

Exhibit 11: SAR Test Report IHDT56DY1

Date of test: 11 – 12 March, 2004 **Date of Report:** 15 March, 2004

Motorola Personal Communications Sector Product Safety & Compliance Laboratory

600 N. US Highway 45

Laboratory: Room: MW113

Libertyville, Illinois 60048

Test Responsible: Steven Hauswirth Principal Staff Engineer

Accreditation: This laboratory is accredited to ISO/IEC 17025-1999 to perform the following tests:

ACCREDITED

<u>Tests</u>: <u>Procedures</u>:

Electromagnetic Specific Absorption Rate ANSI/IEEE C95.1-1992, 1999

(SAR) IEEE C95.3-1991 IEEE P1528 (*DRAFT*)

FCC OET Bulletin 65 (including Supplements A, B, C)

FCC ID: IHDT56DY1

Australian Communications Authority Radio

Communications (Electromagnetic Radiation – Human

Exposure) Standard 1999 CENELEC EN 50361 (2001)

Simulated Tissue Preparation APP-0247

RF Power Measurement DOI-0876, 0900, 0902, 0904, 0915

On the following products or types of products:

Wireless Communications Devices (Examples): Two Way Radios; Portable Phones (including

Cellular.

Licensed Non-Broadcast and PCS); Low Frequency Readers; and Pagers

A2LA certificate #1651-01

Motorola declares under its sole responsibility that portable cellular telephone FCC ID IHDT56DY1 to which this declaration relates, is in conformity with the appropriate General Population/Uncontrolled RF exposure standards, recommendations and guidelines (FCC 47 CFR §2.1093). It also declares that the product was tested in accordance with the appropriate measurement standards, guidelines and recommended practices. Any deviations from these standards, guidelines and recommended practices are noted below:

Statement of Compliance:

(none)

©Motorola, Inc. 2004

This test report shall not be reproduced except in full, without written approval of the laboratory.

The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report.

Motorola encourages all feedback, both positive and negative, on this test report.

Table of Contents

1. INTRODUCTION	3
2. DESCRIPTION OF THE DEVICE UNDER TEST	3
2.1 Antenna description	3
2.2 Device description	3
3. TEST EQUIPMENT USED	3
3.1 Dosimetric System	3
3.2 Additional Equipment	4
4. ELECTRICAL PARAMETERS OF THE TISSUE SIMULATING LIQUID	4
5. SYSTEM ACCURACY VERIFICATION	5
6. TEST RESULTS	5
6.1 Head Adjacent Test Results	6
6.2 Body Worn Test Results	7
APPENDIX 1: SAR DISTRIBUTION COMPARISON FOR SYSTEM ACCURACY VERIFICATION.	9
APPENDIX 2: SAR DISTRIBUTION PLOTS FOR PHANTOM HEAD ADJACENT USE	10
APPENDIX 3: SAR DISTRIBUTION PLOTS FOR BODY WORN CONFIGURATION	13
APPENDIX 4: PROBE CALIBRATION CERTIFICATE	15
APPENDIX 5: DIPOLE CHARACTERIZATION CERTIFICATE	16
APPENDIX 6: MEASUREMENT UNCERTAINTY BUDGET	17
APPENDIX 7: PHOTOGRAPHS OF DEVICE UNDER TEST	20

1. Introduction

The Motorola Personal Communications Sector Product Safety Laboratory has performed measurements of the maximum potential exposure to the user of portable cellular phone (FCC ID IHDT56DY1). The Specific Absorption Rate (SAR) of this product was measured. The portable cellular phone was tested in accordance with FCC OET Bulletin 65 Supplement C 01-01.

2. Description of the Device Under Test

a. Antenna description

Type	Internal			
Location	Top on Backside of Phone			
Dimensions	Length	40 mm		
Dimensions	Width 21 mm			
Configuration	Internal Patch			

b. Device description

FCC ID Number		IHDT56DY1						
Serial number	4400003830492							
Mode(s) of Operation	GSM 850 GSM 1800 GSM 1900 GPRS 850 GPRS 1800 GPRS							
Modulation Mode(s)	GSM	GSM	GSM	GSM	GSM	GSM		
Maximum Output Power Setting	33.50 dBm	30.00 dBm	30.00 dBm	33.50 dBm	30.00 dBm	30.00 dBm		
Duty Cycle	1:8	1:8	1:8	2:8	2:8	2:8		
Transmitting Frequency Rang(s)	824.2- 848.8 MHz	1710.2- 1784.8 MHz	1850.20 – 1909.80 MHz	824.2- 848.8 MHz	1710.2- 1784.8 MHz	1850.20 – 1909.80 MHz		
Production Unit or Identical Prototype (47 CFR §2908)		Identical Prototype						
Device Category		Portable						
RF Exposure Limits		(General Populati	on / Uncontro	lled			

3. Test Equipment Used

3.1 Dosimetric System

The Motorola Personal Communications Sector Product Safety & Compliance Laboratory utilizes a Dosimetric Assessment System (Dasy3TM v3.1d) manufactured by Schmid & Partner Engineering AG (SPEAGTM), of Zurich Switzerland. All the SAR measurements are taken within a shielded enclosure. The overall RSS uncertainty of the measurement system is $\pm 11.7\%$ (K=1) with an expanded uncertainty of $\pm 23.0\%$ (K=2). The measurement uncertainty budget is given in Appendix 6. Per IEEE 1528, this uncertainty budget is applicable to the SAR range of 0.4 W/kg to 10 W/kg. The list of calibrated equipment used for the measurements is shown below.

Description	Serial Number	Cal Due Date
DASY3 DAE V1	SN385	14-May-04
E-Field Probe ET3DV6	SN3037	10-Oct-04
Dipole Validation Kit, D835V2	SN425TR	24-Jun-04
S.A.M. Phantom used for 800MHz	TP-1005	
Dipole Validation Kit, D1800V2	SN259TR	24-Jun-04
S.A.M. Phantom used for 1900MHz	TP-1154	

FCC ID: IHDT56DY1

3.2 Additional Equipment

Description	Serial Number	Cal Due Date
Signal Generator HP8648C	3847A04845	11/05/04
Power Meter E4419B	US39250622	01/08/05
Power Sensor #1 - E9301A	US39210918	08/05/04
Power Sensor #2 - E9301A	US39210917	08/05/04
Network Analyzer HP8753ES	US39171846	06/03/04
Dielectric Probe Kit HP85070B	US99360074	N/A

4. Electrical parameters of the tissue simulating liquid

Prior to conducting SAR measurements, the relative permittivity, ε_r , and the conductivity, σ , of the tissue simulating liquids were measured with the HP85070 Dielectric Probe Kit These values, along with the temperature of the tissue simulate are shown in the table below. The recommended limits for maximum permittivity and minimum conductivity are also shown. These come from the Federal Communication Commission, OET Bulletin 65 Supplement C 01-01. It is seen that the measured parameters are satisfactory for compliance testing.

	Ticous		Diele	ctric Parame	eters
f (MHz)	Tissue type	Limits / Measured	$\mathbf{\epsilon}_r$	σ (S/m)	Temp (°C)
	Head	Measured, 11-Mar-04	41.6	0.91	18.7
	Heau	Recommended Limits	41.5 ±5%	$0.90 \pm 5\%$	18-25
835	Dody	Measured, 12-Mar-04	55.1	0.97	19.0
	Body	Recommended Limits	55.2 ±5%	$0.97 \pm 5\%$	18-25
	Head	Measured, 11-Mar-04	38.4	1.45	19.1
	Heau	Recommended Limits	40.0 ±5%	$1.40 \pm 5\%$	18-25
1880	Dody	Measured, 12-Mar-04	53.0	1.59	19.4
	Body	Recommended Limits	53.3 ±5%	1.52 ±5%	18-25

The list of ingredients and the percent composition used for the tissue simulates are indicated in the table below.

Ingredien t	800MHz Head	800MHz Body	1900MHz Head	1900MHz Body
Sugar	57.0	44.9		30.80
DGBE	-	-	47.0	
Water	40.45	53.06	52.8	68.91
Salt	1.45	0.94	0.2	0.29
HEC	1.0	1.0		
Bact.	0.1	0.1	-	

5. System Accuracy Verification

A system accuracy verification of the DASY3 was performed using the measurement equipment listed in Section 3.1. The daily system accuracy verification occurs within center section of the SAM phantom.

FCC ID: IHDT56DY1

A SAR measurement was performed to see if the measured SAR was within ± 100 from the target SAR indicated on the dipole certification sheet. These tests were done at 900MHz and/or 1800MHz. These frequencies are within 100MHz of the mid-band frequency of the test device. This is within the allowable window given in Supplement C 01-01 Appendix D System Verification section item #5. The test was conducted on the same days as the measurement of the DUT. Recommended limits for maximum permittivity, minimum conductivity are shown in the table below. These come from the Federal Communication Commission, OET Bulletin 65 Supplement C 01-01. The obtained results from the system accuracy verification are displayed in the table below. The distributions of SAR compare well with those of the reference measurements (see Appendix 1). The tissue stimulant depth was verified to be 15.0cm ± 0.5 cm. Z-axis scans showing the SAR penetration are also included in Appendix 1. SAR values are normalized to 1W forward power delivered to the dipole.

f		SAR (W/kg),	Dielectric Parameters		Ambient	Tissue
(MHz)	Description	1gram	$\mathbf{\epsilon}_r$	σ (S/m)	Temp (°C)	Temp (°C)
	Measured, 11-Mar-04	9.8	41.6	0.91	20	19.1
835	Measured, 12-Mar-04	9.8	41.6	0.91	20	19.1
	Recommended Limits	10.1	41.5 ±5%	$0.90 \pm 5\%$	18-25	18-25
	Measured, 11-Mar-04	40.0	38.8	1.36	20	19.0
1800	Measured, 12-Mar-04	41.3	38.4	1.36	20	19.1
,	Recommended Limits	39.7	40.0 ±5%	1.4 ±5%	18-25	18-25

The following probe conversion factors were used on the E-Field probe(s) used for the system accuracy verification measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe ET3DV6	SN3037	835	6.1	7 of 10
	5113037	1800	4.9	7 of 10

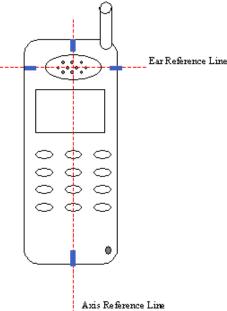
6. Test Results

The test sample was operated in a test mode that allows control of the transmitter without the need to place actual phone calls. For the purposes of this test the unit is commanded to test mode and manually set to the proper channel, transmitter power level and transmit mode of operation. The phone was tested in the configurations stipulated in OET Bulletin 65 Supplement C 01-01. Motorola also followed the requirements in Supplement. C / Appendix D: SAR Measurement Procedures, section titled "Devices Operating Next To A Person's Ear". These directions state "The device should be tested on the left and right side of the head phantom in the "Cheek/Touch" and "Ear/Tilt" positions. When applicable, each configuration should be tested with the antenna in its fully extended and fully retracted positions. These test configurations should be tested at the high, middle and low frequency channels of each operating mode; for example, AMPS, CDMA, and TDMA. If the SAR measured at the middle channel for each test configuration (left, right, Cheek/Touch, Tile/Ear, extended and retracted) is at least 2.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s)."

The DASY v3.1d SAR measurement system specified in section 3.1 was utilized within the intended operations as set by the SPEAGTM setup. The phone was positioned into the measurement configurations using the positioner supplied with the DASY 3.1d SAR measurement system. The measured dielectric constant of the material used for the positioner is less than 2.9 and the loss tangent is less than $0.02 \pm 30\%$ at 850MHz. The default settings for the

"coarse" and "cube" scans were chosen and use for measurements. The grid spacing of the course scan was set to 15cm as shown in the SAR plots included in appendix 2 and 3. Please refer to the DASY manual for additional information on SAR scanning procedures and algorithms used.

FCC ID: IHDT56DY1


The Cellular Phone (FCC ID IHDT56DY1) has the SNN5683A as the only available battery option. This battery was used to do all of the SAR testing. The phone was placed in the SAR measurement system with a fully charged battery.

6.1 Head Adjacent Test Results

To aid in positioning repeatability, the ear reference line of the device and the axis reference line of the device have been physically added using a non-metallic marker.

- Per Figure 1, the "Ear Reference Line" is centered vertically through the center of the listening area (as defined by the speaker holes in the housing).
- The "Axis Reference Line" bisects the front surface of the device at its top and bottom edges.
- The intersection of these two lines defines the location of the "Ear Reference Point".

The lines drawn on the device extended to the outside edges, as shown in blue in the figure below, & wrap around the sides of the device.

The SAR results shown in tables 1 and 2 are maximum SAR values averaged over 1 gram of phantom tissue. Also shown are the measured conducted output powers, the temperature of the test facility during the test, the temperature of the tissue simulate after the test, the measured drift and the extrapolated SAR. The exact method of extrapolation is New SAR = Old SAR * 10^(-drift/10). The SAR reported at the end of the measurement process by the DASYTM measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test. The test conditions indicated as bold numbers in the following table are included in Appendix 2

The SAR measurements were performed using the SAM phantoms listed in section 3.1. Since same phantoms and tissue simulate are used for the system accuracy verification as the device SAR measurements, the Z-axis scans included in within Appendix 1 are applicable for verification of tissue simulate depth to be 15.0cm ± 0.5 cm. All other test conditions measured lower SAR values than those included in Appendix 2.

The following probe conversion factors were used on the E-Field probe(s) used for the head adjacent measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe ET3DV6	SN3037	835	6.10	7 of 10
	5113037	1900	4.90	7 of 10

				Cheek / Touch Position						
f		Conducted		Le	ft Head			Rig	ght Head	
		Output		D 10	-	Simulate		D 10	-	Simulate
(MHz)	Description	Power (dBm)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Temp (°C)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Temp (°C)
	Channel 128	33.49								
Digital 850MHz	Channel 189	33.47	0.558	0.02	0.56	19.0	0.591	-0.01	0.59	18.7
	Channel 251	33.48								
D	Channel 512	29.99								
Digital 1900MHz	Channel 661	29.99	0.227	0.19	0.23	18.8	0.183	0.02	0.18	18.9
	Channel 810	30.00								

Table 1: SAR measurement results for the portable cellular telephone FCC ID IHDT56DY1 at highest possible output power. Measured against the left head in the Cheek/Touch Position.

			15° Tilt Position							
f		Conducted		Le	ft Head			Rig	ght Head	
		Output	.,	- · · ·	-	Simulate	.,	D 10	-	Simulate
(MHz)	Description	Power (dBm)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Temp (°C)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Temp (°C)
	Channel 128	33.49								
Digital 850MHz	Channel 189	33.47	0.372	-0.08	0.38	18.6	0.383	0.01	0.38	19.1
	Channel 251	33.48								
	Channel 512	29.99								
Digital 1900MHz	Channel 661	29.99	0.242	0.29	0.24	18.8	0.151	0.18	0.15	18.9
	Channel 810	30.00								

Table 2: SAR measurement results for the portable cellular telephone FCC ID IHDT56DY1 at highest possible output power. Measured against the left head in the 15° Tilt Position.

6.2 Body Worn Test Results

The SAR results shown in table 3 are the maximum SAR values averaged over 1 gram of phantom tissue. Also shown are the measured conducted output powers, the temperature of the test facility during the test, the temperature of the tissue simulate after the test, the measured drift and the extrapolated SAR. The exact method of extrapolation is New SAR = Old SAR * 10^(-drift/10). The SAR reported at the end of the measurement process by the DASYTM measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test. The test conditions indicated as bold numbers in the following table are included in Appendix 3. All other test conditions measured lower SAR values than those included in Appendix 3.

A "flat" phantom was for the body-worn tests. This "flat" phantom is made out of 1" thick natural High Density Polyethylene with a thickness at the bottom equal to $2.0 \, \text{mm}$. It measures $52.7 \, \text{cm}(\log) \times 26.7 \, \text{cm}(\text{wide}) \times 21.2 \, \text{cm}(\text{tall})$. The measured dielectric constant of the material used is less than $2.3 \, \text{and}$ the loss tangent is less than $0.0046 \, \text{all}$ the way up to $2.184 \, \text{GHz}$.

FCC ID: IHDT56DY1

The tissue stimulant depth was verified to be $15.0 \, \mathrm{cm} \pm 0.5 \, \mathrm{cm}$. The same device holder described in section 6 was used for positioning the phone. The functional accessories were divided into two categories, the ones with metal components and the ones with non-metal components. For non-metallic component accessories', testing was performed on the accessory that displayed the closest proximity to the flat phantom. Each metallic component accessory, if any, was checked for uniqueness of metal component so that each is tested with the device. If multiple accessories shared an identical metal component, only the accessory that dictates the closest spacing to the body was tested. The cellular phone was tested with a headset connected to the device for all body-worn SAR measurements.

There is no Body-Worn Accessories currently available for this phone. The phone was tested in a body worn configuration per Supplement C by using a 15mm separation distance between the phone and the phantom.

The following probe conversion factors were used on the E-Field probe(s) used for the body worn measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #	
E-Field Probe	SN3037	835	5.9	8 of 10	
ET3DV6	5113037	1900	4.7	8 of 10	

			Body Worn Position							
f		Conducted	Front of Phone 15mm Away from Phantom			Back of Phone 15mm Away from Phantom				
		Output				Simulate				Simulate
(MII-)	Description	Power (dBm)	Measured	Drift	Extrapolated	Temp	Measured	Drift	Extrapolated	Temp
(MHz)	Description	(ubiii)	(W/kg)	(dB)	(W/kg)	(°C)	(W/kg)	(dB)	(W/kg)	(°C)
Digital 850MHz	Channel 128	33.49								
	Channel 189	33.47	0.249	0.178	0.25	19.0	0.791	0.05	0.79	19.0
	Channel 251	33.48								
Digital 1900MHz	Channel 512	29.99								
	Channel 661	29.99	0.069	-0.15	0.07	19.4	0.711	-0.03	0.72	19.4
	Channel 810	30.00								

Table 3: SAR measurement results for the portable cellular telephone FCC ID IHDT56DY1 at highest possible output power. Measured against the body.

			Body Worn Position							
f		Conducted	Back of Phone 15mm Away w Bluetooth On			Back of Phone 25mm Away with GPRS Class 10				
		Output				Simulate				Simulate
(MHz)	Description	Power (dBm)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Temp (°C)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Temp (°C)
Digital 850MHz	Channel 128	33.49								
	Channel 189	33.47	0.784	-0.07	0.80	19.0	0.449	-0.1	0.46	19.0
	Channel 251	33.48								
Digital 1900MHz	Channel 512	29.99								
	Channel 661	29.99	0.703	0.0	0.70	19.4	0.283	-0.09	0.29	19.4
	Channel 810	30.00								

Table 4: SAR measurement results for the portable cellular telephone FCC ID IHDT56DY1 at highest possible output power. Measured against the body.

Appendix 1

FCC ID: IHDT56DY1

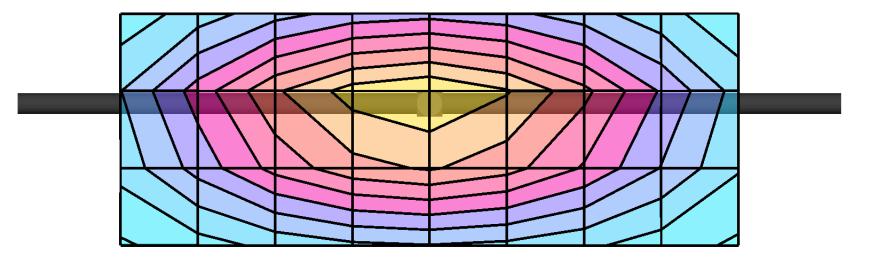
SAR distribution comparison for the system accuracy verification

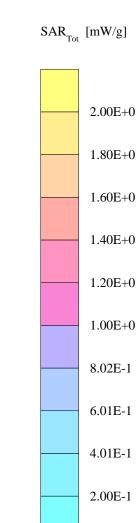
Dipole 835 MHz

835 MHz System Performance Check / Dipole Sn# 425TR

PM1 Power = 198mW Refl.Pwr PM3= -24.06dB

Room Temp at time of measurement = 20 Simulant Temp at time of measurement = 19.1


R1 TP-1005 SUGAR SAM Expanded (Rev. 2)-9Jan03; Flat


Probe: ES3DV3 - SN3037 - Validation.2; ConvF(6.10,6.10,6.10); Crest factor: 1.0; 835 MHz VALIDATION: $\sigma = 0.91$ mho/m $\epsilon_r = 41.6$ $\rho = 1.00$ g/cm³

Cubes (2): Peak: 2.96 $\,$ mW/g \pm 0.03 dB, SAR (1g): 1.94 $\,$ mW/g \pm 0.03 dB, SAR (10g): 1.26 $\,$ mW/g \pm 0.02 dB, (Worst-case extrapolation)

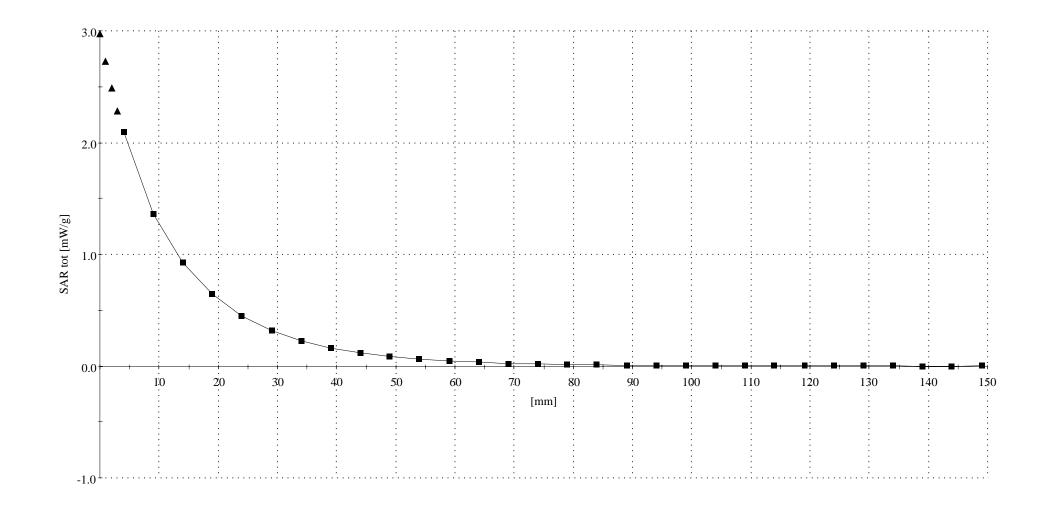
Penetration depth: 12.5 (11.7, 13.4) [mm]

Powerdrift: -0.02 dB

Dipole 835 MHz

835 MHz System Performance Check / Dipole Sn# 425TR

PM1 Power = 198mW Refl.Pwr PM3= -24.06dB


Room Temp at time of measurement = 20 Simulant Temp at time of measurement = 19.1

R1 TP-1005 SUGAR SAM Expanded (Rev. 2)-9Jan03 Phantom; Section; Position: ; Frequency: 835 MHz

Probe: ES3DV3 - SN3037 - Validation.2; ConvF(6.10,6.10,6.10); Crest factor: 1.0; 835 MHz VALIDATION: $\sigma = 0.91$ mho/m $\epsilon_r = 41.6$ $\rho = 1.00$ g/cm³

:,,()

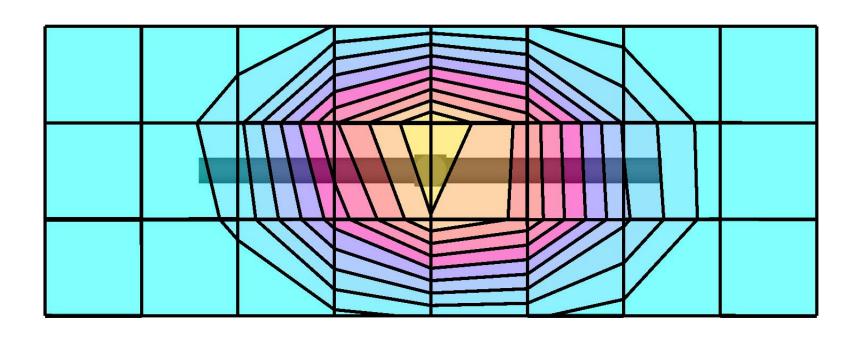
Z-Axis: Dx = 0.0, Dy = 0.0, Dz = 5.0Penetration depth: 12.4 (11.5, 13.4) [mm]

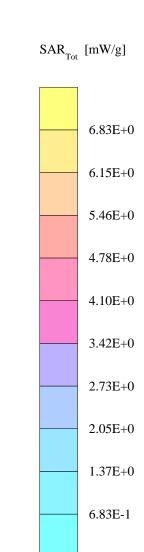
Dipole 1800 MHz

1800 MHz System Performance Check / Dipole Sn# 259tr

PM1 Power =199mW Refl.Pwr PM3= -23.06dB

Room Temp at time of measurement = 20 Simulant Temp at time of measurement = 19


R1 TP-1154 GLYCOL SAM Expanded (Rev. 2)-9Jan03; Flat


Probe: ES3DV3 - SN3037 - Validation.2; ConvF(4.90,4.90,4.90); Crest factor: 1.0; 1800 MHz VALIDATION: σ = 1.36 mho/m ϵ_r = 38.8 ρ = 1.00 g/cm³

Cubes (2): Peak: 14.6 $\text{ mW/g} \pm 0.02 \text{ dB}$, SAR (1g): 7.96 $\text{ mW/g} \pm 0.03 \text{ dB}$, SAR (10g): 4.16 $\text{ mW/g} \pm 0.03 \text{ dB}$, (Worst-case extrapolation)

Penetration depth: 8.5 (8.2, 9.2) [mm]

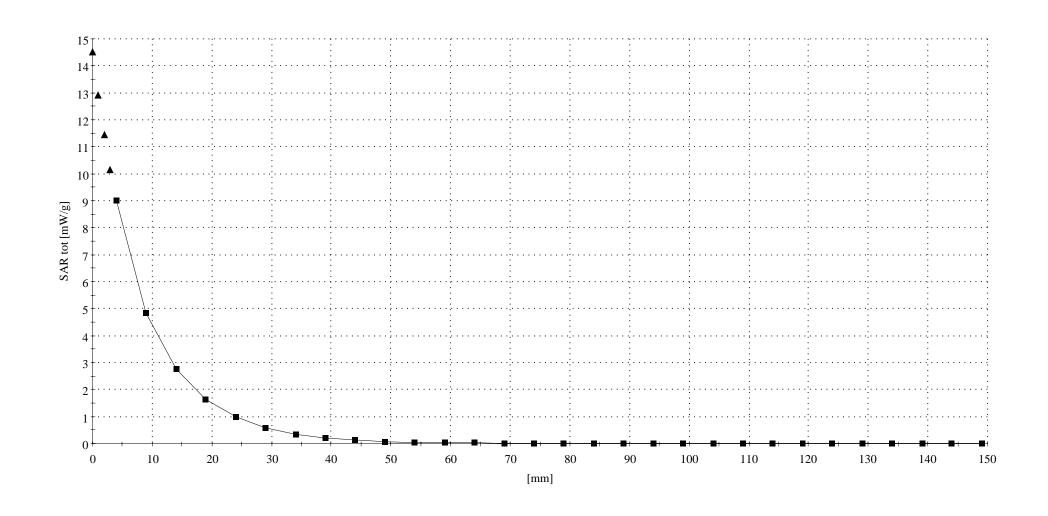
Powerdrift: -0.02 dB

Dipole 1800 MHz

1800 MHz System Performance Check / Dipole Sn# 259tr

PM1 Power =199mW Refl.Pwr PM3= -23.06dB

Room Temp at time of measurement = 20 Simulant Temp at time of measurement = 19


R1 TP-1154 GLYCOL SAM Expanded (Rev. 2)-9Jan03 Phantom; Section; Position: ; Frequency: 1800 MHz

Probe: ES3DV3 - SN3037 - Validation.2; ConvF(4.90,4.90,4.90); Crest factor: 1.0; 1800 MHz VALIDATION: σ = 1.36 mho/m ϵ_r = 38.8 ρ = 1.00 g/cm³

:,,()

Z-Axis: Dx = 0.0, Dy = 0.0, Dz = 5.0

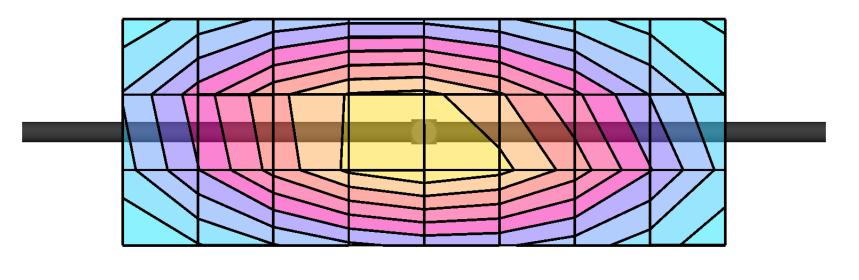
Penetration depth: 8.5 (8.1, 9.2) [mm]

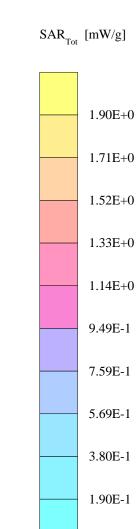
Dipole 835 MHz

835 MHz System Performance Check / Dipole Sn# 425TR

PM1 Power = 199mW Refl.Pwr PM3= -26.5dB

Room Temp at time of measurement = 20 Simulant Temp at time of measurement = 19.1


R1 TP-1005 SUGAR SAM Expanded (Rev. 2)-9Jan03; Flat


Probe: ES3DV3 - SN3037 - Validation.2; ConvF(6.10,6.10,6.10); Crest factor: 1.0; 835 MHz VALIDATION: $\sigma = 0.91$ mho/m $\epsilon_r = 41.6$ $\rho = 1.00$ g/cm³

Cubes (2): Peak: 3.01 $\text{mW/g} \pm 0.01 \text{ dB}$, SAR (1g): 1.95 $\text{mW/g} \pm 0.01 \text{ dB}$, SAR (10g): 1.26 $\text{mW/g} \pm 0.02 \text{ dB}$, (Worst-case extrapolation)

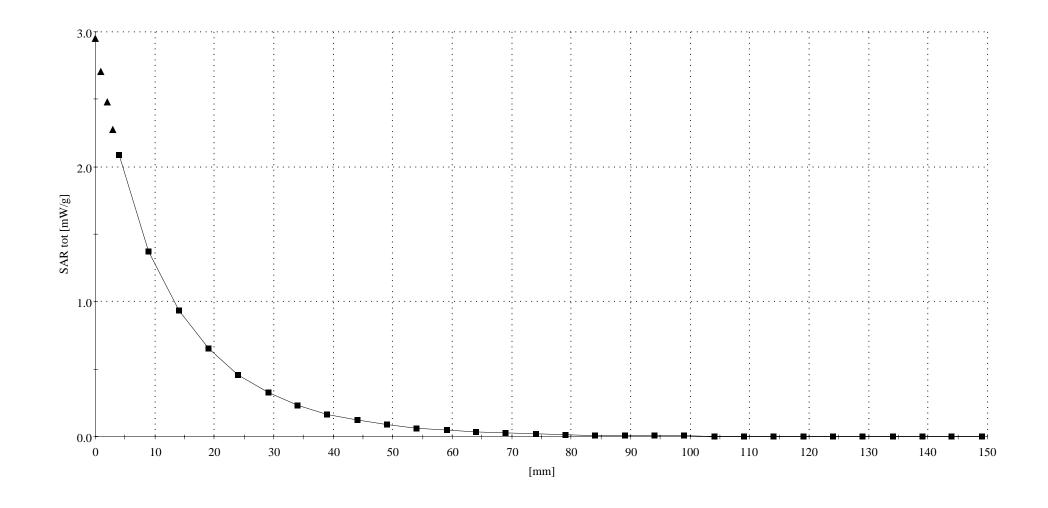
Penetration depth: 12.5 (11.6, 13.5) [mm]

Powerdrift: -0.07 dB

Dipole 835 MHz

835 MHz System Performance Check / Dipole Sn# 425TR

PM1 Power = 199mW Refl.Pwr PM3= -26.5dB


Room Temp at time of measurement = 20 Simulant Temp at time of measurement = 19.1

R1 TP-1005 SUGAR SAM Expanded (Rev. 2)-9Jan03 Phantom; Section; Position: ; Frequency: 835 MHz

Probe: ES3DV3 - SN3037 - Validation.2; ConvF(6.10,6.10,6.10); Crest factor: 1.0; 835 MHz VALIDATION: $\sigma = 0.91$ mho/m $\epsilon_r = 41.6$ $\rho = 1.00$ g/cm³

:,,()

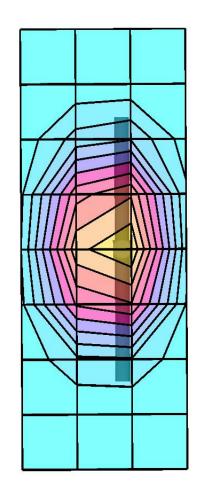
Z-Axis: Dx = 0.0, Dy = 0.0, Dz = 5.0Penetration depth: 12.5 (11.7, 13.5) [mm]

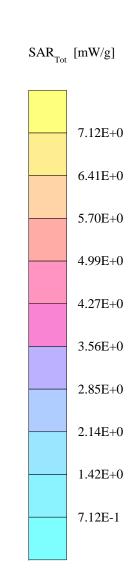
Dipole 1800 MHz

1800 MHz System Performance Check / Dipole Sn# 259tr

PM1 Power = 199mW Refl.Pwr PM3= -24.5dB

Room Temp at time of measurement = 20 Simulant Temp at time of measurement = 19.1


R1 Amy Twin Phantom Rev.4 (22Aug02); section 2


Probe: ES3DV3 - SN3037 - Validation.2; ConvF(4.90,4.90,4.90); Crest factor: 1.0; 1800 MHz VALIDATION: σ = 1.36 mho/m ϵ_r = 38.4 ρ = 1.00 g/cm³

Cubes (2): Peak: 15.0 $\text{mW/g} \pm 0.07 \text{ dB}$, SAR (1g): 8.21 $\text{mW/g} \pm 0.04 \text{ dB}$, SAR (10g): 4.32 $\text{mW/g} \pm 0.02 \text{ dB}$, (Worst-case extrapolation)

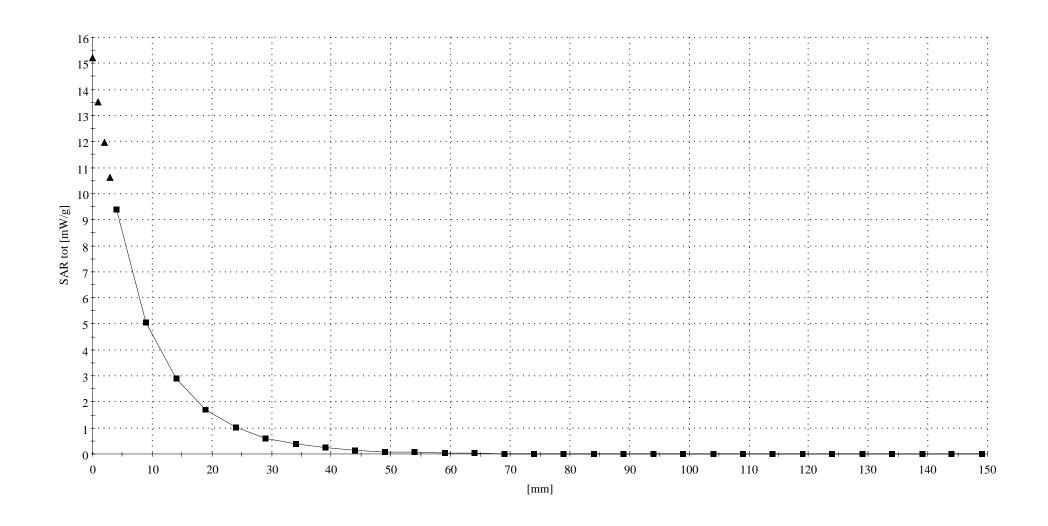
Penetration depth: 8.6 (8.2, 9.3) [mm]

Powerdrift: -0.06 dB

Dipole 1800 MHz

1800 MHz System Performance Check / Dipole Sn# 259tr

PM1 Power = 199mW Refl.Pwr PM3= -24.5dB


Room Temp at time of measurement = 20 Simulant Temp at time of measurement = 19.1

R1 Amy Twin Phantom Rev.4 (22Aug02);

Probe: ES3DV3 - SN3037 - Validation.2; ConvF(4.90,4.90,4.90); Crest factor: 1.0; 1800 MHz VALIDATION: σ = 1.36 mho/m ϵ_r = 38.4 ρ = 1.00 g/cm³

:,,()

Penetration depth: 8.4 (8.1, 9.2) [mm]

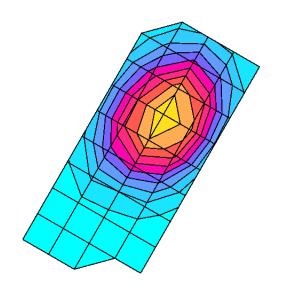
Appendix 2

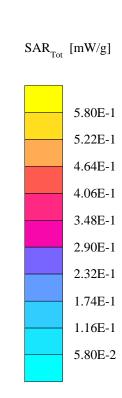
FCC ID: IHDT56DY1

SAR distribution plots for Phantom Head Adjacent Use

Ch# 190 / Pwr Step: 5 OTA Antenna Position: INTERNAL Type of Modulation: 850 GSM Battery Model #: SNN5683A

DEVICE POSITION (cheek or rotated): CHEEK


R1 TP-1005 SUGAR SAM Expanded (Rev. 2)-9Jan03 Phantom; Left Hand Section; Position: (90°,180°); Frequency: 837 MHz


Probe: ES3DV3 - SN3037 - IEEE Head; ConvF(6.10,6.10,6.10); Crest factor: 8.0; 835 MHz Head & Body: $\sigma = 0.91$ mho/m $\epsilon_r = 41.6$ $\rho = 1.00$ g/cm³

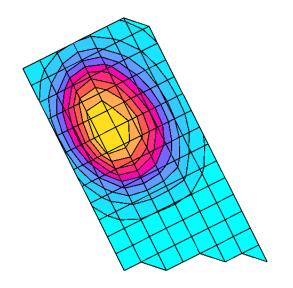
Cube 7x7x7: SAR (1g): 0.558 mW/g, SAR (10g): 0.392 mW/g, (Worst-case extrapolation)

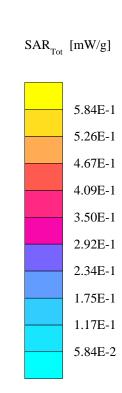
Coarse: Dx = 15.0, Dy = 15.0, Dz = 15.0 Penetration depth: 16.8 (16.6, 16.8) [mm]

Powerdrift: 0.02 dB

Ch# 190 / Pwr Step: 5 OTA Antenna Position: INTERNAL
Type of Modulation: 850 GSM Battery Model #: SNN5683A

DEVICE POSITION (cheek or rotated): CHEEK


R1 TP-1005 SUGAR SAM Expanded (Rev. 2)-9Jan03 Phantom; Right Hand Section; Position: (90°,180°); Frequency: 837 MHz


Probe: ES3DV3 - SN3037 - IEEE Head; ConvF(6.10,6.10,6.10); Crest factor: 8.0; 835 MHz Head & Body: $\sigma = 0.91$ mho/m $\epsilon_r = 41.6$ $\rho = 1.00$ g/cm³

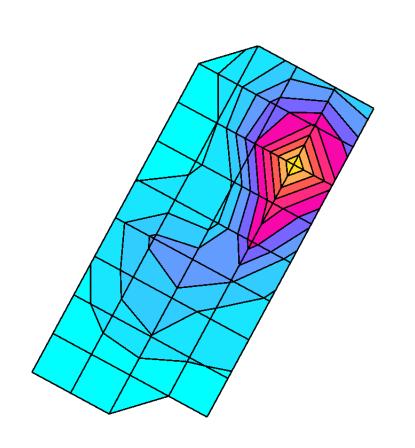
Cube 7x7x7: SAR (1g): 0.591 mW/g, SAR (10g): 0.426 mW/g, (Worst-case extrapolation)

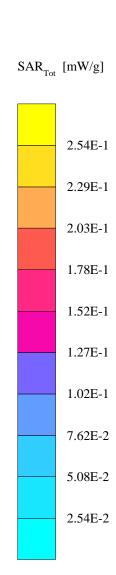
Coarse: Dx = 10.0, Dy = 10.0, Dz = 10.0 Penetration depth: 16.7 (15.9, 17.5) [mm]

Powerdrift: -0.01 dB

Ch#661 / Pwr Step:0 Antenna Position:internal Type of Modulation: GSM1900 Battery Model #: SNN5683A

DEVICE POSITION (cheek or rotated): cheek


R1 TP-1154 GLYCOL SAM Expanded (Rev. 2)-9Jan03 Phantom; Left Hand Section; Position: (90°,180°); Frequency: 1880 MHz


Probe: ES3DV3 - SN3037 - IEEE Head; ConvF(4.90,4.90,4.90); Crest factor: 8.0; 1880 MHz Head & Body: $\sigma = 1.45 \text{ mho/m} \ \epsilon_r = 38.4 \ \rho = 1.00 \ g/cm^3$

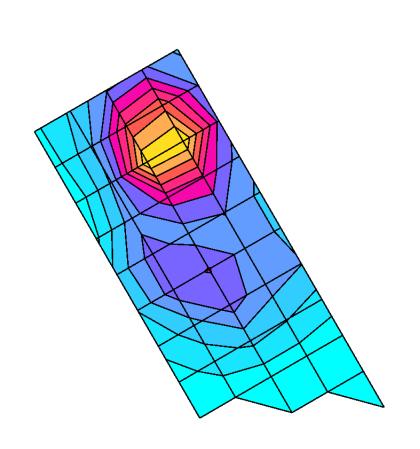
Cube 7x7x7: SAR (1g): 0.227 mW/g, SAR (10g): 0.126 mW/g, (Worst-case extrapolation)

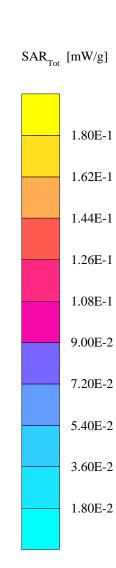
Coarse: Dx = 15.0, Dy = 15.0, Dz = 15.0 Penetration depth: 9.3 (9.1, 9.7) [mm]

Powerdrift: 0.19 dB

Ch#661 / Pwr Step:0 Antenna Position:internal Type of Modulation: GSM1900 Battery Model #: SNN5683A

DEVICE POSITION (cheek or rotated): cheek


R1 TP-1154 GLYCOL SAM Expanded (Rev. 2)-9Jan03 Phantom; Right Hand Section; Position: (90°,180°); Frequency: 1880 MHz


Probe: ES3DV3 - SN3037 - IEEE Head; ConvF(4.90,4.90,4.90); Crest factor: 8.0; 1880 MHz Head & Body: σ = 1.45 mho/m ϵ_r = 38.4 ρ = 1.00 g/cm³

Cube 7x7x7: SAR (1g): 0.183 mW/g, SAR (10g): 0.105 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 15.0 Penetration depth: 9.8 (9.7, 10.0) [mm]

Powerdrift: 0.02 dB

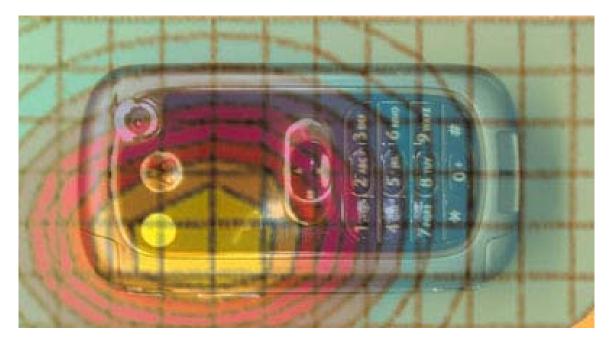


Figure 1.Typical 800MHz Head Adjacent Contour Overlaid on Phone (Cheek Touch)

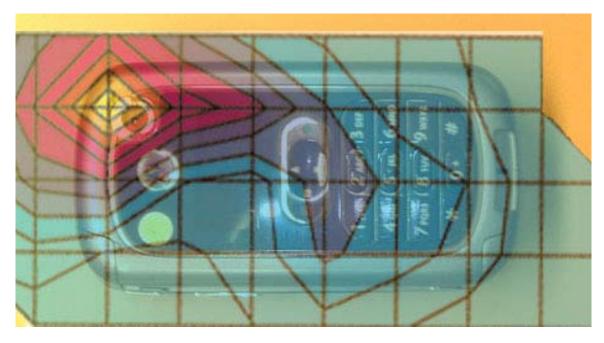
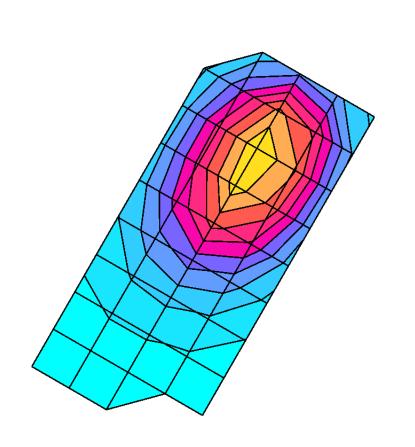


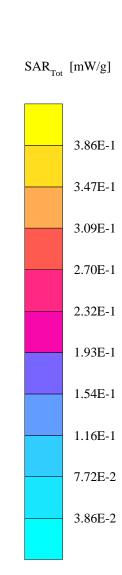
Figure 2.Typical 1900MHz Head Adjacent Contour Overlaid on Phone (Cheek Touch)

Page 11

Ch# 190 / Pwr Step: 5 OTA Antenna Position: INTERNAL Type of Modulation: 850 GSM Battery Model #: SNN5683A

DEVICE POSITION (cheek or rotated): TILTED


R1 TP-1005 SUGAR SAM Expanded (Rev. 2)-9Jan03 Phantom; Left Hand Section; Position: (90°,180°); Frequency: 837 MHz


Probe: ES3DV3 - SN3037 - IEEE Head; ConvF(6.10,6.10,6.10); Crest factor: 8.0; 835 MHz Head & Body: $\sigma = 0.91$ mho/m $\epsilon_r = 41.6$ $\rho = 1.00$ g/cm³

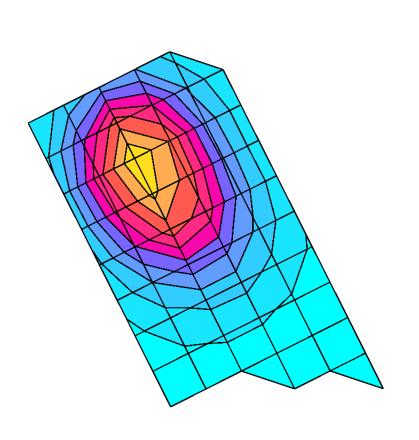
Cube 7x7x7: SAR (1g): 0.372 mW/g, SAR (10g): 0.258 mW/g, (Worst-case extrapolation)

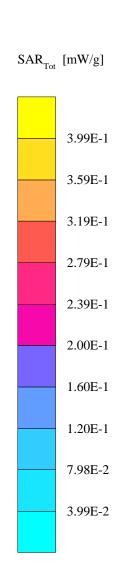
Coarse: Dx = 15.0, Dy = 15.0, Dz = 15.0 Penetration depth: 16.5 (15.5, 17.6) [mm]

Powerdrift: -0.08 dB

Ch# 190 / Pwr Step: 5 OTA Antenna Position: INTERNAL Type of Modulation: 850 GSM Battery Model #: SNN5683A

DEVICE POSITION (cheek or rotated): TILTED


R1 TP-1005 SUGAR SAM Expanded (Rev. 2)-9Jan03 Phantom; Right Hand Section; Position: (90°,180°); Frequency: 837 MHz


Probe: ES3DV3 - SN3037 - IEEE Head; ConvF(6.10,6.10,6.10); Crest factor: 8.0; 835 MHz Head & Body: $\sigma = 0.91$ mho/m $\epsilon_r = 41.6$ $\rho = 1.00$ g/cm³

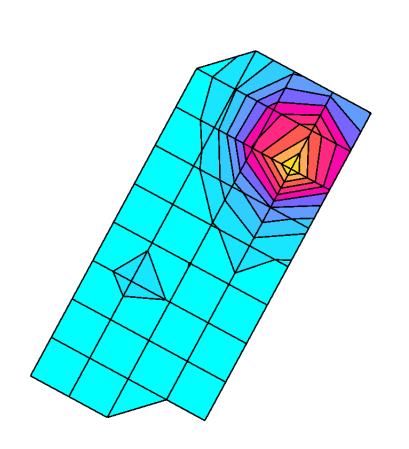
Cube 7x7x7: SAR (1g): 0.383 mW/g, SAR (10g): 0.267 mW/g, (Worst-case extrapolation)

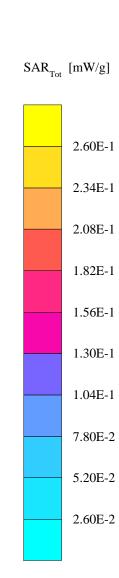
Coarse: Dx = 15.0, Dy = 15.0, Dz = 15.0 Penetration depth: 17.2 (16.1, 18.3) [mm]

Powerdrift: 0.01 dB

Ch#661 / Pwr Step:0 Antenna Position:internal Type of Modulation: GSM1900 Battery Model #: SNN5683A

DEVICE POSITION (cheek or rotated): TILTED


R1 TP-1154 GLYCOL SAM Expanded (Rev. 2)-9Jan03 Phantom; Left Hand Section; Position: (90°,180°); Frequency: 1880 MHz


Probe: ES3DV3 - SN3037 - IEEE Head; ConvF(4.90,4.90,4.90); Crest factor: 8.0; 1880 MHz Head & Body: $\sigma = 1.45 \text{ mho/m} \ \epsilon_r = 38.4 \ \rho = 1.00 \text{ g/cm}^3$

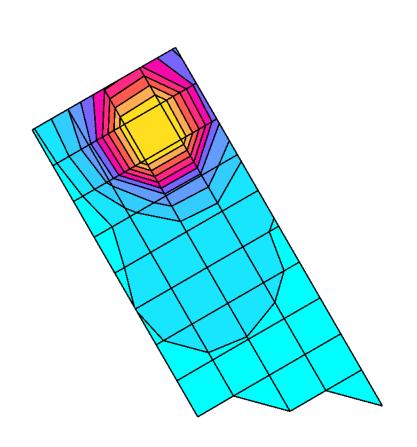
Cube 7x7x7: SAR (1g): 0.242 mW/g, SAR (10g): 0.134 mW/g, (Worst-case extrapolation)

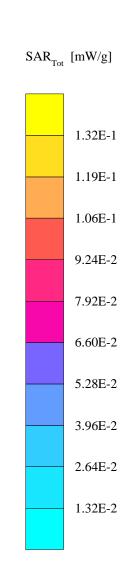
Coarse: Dx = 15.0, Dy = 15.0, Dz = 15.0 Penetration depth: 9.4 (9.3, 9.6) [mm]

Powerdrift: 0.29 dB

Ch#661 / Pwr Step:0 Antenna Position:internal Type of Modulation: GSM1900 Battery Model #: SNN5683A

DEVICE POSITION (cheek or rotated): TILTED


R1 TP-1154 GLYCOL SAM Expanded (Rev. 2)-9Jan03 Phantom; Right Hand Section; Position: (90°,180°); Frequency: 1880 MHz


Probe: ES3DV3 - SN3037 - IEEE Head; ConvF(4.90,4.90,4.90); Crest factor: 8.0; 1880 MHz Head & Body: σ = 1.45 mho/m ϵ_r = 38.4 ρ = 1.00 g/cm³

Cube 7x7x7: SAR (1g): 0.151 mW/g, SAR (10g): 0.0870 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 15.0 Penetration depth: 10.0 (9.7, 10.4) [mm]

Powerdrift: 0.18 dB

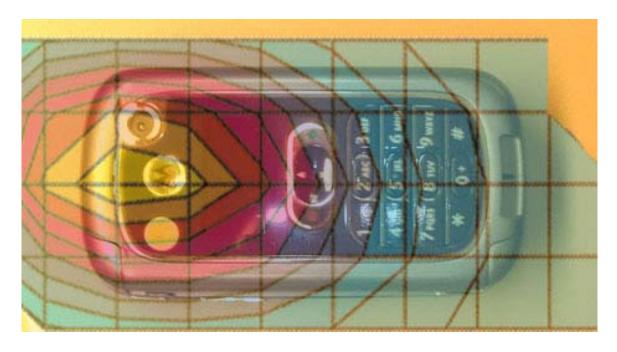


Figure 3.Typical 800MHz Head Adjacent Contour Overlaid on Phone (15 ° Tilt)

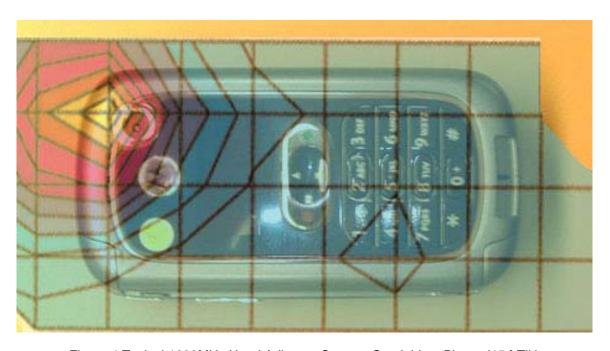


Figure 4.Typical 1900MHz Head Adjacent Contour Overlaid on Phone (15 ° Tilt)

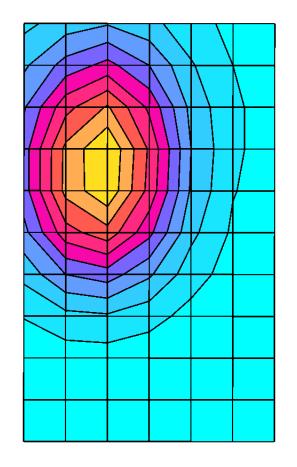
Appendix 3

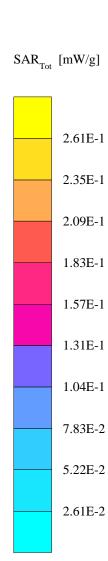
FCC ID: IHDT56DY1

SAR distribution plots for Body Worn Configuration

Ch#190 / Pwr Step: 05 Antenna Position: INTERNAL
Type of Modulation:850 GSM Battery Model #: SNN5683A

Accessory Model # = FRONT OF PHONE 15MM AWAY


R1 Amy Twin Phantom Rev.4 (22Aug02) Phantom; section 1 Section; Position: (0°,0°); Frequency: 837 MHz


Probe: ES3DV3 - SN3037 - FCC Body; ConvF(5.90,5.90,5.90); Crest factor: 8.0; 835 MHz Head & Body: $\sigma = 0.97$ mho/m $\epsilon_r = 55.1$ $\rho = 1.00$ g/cm³

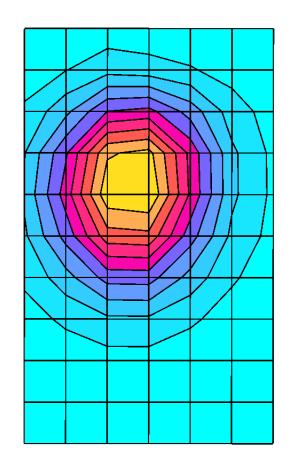
Cube 7x7x7: SAR (1g): 0.249 mW/g, SAR (10g): 0.178 mW/g, (Worst-case extrapolation)

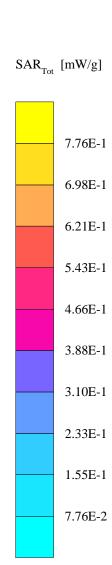
Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0 Penetration depth: 17.3 (15.9, 18.6) [mm]

Powerdrift: -0.16 dB

Ch#190 / Pwr Step: 05 Antenna Position: INTERNAL Type of Modulation:850 GSM Battery Model #: SNN5683A

Accessory Model # =BACK OF PHONE 15MM AWAY


R1 Amy Twin Phantom Rev.4 (22Aug02) Phantom; section 1 Section; Position: (0°,0°); Frequency: 837 MHz


Probe: ES3DV3 - SN3037 - FCC Body; ConvF(5.90,5.90,5.90); Crest factor: 8.0; 835 MHz Head & Body: $\sigma = 0.97$ mho/m $\epsilon_r = 55.1$ $\rho = 1.00$ g/cm³

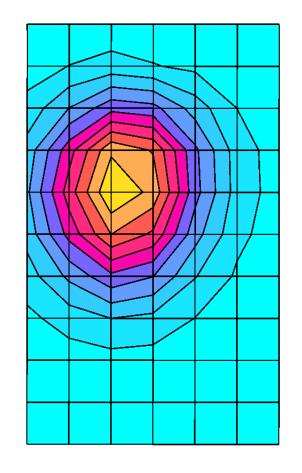
Cube 7x7x7: SAR (1g): 0.791 mW/g, SAR (10g): 0.554 mW/g, (Worst-case extrapolation)

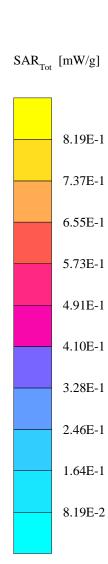
Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0Penetration depth: 16.3 (15.5, 17.2) [mm]

Powerdrift: 0.05 dB

Ch#190 / Pwr Step: 05 Antenna Position: INTERNAL

Type of Modulation:850 GSM Battery Model #: SNN5683A Accessory Model # = back OF PHONE 15MM AWAY with Bluetooth Transmitting


R1 Amy Twin Phantom Rev.4 (22Aug02) Phantom; section 1 Section; Position: (0°,0°); Frequency: 837 MHz


Probe: ES3DV3 - SN3037 - FCC Body; ConvF(5.90,5.90,5.90); Crest factor: 8.0; 835 MHz Head & Body: $\sigma = 0.97$ mho/m $\epsilon_r = 55.1$ $\rho = 1.00$ g/cm³

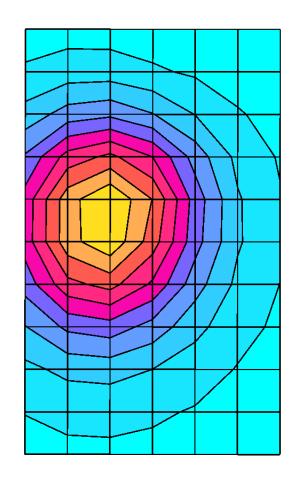
Cube 7x7x7: SAR (1g): 0.784 mW/g, SAR (10g): 0.550 mW/g, (Worst-case extrapolation)

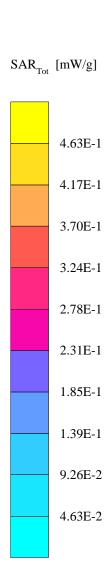
Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0 Penetration depth: 16.3 (15.6, 17.0) [mm]

Powerdrift: -0.07 dB

Ch#190 / Pwr Step: 05 Antenna Position: INTERNAL Type of Modulation: GPRS Class 10 in 850MHz Battery Model #: SNN5683A

Accessory Model # = back OF PHONE 1INCH AWAY


R1 Amy Twin Phantom Rev.4 (22Aug02) Phantom; section 1 Section; Position: (0°,0°); Frequency: 837 MHz


Probe: ES3DV3 - SN3037 - FCC Body; ConvF(5.90,5.90,5.90); Crest factor: 4.0; 835 MHz Head & Body: $\sigma = 0.97$ mho/m $\epsilon_r = 55.1$ $\rho = 1.00$ g/cm³

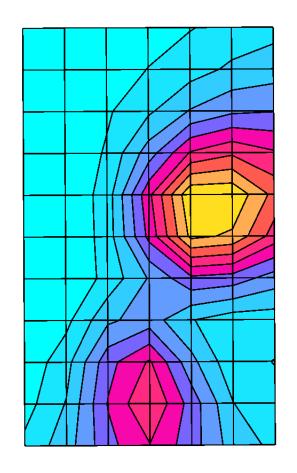
Cube 7x7x7: SAR (1g): 0.449 mW/g, SAR (10g): 0.322 mW/g, (Worst-case extrapolation)

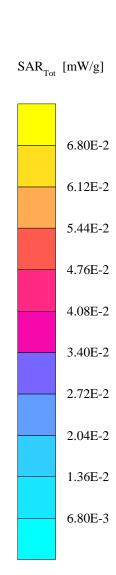
Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0Penetration depth: 17.2 (16.3, 18.1) [mm]

Powerdrift: -0.10 dB

Ch# 661 / Pwr Step: 0 OTA Antenna Position: INTERNAL
Type of Modulation: 1900 GSM Battery Model #: SNN5683A

Accessory Model #: Front of phone 15mm from Phantom


R1 Amy Twin Phantom Rev.4 (22Aug02) Phantom; section 2 Section; Position: (0°,0°); Frequency: 1880 MHz


Probe: ES3DV3 - SN3037 - FCC Body; ConvF(4.70,4.70,4.70); Crest factor: 8.0; 1880 MHz Head & Body: $\sigma = 1.59 \text{ mho/m} \ \epsilon_r = 53.0 \ \rho = 1.00 \ g/cm^3$

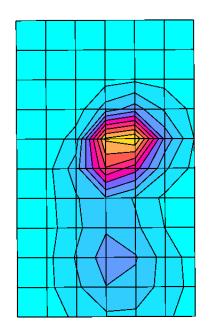
Cube 7x7x7: SAR (1g): 0.0690 mW/g, SAR (10g): 0.0433 mW/g, (Worst-case extrapolation)

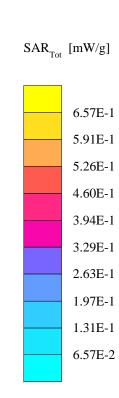
Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0 Penetration depth: 11.7 (9.3, 15.3) [mm]

Powerdrift: -0.15 dB

Ch# 661 / Pwr Step: 0 OTA Antenna Position: INTERNAL Type of Modulation: 1900 GSM Battery Model #: SNN5683A

Accessory Model #: Back of phone 15mm from Phantom


R1 Amy Twin Phantom Rev.4 (22Aug02) Phantom; section 2 Section; Position: (0°,0°); Frequency: 1880 MHz

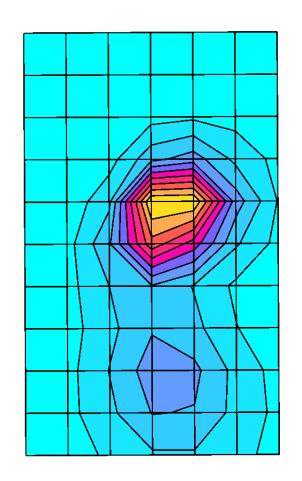

Probe: ES3DV3 - SN3037 - FCC Body; ConvF(4.70,4.70,4.70); Crest factor: 8.0; 1880 MHz Head & Body: $\sigma = 1.59 \text{ mho/m} \ \epsilon_r = 53.0 \ \rho = 1.00 \ g/cm^3$

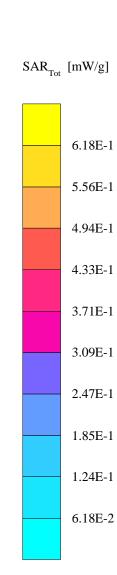
Cube 7x7x7: SAR (1g): 0.711 mW/g, SAR (10g): 0.376 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0 Penetration depth: 9.8 (9.7, 10.1) [mm]

Powerdrift: -0.03 dB

Ch# 661 / Pwr Step: 0 OTA Antenna Position: INTERNAL
Type of Modulation: GSM1900 Battery Model #: SNN5683A
Accessory Model #: Back of phone 15mm from Phantom w/ Bluetooth Transmitting


R1 Amy Twin Phantom Rev.4 (22Aug02) Phantom; section 2 Section; Position: (0°,0°); Frequency: 1880 MHz


Probe: ES3DV3 - SN3037 - FCC Body; ConvF(4.70,4.70,4.70); Crest factor: 8.0; 1880 MHz Head & Body: $\sigma = 1.59 \text{ mho/m} \ \epsilon_r = 53.0 \ \rho = 1.00 \ g/cm^3$

Cube 7x7x7: SAR (1g): 0.703 mW/g, SAR (10g): 0.371 mW/g, (Worst-case extrapolation)

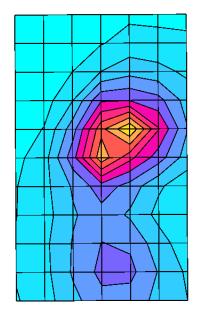
Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0 Penetration depth: 9.8 (9.5, 10.3) [mm]

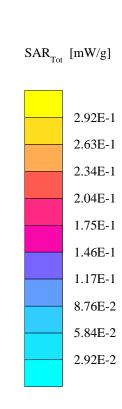
Powerdrift: -0.00 dB

s/n: 4400003830492

Ch# 661 / Pwr Step: 0 OTA Antenna Position: INTERNAL Type of Modulation: GPRS Class 10 at 1900MHz Battery Model #: SNN5683A

Accessory Model #: Back of phone 1 inch from Phantom


R1 Amy Twin Phantom Rev.4 (22Aug02) Phantom; section 2 Section; Position: (0°,0°); Frequency: 1880 MHz


Probe: ES3DV3 - SN3037 - FCC Body; ConvF(4.70,4.70,4.70); Crest factor: 4.0; 1880 MHz Head & Body: $\sigma = 1.59$ mho/m $\epsilon_r = 53.0$ $\rho = 1.00$ g/cm³

Cube 7x7x7: SAR (1g): 0.283 mW/g, SAR (10g): 0.170 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0 Penetration depth: 10.6 (10.5, 10.8) [mm]

Powerdrift: -0.09 dB

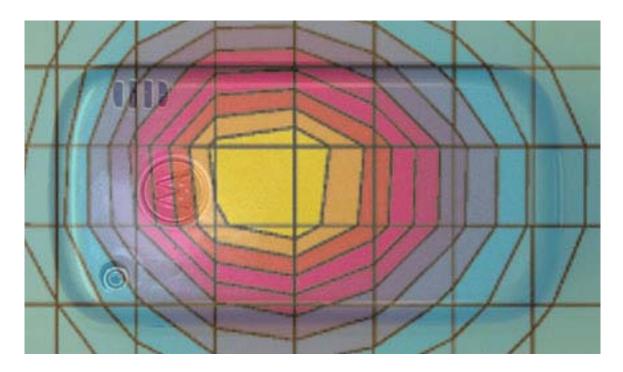


Figure 5. Typical 800 MHz Body-Worn Contour Overlaid on Phone

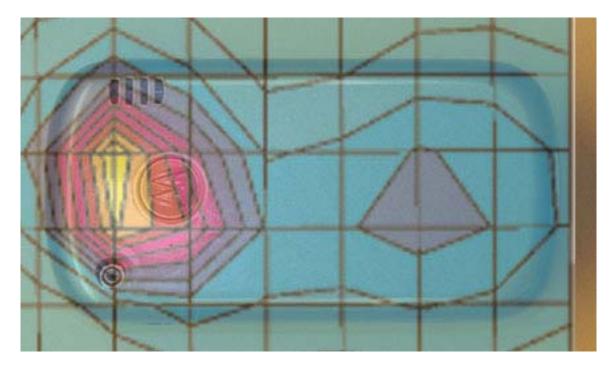


Figure 6. Typical 1900 MHz Body-Worn Contour Overlaid on Phone

Appendix 4

FCC ID: IHDT56DY1

Probe Calibration Certificate

Certification of System Performance Check Targets Based on APP-0396

-Historical Data-

	835MHz	900MHz	1800MHz	1900MHz	
P1528 Target: Advanced Extrapolation	9.5	10.8	38.1	39.7	(W/kg)
Measurement Uncertainty (k=1):	10.2%	10.2%	10.2%	10.2%	
Measurement Period:	November '02 - June '03	November '02 - June '03	November '02 - June '03	November '02 - June '03	
# of tests performed:	169	728	868	26	
Grand Average: Worst Case Extrapolation	10.1	11.6	39.7	42.0	(W/kg)
% Delta (Average - P1528 Target)	6.5%	7.7%	4.2%	5.9%	
Is % Delta <= Measurement Uncertainty?	Yes	Yes	Yes	Yes	
Accept/Reject <u>Average</u> as new system performance check target?	ACCEPT	ACCEPT	ACCEPT	ACCEPT	
	Applicable 835MHz Dipole Serial Numbers:	Applicable 900MHz Dipole Serial Numbers:	Applicable <u>1800MHz</u> Dipole Serial Numbers:	Applicable <u>1900Mhz</u> Dipole Serial Numbers:	
	420(TR), 421(TR)	77, 78	246(TR), 250(TR)	514(TR), 518(TR)	
	422(TR), 423(TR)	79, 80	251(TR), 258(TR)	519(TR), 520(TR)	
	424(TR), 425(TR)	91, 92	259(TR), 262(TR)	523(TR), 524(TR)	4
	431(TR), 432(TR)	93, 94 95, 96	263(TR), 271(TR)	526(TR), 527(TR)	-
	433(TR), 434(TR) 436(TR)	95, 96 97	272(TR), 273(TR) 276(TR), 277(TR)	528(TR), 529(TR) 530(TR), 533(TR)	
	750(111)	- 51	279(TR), 280(TR)	330(111), 333(111)	1
			281(TR), 282(TR)		1
			283(TR), 284(TR)]

-New System Performance Check Targets- per APP-0396

(based on analysis of historical data)

Frequency	SAR Target (W/kg)	Permittivity	Conductivity (S/m)
835MHz	10.1	41.5 ± 5%	0.90 ± 5%
900MHz	11.6	41.5 ± 5%	0.97 ± 5%
1800MHz	39.7	40.0 ± 5%	1.40 ± 5%
1900MHz	42.0	40.0 ± 5%	1.40 ± 5%

-Approvals-		
Submitted	by: Marge Kaunas	Date: 24-Jun-03
Sign	ed: Manga Kaura	
Commer	spreadsheet detailing all measu	urements available upon request
Approved !	Antonio Faraone	Date : 24-Jun-03
Signe	ed: Antonio Fenerale	
Commen	ts: Targets and associated simulant properties at	re derived from the IEEE P1528 draft standard

Appendix 5

FCC ID: IHDT56DY1

Dipole Characterization Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Motorola MRO

Object(s)	#2551D)V/45E35151	3037	
Calibration procedure(s)	GA CAL-01 v2 Calibration pro	cedure for dosimetric E-field probe	
Calibration date:	Ordolater (18.7)	003	
Condition of the calibrated item	in Tolerance (according to the specific calibration	ı document)
	d in the closed laborato	ry facility: environment temperature 22 +/- 2 degrees	
17025 international standard. All calibrations have been conducted Calibration Equipment used (M&TE	d in the closed laborato	ry facility: environment temperature 22 +/- 2 degrees	s Celsius and humidity < 75%.
17025 international standard. All calibrations have been conducted Calibration Equipment used (M&TE	d in the closed laborator	ry facility: environment temperature 22 +/- 2 degrees Cal Date (Calibrated by, Certificate No.)	s Celsius and humidity < 75%. Scheduled Calibration
17025 international standard. All calibrations have been conducted Calibration Equipment used (M&TE Model Type Power meter EPM E4419B	d in the closed laborato critical for calibration)	ry facility: environment temperature 22 +/- 2 degrees Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250)	Scheduled Calibration Apr-04
17025 international standard. All calibrations have been conducted Calibration Equipment used (M&TE Model Type Power meter EPM E4419B Power sensor E4412A	d in the closed laborato critical for calibration) ID # GB41293874	ry facility: environment temperature 22 +/- 2 degrees Cal Date (Calibrated by, Certificate No.)	s Celsius and humidity < 75%. Scheduled Calibration
17025 international standard. All calibrations have been conducted Calibration Equipment used (M&TE Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator	d in the closed laborato critical for calibration) ID # GB41293874 MY41495277	cy facility: environment temperature 22 +/- 2 degrees Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250)	Scheduled Calibration Apr-04 Apr-04
17025 international standard. All calibrations have been conducted. Calibration Equipment used (M&TE Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Fluke Process Calibrator Type 702	d in the closed laborator critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b)	ry facility: environment temperature 22 +/- 2 degrees Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS No. 251-0340	Scheduled Calibration Apr-04 Apr-04 Apr-04
17025 international standard. All calibrations have been conducted. Calibration Equipment used (M&TE Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Fluke Process Calibrator Type 702 Power sensor HP 8481A	d in the closed laborator critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803	Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS No. 251-0340 8-Sep-03 (Sintrel SCS No. E-030020)	Scheduled Calibration Apr-04 Apr-04 Apr-04 Apr-04 Sep-04
17025 international standard. All calibrations have been conducted. Calibration Equipment used (M&TE Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Fluke Process Calibrator Type 702 Power sensor HP 8481A RF generator HP 8684C	d in the closed laborato critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803 MY41092180	Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS No. 251-0340 8-Sep-03 (Sintrel SCS No. E-030020) 18-Sep-02 (Agilent, No. 20020918)	Scheduled Calibration Apr-04 Apr-04 Apr-04 Apr-04 In house check: Oct 03
17025 international standard.	d in the closed laborato critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803 MY41092180 US3642U01700	Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS No. 251-0340 8-Sep-03 (Sintrel SCS No. E-030020) 18-Sep-02 (Agilent, No. 20020918) 4-Aug-99 (SPEAG, in house check Aug-02)	Scheduled Calibration Apr-04 Apr-04 Apr-04 Sep-04 In house check: Oct 03 In house check: Aug-05

Date issued: October 10, 2003

This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for Calibration Laboratory of Schmid & Partner Engineering AG is completed.

880-KP0301061-A

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Probe ES3DV3

SN:3037

Manufactured: Last calibration: August 21, 2003 October 10, 2003

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ES3DV3 SN:3037

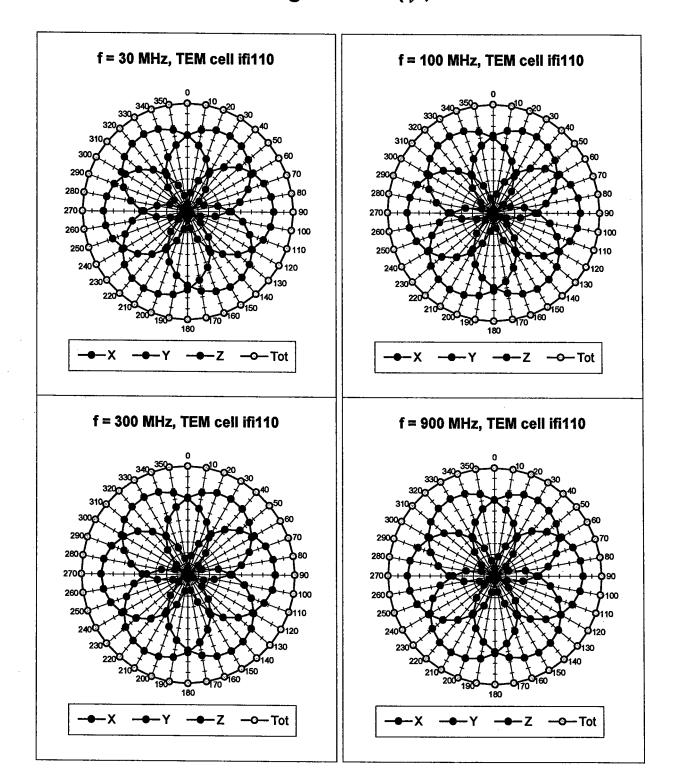
Sens	itivity	in	Free	Space
	THEFT		1100	Obace

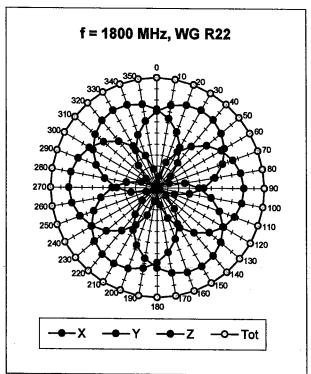
Diode Compression

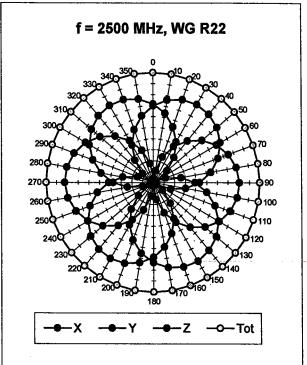
NormX	1.13 μV/(V/m) ²	DCP X	100	mV
NormY	0.85 $\mu V/(V/m)^2$	DCP Y	100	mV
NormZ	0.95 μV/(V/m) ²	DCP Z	100	mV

Sensitivity in Tissue Simulating Liquid

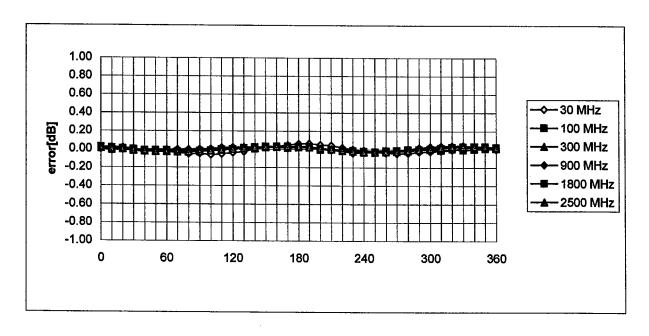
Head 900 MHz		ϵ_r = 41.5 ± 5%	σ = 0.97 ± 5% n	0.97 ± 5% mho/m		
Valid for 1	f=800-1000 MHz wit	h Head T	issue Simulating Llquid acc	ording to EN 50361, P	1528-200X	
	ConvF X	6.1	± 9.5% (k=2)	Boundary ef	ffect:	
ConvF Y 6.1		± 9.5% (k=2)	Alpha	0.31		
	ConvF Z	6.1	± 9.5% (k=2)	Depth	1.75	
Head	1800 MI	Ηz	$\varepsilon_{\rm r}$ = 40.0 ± 5%	σ = 1.40 ± 5% n	nho/m	
Valid for f	f=1710-1910 MHz w	ith Head	Tissue Simulating Liquid ac	cording to EN 50361,	P1528-200X	
	ConvF X	4.9	± 9.5% (k=2)	Boundary et	ffect:	
	ConvF Y 4.9		± 9.5% (k=2)	Alpha	0.24	
	ConvF Z	4.9	± 9.5% (k=2)	Depth	2.68	

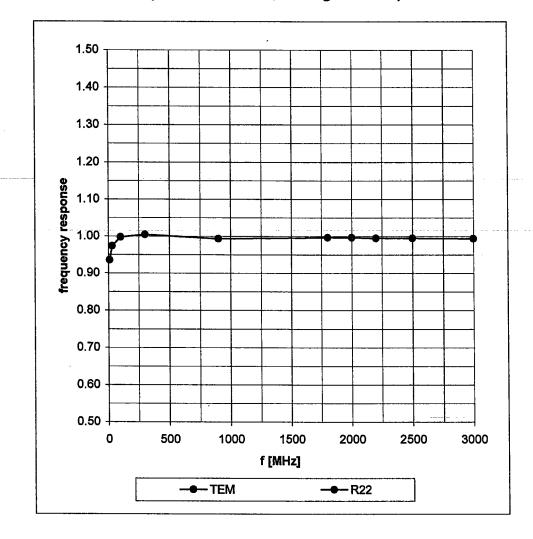

Boundary Effect


Head	900 MHz Typical SAR grad	ient: 5 % per mm	
	Probe Tip to Boundary	1 mm	2 mm
	SAR _{be} [%] Without Correction Algorithm	6.0	3.0
	SAR _{be} [%] With Correction Algorithm	0.1	0.3
Head	1800 MHz Typical SAR grad	ient: 10 % per mm	
	Probe Tip to Boundary	1 mm	2 mm
	SAR _{be} [%] Without Correction Algorithm	8.5	5.5
	SAR _{be} [%] With Correction Algorithm	0.1	0.2


Sensor Offset

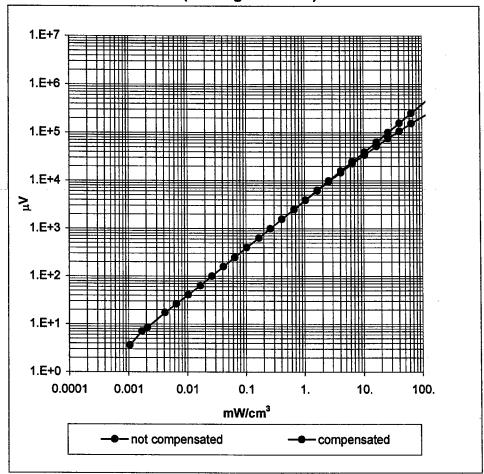
Probe Tip to Sensor Center 2.0 mm

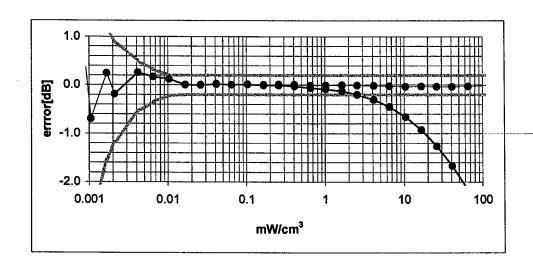

Receiving Pattern (ϕ , θ = 0°


Isotropy Error (ϕ), θ = 0°

台の数は多数の理論

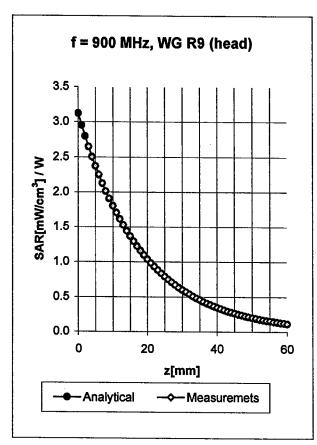
Frequency Response of E-Field

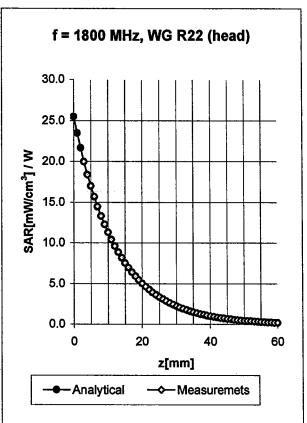

(TEM-Cell:ifi110, Waveguide R22)



Dynamic Range f(SAR_{brain})

The state of the s


(Waveguide R22)



Conversion Factor Assessment

The second se

Head

900 MHz

 $\epsilon_{\rm r} = 41.5 \pm 5\%$

 $\sigma = 0.97 \pm 5\% \text{ mho/m}$

Valid for f=800-1000 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X

ConvF X

6.1 \pm 9.5% (k=2)

Boundary effect:

ConvF Y

6.1 \pm 9.5% (k=2)

Alpha

0.31

ConvF Z

6.1 \pm 9.5% (k=2)

Depth

1.75

Head

1800 MHz

 $\varepsilon_r = 40.0 \pm 5\%$

 σ = 1.40 ± 5% mho/m

Valid for f=1710-1910 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X

ConvF X

 $4.9 \pm 9.5\% (k=2)$

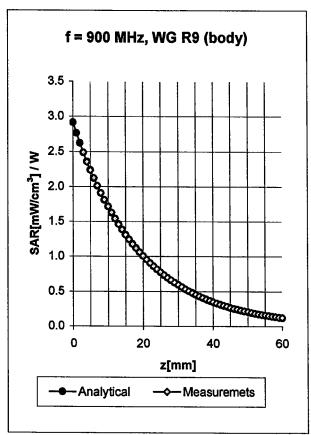
Boundary effect:

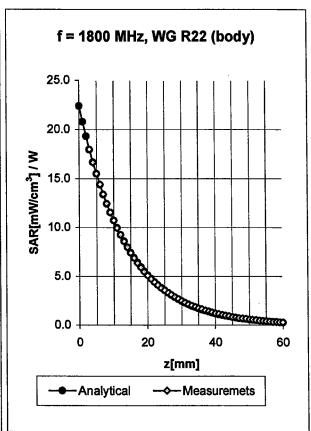
ConvF Y

4.9 \pm 9.5% (k=2)

Alpha

0.24


ConvF Z


4.9 \pm 9.5% (k=2)

Depth

2.68

Conversion Factor Assessment

Body

900 MHz

 $\varepsilon_{\rm r} = 55.0 \pm 5\%$

 $\sigma = 1.05 \pm 5\% \text{ mho/m}$

Valid for f=800-1000 MHz with Body Tissue Simulating Liquid according to OET 65 Suppl. C

ConvF X

5.9 \pm 9.5% (k=2)

Boundary effect:

ConvF Y

5.9 \pm 9.5% (k=2)

Alpha

0.29

ConvF Z

5.9 \pm 9.5% (k=2)

Depth

1.91

Body

1800 MHz

 $\varepsilon_r = 53.3 \pm 5\%$

 $\sigma = 1.52 \pm 5\% \text{ mho/m}$

Valid for f=1710-1910 MHz with Body Tissue Simulating Liquid according to OET 65 Suppl. C

ConvF X

4.7 ± 9.5% (k=2)

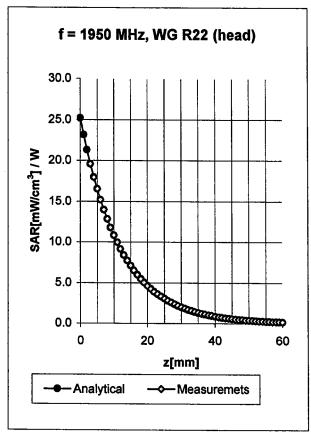
Boundary effect:

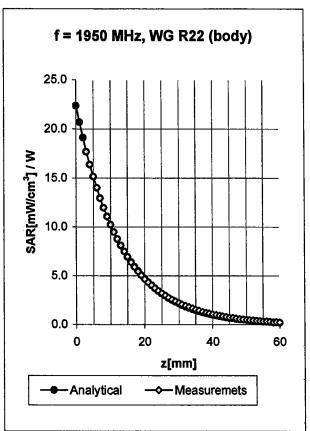
ConvF Y

4.7 \pm 9.5% (k=2)

Alpha

0.25


ConvF Z


4.7 \pm 9.5% (k=2)

Depth

2.80

Conversion Factor Assessment

Head

1950 MHz

 $\varepsilon_{\rm r} = 40.0 \pm 5\%$

 σ = 1.40 ± 5% mho/m

Valid for f=1900-2000 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X

ConvF X

4.7 \pm 9.5% (k=2)

Boundary effect:

ConvF Y

4.7 \pm 9.5% (k=2)

Alpha

0.28

ConvF Z

4.7 \pm 9.5% (k=2)

Depth

2.26

Body

1950 MHz

 $\varepsilon_{\rm r} = 53.3 \pm 5\%$

 σ = 1.52 ± 5% mho/m

Valid for f=1900-2000 MHz with Body Tissue Simulating Liquid according to OET 65 Suppl. C

ConvF X

4.5 \pm 9.5% (k=2)

Boundary effect:

ConvF Y

4.5 \pm 9.5% (k=2)

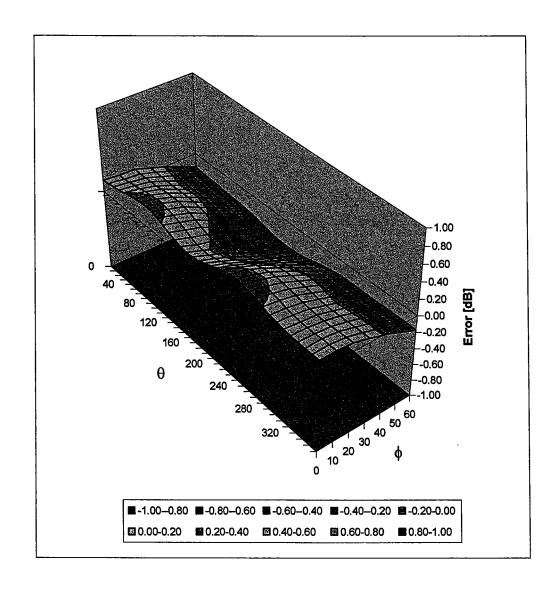
Alpha

0.31

ConvF Z

4.5 \pm 9.5% (k=2)

Depth


2.24

en en greekkalkingstag in

and a market to product

Deviation from Isotropy in HSL

Error ($\theta \phi$), f = 900 MHz

Appendix 6

FCC ID: IHDT56DY1

Measurement Uncertainty Budget

Uncertainty Rudget for I	lovio	o I In	dor 7	Post					
Uncertainty Budget for I	Je vic	e on	uer	lest			h =	<i>i</i> =	
_	1.	_	ı	- C (J 1-)	£				1-
a	b	c	d	e = f(d,k)	f	g	cxf/e	c x g / e	k
		Tol.	Prob.		c_{i}	c_i	1 g	10 g	
	Sec.	(± %)	Dist.		(1 g)	(10 g)	\boldsymbol{u}_i	\boldsymbol{u}_i	
Uncertainty Component	Sec.			Div.			(±%)	(±%)	v_i
Measurement System									
Probe Calibration	E.2.1	9.5	N	2.00	1	1	4.8	4.8	∞
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	∞
Spherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	×
Boundary Effect	E.2.3	5.8	R	1.73	1	1	3.3	3.3	8
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	8
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	8
Readout Electronics	E.2.6	1.0	N	1.00	1	1	1.0	1.0	8
Response Time	E.2.7	0.8	R	1.73	1	1	0.5	0.5	8
Integration Time	E.2.8	1.3	R	1.73	1	1	0.8	0.8	∞
RF Ambient Conditions	E.6.1	3.0	R	1.73	1	1	1.7	1.7	∞
Probe Positioner Mechanical									
Tolerance	E.6.2	0.3	R	1.73	1	1	0.2	0.2	∞
Probe Positioning with respect to									
Phantom Shell	E.6.3	1.1	R	1.73	1	1	0.6	0.6	∞
Extrapolation, interpolation and									
Integration Algorithms for Max. SAR									
Evaluation	E.5	3.9	R	1.73	1	1	2.3	2.3	∞
Test sample Related									
Test Sample Positioning	E.4.2	3.6	N	1.00	1	1	3.6	3.6	29
Device Holder Uncertainty	E.4.1	2.8	N	1.00	1	1	2.8	2.8	8
Output Power Variation - SAR drift									
measurement	6.6.2	5.0	R	1.73	1	1	2.9	2.9	∞
Phantom and Tissue Parameters									
Phantom Uncertainty (shape and									
thickness tolerances)	E.3.1	4.0	R	1.73	1	1	2.3	2.3	∞
Liquid Conductivity - deviation from									
target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity - measurement									
uncertainty	E.3.3	10.0	R	1.73	0.64	0.43	3.7	2.5	∞
Liquid Permittivity - deviation from									
target values	E.3.2	10.0	R	1.73	0.6	0.49	3.5	2.8	∞
Liquid Permittivity - measurement									
uncertainty	E.3.3	5.0	R	1.73	0.6	0.49	1.7	1.4	∞
Combined Standard Uncertainty			RSS				11.72	11.09	1363
Expanded Uncertainty									
(95% CONFIDENCE LEVEL)			k =2				22.98	21.75	

FCC ID: IHDT56DY1

Uncertainty Budget for System Performance Check (dipole & flat phantom)

FCC ID: IHDT56DY1

Uncertainty budget for	System	1 1 6110	n man	ce Cii	CCK (uipoie	X Hat	рпапі	om)
				e =			<i>h</i> =	<i>i</i> =	
				f(d,k)			cxf/	$c \times g$	
a	b	c	d)	f	g	e	/ e	k
		Tol.	Prob.		c_i	c_i	1 g	10 g	
		(± %)	Dist.		(1 g)	(10 g)	\boldsymbol{u}_i	u_i	
Uncertainty Component	Sec.			Div.			(±%)	(±%)	v_i
Measurement System									
Probe Calibration	E.2.1	9.5	N	2.00	1	1	4.8	4.8	∞
Axial Isotropy	E.2.2	4.7	R	1.73	1	1	2.7	2.7	∞
Spherical Isotropy	E.2.2	9.6	R	1.73	0	0	0.0	0.0	∞
Boundary Effect	E.2.3	5.8	R	1.73	1	1	3.3	3.3	∞
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	∞
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	∞
Readout Electronics	E.2.6	1.0	N	1.00	1	1	1.0	1.0	∞
Response Time	E.2.7	0.0	R	1.73	1	1	0.0	0.0	∞
Integration Time	E.2.8	0.0	R	1.73	1	1	0.0	0.0	∞
RF Ambient Conditions	E.6.1	3.0	R	1.73	1	1	1.7	1.7	∞
Probe Positioner Mechanical									
Tolerance	E.6.2	0.3	R	1.73	1	1	0.2	0.2	∞
Probe Positioning with respect to									
Phantom Shell	E.6.3	1.1	R	1.73	1	1	0.6	0.6	8
Extrapolation, interpolation and									
Integration Algorithms for Max.									
SAR Evaluation	E.5	3.9	R	1.73	1	1	2.3	2.3	∞
Dipole									
Dipole Axis to Liquid Distance	8, E.4.2	1.0	R	1.73	1	1	0.6	0.6	∞
Input Power and SAR Drift		4.7		1.70			2.7	2.7	
Measurement Phantom and Tissue	8, 6.6.2	4.7	R	1.73	1	1	2.7	2.7	∞
Parameters									
Phantom Uncertainty (shape and									
thickness tolerances)	E.3.1	4.0	R	1.73	1	1	2.3	2.3	∞
Liquid Conductivity - deviation	L.J.1	7.0	IX	1.73	1	1	2.5	2.3	- &
from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity -	1.5.2	3.0	IX	1.73	0.04	0.43	1.0	1.2	
measurement uncertainty	E.3.3	10.0	R	1.73	0.64	0.43	3.7	2.5	∞
Liquid Permittivity - deviation	1.5.5	10.0	1	1.73	0.04	0.73	5.1	2.3	- 3
from target values	E.3.2	10.0	R	1.73	0.6	0.49	3.5	2.8	∞
Liquid Permittivity -	2.3.2	10.0		1.75	0.0	0.17	3.3	2.0	
measurement uncertainty	E.3.3	5.0	R	1.73	0.6	0.49	1.7	1.4	∞
Combined Standard	2.5.5	2.0		2.75	0.0	3.17	217		
Uncertainty			RSS				10.16	9.43	99999
Expanded Uncertainty									
(95% CONFIDENCE LEVEL)			k=2				19.92	18.48	

Appendix 7


FCC ID: IHDT56DY1

Photographs of the device under test

