

Exhibit 11: Class II Permissive Change SAR Test Report IHDT56DR1

Date of test: 29 October, 2004 - 04 November, 2004

Date of Report: 11 November, 2004

Motorola Personal Communications Sector Product Safety & Compliance Laboratory

600 N. US Highway 45

Laboratory: Room: MW113

Libertyville, Illinois 60048

Albert Patapack **Test Responsible:** Senior Staff Engineer

Accreditation: This laboratory is accredited to ISO/IEC 17025-1999 to perform the following tests:

ACCREDITED

Tests: Procedures:

Electromagnetic Specific Absorption Rate ANSI/IEEE C95.1-1992, 1999

(SAR) IEEE C95.3-1991 IEEE P1528 (DRAFT)

FCC OET Bulletin 65 (including Supplements A, B, C)

FCC ID: IHDT56DR1

Australian Communications Authority Radio

Communications (Electromagnetic Radiation – Human

Exposure) Standard 1999 CENELEC EN 50361 (2001)

Simulated Tissue Preparation APP-0247

RF Power Measurement DOI-0876, 0900, 0902, 0904, 0915

On the following products or types of products:

Wireless Communications Devices (Examples): Two Way Radios; Portable Phones (including

Licensed Non-Broadcast and PCS); Low Frequency Readers; and Pagers

A2LA certificate #1651-01

Motorola declares under its sole responsibility that portable cellular telephone FCC ID IHDT56DR1 to which this declaration relates, is in conformity with the appropriate General Population/Uncontrolled RF exposure standards, recommendations and guidelines (FCC 47 CFR §2.1093). It also declares that the product was tested in accordance with the appropriate measurement standards, guidelines and recommended practices. Any deviations from these

Statement of **Compliance:** standards, guidelines and recommended practices are noted below:

(none)

©Motorola, Inc. 2004

This test report shall not be reproduced except in full, without written approval of the laboratory.

The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report.

Motorola encourages all feedback, both positive and negative, on this test report.

Table of Contents

1. INTRODUCTION	3
2. DESCRIPTION OF THE DEVICE UNDER TEST	3
2.1 Antenna description	3
2.2 Device description	3
3. TEST EQUIPMENT USED	4
3.1 Dosimetric System	4
3.2 Additional Equipment	4
4. ELECTRICAL PARAMETERS OF THE TISSUE SIMULATING LIQUID	5
5. SYSTEM ACCURACY VERIFICATION	6
6. TEST RESULTS	6
6.1 Head Adjacent Test Results	7
6.2 Body Worn Test Results	9
APPENDIX 1: SAR DISTRIBUTION COMPARISON FOR SYSTEM ACCURACY VERIFICATION	11
APPENDIX 2: SAR DISTRIBUTION PLOTS FOR PHANTOM HEAD ADJACENT USE	12
APPENDIX 3: SAR DISTRIBUTION PLOTS FOR BODY WORN CONFIGURATION	13
APPENDIX 4: PROBE CALIBRATION CERTIFICATE	15
APPENDIX 5: DIPOLE CHARACTERIZATION CERTIFICATE	16
APPENDIX 6: MEASUREMENT UNCERTAINTY BUDGET	17
APPENDIX 7: PHOTOGRAPHS OF DEVICE UNDER TEST	20

1 Introduction

The Motorola Personal Communications Sector Product Safety Laboratory has performed measurements of the maximum potential exposure to the user of portable cellular phone (FCC ID IHDT56DR1). The Specific Absorption Rate (SAR) of this product was measured. The portable cellular phone was tested in accordance with FCC OET Bulletin 65 Supplement C 01-01.

2 Description of the Device Under Test

2.1 Antenna description

Type	Stubby		
Location	Right Side		
Dimondiana	Length	21 mm	
Dimensions	Width 10 mm		
Configuration	Fixed		

2.2 Device description

FCC ID Number		IHDT56DR1								
Serial number		TA79604923 and TA79604921								
Mode(s) of Operation	GSM 850	GSM 900	GSM 1800	GSM 1900	GPRS 850	GPRS 900	GPRS 1800	GPRS 1900	Blue Tooth	
Modulation Mode(s)	GSM	GSM	GSM	GSM	GSM	GSM	GSM	GSM	Blue Tooth	
Maximum Output Power Setting	33.00 dBm	33.00 dBm	30.50 dBm	30.50 dBm	33.00 dBm	33.00 dBm	30.50 dBm	30.50 dBm	4.00 dBm	
Duty Cycle	1:8	1:8	1:8	1:8	2:8	2:8	2:8	2:8	1:1	
Transmitting Frequency Rang(s)	824.2- 848.8 MHz	880.2- 914.8 MHz	1710.2- 1784.8 MHz	1850.20 - 1909.80 MHz	824.2- 848.8 MHz	880.2- 914.8 MHz	1710.2- 1784.8 MHz	1850.20 - 1909.80 MHz	2400 - 2483.5 MHz	
Production Unit or Identical Prototype (47 CFR §2908)		Identical Prototype								
Device Category					Portable					
RF Exposure Limits				General P	opulation / I	Jncontrolled	k		·	

APPLICANT: MOTOROLA, INC. FCC ID: IHDT56DR1

3 Test Equipment Used

3.1 Dosimetric System

The Motorola Personal Communications Sector Product Safety & Compliance Laboratory utilizes a Dosimetric Assessment System (Dasy3TM v3.1d) manufactured by Schmid & Partner Engineering AG (SPEAGTM), of Zurich Switzerland. All the SAR measurements are taken within a shielded enclosure. The overall RSS uncertainty of the measurement system is $\pm 11.7\%$ (K=1) with an expanded uncertainty of $\pm 23.0\%$ (K=2). The measurement uncertainty budget is given in Appendix 6. Per IEEE 1528, this uncertainty budget is applicable to the SAR range of 0.4 W/kg to 10 W/kg. The list of calibrated equipment used for the measurements is shown below.

Description	Serial Number	Cal Due Date
DASY3 DAE V1	440	09-Feb-05
E-Field Probe ET3DV6	1397	21-May-05
Dipole Validation Kit, D835V2	425TR	02-Apr-05
S.A.M. Phantom used for 800MHz	TP-1005	
Dipole Validation Kit, D1800V2	259TR	02-Apr-05
S.A.M. Phantom used for 1900MHz	TP-1154	

3.2 Additional Equipment

Description	Serial Number	Cal Due Date
Signal Generator HP8648C	3847A04832	03-Sept-05
Power Meter E4419B	GB39511090	05-Apr-05
Power Sensor #1 - E9301A	US39210915	16-Sept-05
Power Sensor #2 - E9301A	US39210916	16-Sept-05
Network Analyzer HP8753ES	US39171846	03-Sept-05
Dielectric Probe Kit HP85070C	US99360070	N/A

4 Electrical parameters of the tissue simulating liquid

Prior to conducting SAR measurements, the relative permittivity, ε_r , and the conductivity, σ , of the tissue simulating liquids were measured with the HP85070 Dielectric Probe Kit These values, along with the temperature of the tissue simulate are shown in the table below. The recommended limits for maximum permittivity and minimum conductivity are also shown. These come from the Federal Communication Commission, OET Bulletin 65 Supplement C 01-01. It is seen that the measured parameters are satisfactory for compliance testing.

FCC ID: IHDT56DR1

			Dielec	ctric Parame	eters
f (MHz)	Tissue type	Limits / Measured	$\mathbf{\epsilon}_r$	თ (S/m)	Temp (°C)
		Measured, 30-Oct-04	42.2	0.91	19.5
	Head	Measured, 01-Nov-04	41.9	0.91	19.5
835		Recommended Limits	41.5 ±5%	$0.90 \pm 5\%$	18-25
833		Measured, 01-Nov-04	54.0	0.98	20.0
	Body	Measured, 04-Nov-04	53.7	0.97	19.2
		Recommended Limits	55.2 ±5%	0.97 ±5%	18-25
		Measured, 29-Oct-04	38.6	1.43	19.1
	Head	Measured, 31-Oct-04	38.6	1.44	19.5
1880		Recommended Limits	40.0 ±5%	1.40 ±5%	18-25
1000		Measured, 31-Oct-04	50.7	1.59	19.2
	Body	Measured, 03-Nov-04	51.6	1.58	19.3
		Recommended Limits	53.3 ±5%	1.52 ±5%	18-25

The list of ingredients and the percent composition used for the tissue simulates are indicated in the table below.

	800MHz	800MHz	1900MHz	1900MHz
Ingredient	Head	Body	Head	Body
Sugar	57.0	44.9		30.80
DGBE			47.0	
Water	40.45	53.06	52.8	68.91
Salt	1.45	0.94	0.2	0.29
HEC	1.0	1.0		
Bact.	0.1	0.1	-	

System Accuracy Verification

A system accuracy verification of the DASY3 was performed using the measurement equipment listed in Section 3.1. The daily system accuracy verification occurs within center section of the SAM phantom.

FCC ID: IHDT56DR1

A SAR measurement was performed to see if the measured SAR was within $\pm 10\%$ from the target SAR indicated on the dipole certification sheet. These tests were done at 900MHz and/or 1800MHz. These frequencies are within 100MHz of the mid-band frequency of the test device. This is within the allowable window given in Supplement C 01-01 *Appendix D System Verification* section item #5. The test was conducted on the same days as the measurement of the DUT. Recommended limits for maximum permittivity, minimum conductivity are shown in the table below. These come from the Federal Communication Commission, OET Bulletin 65 Supplement C 01-01. The obtained results from the system accuracy verification are displayed in the table below. The distributions of SAR compare well with those of the reference measurements (see Appendix 1). The tissue stimulant depth was verified to be 15.0cm ± 0.5 cm. Z-axis scans showing the SAR penetration are also included in Appendix 1. SAR values are normalized to 1W forward power delivered to the dipole.

The following probe conversion factors were used on the E-Field probe(s) used for the system accuracy verification measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe	SN1397	900	6.10	7 of 8
ET3DV6	5111377	1800	5.09	7 of 8

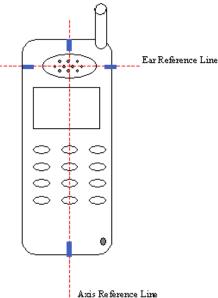
f	Description	SAR (W/kg),	Dielectric I	Parameters	Ambient Temp	Tissue Temp
(MHz)		1gram	$\mathbf{\epsilon}_r$	σ (S/m)	(°C)	(°C)
	Measured, 30-Oct-04	10.50	42.2	0.91	20.0	19.0
835	Measured, 01-Nov-04	10.30	41.9	0.91	20.0	19.7
633	Measured, 04-Nov-04	10.15	41.3	0.90	20.0	19.1
	Recommended Limits	10.0	41.5 ±5%	0.90 ±5%	18-25	18-25
	Measured, 29-Oct-04	41.50	38.8	1.36	20.0	19.0
1800	Measured, 31-Oct-04	40.85	38.6	1.36	20.0	19.0
1000	Measured, 03-Nov-04	42.40	38.7	1.38	20.0	19.2
	Recommended Limits	40.7	40.0 ±5%	1.4 ±5%	18-25	18-25

6 Test Results

The test sample was operated in a test mode that allows control of the transmitter without the need to place actual phone calls. For the purposes of this test the unit is commanded to test mode and manually set to the proper channel, transmitter power level and transmit mode of operation. The phone was tested in the configurations stipulated in OET Bulletin 65 Supplement C 01-01. Motorola also followed the requirements in Supplement. C / Appendix D: SAR Measurement Procedures, section titled "Devices Operating Next To A Person's Ear". These directions state "The device should be tested on the left and right side of the head phantom in the "Cheek/Touch" and "Ear/Tilt" positions. When applicable, each configuration should be tested with the antenna in its fully extended and fully retracted positions. These test configurations should be tested at the high, middle and low frequency channels of each operating mode; for example, AMPS, CDMA, and TDMA. If the SAR measured at the middle channel for each test configuration (left, right, Cheek/Touch, Tile/Ear, extended and retracted) is at least 2.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s)."

The DASY v3.1d SAR measurement system specified in section 3.1 was utilized within the intended operations as set by the SPEAGTM setup. The phone was positioned into the measurement configurations using the positioner supplied with the DASY 3.1d SAR measurement system. The measured dielectric constant of the material used for the positioner is less than 2.9 and the loss tangent is less than 0.02 (\pm 30%) at 850MHz. The default settings for the "coarse" and "cube" scans were chosen and use for measurements. The grid spacing of the course scan was set to 15cm as shown in the SAR plots included in appendix 2 and 3. Please refer to the DASY manual for additional information on SAR scanning procedures and algorithms used.

FCC ID: IHDT56DR1


The Cellular Phone (FCC ID IHDT56DR1) has the 750mAhr battery as the only available battery option. This battery was used to do all of the SAR testing. The phone was placed in the SAR measurement system with a fully charged battery.

6.1 Head Adjacent Test Results

To aid in positioning repeatability, the ear reference line of the device and the axis reference line of the device have been physically added using a non-metallic marker.

- Per Figure 1, the "Ear Reference Line" is centered vertically through the center of the listening area (as defined by the speaker holes in the housing).
- The "Axis Reference Line" bisects the front surface of the device at its top and bottom edges.
- The intersection of these two lines defines the location of the "Ear Reference Point".

The lines drawn on the device extended to the outside edges, as shown in blue in the figure below, & wrap around the sides of the device.

The SAR results shown in tables 1 and 2 are maximum SAR values averaged over 1 gram of phantom tissue. Also shown are the measured conducted output powers, the temperature of the test facility during the test, the temperature of the tissue simulate after the test, the measured drift and the extrapolated SAR. The exact method of extrapolation is New SAR = Old SAR * 10^(-drift/10). The SAR reported at the end of the measurement process by the DASYTM measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test. The test conditions indicated as bold numbers in the following table are included in Appendix 2

The SAR measurements were performed using the SAM phantoms listed in section 3.1. Since same phantoms and tissue simulate are used for the system accuracy verification as the device SAR measurements, the Z-axis scans included in within Appendix 1 are applicable for verification of tissue simulate depth to be 15.0cm ± 0.5 cm. All other test conditions measured lower SAR values than those included in Appendix 2.

Note that, since the head adjacent SAR values for the 850Mhz and 1900Mhz bands were less than or equal to that previously reported, the SAR values for 850Mhz and 1900Mhz bands that are included in tables 1 and 2 are for reference only. This data has been included to show that the head adjacent SAR values for the 850Mhz and 1900Mhz bands did not significantly increase from that previously reported. As such, no 850Mhz band or 1900Mhz band SAR distribution plots for phantom head adjacent use have been included in Appendix 2 of this document. The 850Mhz band and 1900Mhz band SAR distribution plots for phantom head adjacent use that were included in Appendix 2 of the original filing report should still be considered to apply.

FCC ID: IHDT56DR1

The following probe conversion factors were used on the E-Field probe(s) used for the head adjacent measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe ET3DV6	SN1397	900	6.10	7 of 8
	5111377	1800	5.09	7 of 8

		Conducted	Cheek / Touch Position							
f	Outnu			Le	eft Head			Rig	ght Head	
(MHz)	Description	Power (dBm)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)
5	Channel 128	32.98	0.846	-0.3	0.91	18.7	1.12	-0.33	1.21	18.5
Digital 850MHz	Channel 190	32.98	0.844	-0.26	0.90	19.0	1.05	-0.33	1.13	19.0
05011112	Channel 251	32.98	0.902	-0.32	0.97	18.8	1.09	-0.4	1.20	18.7
D	Channel 512	30.45					0.802	0.02	0.80	19.2
Digital 1900MHz	Channel 661	30.45	0.674	-0.53	0.76	19.2	0.918	-0.12	0.94	19.2
1,0011112	Channel 810	30.45					0.945	-0.1	0.97	19.2

Table 1: SAR measurement results for the portable cellular telephone FCC ID IHDT56DR1 at highest possible output power. Measured against the head in the Cheek/Touch Position.

		Conducted 15° Tilt Position								
		Output		Le	eft Head			Rig	ght Head	
f Description (MHz)	Description	Power (dBm)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)
	Channel 128	32.98								
Digital 850MHz	Channel 190	32.98	0.29	-0.03	0.29	19.0	0.304	0.11	0.30	18.6
05011112	Channel 251	32.98								
D	Channel 512	30.45								
Digital 1900MHz	Channel 661	30.45	0.226	-0.29	0.24	19.0	0.182	0.09	0.18	19.2
1,00001112	Channel 810	30.45								

Table 2: SAR measurement results for the portable cellular telephone FCC ID IHDT56DR1 at highest possible output power. Measured against the head in the 15° Tilt Position.

6.2 Body Worn Test Results

The SAR results shown in table 3 are the maximum SAR values averaged over 1 gram of phantom tissue. Also shown are the measured conducted output powers, the temperature of the test facility during the test, the temperature of the tissue simulate after the test, the measured drift and the extrapolated SAR. The exact method of extrapolation is New SAR = Old SAR * 10^(-drift/10). The SAR reported at the end of the measurement process by the DASYTM measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test. The test conditions indicated as bold numbers in the following table are included in Appendix 3. All other test conditions measured lower SAR values than those included in Appendix 3.

FCC ID: IHDT56DR1

A "flat" phantom was for the body-worn tests. This "flat" phantom is made out of 1" thick natural High Density Polyethylene with a thickness at the bottom equal to 2.0mm. It measures 52.7cm(long) x 26.7cm(wide) x 21.2cm(tall). The measured dielectric constant of the material used is less than 2.3 and the loss tangent is less than 0.0046 all the way up to 2.184GHz.

The tissue stimulant depth was verified to be $15.0 \, \mathrm{cm} \pm 0.5 \, \mathrm{cm}$. The same device holder described in section 6 was used for positioning the phone. The functional accessories were divided into two categories, the ones with metal components and the ones with non-metal components. For non-metallic component accessories', testing was performed on the accessory that displayed the closest proximity to the flat phantom. Each metallic component accessory, if any, was checked for uniqueness of metal component so that each is tested with the device. If multiple accessories shared an identical metal component, only the accessory that dictates the closest spacing to the body was tested. The cellular phone was tested with a headset connected to the device for all body-worn SAR measurements.

The two available body-worn accessories that have previously produced the highest body-worn SAR values were tested. These accessories are:

MTO4366 black leather pouch

MOTFA0668S silver half case using two different belt clips

Wishbone Belt Clip model #SYN8631A

Universal Belt Clip model #SYN8763B

MTO4366 covers both the data connector and the headset jack on the phone. As such, GPRS connections and use of the headset to make GSM voice calls is not intended for MTO4366. Since the phone is still capable of connections in Bluetooth mode, SAR measurements were performed in GSM calls using a Bluetooth headset while the phone was in the accessory. MOTFA0668S does have an opening for the data connector so, allowing for body-worn use with the phone in the data mode. Data mode testing was performed with the phone in MOTFA0668S.

Note that, since the 850Mhz band body worn SAR values were less than or equal to that previously reported, the values included in table 3 are for reference only. This data has been included to show that the 850Mhz band SAR values did not significantly increase from that previously reported. As such, no 850Mhz band SAR distribution plots for body worn configuration have been included in Appendix 3 of this document. The 8500Mhz band SAR distribution plots for body worn configuration that were included in Appendix 3 of the original filing report should still be considered to apply.

The following probe conversion factors were used on the E-Field probe(s) used for the body worn measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe	SN1397	900	5.92	7 of 8
ET3DV6	SN1397	1800	4.52	7 of 8

		Conducted Output Power (dBm)	Body Worn							
f	Description		MOTFA0668S (GPRS PC10)				MTO4366 (GSM and Bluetooth)			
(MHz)			Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)
Digital 850MHz	Channel 128	32.98								
	Channel 190	32.98	0.499	-0.09	0.51	19.5	0.677	-0.08	0.69	19.1
	Channel 251	32.98								
Digital 1900MHz	Channel 512	30.45	1.05	-0.11	1.08	19.0	0.94	-0.02	0.94	18.4
	Channel 661	30.45	1.18	-0.11	1.21	19.0	0.968	-0.02	0.97	18.6
	Channel 810	30.45	0.964	-0.05	0.98	19.0	1.12	-0.07	1.14	18.3

FCC ID: IHDT56DR1

Table 3: SAR measurement results for the portable cellular telephone FCC ID IHDT56DR1 at highest possible output power. Measured against the body.

Appendix 1

FCC ID: IHDT56DR1

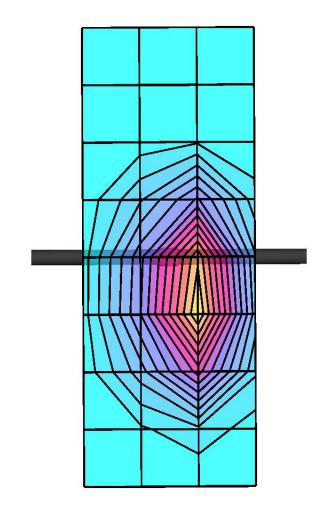
SAR distribution comparison for the system accuracy verification

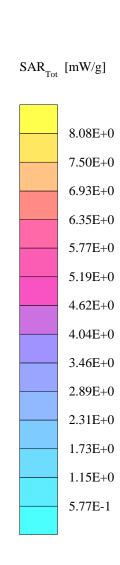
Dipole 1800 MHz

1800 MHz System Performance Check / Dipole Sn# 259tr

PM1 Power = 200 mW

Sim.Temp@meas=19.1 Sim.Temp@SPC = 19 Room Temp @ SPC = 20


R1 Amy Twin Phantom Rev.4 (22Aug02) Phantom; section 2 Section; Position: (90°,90°); Frequency: 1800 MHz


Probe: ET3DV6R - SN1397 - VALIDATION.4; ConvF(5.09,5.09,5.09); Crest factor: 1.0; 1800 MHz VALIDATION: σ = 1.36 mho/m $ε_r = 38.8$ ρ = 1.00 g/cm³

Cubes (2): SAR (1g): 8.30 $\text{ mW/g} \pm 0.07 \text{ dB}$, SAR (10g): 4.39 $\text{ mW/g} \pm 0.06 \text{ dB}$, (Worst-case extrapolation)

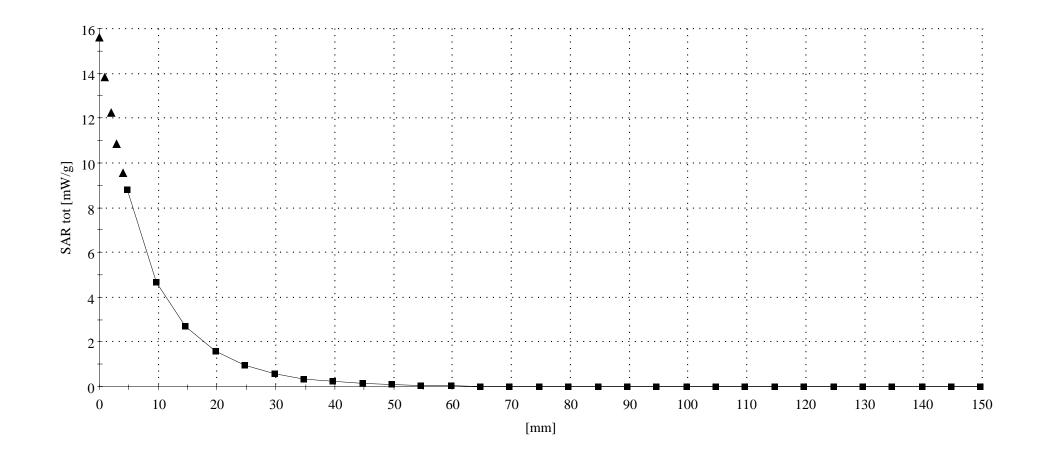
Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0 Penetration depth: 8.5 (8.1, 9.3) [mm]

Powerdrift: 0.05 dB

Dipole 1800 MHz

1800 MHz System Performance Check / Dipole Sn# 259tr

PM1 Power = 200 mW


Sim.Temp@meas=19.1 Sim.Temp@SPC = 19 Room Temp @ SPC = 20

R1 Amy Twin Phantom Rev.4 (22Aug02) Phantom; Section; Position: ; Frequency: 1800 MHz

Probe: ET3DV6R - SN1397 - VALIDATION.4; ConvF(5.09,5.09,5.09); Crest factor: 1.0; 1800 MHz VALIDATION: σ = 1.36 mho/m $ε_r = 38.8$ ρ = 1.00 g/cm³

:,()

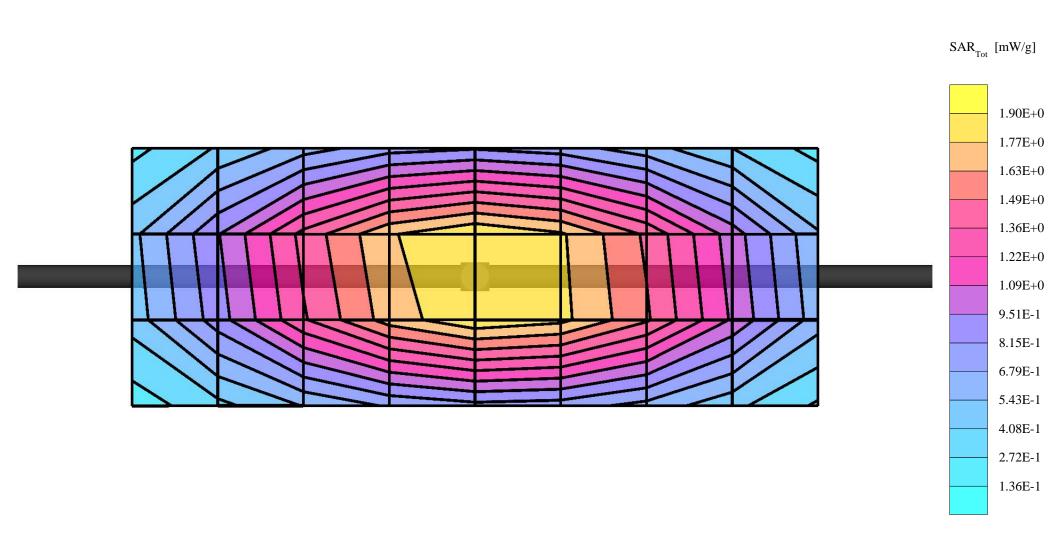
Z-Axis: Dx = 0.0, Dy = 0.0, Dz = 5.0Penetration depth: 8.3 (7.9, 9.1) [mm]

Dipole 835 MHz

835 MHz System Performance Check / Dipole Sn# 425tr

PM1 Power = 200 mW

Sim.Temp@meas=19 Sim.Temp@SPC = 19 Room Temp @ SPC = 20?


R1 TP-1005 SUGAR SAM Expanded (Rev. 2)-9Jan03 Phantom; Flat Section; Position: (90°,90°); Frequency: 835 MHz

Probe: ET3DV6R - SN1397 - VALIDATION.4; ConvF(6.10,6.10,6.10); Crest factor: 1.0; 835 MHz VALIDATION: $\sigma = 0.91 \text{ mho/m} \ \epsilon_r = 42.2 \ \rho = 1.00 \text{ g/cm}^3$

Cubes (2): SAR (1g): 2.10 $\text{ mW/g} \pm 0.06 \text{ dB}$, SAR (10g): 1.35 $\text{ mW/g} \pm 0.06 \text{ dB}$, (Worst-case extrapolation)

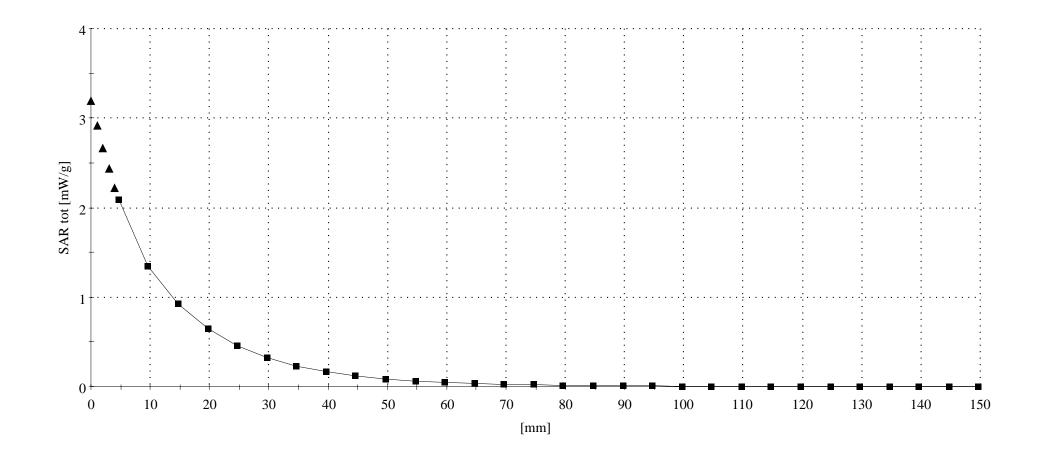
Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0Penetration depth: 12.1 (11.2, 13.3) [mm]

Powerdrift: -0.02 dB

Dipole 835 MHz

835 MHz System Performance Check / Dipole Sn# 425tr

PM1 Power = 200 mW


Sim.Temp@meas=19 Sim.Temp@SPC = 19 Room Temp @ SPC = 20?

R1 TP-1005 SUGAR SAM Expanded (Rev. 2)-9Jan03 Phantom; Section; Position: ; Frequency: 835 MHz

Probe: ET3DV6R - SN1397 - VALIDATION.4; ConvF(6.10,6.10,6.10); Crest factor: 1.0; 835 MHz VALIDATION: $\sigma = 0.91$ mho/m $\epsilon_r = 42.2$ $\rho = 1.00$ g/cm³

:,()

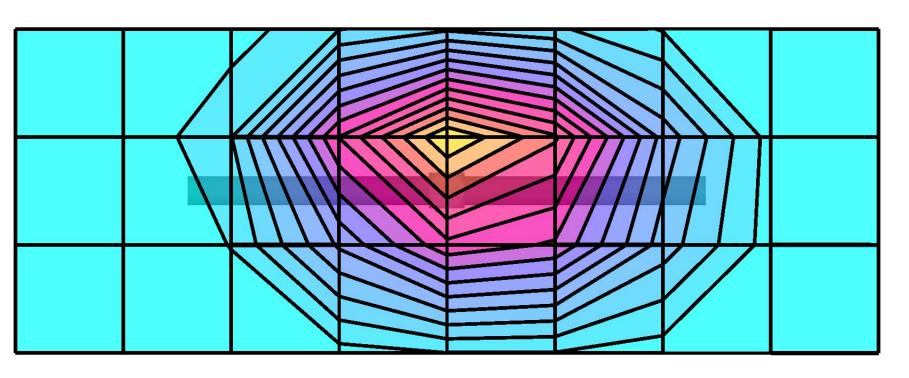
Z-Axis: Dx = 0.0, Dy = 0.0, Dz = 5.0Penetration depth: 12.1 (11.2, 13.4) [mm]

Dipole 1800 MHz

1800 MHz System Performance Check / Dipole Sn# 259tr

PM1 Power = 200mW

Sim.Temp@meas=19 Sim.Temp@SPC = 19 Room Temp @ SPC = 20


R#1 TP-1154 GLYCOL SAM Expanded (Rev. 2)-9Jan03 Phantom; Flat Section; Position: (90°,90°); Frequency: 1800 MHz

Probe: ET3DV6R - SN1397 - VALIDATION.4; ConvF(5.09,5.09,5.09); Crest factor: 1.0; 1800 MHz VALIDATION: σ = 1.36 mho/m ϵ_r = 38.6 ρ = 1.00 g/cm³

Cubes (2): SAR (1g): 8.17 $\text{ mW/g} \pm 0.08 \text{ dB}$, SAR (10g): 4.30 $\text{ mW/g} \pm 0.12 \text{ dB}$, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0 Penetration depth: 8.6 (8.3, 9.3) [mm]

Powerdrift: -0.04 dB

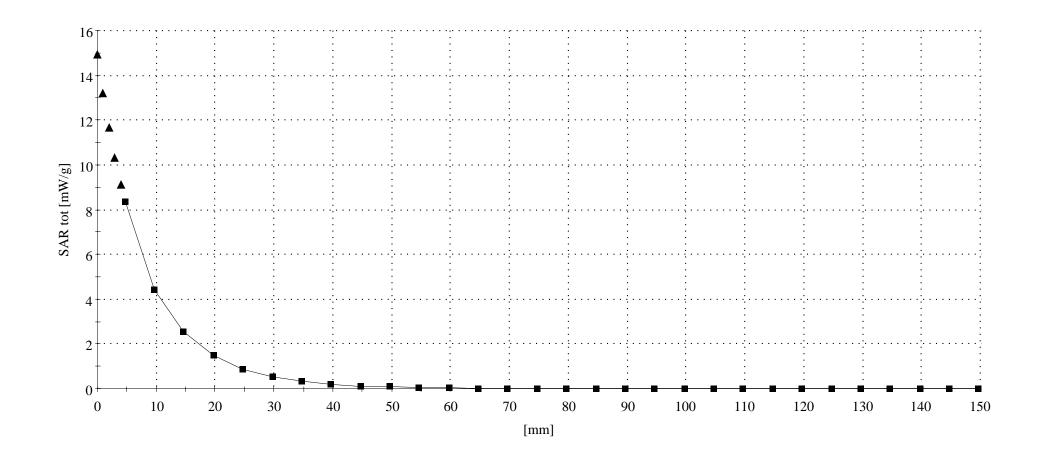
 $SAR_{Tot} [mW/g]$ 7.78E+07.22E+06.66E+06.11E+05.55E+0 5.00E+0 4.44E+03.89E+03.33E+0 2.78E+02.22E+01.67E+01.11E+0

5.55E-1

Dipole 1800 MHz

1800 MHz System Performance Check / Dipole Sn# 259tr

PM1 Power = 200 mW


Sim.Temp@meas=19 Sim.Temp@SPC = 19 Room Temp @ SPC = 20

R#1 TP-1154 GLYCOL SAM Expanded (Rev. 2)-9Jan03 Phantom; Section; Position: ; Frequency: 1800 MHz

Probe: ET3DV6R - SN1397 - VALIDATION.4; ConvF(5.09,5.09,5.09); Crest factor: 1.0; 1800 MHz VALIDATION: σ = 1.36 mho/m $ε_r = 38.6$ ρ = 1.00 g/cm³

:,()

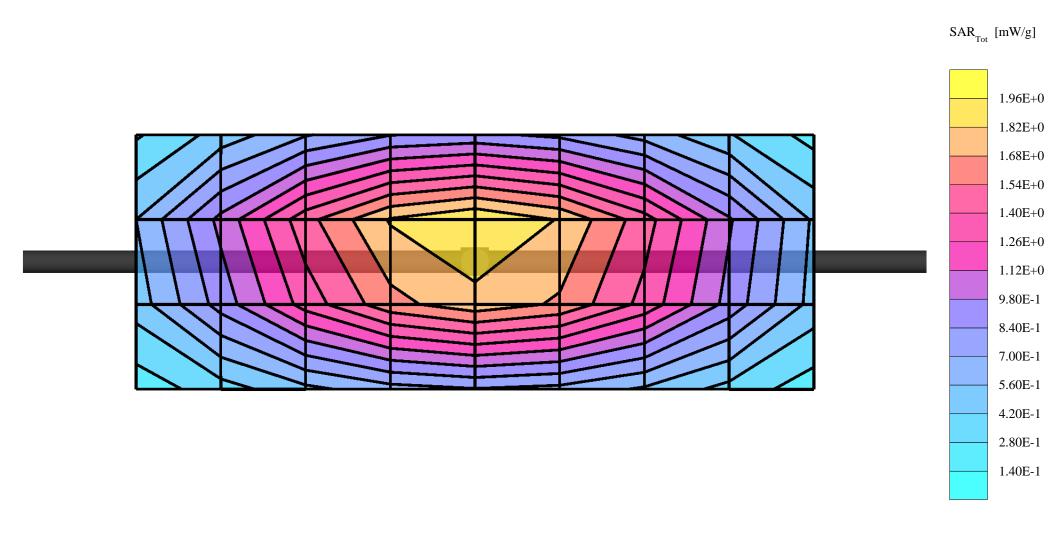
Z-Axis: Dx = 0.0, Dy = 0.0, Dz = 5.0Penetration depth: 8.2 (7.9, 9.0) [mm]

Dipole 835 MHz

835 MHz System Performance Check / Dipole Sn# 425TR

PM1 Power = 201mW

Sim.Temp@meas=19.7C Sim.Temp@SPC = 19.7C Room Temp @ SPC = 20C


R1 TP-1005 SUGAR SAM Expanded (Rev. 2)-9Jan03 Phantom; Flat Section; Position: (90°,90°); Frequency: 835 MHz

Probe: ET3DV6R - SN1397 - VALIDATION.4; ConvF(6.10,6.10,6.10); Crest factor: 1.0; 835 MHz VALIDATION: $\sigma = 0.91$ mho/m $\epsilon_r = 41.9$ $\rho = 1.00$ g/cm³

Cubes (2): SAR (1g): 2.07 $\,$ mW/g \pm 0.07 dB, SAR (10g): 1.33 $\,$ mW/g \pm 0.07 dB, (Worst-case extrapolation)

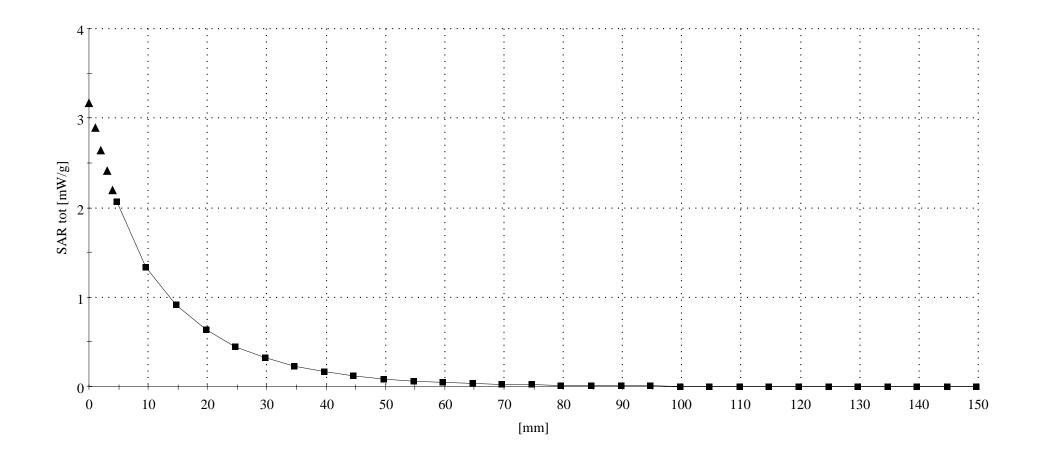
Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0Penetration depth: 12.2 (11.3, 13.5) [mm]

Powerdrift: -0.03 dB

Dipole 835 MHz

835 MHz System Performance Check / Dipole Sn# 425TR

PM1 Power = 201mW


Sim.Temp@meas=19.7C Sim.Temp@SPC = 19.7C Room Temp @ SPC = 20C

R1 TP-1005 SUGAR SAM Expanded (Rev. 2)-9Jan03 Phantom; Section; Position: ; Frequency: 835 MHz

Probe: ET3DV6R - SN1397 - VALIDATION.4; ConvF(6.10,6.10,6.10); Crest factor: 1.0; 835 MHz VALIDATION: $\sigma = 0.91$ mho/m $\epsilon_r = 41.9$ $\rho = 1.00$ g/cm³

:,()

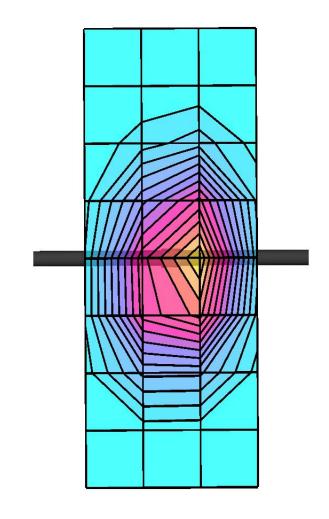
Z-Axis: Dx = 0.0, Dy = 0.0, Dz = 5.0Penetration depth: 12.1 (11.1, 13.4) [mm]

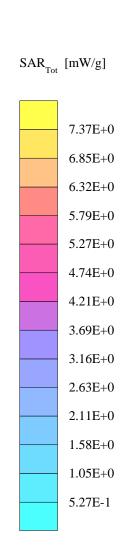
Dipole 1800 MHz

1800 MHz System Performance Check / Dipole Sn# 259TR

PM1 Power = 200 mW

Sim.Temp@meas=19.1C Sim.Temp@SPC = 19.2C Room Temp @ SPC = 20C


R1 Amy Twin Phantom Rev.4 (22Aug02) Phantom; section 2 Section; Position: (90°,90°); Frequency: 1800 MHz


Probe: ET3DV6R - SN1397 - VALIDATION.4; ConvF(5.09,5.09,5.09); Crest factor: 1.0; 1800 MHz VALIDATION: $\sigma = 1.38$ mho/m $\epsilon_r = 38.7$ $\rho = 1.00$ g/cm³

Cubes (2): SAR (1g): 8.48 $\,$ mW/g \pm 0.09 dB, SAR (10g): 4.46 $\,$ mW/g \pm 0.07 dB, (Worst-case extrapolation)

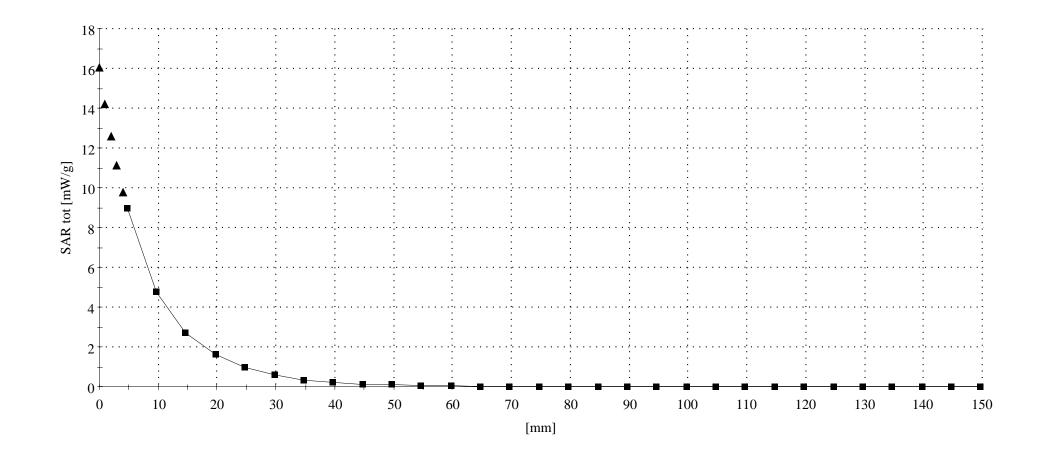
Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0 Penetration depth: 8.5 (8.2, 9.2) [mm]

Powerdrift: -0.04 dB

Dipole 1800 MHz

1800 MHz System Performance Check / Dipole Sn# 259TR

PM1 Power = 200 mW


Sim.Temp@meas=19.1C Sim.Temp@SPC = 19.2C Room Temp @ SPC = 20C

R1 Amy Twin Phantom Rev.4 (22Aug02) Phantom; Section; Position: ; Frequency: 1800 MHz

Probe: ET3DV6R - SN1397 - VALIDATION.4; ConvF(5.09,5.09,5.09); Crest factor: 1.0; 1800 MHz VALIDATION: σ = 1.38 mho/m $ε_r = 38.7$ ρ = 1.00 g/cm³

:,()

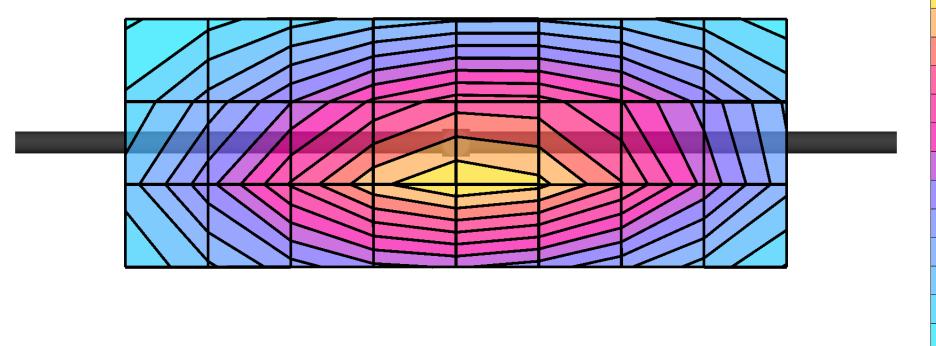
Z-Axis: Dx = 0.0, Dy = 0.0, Dz = 5.0Penetration depth: 8.2 (7.9, 9.0) [mm]

Dipole 835 MHz

835 MHz System Performance Check / Dipole Sn# 425TR

PM1 Power = 201mW

Sim.Temp@meas=19.1C Sim.Temp@SPC = 19.1C Room Temp @ SPC = 20C


R1 TP-1005 SUGAR SAM Expanded (Rev. 2)-9Jan03 Phantom; Flat Section; Position: (90°,90°); Frequency: 835 MHz

Probe: ET3DV6R - SN1397 - VALIDATION.4; ConvF(6.10,6.10,6.10); Crest factor: 1.0; 835 MHz VALIDATION: σ = 0.90 mho/m ϵ_r = 41.3 ρ = 1.00 g/cm³

Cubes (2): SAR (1g): 2.04 $\,$ mW/g \pm 0.05 dB, SAR (10g): 1.31 $\,$ mW/g \pm 0.04 dB, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0Penetration depth: 12.1 (11.2, 13.4) [mm]

Powerdrift: -0.02 dB

 $SAR_{Tot} [mW/g]$ 2.03E+01.89E+01.74E+01.60E+01.45E+01.31E+0 1.16E+01.02E+08.71E-1 7.26E-1 5.81E-1 4.36E-1 2.90E-1

1.45E-1

Dipole 835 MHz

835 MHz System Performance Check / Dipole Sn# 425TR

PM1 Power = 201 mW


Sim.Temp@meas=19.1C Sim.Temp@SPC = 19.1C Room Temp @ SPC = 20C

R1 TP-1005 SUGAR SAM Expanded (Rev. 2)-9Jan03 Phantom; Section; Position: ; Frequency: 835 MHz

Probe: ET3DV6R - SN1397 - VALIDATION.4; ConvF(6.10,6.10,6.10); Crest factor: 1.0; 835 MHz VALIDATION: $\sigma = 0.90$ mho/m $\epsilon_r = 41.3$ $\rho = 1.00$ g/cm³

:,()

Z-Axis: Dx = 0.0, Dy = 0.0, Dz = 5.0Penetration depth: 12.1 (11.2, 13.4) [mm]

Appendix 2

FCC ID: IHDT56DR1

SAR distribution plots for Phantom Head Adjacent Use

Note that, since the head adjacent SAR values for the 850Mhz and 1900Mhz bands were less than or equal to that previously reported, the SAR values for 850Mhz and 1900Mhz bands that are included in tables 1 and 2 are for reference only. This data has been included to show that the head adjacent SAR values for the 850Mhz and 1900Mhz bands did not significantly increase from that previously reported. As such, no 850Mhz band or 1900Mhz band SAR distribution plots for phantom head adjacent use have been included in Appendix 2 of this document. The 850Mhz band and 1900Mhz band SAR distribution plots for phantom head adjacent use that were included in Appendix 2 of the original filing report should still be considered to apply.

Appendix 3

FCC ID: IHDT56DR1

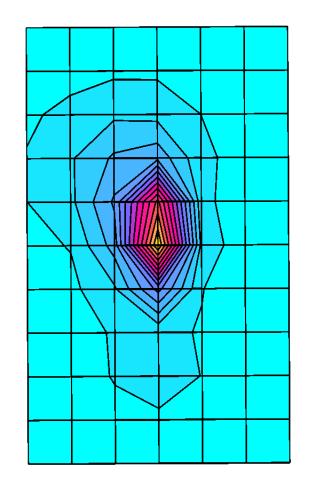
SAR distribution plots for Body Worn Configuration

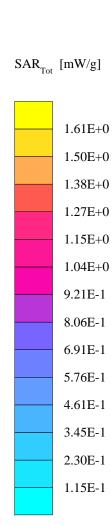
Note that, since the 850Mhz band body worn SAR values were less than or equal to that previously reported, the values included in table 3 are for reference only. This data has been included to show that the 850Mhz band SAR values did not significantly increase from that previously reported. As such, no 850Mhz band SAR distribution plots for body worn configuration have been included in Appendix 3 of this document. The 8500Mhz band SAR distribution plots for body worn configuration that were included in Appendix 3 of the original filing report should still be considered to apply.

sn: TA79604923

Ch# 661 / Pwr Step: 0/0 Antenna Position: fxd Type of Modulation: gprs Battery Model #: 5683a

Accessory Model #: motfa0668s w/universal


R1 Amy Twin Phantom Rev.4 (22Aug02) Phantom; section 2 Section; Position: (0°,0°); Frequency: 1880 MHz


Probe: ET3DV6R - SN1397 - FCC Body.2; ConvF(4.52,4.52,4.52); Crest factor: 4.0; 1880 MHz Head & Body: $\sigma = 1.59$ mho/m $\epsilon_r = 50.7$ $\rho = 1.00$ g/cm³

Cube 7x7x7: SAR (1g): 1.18 mW/g, SAR (10g): 0.549 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0 Penetration depth: 7.6 (6.3, 10.3) [mm]

Powerdrift: -0.11 dB

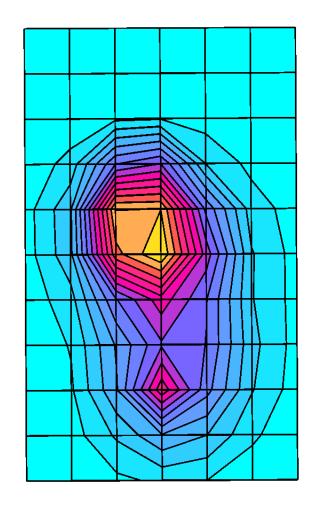
sn: TA79604923

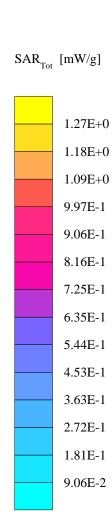
Ch# 810 / Pwr Step: 0 OTA Antenna Position: FIXED

Type of Modulation: 1900 GSM (BLUETOOTH)

Battery Model #: SNN5683A

Accessory Model #: MTO4366 Pouch


R1 Amy Twin Phantom Rev.4 (22Aug02) Phantom; section 2 Section; Position: (0°,0°); Frequency: 1910 MHz


Probe: ET3DV6R - SN1397 - FCC Body.2; ConvF(4.52,4.52,4.52); Crest factor: 8.0; 1880 MHz Head & Body: $\sigma = 1.58$ mho/m $\epsilon_r = 51.6$ $\rho = 1.00$ g/cm³

Cube 7x7x7: SAR (1g): 1.12 mW/g, SAR (10g): 0.623 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0Penetration depth: 8.6 (7.2, 11.0) [mm]

Powerdrift: -0.07 dB

FCC ID: IHDT56DR1

Figure 1.Typical 19000 MHz Body-Worn Contour Overlaid on Phone in MOTFA0668S case

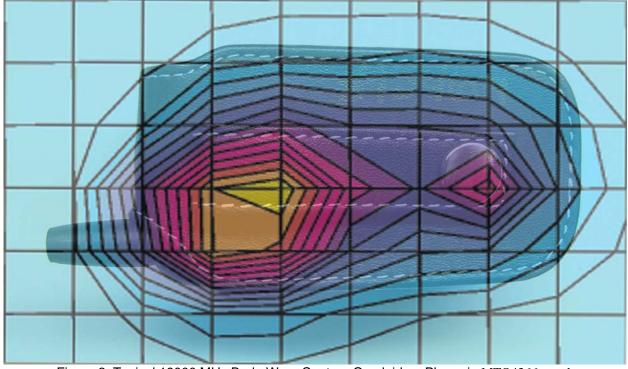


Figure 2. Typical 19000 MHz Body-Worn Contour Overlaid on Phone in MTO4366 pouch

FCC ID: IHDT56DR1

Appendix 4

Probe Calibration Certificate

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Motorola PCS

Object(s)	ET3DV6R - S1	N. 1959	
Calibration procedure(s)	QA CAL-01.v2 Calibration pre	ocedure for dosimetric E-field prob	es
Calibration date:	May 21, 2004		
Condition of the calibrated item	In Tolerance (according to the specific calibratio	n document)
The measurements and the uncerta	ainties with confidence pr	onal standards, which realize the physical units of mea obability are given on the following pages and are par y facility: environ ment temperature 22 +/- 2 degrees C	t of the certificate.
The measurements and the uncertand the uncertand the uncertand calibrations have been conducted and calibration Equipment used (M&TE)	ainties with confidence pr	obability are given on the following pages and are par	t of the certificate.
The measurements and the uncertainth of the measurements and the uncertainth of the measurement used (M&TE whodel Type Power meter EPM E4419B	ainties with confidence pr d in the closed laboratory critical for calibration)	obability are given on the following pages and are par	rt of the certificate.
The measurements and the uncertaint calibrations have been conducted calibration Equipment used (M&TE Model Type Power meter EPM E4419B	ainties with confidence pr d in the closed laboratory critical for calibration) ID #	obability are given on the following pages and are par y facility: environ ment temperature 22 +/- 2 degrees C Cal Date (Calibrated by, Certificate No.)	elsius and humidity < 75%. Scheduled Calibration
The measurements and the uncertainty calibrations have been conducted calibration Equipment used (M&TE) Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator	ainties with confidence produced in the closed laboratory critical for calibration) ID # GB41293874	cobability are given on the following pages and are party facility: environment temperature 22 +/- 2 degrees C Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No 251-00388)	elsius and humidity < 75%. Scheduled Calibration May-05
The measurements and the uncertainties and	critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803	Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No 251-00388) 5-May-04 (METAS, No 251-00388) 3-May-04 (METAS, No 251-00389) 8-Sep-03 (Sintrel SCS No. E-030020)	selsius and humidity < 75%. Scheduled Calibration May-05 May-05 May-05 Sep-04
The measurements and the uncertained in the uncertained calibrations have been conducted and calibration Equipment used (M&TE Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Fluke Process Calibrator Type 702 Power sensor HP 8481A	critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803 MY41092180	Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No 251-00388) 5-May-04 (METAS, No 251-00388) 3-May-04 (METAS, No 251-00389) 8-Sep-03 (Sintrel SCS No. E-030020) 18-Sep-02 (SPEAG, in house check Oct-03)	Scheduled Calibration May-05 May-05 May-05 Sep-04 In house check: Oct 05
The measurements and the uncertainth of the measurements and the uncertainth of the measurement used (M&TE Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Fluke Process Calibrator Type 702 Power sensor HP 8481A RF generator HP 8684C	critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803 MY41092180 US3642U01700	Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No 251-00388) 5-May-04 (METAS, No 251-00388) 3-May-04 (METAS, No 251-00389) 8-Sep-03 (Sintrel SCS No. E-030020) 18-Sep-02 (SPEAG, in house check Oct-03) 4-Aug-99 (SPEAG, in house check Aug-02)	Scheduled Calibration May-05 May-05 May-05 Sep-04 In house check: Oct 05 In house check: Aug-05
The measurements and the uncertainty and u	critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803 MY41092180	Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No 251-00388) 5-May-04 (METAS, No 251-00388) 3-May-04 (METAS, No 251-00389) 8-Sep-03 (Sintrel SCS No. E-030020) 18-Sep-02 (SPEAG, in house check Oct-03)	Scheduled Calibration May-05 May-05 May-05 Sep-04 In house check: Oct 05
The measurements and the uncerta	critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803 MY41092180 US3642U01700	Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No 251-00388) 5-May-04 (METAS, No 251-00388) 3-May-04 (METAS, No 251-00389) 8-Sep-03 (Sintrel SCS No. E-030020) 18-Sep-02 (SPEAG, in house check Oct-03) 4-Aug-99 (SPEAG, in house check Aug-02)	Scheduled Calibration May-05 May-05 May-05 Sep-04 In house check: Oct 05 In house check: Aug-05

Date issued: May 21, 2004

This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for Calibration Laboratory of Schmid & Partner Engineering AG is completed.

Probe ET3DV6R

SN:1397

Manufactured:

October 24, 1999

Last calibrated:

December 15, 2003

Repaired:

April 23, 2004

Recalibrated:

May 21, 2004

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ET3DV6R SN:1397

Sensitivity in Free Space Diode Compression^A

NormX	1.88 μV/(V/m) ²	DCP X	95	mV
NormY	1.75 μV/(V/m) ²	DCP Y	95	mV
NormZ	2.02 μV/(V/m) ²	DCP Z	95	mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Plese see Page 7.

Boundary Effect

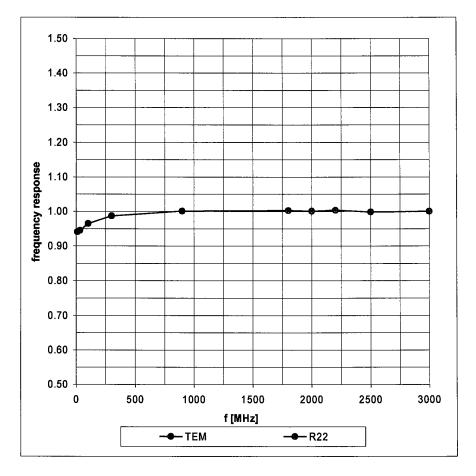
Head 900 MHz Typical SAR gradient: 5 % per mm

Sensor Center to	3.7 mm	4.7 mm	
SAR _{be} [%]	Without Correction Algorithm	8.2	4.1
SAR _{be} [%]	With Correction Algorithm	0.0	0.0

Head 1800 MHz Typical SAR gradient: 10 % per mm

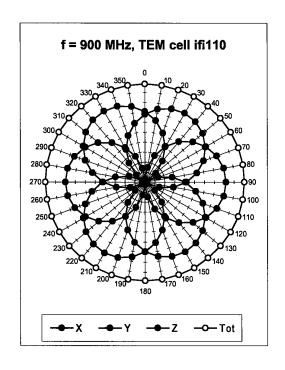
Sensor Center t	3.7 mm	4.7 mm	
SAR _{be} [%]	Without Correction Algorithm	13.1	8.8
SAR _{be} [%]	With Correction Algorithm	0.1	0.0

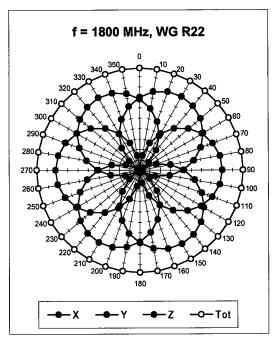
Sensor Offset

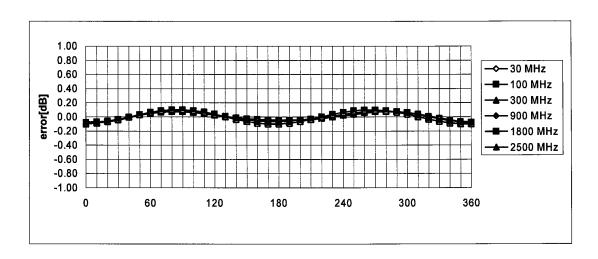

Probe Tip to Sensor Center 2.7 mm

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A numerical linearization parameter: uncertainty not required

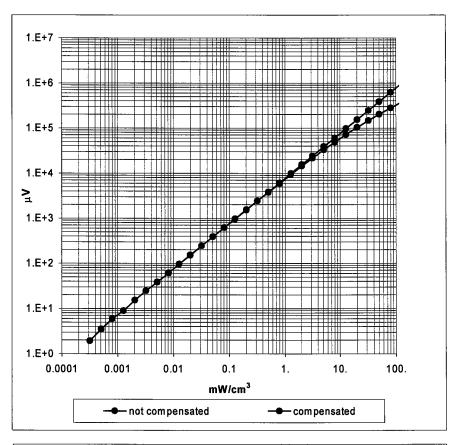

Frequency Response of E-Field

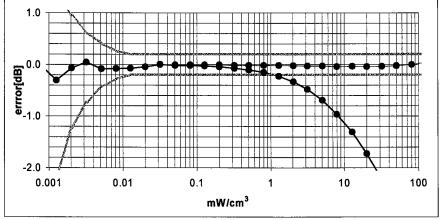

(TEM-Cell:ifi110, Waveguide R22)



ET3DV6R SN:1397 May 21, 2004

Receiving Pattern (ϕ), θ = 0°

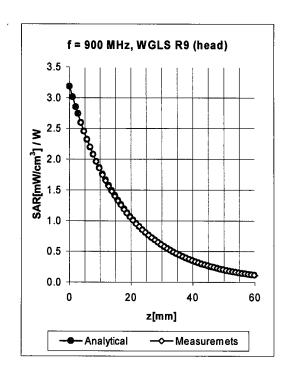


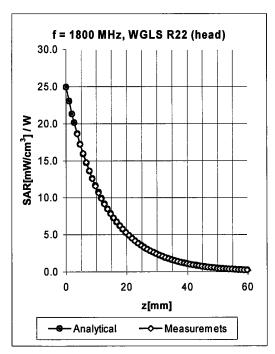

Axial Isotropy Error < ± 0.2 dB

ET3DV6R SN:1397 May 21, 2004

Dynamic Range $f(SAR_{head})$

(Waveguide R22)

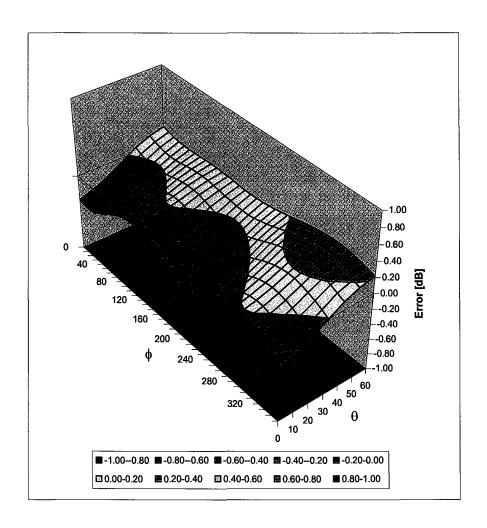




Probe Linearity Error < ± 0.2 dB

ET3DV6R SN:1397 May 21, 2004

Conversion Factor Assessment


f [MHz]	Validity [MHz] ^B	Tissue	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
		•					
900	800-1000	Head	41.5 ± 5%	0.97 ± 5%	0.83	1.55	6.10 ± 9.5% (k=2)
1800	1710-1910	Head	40.0 ± 5%	1.40 ± 5%	0.47	2.66	5.09 ± 9.5% (k=2)
1950	1900-2000	Head	40.0 ± 5%	1.40 ± 5%	0.57	2.51	4.80 ± 9.5% (k=2)
900	800-1000	Body	55.0 ± 5%	1.05 ± 5%	0.50	2.19	5.92 ± 9.5% (k=2)
1800	1710-1910	Body	53.3 ± 5%	1.52 ± 5%	0.55	2.84	4.52 ± 9.5% (k=2)
1950	1900-2000	Body	53.3 ± 5%	1.52 ± 5%	0.66	2.48	4.23 ± 9.5% (k=2)

^B The stated uncertainty of calibration in according to P1528.

ET3DV6R SN:1397 May 21, 2004

Deviation from Isotropy in HSL

Error (θ , ϕ), f = 900 MHz

Spherical Isotropy Error < ± 0.4 dB

Appendix 5

FCC ID: IHDT56DR1

Dipole Characterization Certificate

Certification of System Performance Check Targets Based on APP-0396

-Historical Data-

	835MHz	900MHz	1800MHz	1900MHz		
IEEE1528 Target: Advanced Extrapolation	9.5	10.8	38.1	39.7	(W/kg)	
Measurement Uncertainty (k=1):	9.0%	9.0%	9.0%	9.0%		
Measurement Period:	1-July-03 to 1-Apr-04	1-July-03 to 1-Apr-04	1-July-03 to 1-Apr-04	1-July-03 to 1-Apr-04		
# of tests performed:	214	1148	1135	62	1	
Grand Average: Worst Case Extrapolation	10.0	11.4	40.7	42.0	(W/kg)	
% Delta (Average - IEEE1528 Target)	5.3%	5.6%	6.8%	5.8%		
Is % Delta <= Measurement Uncertainty?	Yes	Yes	Yes	Yes		
Accept/Reject <u>Average</u> as new system performance check target?	ACCEPT	ACCEPT	ACCEPT	ACCEPT		
	Applicable 835MHz Dipole Serial Numbers:	Applicable 900MHz Dipole Serial Numbers:	Applicable <u>1800MHz</u> Dipole Serial Numbers:	Applicable 1900Mhz Dipole Serial Numbers:		
	420(TR), 421(TR)	77, 78	246(TR), 250(TR)	514(TR), 518(TR)		
	422(TR), 423(TR)	79, 80	251(TR), 258(TR)	519(TR), 520(TR)		
	424(TR), 425(TR) 431(TR), 432(TR)	91, 92 93, 94	259(TR), 262(TR) 263(TR), 271(TR)	523(TR), 524(TR) 526(TR), 527(TR)		
	433(TR), 432(TR) 433(TR), 434(TR)	95, 94	272(TR), 271(TR)	528(TR), 527(TR) 528(TR), 529(TR)		
	436(TR)	97, 55	276(TR), 277(TR)	530(TR), 533(TR)		
	\ /	- ,	279(TR), 280(TR)	-]	
			281(TR), 282(TR)			
			283(TR), 284(TR)		j	

-New System Performance Check Targets- per APP-0396

(based on analysis of historical data)

Frequency	SAR Target (W/kg)	Permittivity	Conductivity (S/m)
835MHz	10.0	41.5 ± 5%	0.90 ± 5%
900MHz	11.4	41.5 ± 5%	0.97 ± 5%
1800MHz	40.7	40.0 ± 5%	1.40 ± 5%
1900MHz	42.0	40.0 ± 5%	1.40 ± 5%

-Approvals-	_			
	Submitted by:	Marge Kaunas	Date:	2-Apr-04
	Signed:	Manza Kanna		
	Comments:	Spreadsheet detailing all historical me	easurements available up	on request.
	Approved by:	Mark Douglas	Date:	2-Apr-04
	Signed:	Mark Tayla		
	Comments:	Targets and associated simulant properties	are derived from the IEEE 1	528 standard.

Appendix 6

FCC ID: IHDT56DR1

Measurement Uncertainty Budget

FCC ID: IHDT56DR1

FCC ID: IHDT56DR1

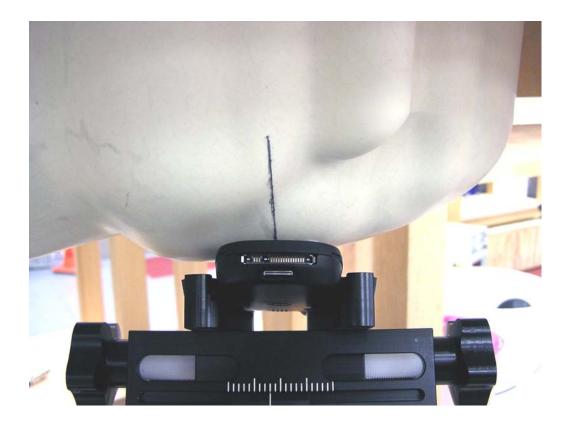
Uncertainty Budget for System Performance Check (dipole & flat phantom)

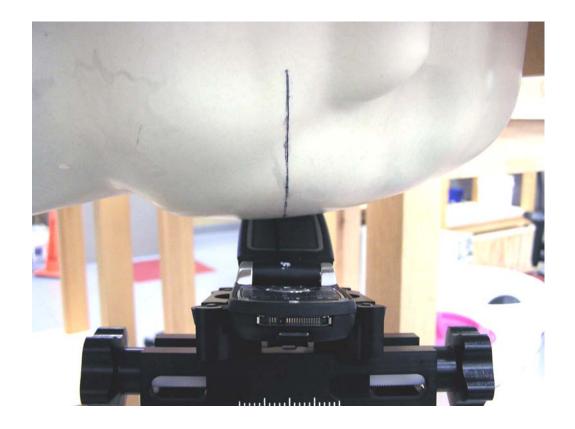
Uncertainty budget for	Dysten.	I I CIIC)1 111a11	cc Ch	CCIX (uipoic	C Hat	pnant	om,
				e =			h =	<i>i</i> =	
				f(d,k)			cxf/	c x g	
а	b	c	d)	f	g	e	/ e	k
		Tol.	Prob.		c_i	c_i	1 g	10 g	
		(± %)	Dist.		(1 g)	(10 g)	\boldsymbol{u}_i	\boldsymbol{u}_i	
Uncertainty Component	Sec.			Div.	, ,	, 2,	(±%)	(±%)	v_i
Measurement System									
Probe Calibration	E.2.1	9.5	N	2.00	1	1	4.8	4.8	× ×
Axial Isotropy	E.2.2	4.7	R	1.73	1	1	2.7	2.7	oc
Spherical Isotropy	E.2.2	9.6	R	1.73	0	0	0.0	0.0	oc
Boundary Effect	E.2.3	5.8	R	1.73	1	1	3.3	3.3	oc
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	oc
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	∞
Readout Electronics	E.2.6	1.0	N	1.00	1	1	1.0	1.0	oc
Response Time	E.2.7	0.0	R	1.73	1	1	0.0	0.0	× ×
Integration Time	E.2.8	0.0	R	1.73	1	1	0.0	0.0	oc
RF Ambient Conditions	E.6.1	3.0	R	1.73	1	1	1.7	1.7	oc
Probe Positioner Mechanical									
Tolerance	E.6.2	0.3	R	1.73	1	1	0.2	0.2	∞
Probe Positioning with respect to									
Phantom Shell	E.6.3	1.1	R	1.73	1	1	0.6	0.6	∞
Extrapolation, interpolation and									
Integration Algorithms for Max.									
SAR Evaluation	E.5	3.9	R	1.73	1	1	2.3	2.3	∞
Dipole									
Dipole Axis to Liquid Distance	8, E.4.2	1.0	R	1.73	1	1	0.6	0.6	∞
Input Power and SAR Drift			_						
Measurement	8, 6.6.2	4.7	R	1.73	1	1	2.7	2.7	∞
Phantom and Tissue									
Parameters									
Phantom Uncertainty (shape and thickness tolerances)	E.3.1	4.0	D	1.73	1	1	2.3	2.3	
,	E.3.1	4.0	R	1./3	1	1	2.3	2.3	∞
Liquid Conductivity - deviation from target values	E.3.2	5.0	R	1 72	0.64	0.43	1 0	1.2	
	E.3.2	5.0	K	1.73	0.04	0.43	1.8	1.2	∞
Liquid Conductivity - measurement uncertainty	E.3.3	10.0	R	1.73	0.64	0.43	3.7	2.5	
	E.3.3	10.0	K	1./3	0.04	0.43	3.7	2.3	∞
Liquid Permittivity - deviation from target values	E.3.2	10.0	R	1.73	0.6	0.49	3.5	2.8	
Liquid Permittivity -	15.5.4	10.0	1	1./3	0.0	0.47	٠.٠	2.0	∞
measurement uncertainty	E.3.3	5.0	R	1.73	0.6	0.49	1.7	1.4	
Combined Standard	15.3.3	3.0	IX.	1./3	0.0	0.47	1./	1.4	∞
Uncertainty			RSS				10.16	9.43	99999
Expanded Uncertainty									
(95% CONFIDENCE LEVEL)			k=2				19.92	18.48	

Appendix 7

FCC ID: IHDT56DR1

Photographs of the device under test





Page 25

