

Exhibit 11: SAR Test Report IHDT56DW1

Date of test: 12/30/2003 – 01/02/2004

Date of Report: 13-Jan-2004

Motorola Personal Communications Sector Product Safety & Compliance Laboratory

600 N. US Highway 45

Laboratory:Room: MW113

Libertyville, Illinois 60048

Test Responsible:Albert Patapack
Senior Staff Engineer

Accreditation: This laboratory is accredited to ISO/IEC 17025-1999 to perform the following tests:

ACCREDITED

<u>Tests</u>: <u>Procedures</u>:

Electromagnetic Specific Absorption Rate ANSI/IEEE C95.1-1992, 1999

(SAR) IEEE C95.3-1991 IEEE P1528 (*DRAFT*)

FCC OET Bulletin 65 (including Supplements A, B, C)

FCC ID: IHDT56DW1

Australian Communications Authority Radio

Communications (Electromagnetic Radiation – Human

Exposure) Standard 1999 CENELEC EN 50361 (2001)

Simulated Tissue Preparation APP-0247

RF Power Measurement DOI-0876, 0900, 0902, 0904, 0915

On the following products or types of products:

Wireless Communications Devices (Examples): Two Way Radios; Portable Phones (including

Cellular,

Licensed Non-Broadcast and PCS); Low Frequency Readers; and Pagers

A2LA certificate #1651-01

Motorola declares under its sole responsibility that portable cellular telephone FCC ID IHDT56DW1 to which this declaration relates, is in conformity with the appropriate General Population/Uncontrolled RF exposure standards, recommendations and guidelines (FCC 47 CFR §2.1093). It also declares that the product was tested in accordance with the appropriate measurement standards, guidelines and recommended practices. Any deviations from these

Statement of Compliance:

standards, guidelines and recommended practices are noted below:

(none)

©Motorola, Inc. 2003

This test report shall not be reproduced except in full, without written approval of the laboratory.

The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report.

Table of Contents

1. INTRODUCTION	3
2. DESCRIPTION OF THE DEVICE UNDER TEST	3
2.1 Antenna description	3
2.2 Device description	3
3. TEST EQUIPMENT USED	4
3.1 Dosimetric System	4
3.2 Additional Equipment	4
4. ELECTRICAL PARAMETERS OF THE TISSUE SIMULATING LIQUID	4
5. SYSTEM ACCURACY VERIFICATION	5
6. TEST RESULTS	6
6.1 Head Adjacent Test Results	6
6.2 Body Worn Test Results	9
APPENDIX 1: SAR DIS TRIBUTION COMPARISON FOR SYSTEM ACCURACY VERIFICATION	11
APPENDIX 2: SAR DISTRIBUTION PLOTS FOR PHANTOM HEAD ADJACENT USE	12
APPENDIX 3: SAR DISTRIBUTION PLOTS FOR BODY WORN CONFIGURATION	15
APPENDIX 4: PROBE CALIBRATION CERTIFICATE	17
APPENDIX 5: DIPOLE CHARACTERIZATION CERTIFICATE	18
APPENDIX 6: MEASUREMENT UNCERTAINTY BUDGET	19
APPENDIX 7: PHOTOGRAPHS OF DEVICE UNDER TEST	22

1. Introduction

The Motorola Personal Communications Sector Product Safety Laboratory has performed measurements of the maximum potential exposure to the user of portable cellular phone (FCC ID IHDT56DW1). The Specific Absorption Rate (SAR) of this product was measured. The portable cellular phone was tested in accordance with FCC OET Bulletin 65 Supplement C 01-01.

FCC ID: IHDT56DW1

2. Description of the Device Under Test

a. Antenna description

Туре	External		
Location	Upper right Corner		
Dimensions	Length	15mm	
Difficusions	Width	10mm	
Configuration	Helix		

b. Device description

FCC ID Number		IHDT56DW1						
Serial number		L720680122						
Mode(s) of Operation	GSM 850			EDGE 1800	EDGE 1900			
Modulation Mode(s)	GSM	GSM	GSM	GSM	GSM	GSM		
Maximum Output Power Setting	31.00 dBm	29.50dBm 29.50dBm 27.50dBm		26.50dBm	26.50dBm			
Duty Cycle	1:8	1:8	1:8	1:8		1:8		
Transmitting Frequency Rang(s)	o e		1850.2-1909.8 MHz	824.2-848.8 MHz	1710.2-1784.8 MHz	1850.2- 1909.8 MHz		
Production Unit or Identical Prototype (47 CFR §2908)		Identical Prototype						
Device Category			Por	table				
RF Exposure Limits			General Populat	tion / Uncontro	led			

APPLICANT: MOTOROLA, INC. FCC ID: IHDT56DW1

3. Test Equipment Used

3.1 Dosimetric System

The Motorola Personal Communications Sector Product Safety & Compliance Laboratory utilizes a Dosimetric Assessment System (Dasy3TM v3.1d) manufactured by Schmid & Partner Engineering AG (SPEAGTM), of Zurich Switzerland. All the SAR measurements are taken within a shielded enclosure. The overall RSS uncertainty of the measurement system is $\pm 11.7\%$ (K=1) with an expanded uncertainty of $\pm 23.0\%$ (K=2). The measurement uncertainty budget is given in Appendix 6. Per IEEE 1528, this uncertainty budget is applicable to the SAR range of 0.4 W/kg to 10 W/kg. The list of calibrated equipment used for the measurements is shown below.

Description	Serial Number	Cal Due Date
DASY3 DAE V1	SN437	18-Mar-04
E-Field Probe ET3DV6	SN1501	16-Apr-04
Dipole Validation Kit, D900V2	SN079	24-Jun-04
S.A.M. Phantom used for 900MHz	TP-1132	
Dipole Validation Kit, D1800V2	SN246TR	24-Jun-04
S.A.M. Phantom used for 1800MHz	TP-1160	

3.2 Additional Equipment

Description	Serial Number	Cal Due Date
Signal Generator HP8648C	3847A04632	10-Oct-04
Power Meter E4419B	GB39511090	06-Feb-04
Power Sensor #1 - E9301A	US39211007	06-Feb-04
Power Sensor #2 - E9301A	US39210931	06-Feb-04
Network Analyzer HP8753ES	US39171846	03-June-04
Dielectric Probe Kit HP85070B	US99360074	N/A

4. Electrical parameters of the tissue simulating liquid

Prior to conducting SAR measurements, the relative permittivity, ϵ_r , and the conductivity, σ , of the tissue simulating liquids were measured with the HP85070 Dielectric Probe Kit These values, along with the temperature of the tissue simulate are shown in the table below. The recommended limits for maximum permittivity and minimum conductivity are also shown. These come from the Federal Communication Commission, OET Bulletin 65 Supplement C 01-01. It is seen that the measured parameters are satisfactory for compliance testing.

	Tissue		Diele	ctric Parame	eters
(MHz)	type	Limits / Measured	\mathbf{e}_r	s (S/m)	Temp (°C)
	Head	Measured, 31-Dec-03	42.0	0.91	19.8
	пеаа	Recommended Limits	41.5 ±5%	0.90 ±5%	18-25
835	Dody	Measured, 31-Dec-03	54.5	0.98	20.0
	Body	Recommended Limits	55.2 ±5%	0.97 ±5%	18-25
	Hood	Measured, 30-Dec-03	38.4	1.45	18.8
	Head	Recommended Limits	40.0 ±5%	1.40 ±5%	18-25
1880	Body	Measured, 02-Jan-04	50.9	1.59	19.1
		Recommended Limits	53.3 ±5%	1.52 ±5%	18-25

The list of ingredients and the percent composition used for the tissue simulates are indicated in the table below.

Ingredient	800MHz Head	800MHz Body	1900MHz Head	1900MHz Body
Sugar	57.0	44.9		30.80
DGBE			47.0	
Water	40.45	53.06	52.8	68.91
Salt	1.45	0.94	0.2	0.29
HEC	1.0	1.0		
Bact.	0.1	0.1		

5. System Accuracy Verification

A system accuracy verification of the DASY3 was performed using the measurement equipment listed in Section 3.1. The daily system accuracy verification occurs within center section of the SAM phantom.

A SAR measurement was performed to see if the measured SAR was within +/- 10% from the target SAR indicated on the dipole certification sheet. These tests were done at 900MHz and 1800MHz. These frequencies are within 100MHz of the mid-band frequency of the test device. This is within the allowable window given in Supplement C 01-01 *Appendix D System Verification* section item #5. The test was conducted on the same days as the measurement of the DUT. Recommended limits for maximum permittivity, minimum conductivity are shown in the table below. These come from the Federal Communication Commission, OET Bulletin 65 Supplement C 01-01. The obtained results from the system accuracy verification are displayed in the table below. The distributions of SAR compare well with those of the reference measurements (see Appendix 1). The tissue stimulant depth was verified to be 15.0cm ±0.5cm. Z-axis scans showing the SAR penetration are also included in Appendix 1. SAR values are normalized to 1W forward power delivered to the dipole.

f (MHz)	Description	SAR (W/kg), 1gram	Dielectric e _r	Parameters s (S/m)	Ambient Temp (°C)	Tissue Temp (°C)
900	Measured, 31-Dec-03	11.2	41.2	0.97	20	20.1
	Recommended Limits	11.6	41.5 ±5%	$0.97 \pm 5\%$	18-25	18-25
	Measured, 30-Dec-03	39.7	38.3	1.36	20	19.0
1800	Measured, 02-Jan-04	40.4	38.7	1.38	20	19.1
	Recommended Limits	39.7	40.0 ±5%	1.4 ±5%	18-25	18-25

The following probe conversion factors were used on the E-Field probe(s) used for the system accuracy verification measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe	E-Field Probe SN1501		6.4	7 of 10
ET3DV6	SN1501	1800	5.0	7 of 10

6. Test Results

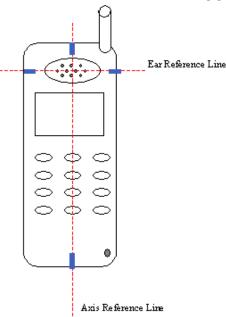
The test sample was operated in a test mode that allows control of the transmitter without the need to place actual phone calls. For the purposes of this test the unit is commanded to test mode and manually set to the proper channel, transmitter power level and transmit mode of operation. The phone was tested in the configurations stipulated in OET Bulletin 65 Supplement C 01-01. Motorola also followed the requirements in Supplement. C / Appendix D: SAR Measurement Procedures, section titled "Devices Operating Next To A Person's Ear". These directions state "The device should be tested on the left and right side of the head phantom in the "Cheek/Touch" and "Ear/Tilt" positions. When applicable, each configuration should be tested with the antenna in its fully extended and fully retracted positions. These test configurations should be tested at the high, middle and low frequency channels of each operating mode; for example, AMPS, CDMA, and TDMA. If the SAR measured at the middle channel for each test configuration (left, right, Cheek/Touch, Tile/Ear, extended and retracted) is at least 2.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s)."

FCC ID: IHDT56DW1

The DASY v3.1d SAR measurement system specified in section 3.1 was utilized within the intended operations as set by the SPEAGTM setup. The phone was positioned into the measurement configurations using the positioner supplied with the DASY 3.1d SAR measurement system. The measured dielectric constant of the material used for the positioner is less than 2.9 and the loss tangent is less than 0.02 (± 30%) at 850MHz. The default settings for the "coarse" and "cube" scans were chosen and use for measurements. The grid spacing of the course scan was set to 15cm as shown in the SAR plots included in appendix 2 and 3. Please refer to the DASY manual for additional information on SAR scanning procedures and algorithms used.

The Cellular Phone (FCC ID IHDT56DW1) has the following battery options:

SNN5588A - 750mAH Battery SNN5582A - 500mAH Battery


The battery with the highest capacity is the SNN5588A. This battery was used to do most of the SAR testing. The phone was placed in the SAR measurement system with a fully charged battery. The configuration that resulted in the highest SAR values were tested using the other battery listed above.

6.1 Head Adjacent Test Results

To aid in positioning repeatability, the ear reference line of the device and the axis reference line of the device have been physically added using a non-metallic marker.

- Per Figure 1, the "Ear Reference Line" is centered vertically through the center of the listening area (as defined by the speaker holes in the housing).
 - The "Axis Reference Line" bisects the front surface of the device at its top and bottom edges.
 - The intersection of these two lines defines the location of the "Ear Reference Point".

The lines drawn on the device extended to the outside edges, as shown in blue in the figure below, & wrap around the sides of the device.

The SAR results shown in tables 1, 2 and 3 are maximum SAR values averaged over 1 gram of phantom tissue. Also shown are the measured conducted output powers, the temperature of the test facility during the test, the temperature of the tissue simulate after the test, the measured drift and the extrapolated SAR. The exact method of extrapolation is New SAR = Old SAR * $10^{(-drift/10)}$. The SAR reported at the end of the measurement process by the DASYTM measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test. The test conditions indicated as bold numbers in the following table are included in Appendix 2

The SAR measurements were performed using the SAM phantoms listed in section 3.1. Since same phantoms and tissue simulate are used for the system accuracy verification as the device SAR measurements, the Z-axis scans included in within Appendix 1 are applicable for verification of tissue simulate depth to be 15.0cm ± 0.5 cm. All other test conditions measured lower SAR values than those included in Appendix 2.

The following probe conversion factors were used on the E-Field probe(s) used for the head adjacent measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe ET3DV6	SN1501	835	6.4	7 of 10
	5111501	1900	5.0	7 of 10

1	FCC	ID.	IHI	ŊΤ	56	וח	<i>N</i> 1
		ID.	ш	u	บบ	וט	/V I

	Conducted		Cheek / Touch Position							
f (MHz)	.	Output		Le	eft Head			Rig	ght Head	
	Description	Power (dBm)	Measured (W/kg)	Drift (dB)	Extrapolate d (W/kg)	Simulate Temp (°C)	Measured (W/kg)	Drift (dB)	Extrapolate d (W/kg)	Simulate Temp (°C)
D': '. 1	Channel 128	31.32								
Digital 850MHz	Channel 190	31.27	0.493	-0.08	0.50	19.8	0.52	-0.15	0.54	19.8
OSOWITZ	Channel 251	31.36								
D': '. 1	Channel 512	30.09								
Digital 1900MHz	Channel 661	30.51	0.619	-0.22	0.65	18.8	0.683	-0.05	0.69	18.8
TOOMITE	Channel 810	30.74								

Table 1: SAR measurement results for the portable cellular telephone FCC ID IHDT56DW1 at highest possible output power. Measured against the head in the Cheek/Touch Position.

	Description	Conducted Output Power (dBm)	15° Tilt Position									
				eft Head			Rig	ght Head				
f (MHz)			Measured (W/kg)	Drift (dB)	Extrapolate d (W/kg)	Simulate Temp (°C)	Measured (W/kg)	Drift (dB)	Extrapolate d (W/kg)	Simulate Temp (°C)		
D: : 1	Channel 128	31.32										
Digital 850MHz	Channel 190	31.27	0.13	-0.01	0.13	19.8	0.131	0.07	0.13	19.9		
OJOWITZ	Channel 251	31.36										
D'. '. I	Channel 512	30.09										
Digital 1900MHz	Channel 661	30.51	0.164	-0.06	0.17	18.8	0.148	-0.01	0.15	18.8		
TOOMITE	Channel 810	30.74										

Table 2: SAR measurement results for the portable cellular telephone FCC ID IHDT56DW1 at highest possible output power. Measured against the head in the 15° Tilt Position.

	Description	Conducted	Cheek / Touch Position using SNN5582A battery									
C		Output		eft Head			Right Head					
f (MHz)		Power (dBm)	Measured (W/kg)	Drift (dB)	Extrapolate d (W/kg)	Simulate Temp (°C)	Measured (W/kg)	Drift (dB)	Extrapolate d (W/kg)	Simulate Temp (°C)		
D: : 1	Channel 128	31.32										
Digital 850MHz	Channel 190	31.27					0.524	-0.17	0.54	19.9		
OJOWITZ	Channel 251	31.36										
D'. '. I	Channel 512	30.09										
Digital 1900MHz	Channel 661	30.51					0.689	-0.12	0.71	18.8		
1700WIIIZ	Channel 810	30.74										

Table 3: SAR measurement results for the portable cellular telephone FCC ID IHDT56DW1 at highest possible output power. Measured against the head in the Cheek/Touch Position using SNN5582A battery.

6.2 Body Worn Test Results

The SAR results shown in table 4 are the maximum SAR values averaged over 1 gram of phantom tissue. Also shown are the measured conducted output powers, the temperature of the test facility during the test, the temperature of the tissue simulate after the test, the measured drift and the extrapolated SAR. The exact method of extrapolation is New SAR = Old SAR * 10^(-drift/10). The SAR reported at the end of the measurement process by the DASYTM measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test. The test conditions indicated as bold numbers in the following table are included in Appendix 3. Note that 800MHz digital mode SAR measurements were performed in accordance with OET Bulletin 65 Supplement C 01-01. All other test conditions measured lower SAR values than those included in Appendix 3.

FCC ID: IHDT56DW1

A "flat" phantom was for the body-worn tests. This "flat" phantom is made out of 1" thick natural High Density Polyethylene with a thickness at the bottom equal to 2.0mm. It measures 52.7cm (long) x 26.7cm (wide) x 21.2cm (tall). The measured dielectric constant of the material used is less than 2.3 and the loss tangent is less than 0.0046 all the way up to 2.184GHz.

The tissue stimulant depth was verified to be 15.0cm ±0.5cm. The same device holder described in section 6 was used for positioning the phone. The functional accessories were divided into two categories, the ones with metal components and the ones with non-metal components. For non-metallic component accessories', testing was performed on the accessory that displayed the closest proximity to the flat phantom. Each metallic component accessory, if any, was checked for uniqueness of metal component so that each is tested with the device. If multiple accessories shared an identical metal component, only the accessory that dictates the closest spacing to the body was tested. The cellular phone was tested with a headset connected to the device for all body-worn SAR measurements.

There is only one Body-Worn Accessory available for this phone: Plastic Holster with Belt Clip: SNN8363A

The following probe conversion factors were used on the E-Field probe(s) used for the body worn measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe	SN1501	835	6.4	7 of 10
ET3DV6	5111501	1900	5.0	7 of 10

			Body Worn					
		Conducted		GS	M Mode			
		Output				Simulate		
f		Power	Measured	Drift	Extrapolate	Temp		
(MHz)	Description	(dBm)	(W/kg)	(dB)	d (W/kg)	(°C)		
D': '-1	Channel 128	31.32						
Digital 850MHz	Channel 190	31.27	0.24	-0.1	0.25	20.0		
OSOWITZ	Channel 251	31.36						
D': '. 1	Channel 512	30.09						
Digital 1900MHz	Channel 661	30.51	0.244	-0.24	0.26	19.1		
TOOMITE	Channel 810	30.74						

Table 4: SAR measurement results for the portable cellular telephone FCC ID IHDT56DW1 at highest possible output power. Measured in GSM Mode against the body.

			Body Worn					
		Conducted		EDO	GE Mode			
		Output				Simulat		
f		Power	Measured	Drift	Extrapolate	e Temp		
(MHz)	Description	(dBm)	(W/kg)	(dB)	d (W/kg)	(°C)		
D: :/ 1	Channel 128	27.78						
Digital 850MHz	Channel 190	27.79	0.116	0.02	0.12	20.0		
OSOWITZ	Channel 251	27.86						
D: :/ 1	Channel 512	26.82						
Digital 1900MHz	Channel 661	26.87	0.0997	-0.01	0.10	18.8		
TOOMITE	Channel 810	26.79						

Table 5: SAR measurement results for the portable cellular telephone FCC ID IHDT56DW1 at highest possible output power. Measured in EDGE Mode against the body.

Appendix 1

SAR distribution comparison for the system accuracy verification

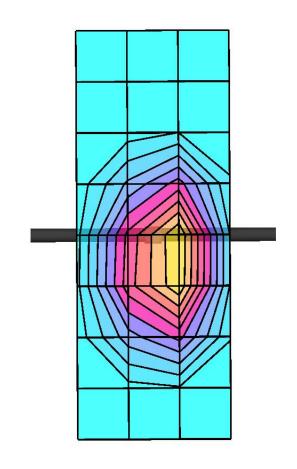
Dipole 1800 MHz

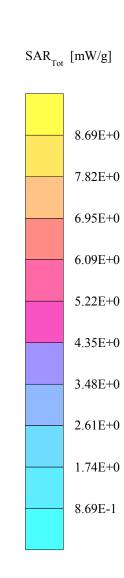
1800 MHz System Performance Check / Dipole Sn# 246TR

Forward Power = 247 Reflected Power = -21.77

Acceptable Temp Range is 18-25°C

Room Temp at time of measurement = 20C Simulant Temp at time of measurement = 19.0C


R5 Amy Twin Phantom Rev.4 (22Aug02) Phantom; section 2 Section; Position: (90°,90°); Frequency: 1800 MHz


Probe: ET3DV6R - SN1501 - VALIDATION; ConvF(5.00,5.00,5.00); Crest factor: 1.0; 1800 MHz VALIDATION: $\sigma = 1.36$ mho/m $\epsilon_r = 38.3$ $\rho = 1.00$ g/cm³

Cubes (2): SAR (1g): 9.81 $\text{ mW/g} \pm 0.06 \text{ dB}$, SAR (10g): 5.19 $\text{ mW/g} \pm 0.09 \text{ dB}$, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0Penetration depth: 8.5 (8.2, 9.2) [mm]

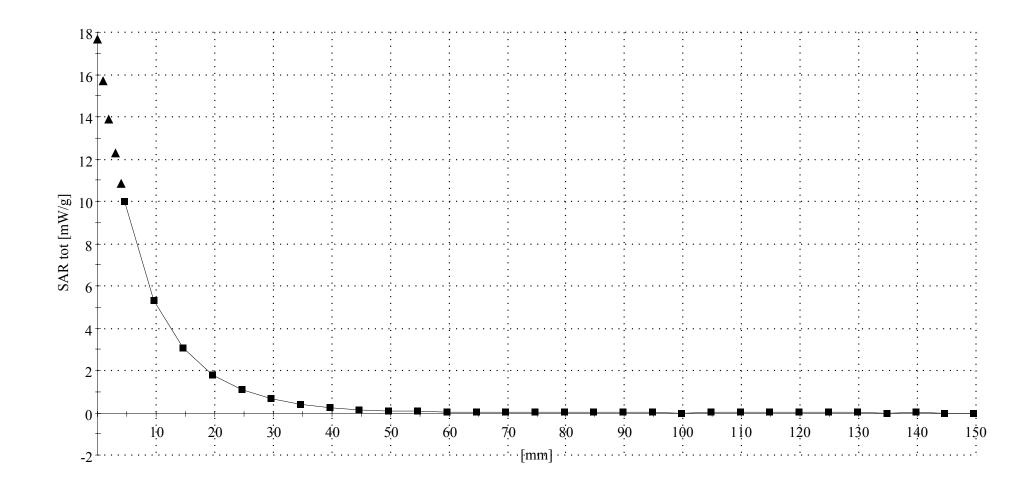
Powerdrift: -0.05 dB

Dipole 1800 MHz

1800 MHz System Performance Check / Dipole Sn# 246TR

Forward Power = 247 Reflected Power = -21.77

Acceptable Temp Range is 18-25°C


Room Temp at time of measurement = 20C Simulant Temp at time of measurement = 19.0C

R5 Amy Twin Phantom Rev.4 (22Aug02) Phantom; Section; Position: ; Frequency: 1800 MHz

Probe: ET3DV6R - SN1501 - VALIDATION; ConvF(5.00,5.00,5.00); Crest factor: 1.0; 1800 MHz VALIDATION: σ = 1.36 mho/m ϵ_r = 38.3 ρ = 1.00 g/cm³

:,()

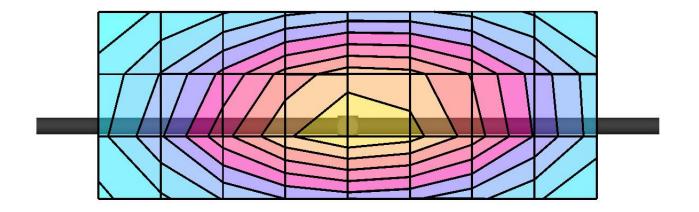
Z-Axis: Dx = 0.0, Dy = 0.0, Dz = 5.0Penetration depth: 8.3 (8.0, 9.1) [mm]

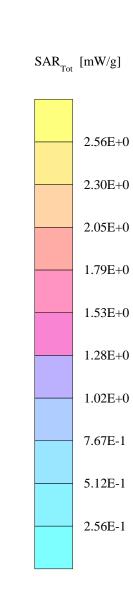
Dipole 900 MHz

900 MHz System Performance Check / Dipole Sn# 079

Forward Power = 249 Reflected Power = -23.60

Room Temp at time of measurement = 20C Simulant Temp at time of measurement = 20.1C


R5 TP-1132 Sugar SAM Expanded (Rev. 2)-9Jan03; Flat


Probe: ET3DV6R - SN1501 - VALIDATION; ConvF(6.40,6.40,6.40); Crest factor: 1.0; 900 MHz VALIDATION: σ = 0.97 mho/m ϵ_r = 41.2 ρ = 1.00 g/cm³

Cubes (2): Peak: 4.40 $\text{mW/g} \pm 0.10 \text{ dB}$, SAR (1g): 2.78 $\text{mW/g} \pm 0.10 \text{ dB}$, SAR (10g): 1.76 $\text{mW/g} \pm 0.09 \text{ dB}$, (Worst-case extrapolation)

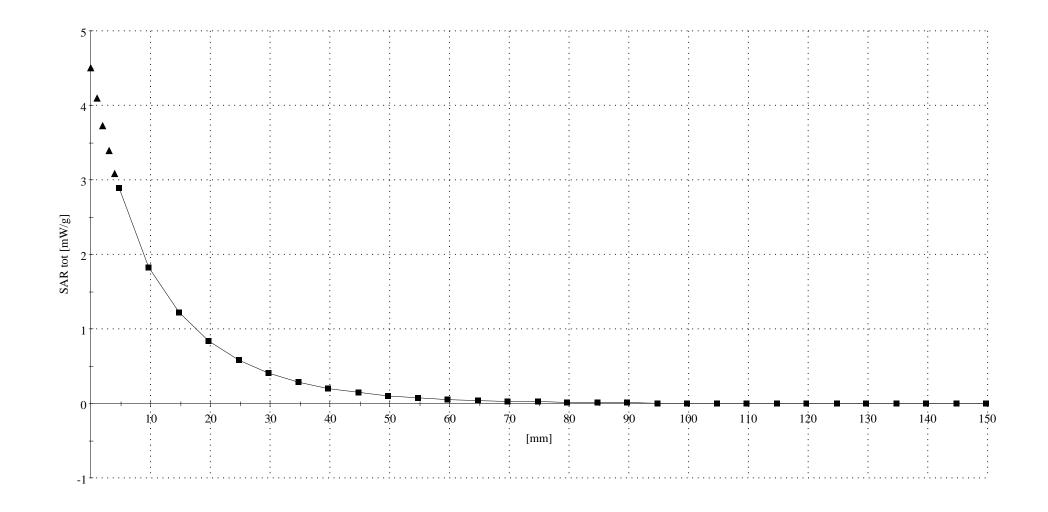
Penetration depth: 11.6 (10.8, 12.8) [mm]

Powerdrift: -0.01 dB

Dipole 900 MHz

900 MHz System Performance Check / Dipole Sn# 079

Forward Power = 249 Reflected Power = -23.60


Room Temp at time of measurement = 20C Simulant Temp at time of measurement = 20.1C

R5 TP-1132 Sugar SAM Expanded (Rev. 2)-9Jan03 Phantom; Section; Position: ; Frequency: 900 MHz

Probe: ET3DV6R - SN1501 - VALIDATION; ConvF(6.40,6.40,6.40); Crest factor: 1.0; 900 MHz VALIDATION: $\sigma = 0.97$ mho/m $\epsilon_r = 41.2$ $\rho = 1.00$ g/cm³

:,,()

Z-Axis: Dx = 0.0, Dy = 0.0, Dz = 5.0Penetration depth: 11.5 (10.7, 12.6) [mm]

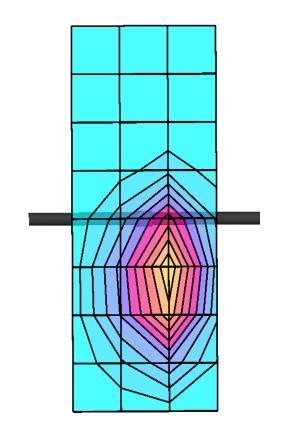
Dipole 1800 MHz

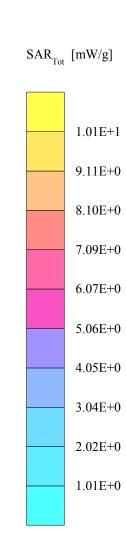
1800 MHz System Performance Check / Dipole Sn# 246TR

Forward Power = 247 Reflected Power = -22.78

Acceptable Temp Range is 18-25°C

Room Temp at time of measurement = 20 Simulant Temp at time of measurement = 19.1


R5 Amy Twin Phantom Rev.4 (22Aug02) Phantom; section 2 Section; Position: (90°,90°); Frequency: 1800 MHz


Probe: ET3DV6R - SN1501 - VALIDATION; ConvF(5.00,5.00,5.00); Crest factor: 1.0; 1800 MHz VALIDATION: σ = 1.38 mho/m ϵ_r = 38.7 ρ = 1.00 g/cm³

Cubes (2): SAR (1g): 9.98 $\text{ mW/g} \pm 0.08 \text{ dB}$, SAR (10g): 5.29 $\text{ mW/g} \pm 0.11 \text{ dB}$, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0Penetration depth: 8.5 (8.2, 9.3) [mm]

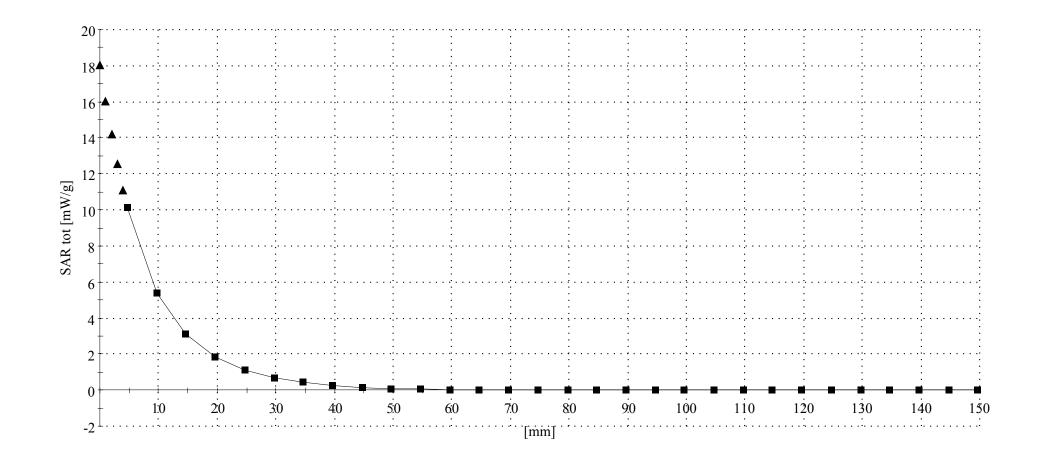
Powerdrift: 0.08 dB

Dipole 1800 MHz

1800 MHz System Performance Check / Dipole Sn# 246TR

Forward Power = 247 Reflected Power = -22.78

Acceptable Temp Range is 18-25°C


Room Temp at time of measurement = 20 Simulant Temp at time of measurement = 19.1

R5 Amy Twin Phantom Rev.4 (22Aug02) Phantom; Section; Position: ; Frequency: 1800 MHz

Probe: ET3DV6R - SN1501 - VALIDATION; ConvF(5.00,5.00,5.00); Crest factor: 1.0; 1800 MHz VALIDATION: σ = 1.38 mho/m ϵ_r = 38.7 ρ = 1.00 g/cm³

:,()

Z-Axis: Dx = 0.0, Dy = 0.0, Dz = 5.0Penetration depth: 8.3 (8.0, 9.2) [mm]

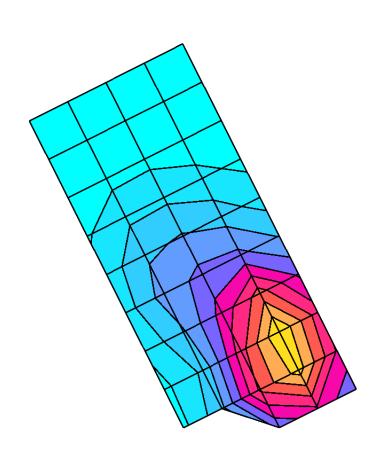
Appendix 2

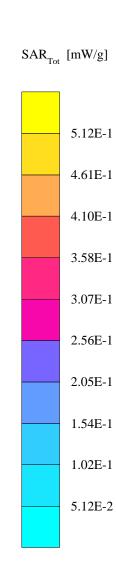
FCC ID: IHDT56DW1

SAR distribution plots for Phantom Head Adjacent Use

Ch# 190 / Pwr Step: 07 (OTA) Antenna Position: FIXED
Type of Modulation: 850 GSM Battery Model #: SNN5588A

DEVICE POSITION: Cheek touch


R5 TP-1132 Sugar SAM Expanded (Rev. 2)-9Jan03 Phantom; Right Hand Section; Position: (90°,180°); Frequency: 837 MHz


Probe: ET3DV6R - SN1501 - IEEE Head; ConvF(6.40,6.40,6.40); Crest factor: 8.0; 835 MHz Head & Body: $\sigma = 0.91$ mho/m $\epsilon_r = 42.0$ $\rho = 1.00$ g/cm³

Cube 7x7x7: SAR (1g): 0.520 mW/g, SAR (10g): 0.350 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 15.0 Penetration depth: 15.0 (13.5, 16.8) [mm]

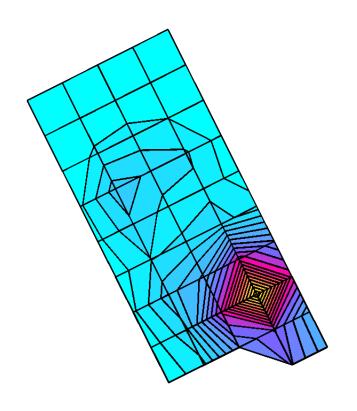
Powerdrift: -0.15 dB

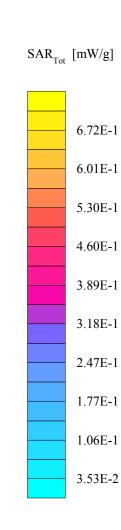
Ch# 661 / Pwr Step: 00 (OTA)
Type of Modulation: 1900 GSM

Antenna Position: FIXED Battery Model #: SNN5588A

DEVICE POSITION: Cheek touch

Accessory Model #: N/A


R5: TP-1160 GLYCOL SAM Expanded (Rev. 2)-9Jan03 Phantom; Right Hand Section; Position: (90°,180°); Frequency: 1880 MHz


Probe: ET3DV6R - SN1501 - IEEE Head; ConvF(5.00,5.00,5.00); Crest factor: 8.0; 1880 MHz Head & Body: σ = 1.45 mho/m ϵ_r = 38.4 ρ = 1.00 g/cm³

Cube 7x7x7: SAR (1g): 0.683 mW/g, SAR (10g): 0.363 mW/g, (Worst-case extrapolation)

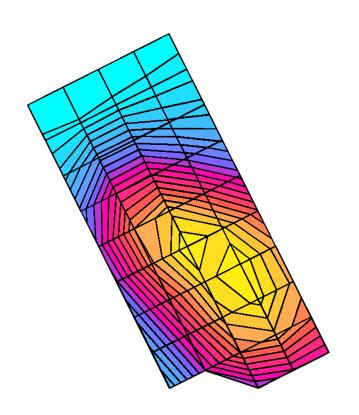
Coarse: Dx = 15.0, Dy = 15.0, Dz = 15.0 Penetration depth: 10.1 (9.8, 10.6) [mm]

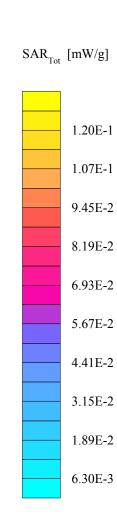
Powerdrift: -0.05 dB

s/n (L720680122)

Ch# 190 / Pwr Step: 07 (OTA) Type of Modulation: 850 GSM DEVICE POSITION: 15 deg TILT Antenna Position: FIXED Battery Model #: SNN5588A

Accessory Model #: N/A


R5 TP-1132 Sugar SAM Expanded (Rev. 2)-9Jan03 Phantom; Right Hand Section; Position: (90°,180°); Frequency: 837 MHz


Probe: ET3DV6R - SN1501 - IEEE Head; ConvF(6.40,6.40,6.40); Crest factor: 8.0; 835 MHz Head & Body: $\sigma = 0.91$ mho/m $\epsilon_r = 42.0$ $\rho = 1.00$ g/cm³

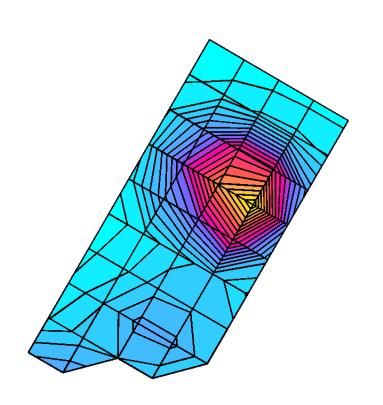
Cube 7x7x7: SAR (1g): 0.131 mW/g, SAR (10g): 0.0985 mW/g, (Worst-case extrapolation)

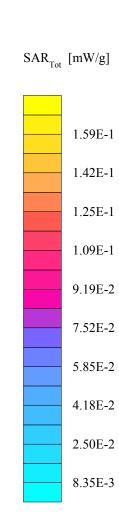
Coarse: Dx = 15.0, Dy = 15.0, Dz = 15.0Penetration depth: 19.6 (19.0, 20.4) [mm]

Powerdrift: 0.07 dB

Ch# 661 / Pwr Step: 00 (OTA) Type of Modulation: 1900 GSM DEVICE POSITION: 15 deg TILT Antenna Position: FIXED Battery Model #: SNN5588A

Accessory Model #: N/A


R5: TP-1160 GLYCOL SAM Expanded (Rev. 2)-9Jan03 Phantom; Left Hand Section; Position: (90°,180°); Frequency: 1880 MHz


Probe: ET3DV6R - SN1501 - IEEE Head; ConvF(5.00,5.00,5.00); Crest factor: 8.0; 1880 MHz Head & Body: $\sigma = 1.45 \text{ mho/m} \ \epsilon_r = 38.4 \ \rho = 1.00 \text{ g/cm}^3$

Cube 7x7x7: SAR (1g): 0.164 mW/g, SAR (10g): 0.0970 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 15.0Penetration depth: 11.0 (10.2, 12.0) [mm]

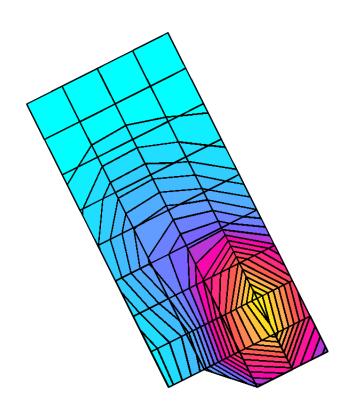
Powerdrift: -0.06 dB

Ch# 190 / Pwr Step: 07 (OTA)
Type of Modulation: 850 GSM
DEVICE POSITION: Check touch

Antenna Position: FIXED Battery Model #: SNN5582A

DEVICE POSITION: Cheek touch

Accessory Model #: Slim Back Batt Cover


R5 TP-1132 Sugar SAM Expanded (Rev. 2)-9Jan03 Phantom; Right Hand Section; Position: (90°,180°); Frequency: 837 MHz

Probe: ET3DV6R - SN1501 - IEEE Head; ConvF(6.40,6.40,6.40); Crest factor: 8.0; 835 MHz Head & Body: σ = 0.91 mho/m ϵ_r = 42.0 ρ = 1.00 g/cm³

Cube 7x7x7: SAR (1g): 0.524 mW/g, SAR (10g): 0.350 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 15.0Penetration depth: 15.0 (13.3, 16.9) [mm]

Powerdrift: -0.17 dB

Ch# 661 / Pwr Step: 00 (OTA)

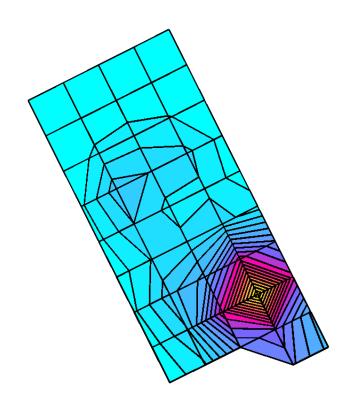
Type of Modulation: 1900 GSM

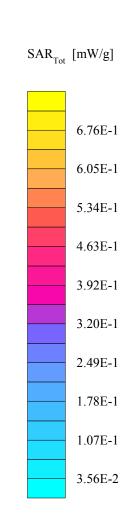
Antenna Position: FIXED

Battery Model #: SNN5582A

DEVICE POSITION: Cheek touch

Accessory Model #: Slim Back Batt Cover


R5: TP-1160 GLYCOL SAM Expanded (Rev. 2)-9Jan03 Phantom; Right Hand Section; Position: (90°,180°); Frequency: 1880 MHz


Probe: ET3DV6R - SN1501 - IEEE Head; ConvF(5.00,5.00,5.00); Crest factor: 8.0; 1880 MHz Head & Body: σ = 1.45 mho/m ϵ_r = 38.4 ρ = 1.00 g/cm³

Cube 7x7x7: SAR (1g): 0.689 mW/g, SAR (10g): 0.366 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 15.0 Penetration depth: 10.0 (9.8, 10.4) [mm]

Powerdrift: -0.12 dB

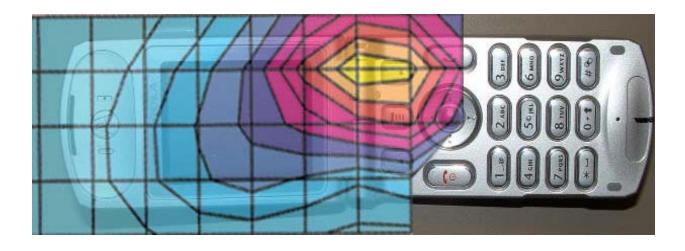


Figure 1.Typical 850MHz Head Adjacent Contour Overlaid on Phone (Cheek Touch)

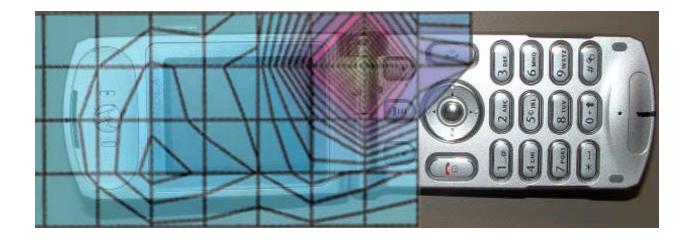


Figure 2.Typical 1900MHz Head Adjacent Contour Overlaid on Phone (Cheek Touch)

Figure 3.Typical 850MHz Head Adjacent Contour Overlaid on Phone (15 ° Tilt)

Figure 4.Typical 1900MHz Head Adjacent Contour Overlaid on Phone (15 ° Tilt)

Appendix 3

FCC ID: IHDT56DW1

SAR distribution plots for Body Worn Configuration

L720680122

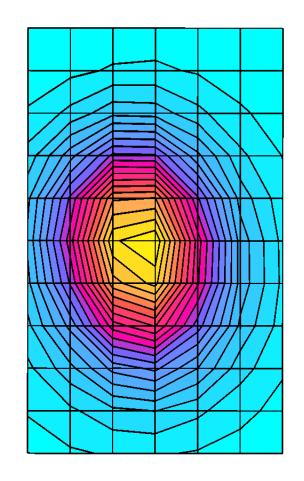
Ch# 190 / Pwr Step: 07 (OTA)

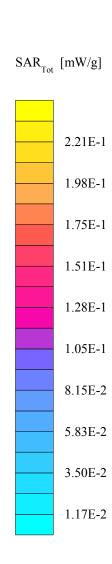
Type of Modulation: 850 GSM

Antenna Position: FIXED

Battery Model #: SNN5588A

Accessory Model #: Holster / Belt Clip - SHN8363A


R5 Amy Twin Phantom Rev.4 (22Aug02) Phantom; section 1 Section; Position: (0°,0°); Frequency: 837 MHz


Probe: ET3DV6R - SN1501 - FCC Body; ConvF(6.10,6.10,6.10); Crest factor: 8.0; 835 MHz Head & Body: $\sigma = 0.98$ mho/m $\epsilon_r = 54.5$ $\rho = 1.00$ g/cm³

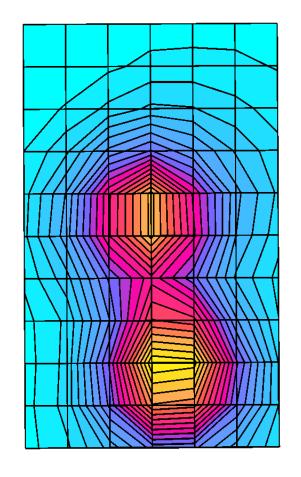
Cube 7x7x7: SAR (1g): 0.240 mW/g, SAR (10g): 0.166 mW/g, (Worst-case extrapolation)

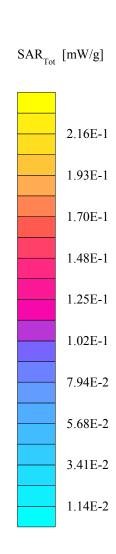
Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0Penetration depth: 15.5 (14.2, 16.8) [mm]

Powerdrift: -0.10 dB

Ch# 661 / Pwr Step: 0 OTA Antenna Position: FIXED
Type of Modulation: 1900 GSM Battery Model #: SNN5588A

Accessory Model #: PLASTIC HOLDER WITH BELT CLIP SHN8363A


R5 Amy Twin Phantom Rev.4 (22Aug02) Phantom; section 2 Section; Position: (0°,0°); Frequency: 1880 MHz


Probe: ET3DV6R - SN1501 - FCC Body; ConvF(4.60,4.60,4.60); Crest factor: 8.0; 1880 MHz Head & Body: $\sigma = 1.59$ mho/m $\epsilon_r = 50.9$ $\rho = 1.00$ g/cm³

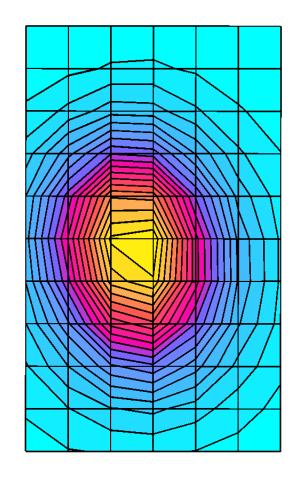
Cube 7x7x7: SAR (1g): 0.244 mW/g, SAR (10g): 0.147 mW/g, (Worst-case extrapolation)

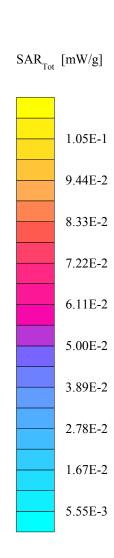
Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0Penetration depth: 10.9 (9.8, 12.4) [mm]

Powerdrift: -0.24 dB

Ch# 190 / Pwr Step: 07 (RadioComm) Antenna Position: FIXED
Type of Modulation: 850 GSM + EDGE Battery Model #: SNN5588A

Accessory Model #: Holster / Belt Clip - SHN8363A


R5 Amy Twin Phantom Rev.4 (22Aug02) Phantom; section 1 Section; Position: (0°,0°); Frequency: 837 MHz


Probe: ET3DV6R - SN1501 - FCC Body; ConvF(6.10,6.10,6.10); Crest factor: 8.0; 835 MHz Head & Body: σ = 0.98 mho/m ϵ_r = 54.5 ρ = 1.00 g/cm³

Cube 7x7x7: SAR (1g): 0.116 mW/g, SAR (10g): 0.0810 mW/g, (Worst-case extrapolation)

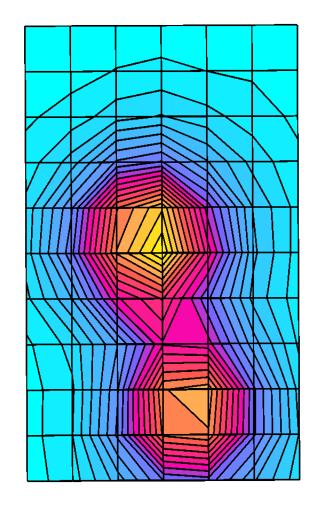
Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0Penetration depth: 15.9 (14.9, 16.9) [mm]

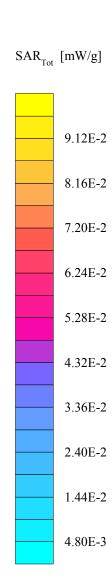
Powerdrift: 0.02 dB

Ch# 661 / Pwr Step: 0 TEST MODE
Type of Modulation: 1900 GSM (EDGE)

Antenna Position: FIXED
Battery Model #: SNN5588A

Accessory Model #: PLASTIC HOLDER WITH BELT CLIP SHN8363A


R5 Amy Twin Phantom Rev.4 (22Aug02) Phantom; section 2 Section; Position: (0°,0°); Frequency: 1880 MHz


Probe: ET3DV6R - SN1501 - FCC Body; ConvF(4.60,4.60,4.60); Crest factor: 8.0; 1880 MHz Head & Body: $\sigma = 1.59$ mho/m $\epsilon_r = 50.9$ $\rho = 1.00$ g/cm³

Cube 7x7x7: SAR (1g): 0.0997 mW/g, SAR (10g): 0.0591 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0Penetration depth: 10.4 (9.4, 11.7) [mm]

Powerdrift: -0.01 dB

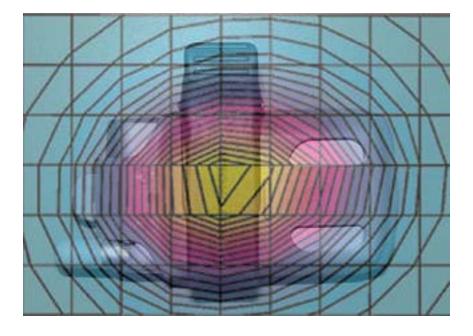


Figure 5.Typical 850 MHz Body-Worn Contour Overlaid on Phone

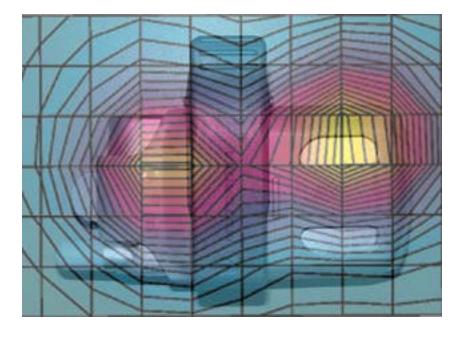


Figure 6. Typical 1900 MHz Body-Worn Contour Overlaid on Phone

Page 16

Appendix 4

FCC ID: IHDT56DW1

Probe Calibration Certificate

Calibration Laboratory of

Schmid & Partner

Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Motorola MRO

	,,,,,,,,,,	8897°S		80 KS	moving,	,,,,,,,,,	rann	~~~	g	997***	~~~		<i>77777</i>	@mm.m	Sec. 100	4000		e construction of the cons	\sim	errengg	$m = \infty$		man,
88	100	<i>788</i> . 1	SS 586	85 S	3370	8 000	. 223	25335	355	76° 1800	. W.	W 8	86 see.	X 4202	3533	200.5	200	0.000		Sec. 35	8 30	112 613	100.500
80	0000	37 6	W 333	2 . 3		a	411	2, 26%	322	3 323	8 3 5	33	n wa	2	8	an:	286 3	3000	1 %	W W.	2.3	14. W	
7/2	2 700	ž	2 333	22 3	2000	3 24	W .	100	202	Z 49	0 %	a. 63		3 mm	a sec.	w.	200	2 1000	E 22.	46.3		32. 32.	- mac

Object(s)

ET3DV6R - SN:1501

Calibration procedure(s)

QA CAL-01.v2

Calibration procedure for dosimetric E-field probes

Calibration date:

April 16, 2003

Condition of the calibrated item

In Tolerance (according to the specific calibration document)

This calibration statement documents traceability of M&TE used in the calibration procedures and conformity of the procedures with the ISO/IEC 17025 international standard.

All calibrations have been conducted in the closed laboratory facility: environment temperature 22 +/- 2 degrees Celsius and humidity < 75%.

Calibration Equipment used (M&TE critical for calibration)

Model Type	ID#	Cal Date	Scheduled Calibration
RF generator HP 8684C	US3642U01700	4-Aug-99 (in house check Aug-02)	In house check: Aug-05
Power sensor E4412A	MY41495277	2-Apr-03	Apr-04
Power sensor HP 8481A	MY41092180	18-Sep-02	Sep-03
Power meter EPM E4419B	GB41293874	13-Sep-02	Sep-03
Network Analyzer HP 8753E	US38432426	3-May-00	In house check: May 03
Fluke Process Calibrator Type 702	SN: 6295803	3-Sep-01	Sep-03
ł			

Calibrated by:

Name Function Signature
Nico Vetterii Technician Dividati

Approved by:

Katja Pokovic Laboratory Director May - Watje

Date issued: April 16, 2003

This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for Calibration Laboratory of Schmid & Partner Engineering AG is completed.

880-KP0301061-A Page 1 (1)

2.55

DASY - Parameters of Probe: ET3DV6R SN:1501

Sensitivity in Free Space

Diode Compression

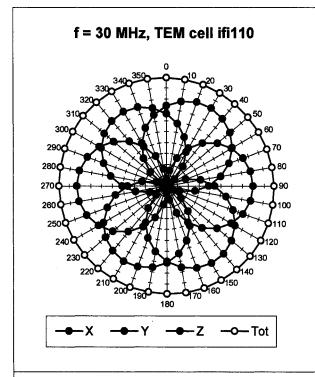
Depth

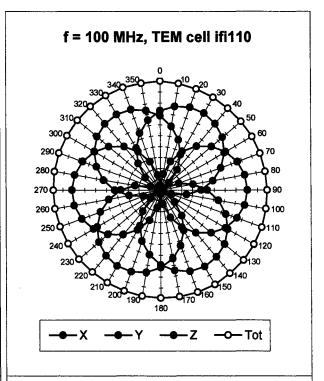
NormX	2.08 μV/(V/m) ²	DCP X	96	mV
NormY	2.09 μV/(V/m) ²	DCP Y	96	mV
NormZ	2.14 μV/(V/m) ²	DCP Z	96	mV

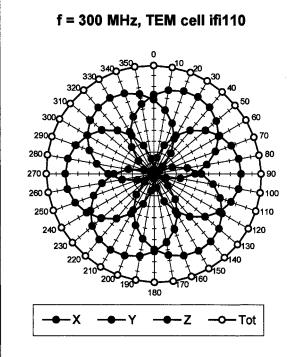
Sensitivity in Tissue Simulating Liquid

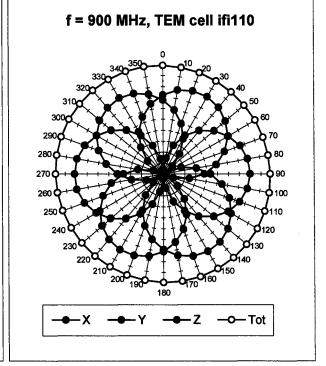
ConvF Z **5.0** \pm 9.5% (k=2)

Head 900 MHz			$\epsilon_{\rm r}$ = 41.5 ± 5%	$\sigma = 0$	0.97 ± 5% mho/m		
Valid for f=	800-1000 MHz with I	lead T	issue Simulating Liquid accor	ding to	IEEE P1528-2	00X	
	ConvF X	6.4	± 9.5% (k=2)	1	Boundary effe	ect:	
	ConvF Y	6.4	± 9.5% (k=2)		Alpha	0.39	
	ConvF Z	6.4	± 9.5% (k=2)	!	Depth	2.31	
Head	1800 M Hz		$\varepsilon_{\rm r}$ = 40.0 ± 5%	σ=	1.40 ± 5% ml	ho/m	
Valid for f=	1710-1910 MHz with	Head	Tissue Simulating Liquid acco	ording t	o IEEE P1528-	200X	
	ConvF X 5.0		± 9.5% (k=2)		Boundary effect:		
	ConvF Y	5.0	± 9.5% (k=2)		Alpha	0.49	

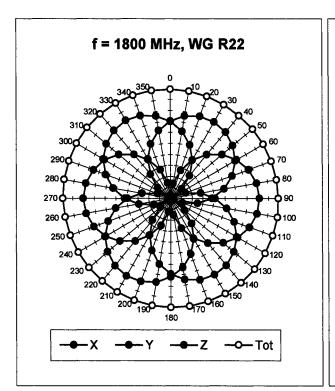

Boundary Effect

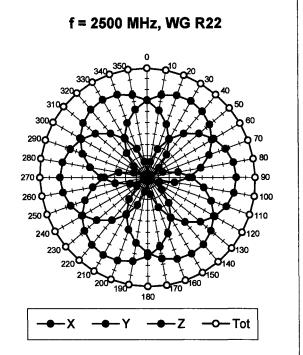

Head	900 MHz Typical SAR gradi	ent: 5 % per mm	
	Probe Tip to Boundary	1 mm	2 mm
	SAR _{be} [%] Without Correction Algorithm	8.9	4.9
	SAR _{be} [%] With Correction Algorithm	0.3	0.5
Head	1800 MHz Typical SAR gradi	ent: 10 % per mm	
	Probe Tip to Boundary	1 mm	2 mm
	SAR _{be} [%] Without Correction Algorithm	12.8	8.6
	SAR _{be} [%] With Correction Algorithm	0.2	0.2

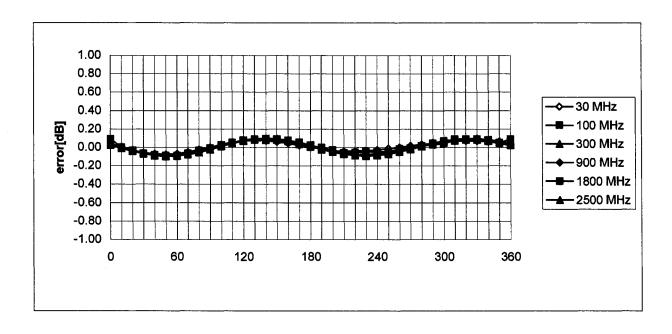

Sensor Offset


Probe Tip to Sensor Center 2.7 mm

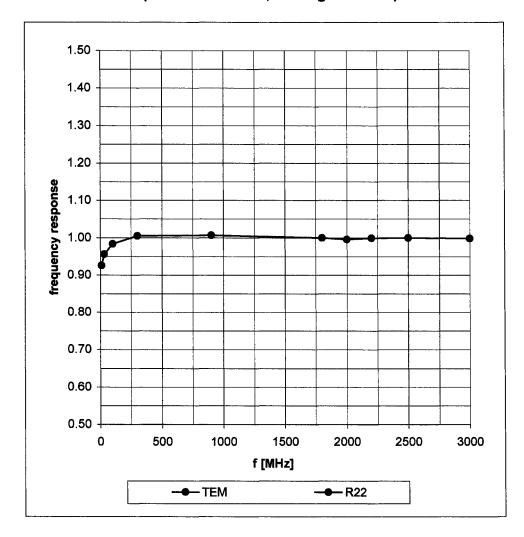
Receiving Pattern (ϕ), θ = 0°



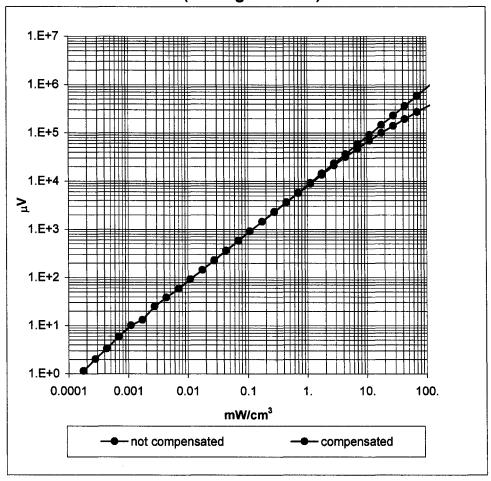


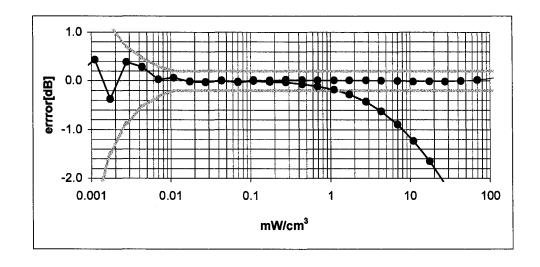


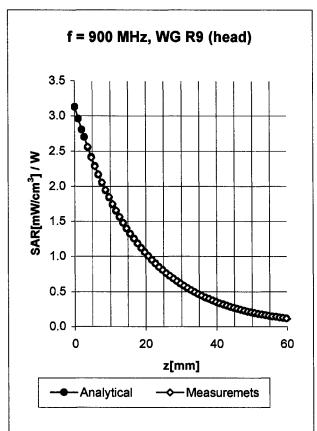
ET3DV6R SN:1501 April 16, 2003



Isotropy Error (ϕ), θ = 0°


Frequency Response of E-Field


(TEM-Cell:ifi110, Waveguide R22)


Dynamic Range f(SAR_{brain})

(Waveguide R22)

Conversion Factor Assessment

Head

900 MHz

 $\varepsilon_{\rm r} = 41.5 \pm 5\%$

 σ = 0.97 ± 5% mho/m

Valid for f=800-1000 MHz with Head Tissue Simulating Liquid according to IEEE P1528-200X

ConvF X

6.4 \pm 9.5% (k=2)

Boundary effect:

ConvF Y

6.4 \pm 9.5% (k=2)

Alpha

0.39

ConvF Z

6.4 \pm 9.5% (k=2)

Depth

2.31

Head

1800 MHz

 $\epsilon_{\rm r}$ = 40.0 ± 5%

 σ = 1.40 ± 5% mho/m

Valid for f=1710-1910 MHz with Head Tissue Simulating Liquid according to IEEE P1528-200X

ConvF X

5.0 \pm 9.5% (k=2)

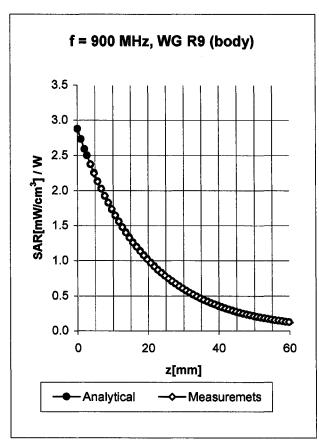
Boundary effect:

ConvF Y

5.0 \pm 9.5% (k=2)

Alpha

0.49


ConvF Z


5.0 \pm 9.5% (k=2)

Depth

2.55

Conversion Factor Assessment

Body

900 MHz

 $\epsilon_{\rm r}$ = 55.0 ± 5%

 $\sigma = 1.05 \pm 5\% \text{ mho/m}$

Valid for f=800-1000 MHz with Body Tissue Simulating Liquid according to OET 65 Suppl. C

ConvF X

6.1 \pm 9.5% (k=2)

Boundary effect:

ConvF Y

6.1 \pm 9.5% (k=2)

Boardary oncot.

ConvF Z

6.1 ± 9.5% (k=2)

Alpha Depth 0.402.37

Body

1800 MHz

 $\varepsilon_{\rm r}$ = 53.3 ± 5%

 σ = 1.52 ± 5% mho/m

Valid for f=1710-1910 MHz with Body Tissue Simulating Liquid according to OET 65 Suppl. C

ConvF X

4.6 \pm 9.5% (k=2)

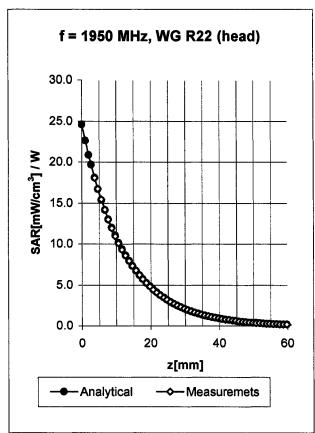
Boundary effect:

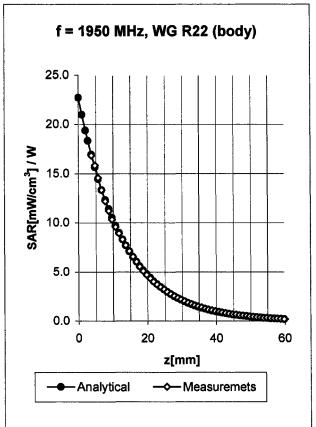
ConvF Y

4.6 \pm 9.5% (k=2)

Alpha

0.55


ConvF Z


4.6 \pm 9.5% (k=2)

Depth

2.59

Conversion Factor Assessment

Head	1950	MHz	$\varepsilon_{\rm r}$ = 40.0 ± 5%	σ = 1.40 ± 5% mho/m			
	ConvF X	4.7	± 8.9% (k=2)	Boundary effe	ct:		
	ConvF Y	4.7	± 8.9% (k=2)	Alpha	0.53		
	ConvF Z	4.7	± 8.9% (k=2)	Depth	2.53		
Body	1950	MHz	ε _r = 53.3 ± 5%	σ = 1.52 ± 5% mh	o/m		
	ConvF X	4.2	± 8.9% (k=2)	Boundary effe	ect:		
	ConvF Y	4.2	± 8.9% (k=2)	Alpha	0.70		
	ConvF Z	4.2	± 8.9% (k=2)	Depth	2.26		

Deviation from Isotropy in HSL

Error ($\theta \phi$), f = 900 MHz

Appendix 5

FCC ID: IHDT56DW1

Dipole Characterization Certificate

Certification of System Performance Check Targets Based on APP-0396

-Historical Data-

	835MHz	900MHz	1800MHz	1900MHz	
P1528 Target: Advanced Extrapolation	9.5	10.8	38.1	39.7	(W/kg)
Measurement Uncertainty (k=1):	10.2%	10.2%	10.2%	10.2%	
Measurement Period:	November '02 - June '03	November '02 - June '03	November '02 - June '03	November '02 - June '03	
# of tests performed:	169	728	868	26	
Grand Average: Worst Case Extrapolation	10.1	11.6	39.7	42.0	(W/kg)
% Delta (Average - P1528 Target)	6.5%	7.7%	4.2%	5.9%	
Is % Delta <= Measurement Uncertainty?	Yes	Yes	Yes	Yes	
Accept/Reject <u>Average</u> as new system performance check target?	ACCEPT	ACCEPT	ACCEPT	ACCEPT	
	Applicable	Applicable	Applicable 1800MHz	Applicable 1900Mhz	
	<u>835MHz</u> Dipole Serial Numbers:	900MHz Dipole Serial Numbers:	Dipole Serial Numbers:	Dipole Serial Numbers:	
	420(TR), 421(TR)	77, 78	246(TR), 250(TR)	514(TR), 518(TR)	
	422(TR), 423(TR)	79, 80	251(TR), 258(TR)	519(TR), 520(TR)	
	424(TR), 425(TR)	91, 92	259(TR), 262(TR)	523(TR), 524(TR)	
	431(TR), 432(TR)	93, 94	263(TR), 271(TR)	526(TR), 527(TR)	
	433(TR), 434(TR) 436(TR)	95, 96 97	272(TR), 273(TR) 276(TR), 277(TR)	528(TR), 529(TR) 530(TR), 533(TR)	
	430(111)	<u> </u>	279(TR), 280(TR)	550(11X), 555(11X)	
			281(TR), 282(TR)		
			283(TR), 284(TR)		

-New System Performance Check Targets- per APP-0396

(based on analysis of historical data)

Frequency	SAR Target (W/kg)	Permittivity	Conductivity (S/m)		
835MHz	10.1	41.5 ± 5%	0.90 ± 5%		
900MHz	11.6	41.5 ± 5%	0.97 ± 5%		
1800MHz	39.7	40.0 ± 5%	1.40 ± 5%		
1900MHz	42.0	40.0 ± 5%	1.40 ± 5%		

-Approvals-						
Submitted by:	Marge Kaunas	Date:	24-Jun-03			
Signed:	Manga Kaura					
Comments:	spreadsheet detailing all measu	rements available upon red	quest			
Approved by:		Date:	24-Jun-03			
Signed:	Automo Faner-R					
Comments:	Targets and associated simulant properties are derived from the IEEE P1528 draft standard					

Appendix 6

FCC ID: IHDT56DW1

Measurement Uncertainty Budget

Uncertainty Budget for Device Under Test									
Officertainty Budget for 1	JEVIC	COI	uei	Lest			7.	i =	
	,		,	C(1.1)	C		h =		,
a	b	С	d	e = f(d,k)	f	g	cxf/e	c x g / e	k
		Tol.	Prob.		c_{i}	c_i	1 g	10 g	
		(± %)	Dist.		(1 g)	(10 g)	\boldsymbol{u}_i	\boldsymbol{u}_i	
Uncertainty Component	Sec.			Div.			(±%)	(±%)	v_i
Measurement System									
Probe Calibration	E.2.1	9.5	N	2.00	1	1	4.8	4.8	∞
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	∞
Spherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	∞
Boundary Effect	E.2.3	5.8	R	1.73	1	1	3.3	3.3	∞
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	∞
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	∞
Readout Electronics	E.2.6	1.0	N	1.00	1	1	1.0	1.0	∞
Response Time	E.2.7	0.8	R	1.73	1	1	0.5	0.5	∞
Integration Time	E.2.8	1.3	R	1.73	1	1	0.8	0.8	∞
RF Ambient Conditions	E.6.1	3.0	R	1.73	1	1	1.7	1.7	∞
Probe Positioner Mechanical									
Tolerance	E.6.2	0.3	R	1.73	1	1	0.2	0.2	∞
Probe Positioning with respect to									
Phantom Shell	E.6.3	1.1	R	1.73	1	1	0.6	0.6	∞
Extrapolation, interpolation and									
Integration Algorithms for Max. SAR									
Evaluation	E.5	3.9	R	1.73	1	1	2.3	2.3	∞
Test sample Related									
Test Sample Positioning	E.4.2	3.6	N	1.00	1	1	3.6	3.6	29
Device Holder Uncertainty	E.4.1	2.8	N	1.00	1	1	2.8	2.8	8
Output Power Variation - SAR drift									
measurement	6.6.2	5.0	R	1.73	1	1	2.9	2.9	∞
Phantom and Tissue Parameters									
Phantom Uncertainty (shape and									
thickness tolerances)	E.3.1	4.0	R	1.73	1	1	2.3	2.3	∞
Liquid Conductivity - deviation from									
target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity - measurement									
uncertainty	E.3.3	10.0	R	1.73	0.64	0.43	3.7	2.5	∞
Liquid Permittivity - deviation from									
target values	E.3.2	10.0	R	1.73	0.6	0.49	3.5	2.8	∞
Liquid Permittivity - measurement									
uncertainty	E.3.3	5.0	R	1.73	0.6	0.49	1.7	1.4	∞
Combined Standard Uncertainty			RSS				11.72	11.09	1363
Expanded Uncertainty									
(95% CONFIDENCE LEVEL)			k=2				22.98	21.75	

FCC ID: IHDT56DW1

Uncertainty Budget for System Performance Check (dipole & flat phantom)

FCC ID: IHDT56DW1

encertainty Baaget for	By Beer			100		(dipor	c cc ma	piidi	(10111)
				e =			<i>h</i> =	i =	
				f(d,k)			cxf/	c x g	
a	b	c	d)	f	g	e	/ e	k
		Tol.	Prob.		c_i	c_i	1 g	10 g	
		(± %)	Dist.		(1 g)	(10 g)	\boldsymbol{u}_i	\boldsymbol{u}_i	
Uncertainty Component	Sec.			Div.			(±%)	(±%)	v_i
Measurement System									
Probe Calibration	E.2.1	9.5	N	2.00	1	1	4.8	4.8	∞
Axial Isotropy	E.2.2	4.7	R	1.73	1	1	2.7	2.7	∞
Spherical Isotropy	E.2.2	9.6	R	1.73	0	0	0.0	0.0	∞
Boundary Effect	E.2.3	5.8	R	1.73	1	1	3.3	3.3	∞
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	∞
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	~
Readout Electronics	E.2.6	1.0	N	1.00	1	1	1.0	1.0	8
Response Time	E.2.7	0.0	R	1.73	1	1	0.0	0.0	∞
Integration Time	E.2.8	0.0	R	1.73	1	1	0.0	0.0	∞
RF Ambient Conditions	E.6.1	3.0	R	1.73	1	1	1.7	1.7	∞
Probe Positioner Mechanical									
Tolerance	E.6.2	0.3	R	1.73	1	1	0.2	0.2	∞
Probe Positioning with respect to									
Phantom Shell	E.6.3	1.1	R	1.73	1	1	0.6	0.6	∞
Extrapolation, interpolation and									
Integration Algorithms for Max.									
SAR Evaluation	E.5	3.9	R	1.73	1	1	2.3	2.3	∞
Dipole									
Dipole Axis to Liquid Distance	8, E.4.2	1.0	R	1.73	1	1	0.6	0.6	∞
Input Power and SAR Drift									
Measurement	8, 6.6.2	4.7	R	1.73	1	1	2.7	2.7	∞
Phantom and Tissue Parameters									
Phantom Uncertainty (shape and									
thickness tolerances)	E.3.1	4.0	R	1.73	1	1	2.3	2.3	∞
Liquid Conductivity - deviation			_						
from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity -		400	-	4.50	0.54	0.40			
measurement uncertainty	E.3.3	10.0	R	1.73	0.64	0.43	3.7	2.5	∞
Liquid Permittivity - deviation	F 2 2	10.0	-	1.70	0.5	0.40	2.5	2.0	
from target values	E.3.2	10.0	R	1.73	0.6	0.49	3.5	2.8	∞
Liquid Permittivity - measurement	E22	5.0	D	1.72	0.0	0.40	1.7	1 4	
uncertainty	E.3.3	5.0	R	1.73	0.6	0.49	1.7	1.4	∞
Combined Standard Uncertainty			RSS				10.16	9.43	99999
Expanded Uncertainty			1.0				10.02	10.40	
(95% CONFIDENCE LEVEL)			k=2				19.92	18.48	

Appendix 7

FCC ID: IHDT56DW1

Photographs of the device under test

Figure 7. Front of Phone

Figure 8. Front of Phone with Flip Open

Figure 9. Side of Phone in holster

Figure 10. Back of Phone

Figure 11. Phone with Holster Against the Flat Phantom

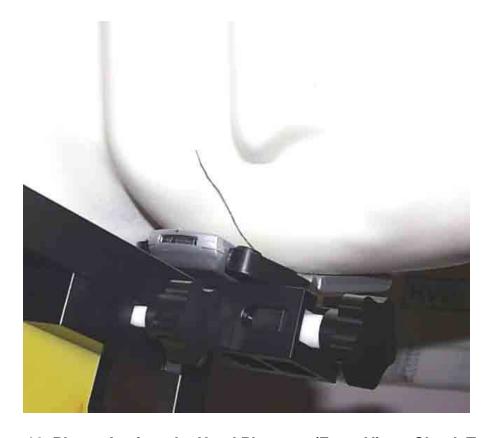


Figure 12. Phone Against the Head Phantom (Front View - Cheek Touch)

Figure 13. Phone Against the Head Phantom (Back View – Cheek Touch)

Figure 14. Phone Against the Head Phantom (Front View – 15° Tilt)

Figure 15. Phone Against the Head Phantom (Back View – 15° Tilt)