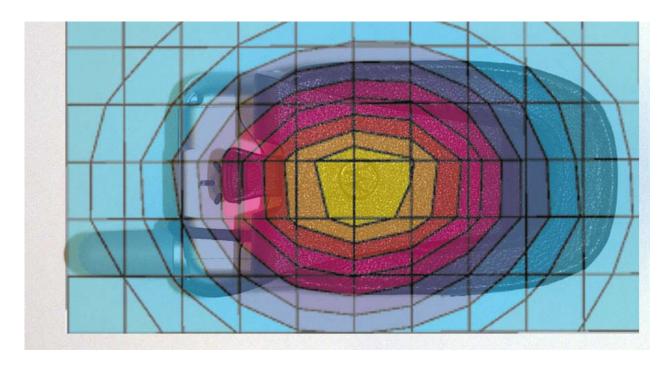


Figure 1.Typical 800 MHz Body-Worn Contour Overlaid on Phone

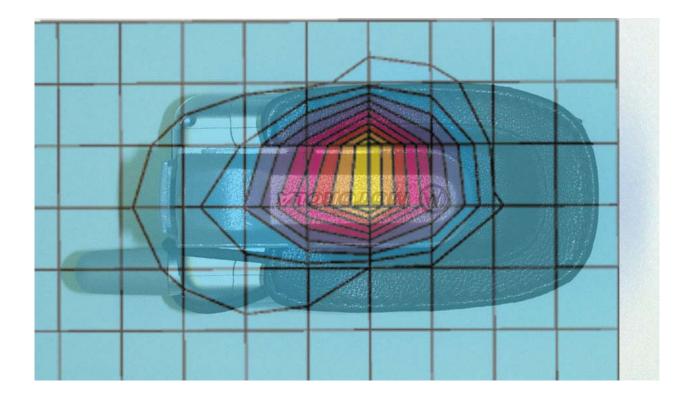


Figure 2. Typical 1900 MHz Body-Worn Contour Overlaid on Phone

FCC ID: IHDT56EH1

Appendix 3

Probe Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Motorola (MRO)

CALIBRATION CERTIFICATE

Object(s)

ET3DV6 - SN:1391

Calibration procedure(s)

QA CAL-01 v2

Calibration procedure for dosimetric E-field probes

Calibration date:

November 24, 2003

Condition of the calibrated item

In Tolerance (according to the specific calibration document)

This calibration statement documents traceability of M&TE used in the calibration procedures and conformity of the procedures with the ISO/IEC 17025 international standard.

All calibrations have been conducted in the closed laboratory facility: environment temperature 22 +/- 2 degrees Celsius and humidity < 75%.

Calibration Equipment used (M&TE critical for calibration)

Model Type	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter EPM E4419B	GB41293874	2-Apr-03 (METAS, No 252-0250)	Apr-04
Power sensor E4412A	MY41495277	2-Apr-03 (METAS, No 252-0250)	Apr-04
Reference 20 dB Attenuator	SN: 5086 (20b)	3-Apr-03 (METAS No. 251-0340	Apr-04
Fluke Process Calibrator Type 702	SN: 6295803	8-Sep-03 (Sintrel SCS No. E-030020)	Sep-04
Power sensor HP 8481A	MY41092180	18-Sep-02 (SPEAG, in house check Oct-03)	In house check: Oct 05
RF generator HP 8684C	US3642U01700	4-Aug-99 (SPEAG, in house check Aug-02)	in house check: Aug-05
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Oct-03)	In house check: Oct 05

Calibrated by:

Name Function
Nico Vetterii Technician

Signature

Approved by:

Katja Pokovic Laboratory Oirector

Date issued: November 25, 2003

This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for Calibration Laboratory of Schmid & Partner Engineering AG is completed.

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Probe ET3DV6

SN:1391

Manufactured:

October 1, 1999

Last calibration:

November 20, 2002

Recalibrated:

November 24, 2003

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ET3DV6 SN:1391

Sensitivity in Free Space

Diode Compression

NormX	1.86 μV/(V/m) ²	DCP X	92	mV
NormY	1.72 μV/(V/m) ²	DCP Y	92	mV
NormZ	1.73 μV/(V/m) ²	DCP Z	92	mV

Sensitivity in Tissue Simulating Liquid

Head 900 MHz $\epsilon_r = 41.5 \pm 5\%$

 σ = 0.97 ± 5% mho/m

Valid for f=800-1000 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X

ConvF X	6.5 ± 9.5% (k=2)	Boundary effect:	
ConvF Y	6.5 \pm 9.5% (k=2)	Alpha	0.53
ConvF Z	6.5 ± 9.5% (k=2)	Depth	2.20

Head 1800 MHz

 $\varepsilon_r = 40.0 \pm 5\%$ $\sigma = 1.40 \pm 5\%$ mho/m

Valid for f=1710-1910 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X

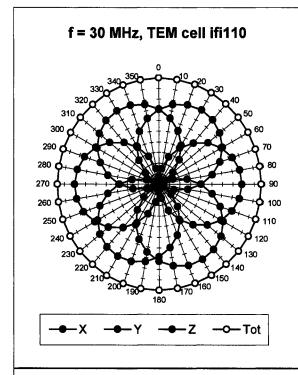
ConvF X	5.3 \pm 9.5% (k=2)	Boundary effect:	
ConvF Y	5.3 \pm 9.5% (k=2)	Alpha	0.58
ConvF Z	5.3 ± 9.5% (k=2)	Depth	2.43

Boundary Effect

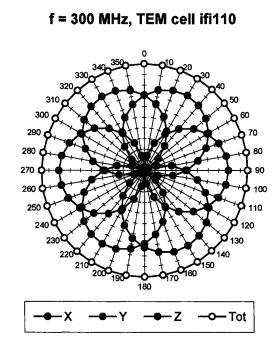
Head 900 MHz Typical SAR gradient: 5 % per mm

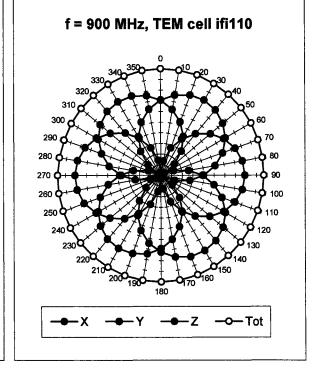
Probe Tip to Boundary		1 mm	2 mm
SAR _{be} [%]	Without Correction Algorithm	11.1	6.1
SAR _{be} [%]	With Correction Algorithm	0.3	0.5

Head 1800 MHz Typical SAR gradient: 10 % per mm

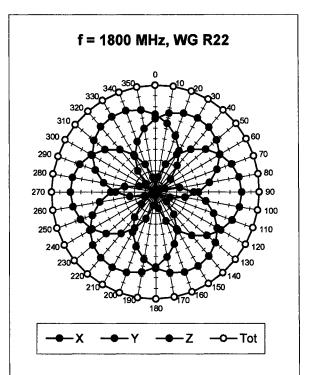

Probe Tip to Boundary		1 mm	2 mm
SAR _{be} [%]	Without Correction Algorithm	14.4	9.2
SAR _{be} [%]	With Correction Algorithm	0.1	0.0

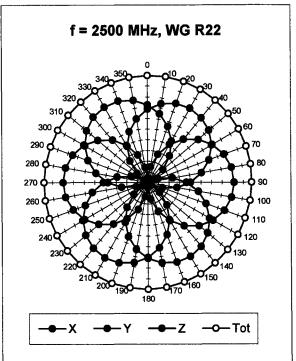

Sensor Offset

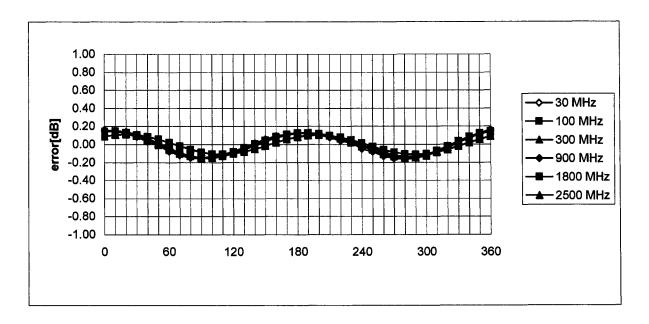

Probe Tip to Sensor Center 2.7 mm


Optical Surface Detection 1.1 ± 0.2 mm

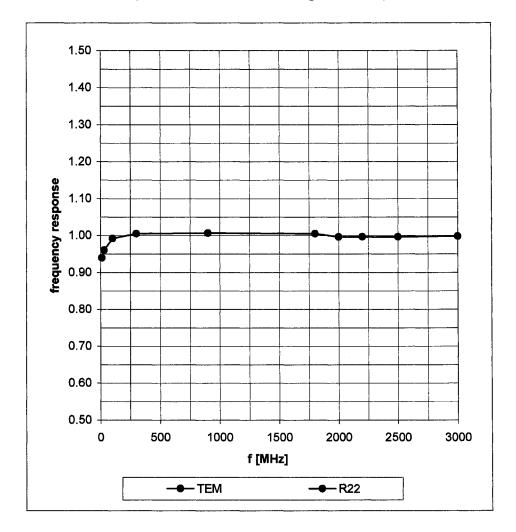
Receiving Pattern (ϕ , θ = 0°



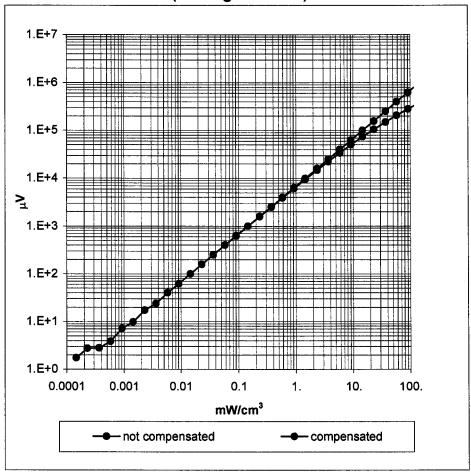


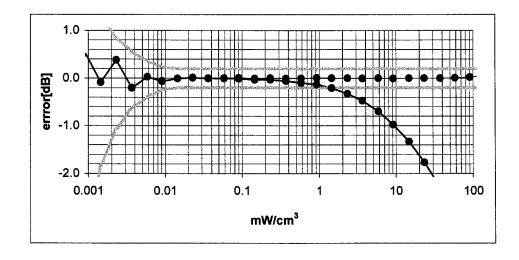


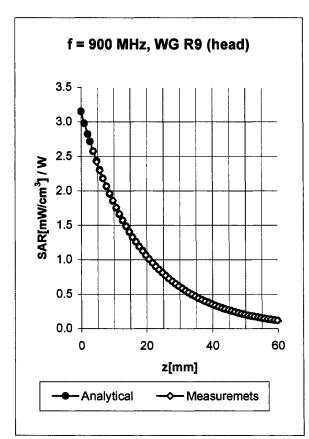
ET3DV6 SN:1391

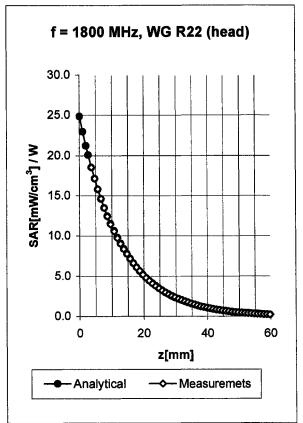


Isotropy Error (ϕ), θ = 0°


Frequency Response of E-Field


(TEM-Cell:ifi110, Waveguide R22)


Dynamic Range f(SARhead)


(Waveguide R22)

Conversion Factor Assessment

Head

900 MHz

 $\epsilon_{\rm r}$ = 41.5 ± 5%

 σ = 0.97 ± 5% mho/m

Valid for f=800-1000 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X

ConvF X

6.5 \pm 9.5% (k=2)

Boundary effect:

ConvF Y

6.5 \pm 9.5% (k=2)

Alpha

0.53

ConvF Z

6.5 \pm 9.5% (k=2)

Depth

2.20

Head

1800 MHz

 $\epsilon_{\rm r}$ = 40.0 ± 5%

 σ = 1.40 ± 5% mho/m

Valid for f=1710-1910 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X

ConvF X

5.3 \pm 9.5% (k=2)

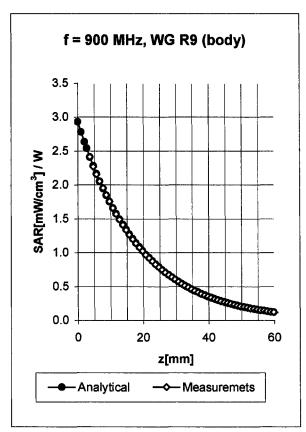
Boundary effect:

ConvF Y

5.3 \pm 9.5% (k=2)

Alpha

0.58


ConvF Z


5.3 \pm 9.5% (k=2)

Depth

2.43

Conversion Factor Assessment

Body

900 MHz

 ϵ_r = 55.0 ± 5%

 σ = 1.05 ± 5% mho/m

Valid for f=800-1000 MHz with Body Tissue Simulating Liquid according to OET 65 Suppl. C

ConvF X

6.2 \pm 9.5% (k=2)

Boundary effect:

ConvF Y

6.2 \pm 9.5% (k=2)

Alpha

0.51

ConvF Z

6.2 \pm 9.5% (k=2)

Depth

2.36

Body

1800 MHz

 $\varepsilon_r = 53.3 \pm 5\%$

 σ = 1.52 ± 5% mho/m

Valid for f=1710-1910 MHz with Body Tissue Simulating Liquid according to OET 65 Suppl. C

ConvF X

4.9 \pm 9.5% (k=2)

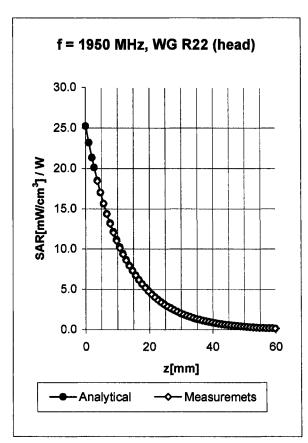
Boundary effect:

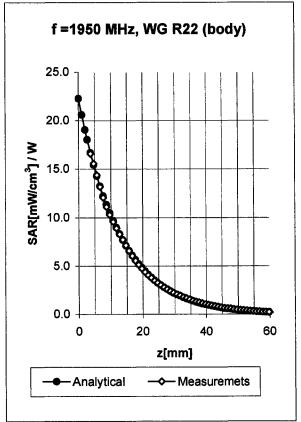
ConvF Y

4.9 \pm 9.5% (k=2)

Alpha

0.71


ConvF Z


4.9 ± 9.5% (k=2)

Depth

2.35

Conversion Factor Assessment

Head

1950 MHz

 $\epsilon_{\rm r}$ = 40.0 ± 5%

 σ = 1.40 ± 5% mho/m

Valid for f=1900-2000 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X

ConvF X

5.1 \pm 8.9% (k=2)

Boundary effect:

ConvF Y

5.1 \pm 8.9% (k=2)

Alpha

0.66

ConvF Z

5.1 \pm 8.9% (k=2)

Depth

2.29

Body

1950 MHz

 ε_r = 53.3 ± 5%

 σ = 1.52 ± 5% mho/m

Valid for f=1900-2000 MHz with Body Tissue Simulating Liquid according to OET 65 Suppl. C

ConvF X

4.7 ± 8.9% (k=2)

Boundary effect:

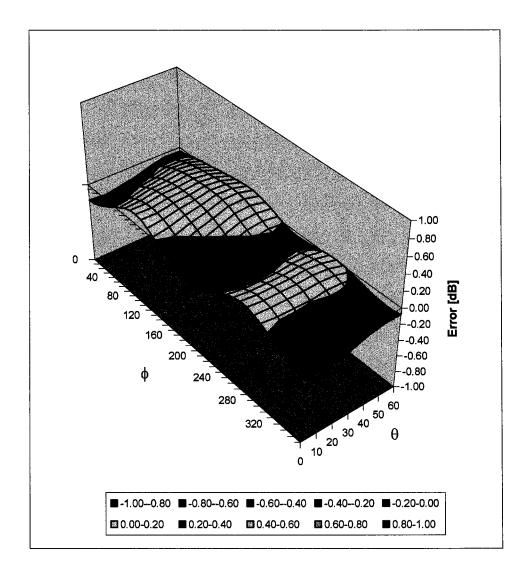
ConvF Y

4.7 \pm 8.9% (k=2)

Alpha

0.91

ConvF Z


4.7 \pm 8.9% (k=2)

Depth

2.00

Deviation from Isotropy in HSL

Error ($\theta \phi$), f = 900 MHz

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Motorola PCS

CALIBRATION CERT	- 1 2 1 12 - T25 100 1 and	7
88	THE S COURS IN THE PARTY AND ADDRESS OF LABOR.	97
the company of the co	SSS IN TOOLS IN NEW YORK ON NEWS	
	SOR IN SERVICE SEE TO A MEAN SHEET BOOK TO THE SERVICE OF THE SERVICE	58

Object(s) ET3DV6R - SN:1522

Calibration procedure(s) QA CAL-01.v2

Calibration procedure for dosimetric E-field probes

Calibration date: March 23, 2004

Condition of the calibrated item In Tolerance (according to the specific calibration document)

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature 22 +/- 2 degrees Celsius and humidity < 75%.

Calibration Equipment used (M&TE critical for calibration)

Model Type	<u>e</u>	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power met	ter EPM E4419B	GB41293874	2-Apr-03 (METAS, No 252-0250)	Apr-04
Power sen	nsor E4412A	MY41495277	2-Apr-03 (METAS, No 252-0250)	Apr-04
Reference	20 dB Attenuator	SN: 5086 (20b)	3-Apr-03 (METAS, No. 251-0340)	Apr-04
Fluke Proc	cess Calibrator Type 702	SN: 6295803	8-Sep-03 (Sintrel SCS No. E-030020)	Sep-04
Power sen	nsor HP 8481A	MY41092180	18-Sep-02 (SPEAG, in house check Oct-03)	In house check: Oct 05
RF genera	itor HP 8684C	US3642U01700	4-Aug-99 (SPEAG, in house check Aug-02)	In house check: Aug-05
Network A	nalyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Oct-03)	In house check: Oct 05

Name Function Signature

Calibrated by: Nico Vetterli Technician 1 Volume

Approved by: Katja Pokovic Laboratory Director

Date issued: March 25, 2004

This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for Calibration Laboratory of Schmid & Partner Engineering AG is completed.

Probe ET3DV6R

SN:1522

Manufactured:

March 21, 2000

Last calibrated:

March 21, 2003

Recalibrated:

March 23, 2004

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ET3DV6R SN:1522

Sensitivity in Free Space

Diode Compression^A

NormX	1.48 μV/(V/m) ²	DCP X	96	mV
NormY	1.28 μV/(V/m) ²	DCP Y	96	mV
NormZ	1.34 μV/(V/m) ²	DCP Z	96	mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Plese see Page 7.

Boundary Effect

Head

900 MHz

Typical SAR gradient: 5 % per mm

Sensor Cener to	3.7 mm	4.7 mm	
SAR _{be} [%]	Without Correction Algorithm	9.7	5.5
SAR _{be} [%]	With Correction Algorithm	0.1	0.2

Head

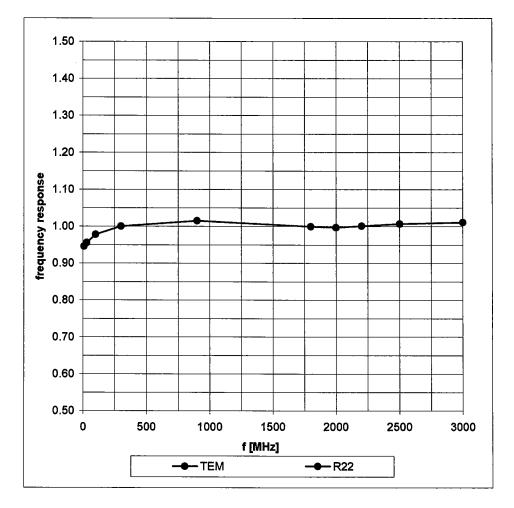
1800 MHz

Typical SAR gradient: 10 % per mm

Sensor to Surface Distance			4.7 mm
SAR _{be} [%]	Without Correction Algorithm	14.6	10.6
SAR _{be} [%]	With Correction Algorithm	0.4	0.5

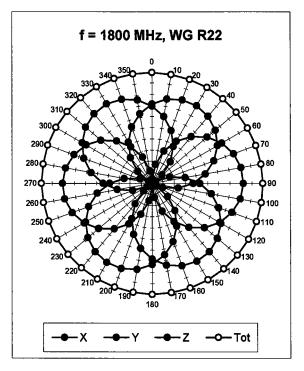
Sensor Offset

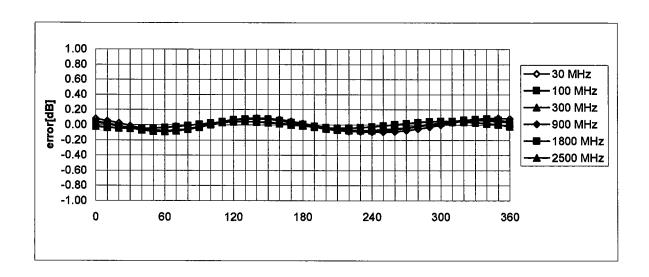
Probe Tip to Sensor Center


2.7 mm

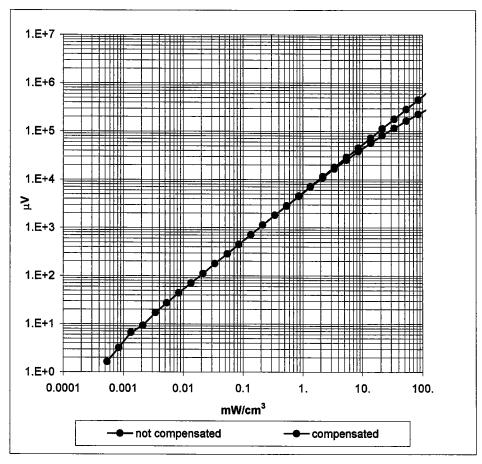
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

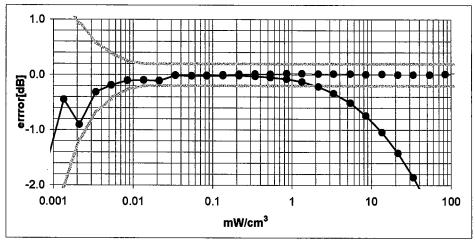

^A numerical linearization parameter: uncertainty not required


Frequency Response of E-Field


(TEM-Cell:ifi110, Waveguide R22)

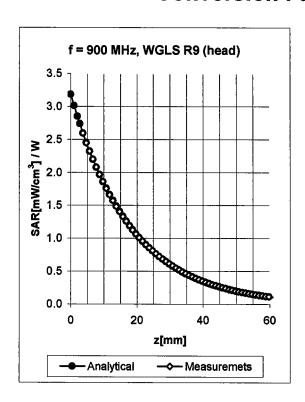
Receiving Pattern (ϕ) , θ = 0°

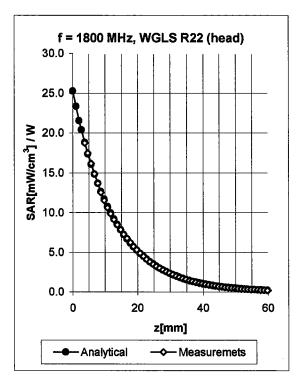




Axial Isotropy Error < ± 0.2 dB

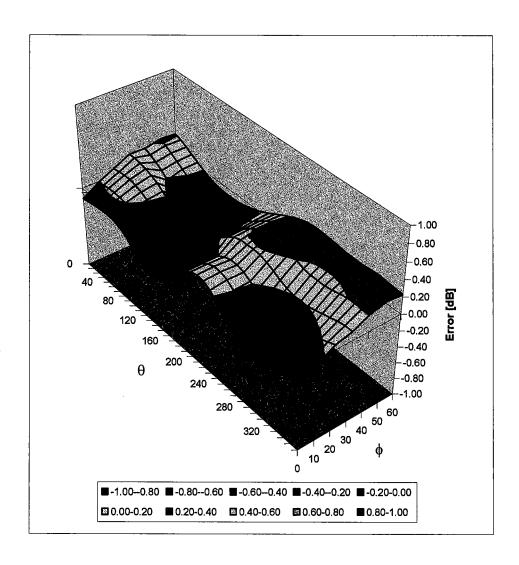
Dynamic Range f(SAR_{head})


(Waveguide R22)



Probe Linearity < ± 0.2 dB

Conversion Factor Assessment



f [MHz]	Validity [MHz] ^B	Tissue	Permittivity	Conductivity	Aipha	Depth	ConvF Uncertainty
			-				
900	800-1000	Head	41.5 ± 5%	0.97 ± 5%	0.52	2.07	4.43 ± 9.5% (k=2)
1800	1710-1910	Head	40.0 ± 5%	1.40 ± 5%	0.51	2.74	3.41 ± 9.5% (k=2)
1950	1900-2000	Head	40.0 ± 5%	1.40 ± 5%	0.54	2.84	3.13 ± 9.5% (k=2)
2450	2400-2500	Head	39.2 ± 5%	1.80 ± 5%	0.81	2.32	2.81 ± 9.5% (k=2)
900	800-1000	Body	55.0 ± 5%	1.05 ± 5%	0.78	1.61	4.24 ± 9.5% (k=2)
1800	1710-1910	Body	53.3 ± 5%	1.52 ± 5%	0.62	2.75	2.93 ± 9.5% (k=2)
1950	1900-2000	Body	53.3 ± 5%	1.52 ± 5%	0.70	2.65	2.66 ± 9.5% (k=2)
2450	2400-2500	Body	52.7 ± 5%	1.95 ± 5%	1.12	1.73	2.54 ± 9.5% (k=2)

^B The stated uncertainty of calibration was assessed according to P1528.

Deviation from Isotropy in HSL

Error (θ, ϕ), f = 900 MHz

Spherical Isotropy Error < ± 0.4 dB

FCC ID: IHDT56EH1

Appendix 4

Dipole Characterization Certificate

Certification of System Performance Check Targets Based on APP-0396

-Historical Data-

	835MHz	900MHz	1800MHz	1900MHz	
IEEE1528 Target: Advanced Extrapolation	9.5	10.8	38.1	39.7	(W/kg)
Measurement Uncertainty (k=1):	9.0%	9.0%	9.0%	9.0%	
Measurement Period:	1-July-03 to 1-Apr-04	1-July-03 to 1-Apr-04	1-July-03 to 1-Apr-04	1-July-03 to 1-Apr-04	
# of tests performed:	214	1148	1135	62	1
Grand Average: Worst Case Extrapolation	10.0	11.4	40.7	42.0	(W/kg)
% Delta (Average - IEEE1528 Target)	5.3%	5.6%	6.8%	5.8%	
Is % Delta <= Measurement Uncertainty?	Yes	Yes	Yes	Yes	
Accept/Reject <u>Average</u> as new system performance check target?	ACCEPT	ACCEPT	ACCEPT	ACCEPT	
	Applicable 835MHz Dipole Serial Numbers:	Applicable 900MHz Dipole Serial Numbers:	Applicable <u>1800MHz</u> Dipole Serial Numbers:	Applicable 1900Mhz Dipole Serial Numbers:	
	420(TR), 421(TR)	77, 78	246(TR), 250(TR)	514(TR), 518(TR)	
	422(TR), 423(TR)	79, 80	251(TR), 258(TR)	519(TR), 520(TR)	
	424(TR), 425(TR) 431(TR), 432(TR)	91, 92 93, 94	259(TR), 262(TR) 263(TR), 271(TR)	523(TR), 524(TR) 526(TR), 527(TR)	
	433(TR), 432(TR) 433(TR), 434(TR)	95, 94	272(TR), 273(TR)	528(TR), 527(TR) 528(TR), 529(TR)	
	436(TR)	97, 55	276(TR), 277(TR)	530(TR), 533(TR)	
	\ /	- ,	279(TR), 280(TR)	-]
			281(TR), 282(TR)		
			283(TR), 284(TR)		j

-New System Performance Check Targets- per APP-0396

(based on analysis of historical data)

Frequency	SAR Target (W/kg)	Permittivity	Conductivity (S/m)
835MHz	10.0	41.5 ± 5%	0.90 ± 5%
900MHz	11.4	41.5 ± 5%	0.97 ± 5%
1800MHz	40.7	40.0 ± 5%	1.40 ± 5%
1900MHz	42.0	40.0 ± 5%	1.40 ± 5%

-Approvals-	_			
	Submitted by:	Marge Kaunas	Date:	2-Apr-04
	Signed:	Manza Kanna		
	Comments:	Spreadsheet detailing all historical me	easurements available up	on request.
	Approved by:	Mark Douglas	Date:	2-Apr-04
	Signed:	Mark Tayla		
	Comments:	Targets and associated simulant properties	are derived from the IEEE 1	528 standard.

Appendix 5

FCC ID: IHDT56EH1

Measurement Uncertainty Budget

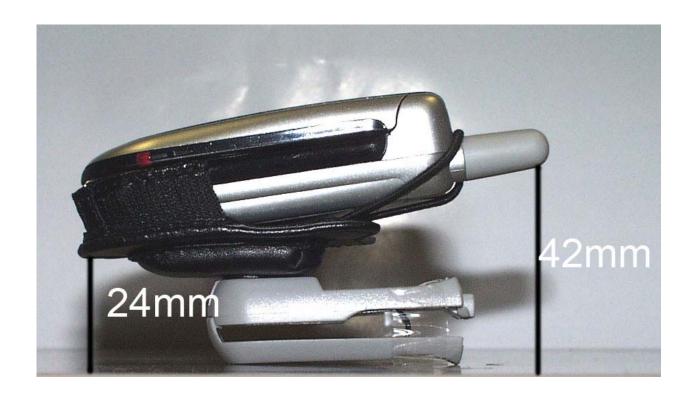
Uncertainty Rudget for I	lovio	o I In	dor 7	Post					
Uncertainty Budget for I	Je vic	e on	uer	lest			h =	<i>i</i> =	
_	1.	_	ı	- C (J 1-)	£				1-
a	b	c	d	e = f(d,k)	f	g	cxf/e	c x g / e	k
		Tol.	Prob.		c_{i}	c_i	1 g	10 g	
	Sec.	(± %)	Dist.		(1 g)	(10 g)	\boldsymbol{u}_i	\boldsymbol{u}_i	
Uncertainty Component	Sec.			Div.			(±%)	(±%)	v_i
Measurement System									
Probe Calibration	E.2.1	9.5	N	2.00	1	1	4.8	4.8	∞
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	∞
Spherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	×
Boundary Effect	E.2.3	5.8	R	1.73	1	1	3.3	3.3	8
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	8
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	8
Readout Electronics	E.2.6	1.0	N	1.00	1	1	1.0	1.0	8
Response Time	E.2.7	0.8	R	1.73	1	1	0.5	0.5	8
Integration Time	E.2.8	1.3	R	1.73	1	1	0.8	0.8	∞
RF Ambient Conditions	E.6.1	3.0	R	1.73	1	1	1.7	1.7	∞
Probe Positioner Mechanical									
Tolerance	E.6.2	0.3	R	1.73	1	1	0.2	0.2	∞
Probe Positioning with respect to									
Phantom Shell	E.6.3	1.1	R	1.73	1	1	0.6	0.6	∞
Extrapolation, interpolation and									
Integration Algorithms for Max. SAR									
Evaluation	E.5	3.9	R	1.73	1	1	2.3	2.3	∞
Test sample Related									
Test Sample Positioning	E.4.2	3.6	N	1.00	1	1	3.6	3.6	29
Device Holder Uncertainty	E.4.1	2.8	N	1.00	1	1	2.8	2.8	8
Output Power Variation - SAR drift									
measurement	6.6.2	5.0	R	1.73	1	1	2.9	2.9	∞
Phantom and Tissue Parameters									
Phantom Uncertainty (shape and									
thickness tolerances)	E.3.1	4.0	R	1.73	1	1	2.3	2.3	∞
Liquid Conductivity - deviation from									
target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity - measurement									
uncertainty	E.3.3	10.0	R	1.73	0.64	0.43	3.7	2.5	∞
Liquid Permittivity - deviation from									
target values	E.3.2	10.0	R	1.73	0.6	0.49	3.5	2.8	∞
Liquid Permittivity - measurement									
uncertainty	E.3.3	5.0	R	1.73	0.6	0.49	1.7	1.4	∞
Combined Standard Uncertainty			RSS				11.72	11.09	1363
Expanded Uncertainty									
(95% CONFIDENCE LEVEL)			k =2				22.98	21.75	

FCC ID: IHDT56EH1

Uncertainty Budget for System Performance Check (dipole & flat phantom)

FCC ID: IHDT56EH1

Uncertainty budget for	System	renc	rman	ce Cii	eck (urpore	& Hat	рпапі	om)
				e =			h =	i =	
				f(d,k)			cxf/	c x g	
a	b	c	d)	f	g	e	/ e	k
		Tol.	Prob.		c_i	c_i	1 g	10 g	
		(± %)	Dist.		(1 g)	(10 g)	\boldsymbol{u}_i	u_i	
Uncertainty Component	Sec.			Div.			(±%)	(±%)	v_i
Measurement System									
Probe Calibration	E.2.1	9.5	N	2.00	1	1	4.8	4.8	8
Axial Isotropy	E.2.2	4.7	R	1.73	1	1	2.7	2.7	∞
Spherical Isotropy	E.2.2	9.6	R	1.73	0	0	0.0	0.0	∞
Boundary Effect	E.2.3	5.8	R	1.73	1	1	3.3	3.3	∞
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	∞
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	∞
Readout Electronics	E.2.6	1.0	N	1.00	1	1	1.0	1.0	∞
Response Time	E.2.7	0.0	R	1.73	1	1	0.0	0.0	∞
Integration Time	E.2.8	0.0	R	1.73	1	1	0.0	0.0	∞
RF Ambient Conditions	E.6.1	3.0	R	1.73	1	1	1.7	1.7	∞
Probe Positioner Mechanical									
Tolerance	E.6.2	0.3	R	1.73	1	1	0.2	0.2	∞
Probe Positioning with respect to									
Phantom Shell	E.6.3	1.1	R	1.73	1	1	0.6	0.6	∞
Extrapolation, interpolation and									
Integration Algorithms for Max.									
SAR Evaluation	E.5	3.9	R	1.73	1	1	2.3	2.3	∞
Dipole									
Dipole Axis to Liquid Distance	8, E.4.2	1.0	R	1.73	1	1	0.6	0.6	∞
Input Power and SAR Drift									
Measurement	8, 6.6.2	4.7	R	1.73	1	1	2.7	2.7	∞
Phantom and Tissue									
Parameters									
Phantom Uncertainty (shape and	E 2.1	4.0	D	1.72	1	1	2.2	2.2	
thickness tolerances)	E.3.1	4.0	R	1.73	1	1	2.3	2.3	∞
Liquid Conductivity - deviation	E 2 2	5.0	D	1.72	0.64	0.42	1.0	1.2	
from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity -	Б 2 2	10.0	D	1.72	0.64	0.42	27	2.5	
measurement uncertainty	E.3.3	10.0	R	1.73	0.64	0.43	3.7	2.5	∞
Liquid Permittivity - deviation	E 2 2	10.0	D	1 72	0.6	0.40	2.5	20	
from target values	E.3.2	10.0	R	1.73	0.6	0.49	3.5	2.8	∞
Liquid Permittivity - measurement uncertainty	E 2 2	5.0	R	1 72	0.6	0.49	1.7	1 4	
Combined Standard	E.3.3	3.0	N.	1.73	0.0	0.49	1./	1.4	∞
Uncertainty			RSS				10.16	9.43	99999
Expanded Uncertainty			100				10.10	7.13	22227
(95% CONFIDENCE LEVEL)			k=2				19.92	18.48	
(


FCC ID: IHDT56EH1

Appendix 6

Photographs of the device under test

