

#### Exhibit 11: SAR Test Report IHDT56DR1

Date of test: 09/03/2003 - 09/18/2003

**Date of Report:** 09/24/2003

Motorola Personal Communications Sector Product Safety & Compliance Laboratory

600 N. US Highway 45

Laboratory: Room: MW113

Libertyville, Illinois 60048

Firass Badaruzzaman **Test Responsible:** Senior RF Engineer

**Accreditation:** This laboratory is accredited to ISO/IEC 17025-1999 to perform the following tests:

ACCREDITED

Tests: Procedures:

Electromagnetic Specific Absorption Rate ANSI/IEEE C95.1-1992, 1999

(SAR) IEEE C95.3-1991 IEEE P1528 (DRAFT)

FCC OET Bulletin 65 (including Supplements A, B, C)

FCC ID: IHDT56DR1

Australian Communications Authority Radio

Communications (Electromagnetic Radiation – Human

Exposure) Standard 1999 CENELEC EN 50361 (2001)

Simulated Tissue Preparation APP-0247

RF Power Measurement DOI-0876, 0900, 0902, 0904, 0915

On the following products or types of products:

Wireless Communications Devices (Examples): Two Way Radios; Portable Phones (including

Licensed Non-Broadcast and PCS); Low Frequency Readers; and Pagers

A2LA certificate #1651-01

Motorola declares under its sole responsibility that portable cellular telephone FCC ID IHDT56DR1 to which this declaration relates, is in conformity with the appropriate General Population/Uncontrolled RF exposure standards, recommendations and guidelines (FCC 47 CFR §2.1093). It also declares that the product was tested in accordance with the appropriate measurement standards, guidelines and recommended practices. Any deviations from these

Statement of **Compliance:**  standards, guidelines and recommended practices are noted below:

(none)

©Motorola, Inc. 2003

This test report shall not be reproduced except in full, without written approval of the laboratory.

The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report.

Motorola encourages all feedback, both positive and negative, on this test report.

## **Table of Contents**

FCC ID: IHDT56DR1

| 1) | Introduction                                                                | 3           |
|----|-----------------------------------------------------------------------------|-------------|
| 2) | Description of the Device Under Test Antenna description Device description | 3<br>3<br>3 |
| 3) | Test Equipment 3.1 Dosimetric system 3.2 Additional equipment used          | 4<br>4<br>4 |
| 4) | Electrical parameters of the tissue simulating liquid                       | 5           |
| 5) | System Accuracy Verification                                                | 5           |
| 6) | Test Results 6.1 Head Adjacent Test Results 6.2 Body-Worn Test Results      | 6<br>7<br>8 |
| Re | ferences:                                                                   |             |
| Ар | pendix 1: SAR distribution comparison for the system accuracy verification  | 10          |
| Ар | pendix 2: SAR distribution plots for Phantom Head Adjacent Use              | 11          |
| Ар | pendix 3: SAR distribution plots for Body Worn Configuration                | 14          |
| Ар | pendix 4. Probe Calibration Certificate                                     | 16          |
| Ар | pendix 5. Dipole Characterization Certificate                               | 17          |
| Ар | pendix 6: Measurement Uncertainty Budget                                    | 28          |
| Ap | pendix 7. Photographs of the device under test                              | 21          |

#### 1. Introduction

The Motorola Personal Communications Sector Product Safety Laboratory has performed measurements of the maximum potential exposure to the user of portable cellular phone (FCC ID IHDT56DR1). The Specific Absorption Rate (SAR) of this product was measured. The portable cellular phone was tested in accordance with FCC OET Bulletin 65 Supplement C 01-01.

FCC ID: IHDT56DR1

#### 2. Description of the Device Under Test

#### **Antenna description**

| Туре          | Stubby      |       |  |  |  |
|---------------|-------------|-------|--|--|--|
| Location      | Right Side  |       |  |  |  |
| Dimensions    | Length      | 21 mm |  |  |  |
|               | Width 10 mm |       |  |  |  |
| Configuration | Fixed       |       |  |  |  |

## **Device description**

| FCC ID<br>Number                                      |                                      | IHDT56DR1    |                                |                        |                        |                          |                                |                         |               |  |  |
|-------------------------------------------------------|--------------------------------------|--------------|--------------------------------|------------------------|------------------------|--------------------------|--------------------------------|-------------------------|---------------|--|--|
| Serial number                                         |                                      | LV50520029   |                                |                        |                        |                          |                                |                         |               |  |  |
| Mode(s) of<br>Operation                               | GSM GSM GSM<br>850 900 1800          |              |                                | GSM<br>1900            | GPRS<br>850            | GPRS<br>900              | GPRS<br>1800                   | GPRS<br>1900            | Blue<br>Tooth |  |  |
| Modulation<br>Mode(s)                                 | GSM                                  | GSM          | GSM                            | GSM                    | GSM                    | GSM                      | GSM                            | GSM                     | Blue<br>Tooth |  |  |
| Maximum<br>Output Power<br>Setting                    | 33.00<br>dBm                         | 33.00<br>dBm | 30.00<br>dBm                   | 30.00<br>dBm           | 33.00<br>dBm           | 33.00<br>dBm             | 30.00<br>dBm                   | 30.00<br>dBm            | 4.00<br>dBm   |  |  |
| <b>Duty Cycle</b>                                     | 1:08                                 | 1:08         | 1:08                           | 1:08                   | 2:08                   | 2:08                     | 2:08                           | 2:08                    | 1:01          |  |  |
| Transmitting<br>Frequency<br>Rang(s)                  | ting   824.2-   880.2-   1710.2-   - |              | 1850.20<br>-<br>1909.80<br>MHz | 824.2-<br>848.8<br>MHz | 880.2-<br>914.8<br>MHz | 1710.2-<br>1784.8<br>MHz | 1850.20<br>-<br>1909.80<br>MHz | 2400 -<br>2483.5<br>MHz |               |  |  |
| Production Unit or Identical Prototype (47 CFR §2908) | Identical Prototype                  |              |                                |                        |                        |                          |                                |                         |               |  |  |
| Device<br>Category                                    |                                      |              |                                |                        | Portable               |                          |                                |                         |               |  |  |
| RF Exposure<br>Limits                                 |                                      | -            | -                              | General P              | opulation / l          | Jncontrolled             | <u></u>                        | _                       |               |  |  |

#### 3. Test Equipment Used

#### 3.1 Dosimetric System

The Motorola Personal Communications Sector Product Safety & Compliance Laboratory utilizes a Dosimetric Assessment System (Dasy3<sup>TM</sup> v3.1d) manufactured by Schmid & Partner Engineering AG (SPEAG<sup>TM</sup>), of Zurich Switzerland. All the SAR measurements are taken within a shielded enclosure. The overall RSS uncertainty of the measurement system is  $\pm 11.7\%$  (K=1) with an expanded uncertainty of  $\pm 23.0\%$  (K=2). The measurement uncertainty budget is given in Appendix 6. Per IEEE 1528, this uncertainty budget is applicable to the SAR range of 0.4 W/kg to 10 W/kg. The list of calibrated equipment used for the measurements is shown below.

| Description                     | Serial<br>Number | Cal Due<br>Date |
|---------------------------------|------------------|-----------------|
| DASY3 DAE V1                    | SN385            | 14-May-04       |
| DASTS DAE VI                    | SN437            | 18-Mar-04       |
| E-Field Probe ET3DV6            | SN1501           | 16-Apr-04       |
| L-Held Flobe L13DV0             | SN1506           | 14-May-04       |
| Dipole Validation Kit, D900V2   | SN79             | 24-Jun-04       |
| Dipole validation Kit, D900v2   | SN425tr          | 24-Jun-04       |
| S.A.M. Phantom used for 800MHz  | TP-1154          |                 |
| Dipole Validation Kit, D1800V2  | SN246tr          | 24-Jun-04       |
| Dipole Validation Nit, D1000V2  | SN250tr          | 24-Jun-04       |
| S.A.M. Phantom used for 1900MHz | TP-1005          |                 |

#### 3.2 Additional Equipment

| Description                   | Serial Number | Cal Due Date |
|-------------------------------|---------------|--------------|
| Signal Generator HP8648C      | 3847A04632    | 10/10/2004   |
| Power Meter E4419B            | GB39511090    | 02/06/2004   |
| Power Sensor #1 - 8481A       | US39211007    | 02/06/2004   |
| Power Sensor #2 - 8481A       | US39210931    | 08/05/2004   |
| Network Analyzer HP8753ES     | US39172529    | 6/18/2003    |
| Dielectric Probe Kit HP85070B | US33020235    |              |

| Description                   | Serial Number | Cal Due Date |
|-------------------------------|---------------|--------------|
| Signal Generator HP8648C      | 3847A04633    | 10/11/2004   |
| Power Meter E4419B            | US39250622    | 11/05/2003   |
| Power Sensor #1 - 8481A       | US39210916    | 08/05/2004   |
| Power Sensor #2 - 8481A       | US39211008    | 08/05/2004   |
| Network Analyzer HP8753ES     | US39172529    | 6/18/2003    |
| Dielectric Probe Kit HP85070B | US33020235    |              |

#### 4. Electrical parameters of the tissue simulating liquid

Prior to conducting SAR measurements, the relative permittivity,  $\varepsilon_r$ , and the conductivity,  $\sigma$ , of the tissue simulating liquids were measured with the HP85070 Dielectric Probe Kit These values, along with the temperature of the tissue simulate are shown in the table below. The recommended limits for maximum permittivity and minimum conductivity are also shown. These come from the Federal Communication Commission, OET Bulletin 65 Supplement C 01-01. It is seen that the measured parameters are satisfactory for compliance testing.

FCC ID: IHDT56DR1

| f     |                |                           | Diele        | ectric Para | meters       |
|-------|----------------|---------------------------|--------------|-------------|--------------|
| (MHz) | Tissue<br>type | Limits / Measured         | $\epsilon_r$ | σ (S/m)     | Temp<br>(°C) |
|       | Head           | Measured, 08/29/2003      | 42.20        | 0.91        | 19.8-20.8    |
|       | неаа           | <b>Recommended Limits</b> | 41.50        | 0.90        | 15-30        |
| 835   |                | Measured, 09/06/2003      | 54.30        | 0.96        | 19.8-20.8    |
| 633   | Body           | Recommended Limits        | 55.20        | 0.97        | 15-30        |
|       |                | Measured, 09/07/2003      | 54.40        | 0.97        | 19.8-20.8    |
|       |                | <b>Recommended Limits</b> | 55.20        | 0.97        | 15-30        |
|       | Head           | Measured, 08/28/2003      | 38.20        | 1.45        | 19.8-20.8    |
|       |                | Recommended Limits        | 40.00        | 1.40        | 15-30        |
| 1880  |                | Measured, 09/04/2003      | 52.30        | 1.57        | 19.8-20.8    |
| 1000  | Rody           | Recommended Limits        | 53.30        | 1.52        | 15-30        |
|       | Body           | Measured, 09/07/2003      | 52.00        | 1.59        | 19.8-20.8    |
|       |                | <b>Recommended Limits</b> | 53.30        | 1.52        | 15-30        |

The list of ingredients and the percent composition used for the tissue simulates are indicated in the table below.

| Ingredien<br>t | 800MHz<br>Head | 800MHz<br>Body | 1900MHz<br>Head | 1900MHz<br>Body |
|----------------|----------------|----------------|-----------------|-----------------|
| Sugar          | 57.0           | 44.9           |                 | 30.80           |
| DGBE           | Ī              | -              | 47.0            |                 |
| Water          | 40.45          | 53.06          | 52.8            | 68.91           |
| Salt           | 1.45           | 0.94           | 0.2             | 0.29            |
| HEC            | 1.0            | 1.0            | -               |                 |
| Bact.          | 0.1            | 0.1            |                 |                 |

#### 5. System Accuracy Verification

A system accuracy verification of the DASY3 was performed using the measurement equipment listed in Section 3.1. The daily system accuracy verification occurs within center section of the SAM phantom.

A SAR measurement was performed to see if the measured SAR was within +/- 10% from the target SAR indicated on the dipole certification sheet. These tests were done at 900MHz and/or 1800MHz. These frequencies are within 100MHz of the mid-band frequency of the test device. This is within the allowable window given in Supplement C 01-01 *Appendix D System Verification* section item #5. The test was conducted on the same days as the measurement of the DUT. Recommended limits for maximum permittivity, minimum conductivity are shown in the table below. These come from the Federal Communication Commission, OET Bulletin 65 Supplement C 01-01. The obtained results from the system accuracy verification are displayed in the table below. The distributions of SAR

compare well with those of the reference measurements (see Appendix 1). The tissue stimulant depth was verified to be  $15.0 \text{cm} \pm 0.5 \text{cm}$ . Z-axis scans showing the SAR penetration are also included in Appendix 1. SAR values are normalized to 1W forward power delivered to the dipole.

FCC ID: IHDT56DR1

| f     | Description           | SAR<br>(W/kg), | Dielectric I          | Parameters | Ambien<br>t Temp | Tissue<br>Temp |
|-------|-----------------------|----------------|-----------------------|------------|------------------|----------------|
| (MHz) |                       | 1gram          | $\mathbf{\epsilon}_r$ | σ (S/m)    | (°C)             | (°C)           |
| 835   | Measured, 08/29/2003  | 10.08          | 42.20                 | 0.91       | 20               | 20.5           |
| 033   | Recommended Limits    | 10.10          | 41.5+/-5%             | .97 +/- 5% | n/a              | n/a            |
| 900   | Measured, 09/06/2003  | 10.95          | 41.00                 | 0.96       | 20               | 20.9           |
| 300   | Recommended Limits    | 10.10          | 41.5+/-5%             | .97 +/- 5% | n/a              | n/a            |
|       | Measured, 08/28/2003  | 40.00          | 38.60                 | 1.36       | 21               | 19.9           |
|       | Recommended Limits    | 39.70          | 40+/- 5%              | 1.4 +/- 5% | n/a              | n/a            |
|       | Measured, 09/04/2003  | 39.90          | 38.50                 | 1.35       | 20               | 19.5           |
| 1800  | Recommended Limits    | 39.700         | 40+/- 5%              | 1.4 +/- 5% | n/a              | n/a            |
| 1000  | Measured, 09/05/20032 | 40.20          | 38.600                | 1.35       | 20               | 20.4           |
|       | Recommended Limits    | 39.70          | 40+/- 5%              | 1.4 +/- 5% | n/a              | n/a            |
|       | Measured, 09/07/2003  | 39.80          | 40.00                 | 1.38       | 21               | 20.2           |
|       | Recommended Limits    | 39.70          | 40+/- 5%              | 1.4 +/- 5% | n/a              | n/a            |

The following probe conversion factors were used on the E-Field probe(s) used for the system accuracy verification measurements:

| Description   | Serial<br>Numbe<br>r | f (MHz) | Conversion<br>Factor | Cal Cert<br>pg # |
|---------------|----------------------|---------|----------------------|------------------|
|               | SN1501               | 900     | 6.4                  | 2 of 10          |
| E-Field Probe | 3111301              | 1800    | 5.0                  | 2 of 10          |
| ETDV6         | SN1506               | 900     | 6.1                  | 2 of 11          |
|               | 3111300              | 1800    | 4.9                  | 2 of 11          |

#### 6. Test Results

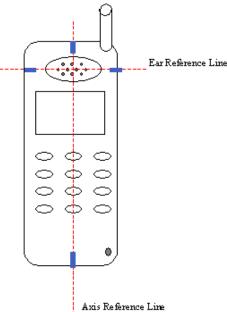
The test sample was operated in a test mode that allows control of the transmitter without the need to place actual phone calls. For the purposes of this test the unit is commanded to test mode and manually set to the proper channel, transmitter power level and transmit mode of operation. The phone was tested in the configurations stipulated in OET Bulletin 65 Supplement C 01-01. Motorola also followed the requirements in Supplement. C / Appendix D: SAR Measurement Procedures, section titled "Devices Operating Next To A Person's Ear". These directions state "The device should be tested on the left and right side of the head phantom in the "Cheek/Touch" and "Ear/Tilt" positions. When applicable, each configuration should be tested with the antenna in its fully extended and fully retracted positions. These test configurations should be tested at the high, middle and low frequency channels of each operating mode; for example, AMPS, CDMA, and TDMA. If the SAR measured at the middle channel for each test configuration (left, right, Cheek/Touch, Tile/Ear, extended and retracted) is at least 2.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s)."

The DASY v3.1d SAR measurement system specified in section 3.1 was utilized within the intended operations as set by the SPEAG<sup>TM</sup> setup. The phone was positioned into the measurement configurations using the positioner supplied with the DASY 3.1d SAR measurement system. The measured dielectric constant of the material used for the positioner is less than 2.9 and the loss tangent is less than 0.02 ( $\pm$  30%) at 850MHz. The default settings for the "coarse" and "cube" scans were chosen and use for measurements. The grid spacing of the course scan was set to 15cm as shown in the SAR plots included in appendix 2 and 3. Please refer to the DASY manual for additional information on SAR scanning procedures and algorithms used.

The Cellular Phone (FCC ID IHDT56DR1) has the following battery options:

SNN5704A - 700 mAH Battery

This battery was used to do all of the SAR testing. The phone was placed in the SAR measurement system with a fully charged battery.


FCC ID: IHDT56DR1

#### **6.1 Head Adjacent Test Results**

To aid in positioning repeatability, the ear reference line of the device and the axis reference line of the device have been physically added using a non-metallic marker.

- Per Figure 1, the "Ear Reference Line" is centered vertically through the center of the listening area (as defined by the speaker holes in the housing).
- The "Axis Reference Line" bisects the front surface of the device at its top and bottom edges.
- The intersection of these two lines defines the location of the "Ear Reference Point".

The lines drawn on the device extended to the outside edges, as shown in blue in the figure below, & wrap around the sides of the device.



The SAR results shown in tables 1 through 4 are maximum SAR values averaged over 1 gram of phantom tissue. Also shown are the measured conducted output powers, the temperature of the test facility during the test, the temperature of the tissue simulate after the test, the measured drift and the extrapolated SAR. The exact method of extrapolation is New SAR = Old SAR \* 10^(-drift/10). The SAR reported at the end of the measurement process by the DASY<sup>TM</sup> measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test. The test conditions indicated as bold numbers in the following table are included in Appendix 2

The SAR measurements were performed using the SAM phantoms listed in section 3.1. Since same phantoms and tissue simulate are used for the system accuracy verification as the device SAR measurements, the Z-axis scans included in within Appendix 1 are applicable for verification of tissue simulate depth to be 15.0cm  $\pm 0.5$ cm. All

other test conditions measured lower SAR values than those included in Appendix 2. Note that 800MHz digital mode SAR measurements were performed in accordance with Supplement C.

FCC ID: IHDT56DR1

The following probe conversion factors were used on the E-Field probe(s) used for the head adjacent measurements:

| <b>5</b>      | Serial     | <i>(</i> | Conversion | Cal Cert |
|---------------|------------|----------|------------|----------|
| Description   | Numbe<br>r | f (MHz)  | Factor     | pg#      |
|               | SN1501     | 900      | 6.4        | 2 of 10  |
| E-Field Probe | 3111301    | 1800     | 5.0        | 2 of 10  |
| ETDV6         | SN1506     | 900      | 6.1        | 2 of 11  |
|               | 3111300    | 1800     | 4.9        | 2 of 11  |

|                    |             |                          | (Cheek / Touch Position) |               |                     |                          |                    |               |                     |                          |
|--------------------|-------------|--------------------------|--------------------------|---------------|---------------------|--------------------------|--------------------|---------------|---------------------|--------------------------|
|                    |             | Conducted                |                          | Le            | eft Head            |                          | Right Head         |               |                     |                          |
| f<br>(MHz)         | Description | Output<br>Power<br>(dBm) | Measured<br>(W/kg)       | Drift<br>(dB) | Extrapolated (W/kg) | Simulate<br>Temp<br>(°C) | Measured<br>(W/kg) | Drift<br>(dB) | Extrapolated (W/kg) | Simulate<br>Temp<br>(°C) |
|                    | Channel 128 | 33.01                    |                          |               |                     |                          | 0.767              | -0.31         | 0.82                | 19.9                     |
| Digital<br>850MHz  | Channel 190 | 32.99                    | 0.698                    | -0.37         | 0.76                | 19.80                    | 0.853              | -0.30         | 0.91                | 20                       |
|                    | Channel 251 | 33.00                    |                          |               |                     |                          | 1.01               | -0.34         | 1.09                | 20                       |
|                    | Channel 512 | 30.00                    |                          |               |                     |                          |                    |               |                     |                          |
| Digital<br>1900MHz | Channel 661 | 30.00                    | 0.555                    | -0.01         | 0.56                | 19.20                    | 0.696              | -0.09         | 0.71                | 19.20                    |
|                    | Channel 810 | 30.00                    |                          |               |                     |                          |                    |               |                     |                          |

Table 1: SAR measurement results for the portable cellular telephone FCC ID IHDT56DR1 at highest possible output power. Against the head (Cheek Touch)

|                    |             |                          | (15° Tilt Position) |               |                     |                          |                    |               |                     |                          |
|--------------------|-------------|--------------------------|---------------------|---------------|---------------------|--------------------------|--------------------|---------------|---------------------|--------------------------|
|                    |             | Conducted                | Left Head           |               |                     |                          | Right Head         |               |                     |                          |
| f<br>(MHz)         | Description | Output<br>Power<br>(dBm) | Measured<br>(W/kg)  | Drift<br>(dB) | Extrapolated (W/kg) | Simulate<br>Temp<br>(°C) | Measured<br>(W/kg) | Drift<br>(dB) | Extrapolated (W/kg) | Simulate<br>Temp<br>(°C) |
| Digital<br>850MHz  | Channel 128 | 33.01                    |                     |               |                     |                          |                    |               |                     |                          |
|                    | Channel 190 | 32.99                    | 0.225               | -0.52         | 0.25                | 19.80                    | 0.238              | -0.16         | 0.25                | 20.00                    |
|                    | Channel 251 | 33.00                    |                     |               |                     |                          |                    |               |                     |                          |
| Digital<br>1900MHz | Channel 512 | 30.00                    |                     |               |                     |                          |                    |               |                     |                          |
|                    | Channel 661 | 30.00                    | 0.189               | -0.01         | 0.19                | 19.2                     | 0.24               | -0.05         | 0.24                | 19.40                    |
|                    | Channel 810 | 30.00                    |                     |               |                     |                          |                    |               |                     |                          |

Table 2: SAR measurement results for the portable cellular telephone FCC ID IHDT56DR1 at highest possible output power. Against the head (15° Tilt)

#### 6.2 Body-Worn Test Results

The SAR results shown in table 5 are the maximum SAR values averaged over 1 gram of phantom tissue. Also shown are the measured conducted output powers, the temperature of the test facility during the test, the temperature of the tissue simulate after the test, the measured drift and the extrapolated SAR. The exact method of extrapolation is New SAR = Old SAR \* 10^(-drift/10). The SAR reported at the end of the measurement process by the DASY<sup>TM</sup> measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test. The test conditions indicated as bold numbers in the following table are included in Appendix 3. Note that 800MHz

digital mode SAR measurements were performed in accordance with OET Bulletin 65 Supplement C 01-01. All other test conditions measured lower SAR values than those included in Appendix 3.

FCC ID: IHDT56DR1

A "flat" phantom was for the body-worn tests. This "flat" phantom is made out of 1" thick natural High Density Polyethylene with a thickness at the bottom equal to 2.0mm. It measures 52.7cm(long) x 26.7cm(wide) x 21.2cm(tall). The measured dielectric constant of the material used is less than 2.3 and the loss tangent is less than 0.0046 all the way up to 2.184GHz.

The tissue stimulant depth was verified to be  $15.0 \,\mathrm{cm} \pm 0.5 \,\mathrm{cm}$ . The same device holder described in section 6 was used for positioning the phone. The functional accessories were divided into two categories, the ones with metal components and the ones with non-metal components. For non-metallic component accessories', testing was performed on the accessory that displayed the closest proximity to the flat phantom. Each metallic component accessory, if any, was checked for uniqueness of metal component so that each is tested with the device. If multiple accessories shared an identical metal component, only the accessory that dictates the closest spacing to the body was tested. The cellular phone was tested with a headset connected to the device for all body-worn SAR measurements.

There is a Body-Worn Accessory available for this phone: A Mercury Eva pouch: SYN9941A

The following probe conversion factors were used on the E-Field probe(s) used for the body worn measurements:

| Description   | Serial<br>Number | f<br>(MHz) | Conversion Factor | Cal Cert<br>pg # |
|---------------|------------------|------------|-------------------|------------------|
|               | SN1501           | 900        | 6.1               | 8 of 10          |
| E-Field Probe | 3111301          | 1800       | 4.6               | 8 of 10          |
| ETDV6         | SN1506           | 900        | 5.8               | 8 of 11          |
|               | 3111300          | 1800       | 4.5               | 8 of 11          |

|                    |             |                          | Body Worn          |               |                     |                               |                    |               |                     |                          |
|--------------------|-------------|--------------------------|--------------------|---------------|---------------------|-------------------------------|--------------------|---------------|---------------------|--------------------------|
|                    |             | Conducted                | Mercury Eva Pouch  |               |                     | Mercury Eva Pouch (GPRS PC10) |                    |               |                     |                          |
| f<br>(MHz)         | Description | Output<br>Power<br>(dBm) | Measured<br>(W/kg) | Drift<br>(dB) | Extrapolated (W/kg) | Simulate<br>Temp<br>(°C)      | Measured<br>(W/kg) | Drift<br>(dB) | Extrapolated (W/kg) | Simulate<br>Temp<br>(°C) |
| Digital<br>850MHz  | Channel 128 | 33.01                    |                    |               |                     |                               |                    |               |                     |                          |
|                    | Channel 190 | 32.99                    | 0.231              | -0.29         | 0.25                | 20.50                         | 0.445              | -0.47         | 0.50                | 20.50                    |
|                    | Channel 251 | 33.00                    |                    |               |                     |                               |                    |               |                     |                          |
| Digital<br>1900MHz | Channel 512 | 30.00                    |                    |               |                     |                               |                    |               |                     |                          |
|                    | Channel 661 | 30.00                    | 0.107              | -0.05         | 0.11                | 20.40                         | 0.251              | -0.07         | 0.26                | 20.80                    |
|                    | Channel 810 | 30.00                    |                    |               |                     |                               |                    |               |                     |                          |

Table 5: SAR measurement results for the portable cellular telephone FCC ID IHDT56DR1 at highest possible output power. Measured against the body.

|                    |             |                          | Body Worn                                 |               |                     |                          |                    |               |                     |                          |
|--------------------|-------------|--------------------------|-------------------------------------------|---------------|---------------------|--------------------------|--------------------|---------------|---------------------|--------------------------|
|                    |             | Conducted                | Mercury Eva Pouch with blue tooth enabled |               |                     |                          |                    |               |                     |                          |
| f<br>(MHz)         | Description | Output<br>Power<br>(dBm) | Measured<br>(W/kg)                        | Drift<br>(dB) | Extrapolated (W/kg) | Simulate<br>Temp<br>(°C) | Measured<br>(W/kg) | Drift<br>(dB) | Extrapolated (W/kg) | Simulate<br>Temp<br>(°C) |
| Digital<br>850MHz  | Channel 128 | 33.01                    |                                           |               |                     |                          |                    |               |                     |                          |
|                    | Channel 190 | 32.99                    | 0.259                                     | -0.28         | 0.28                | 20.30                    |                    |               |                     |                          |
|                    | Channel 251 | 33.00                    |                                           |               |                     |                          |                    |               |                     |                          |
| Digital<br>1900MHz | Channel 512 | 30.00                    |                                           |               |                     |                          |                    |               |                     |                          |
|                    | Channel 661 | 30.00                    | 0.128                                     | -0.05         | 0.13                | 20.0                     |                    |               |                     |                          |
|                    | Channel 810 | 30.00                    |                                           |               |                     |                          |                    |               |                     |                          |

FCC ID: IHDT56DR1

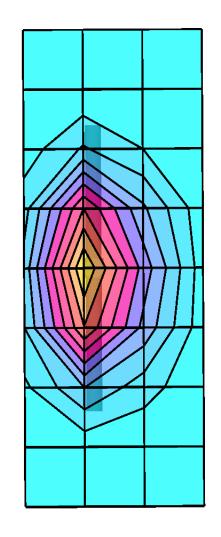
Table 6: SAR measurement results for the portable cellular telephone FCC ID IHDT56DR1 at highest possible output power. Measured against the body.

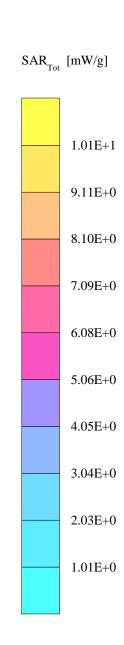
# Appendix 1

FCC ID: IHDT56DR1

SAR distribution comparison for the system accuracy verification

1800 MHz System Performance Check / Dipole Sn# 250TR / Forward Power =248mW / Acceptable Temp Range is 18-25°C Room Temp at time of measurement = 21 C Simulant Temp at time of measurement = 19.9 C


R1 Amy Twin Phantom Rev.4 (22Aug02) Phantom; section 2 Section; Position: (90°,180°); Frequency: 1800 MHz


Probe: ET3DV6R - SN1506 - Validation.2; ConvF(4.90,4.90,4.90); Crest factor: 1.0; 1800 MHz VALIDATION:  $\sigma = 1.36$  mho/m  $\epsilon_r = 38.6$   $\rho = 1.00$  g/cm<sup>3</sup>

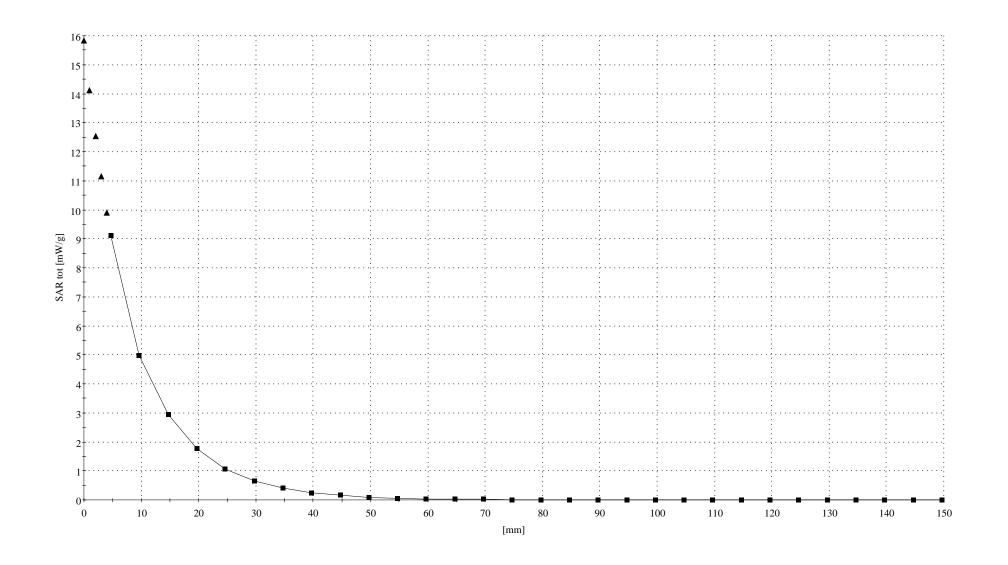
Cubes (2): SAR (1g): 10.0 mW/g  $\pm$  0.04 dB, SAR (10g): 5.28 mW/g  $\pm$  0.06 dB, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0Penetration depth: 8.6 (8.2, 9.3) [mm]

Powerdrift: -0.05 dB






1800 MHz System Performance Check / Dipole Sn# 250TR / Forward Power = 248mW / Acceptable Temp Range is 18-25°C Room Temp at time of measurement = 21 C Simulant Temp at time of measurement = 19.9 C

R1 Amy Twin Phantom Rev.4 (22Aug02) Phantom; Section; Position: ; Frequency: 1800 MHz

Probe: ET3DV6R - SN1506 - Validation.2; ConvF(4.90,4.90,4.90); Crest factor: 1.0; 1800 MHz VALIDATION:  $\sigma = 1.36$  mho/m  $\epsilon_r = 38.6$   $\rho = 1.00$  g/cm<sup>3</sup>

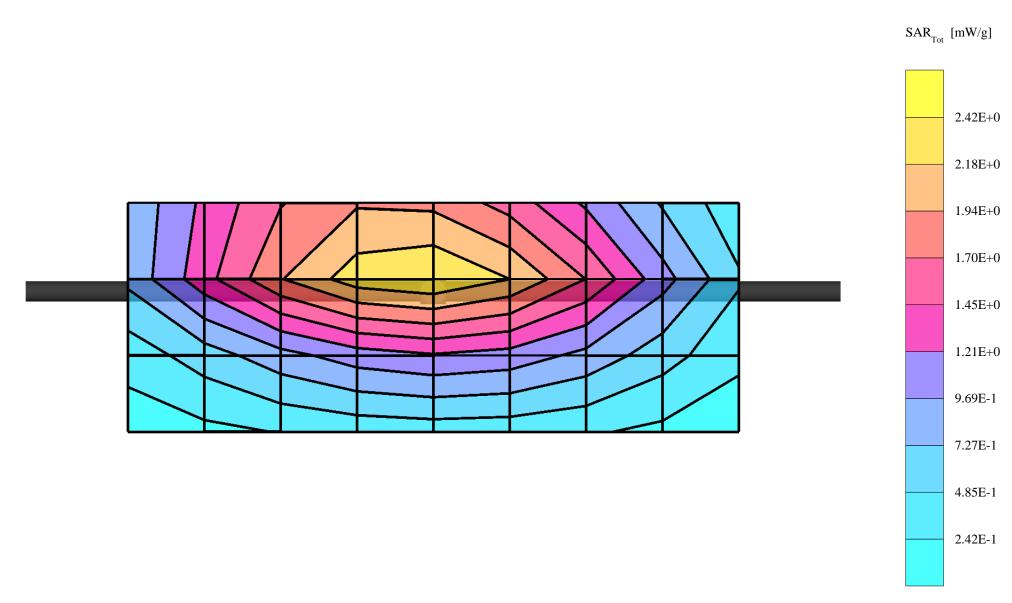
:,()

Z-Axis: Dx = 0.0, Dy = 0.0, Dz = 5.0Penetration depth: 8.7 (8.4, 9.5) [mm]



## Dipole 835 MHz

 $835\,\mathrm{MHz}$  System Performance Check / Dipole Sn#  $425\mathrm{TR}$  / Forward Power =  $249\mathrm{mW}$  / Acceptable Temp Range is  $18\text{-}25^{\circ}\mathrm{C}$  Room Temp at time of measurement =  $20\,\mathrm{C}$  Simulant Temp at time of measurement =  $20.5\,\mathrm{C}$ 


R1 TP-1005 SAM Expanded Sugar (Rev. 2)-9Jan03 Phantom; Flat Section; Position: (90°,90°); Frequency: 835 MHz

Probe: ET3DV6R - SN1506 - Validation.2; ConvF(6.10,6.10,6.10); Crest factor: 1.0; 835 MHz VALIDATION:  $\sigma = 0.91$  mho/m  $\epsilon_r = 42.2$   $\rho = 1.00$  g/cm<sup>3</sup>

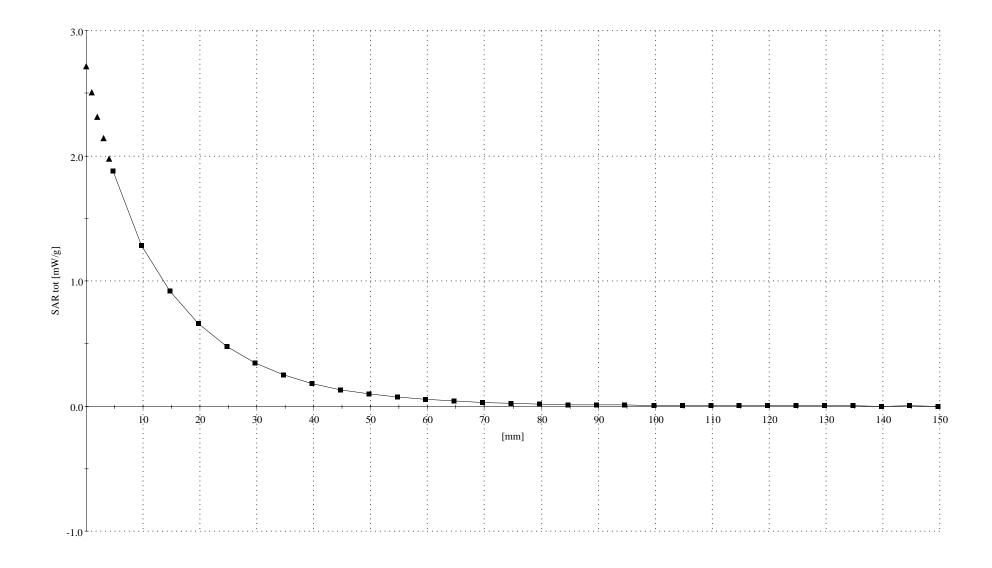
Cubes (2): SAR (1g): 2.51  $\text{mW/g} \pm 0.04 \text{ dB}$ , SAR (10g): 1.61  $\text{mW/g} \pm 0.05 \text{ dB}$ , (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0Penetration depth: 12.0 (10.9, 13.4) [mm]

Powerdrift: 0.02 dB



## Dipole 835 MHz


835 MHz System Performance Check / Dipole Sn# 450TR / Forward Power = 249mW / Acceptable Temp Range is  $18-25^{\circ}C$  Room Temp at time of measurement = 20.5 C C Simulant Temp at time of measurement = 20.5 C

R1 TP-1005 SAM Expanded Sugar (Rev. 2)-9Jan03 Phantom; Section; Position: ; Frequency: 835 MHz

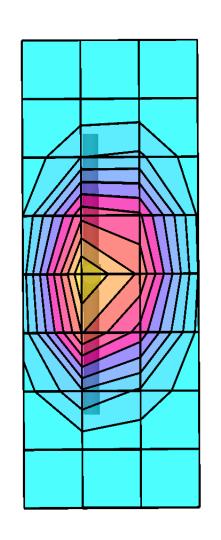
Probe: ET3DV6R - SN1506 - Validation.2; ConvF(6.10,6.10,6.10); Crest factor: 1.0; 835 MHz VALIDATION:  $\sigma = 0.91$  mho/m  $\epsilon_r = 42.2$   $\rho = 1.00$  g/cm<sup>3</sup>

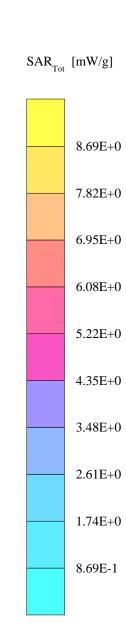
:,()

Z-Axis: Dx = 0.0, Dy = 0.0, Dz = 5.0Penetration depth: 13.9 (13.0, 15.0) [mm]



1800 MHz System Performance Check / Dipole Sn# 246TR / Forward Power = 249mW / Acceptable Temp Range is 18-25°C Room Temp at time of measurement = 20C Simulant Temp at time of measurement = 19.5C


R5 Amy Twin Phantom Rev.4 (22Aug02) Phantom; section 2 Section; Position: (90°,180°); Frequency: 1800 MHz


Probe: ET3DV6R - SN1501 - VALIDATION; ConvF(5.00,5.00,5.00); Crest factor: 1.0; 1800 MHz VALIDATION:  $\sigma$  = 1.35 mho/m  $\epsilon_r$  = 38.5  $\rho$  = 1.00 g/cm<sup>3</sup>

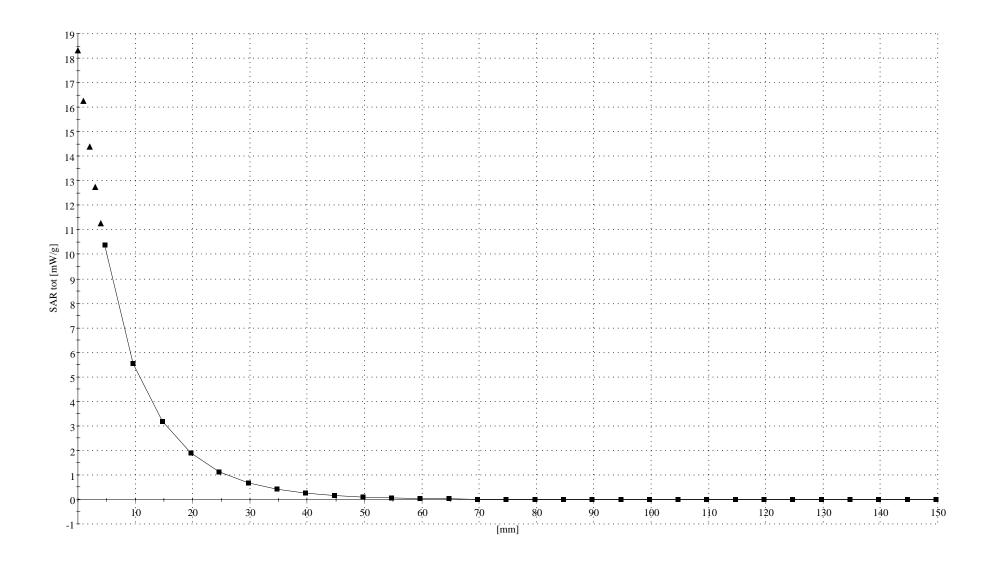
Cubes (2): SAR (1g): 9.94  $\text{mW/g} \pm 0.02 \text{ dB}$ , SAR (10g): 5.24  $\text{mW/g} \pm 0.06 \text{ dB}$ , (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0Penetration depth: 8.5 (8.2, 9.3) [mm]

Powerdrift: 0.02 dB






1800 MHz System Performance Check / Dipole Sn# 246TR / Forward Power = 249mW / Acceptable Temp Range is 18-25°C Room Temp at time of measurement = 20C Simulant Temp at time of measurement = 19.5C

R5 Amy Twin Phantom Rev.4 (22Aug02) Phantom; Section; Position: ; Frequency: 1800 MHz

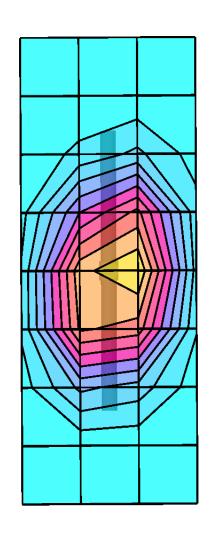
Probe: ET3DV6R - SN1501 - VALIDATION; ConvF(5.00,5.00,5.00); Crest factor: 1.0; 1800 MHz VALIDATION:  $\sigma = 1.35 \text{ mho/m} \ \epsilon_r = 38.5 \ \rho = 1.00 \text{ g/cm}^3$ 

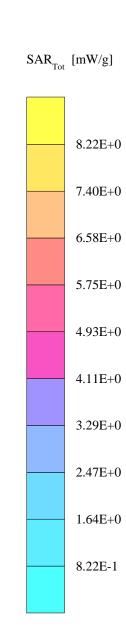
:,()

Z-Axis: Dx = 0.0, Dy = 0.0, Dz = 5.0Penetration depth: 8.4 (8.0, 9.1) [mm]



1800 MHz System Performance Check / Dipole Sn# 246TR / Forward Power = 248mW / Acceptable Temp Range is 18-25°C Room Temp at time of measurement = 20C Simulant Temp at time of measurement = 20.4C


R5 Amy Twin Phantom Rev.4 (22Aug02) Phantom; section 2 Section; Position: (90°,180°); Frequency: 1800 MHz


Probe: ET3DV6R - SN1501 - VALIDATION; ConvF(5.00,5.00,5.00); Crest factor: 1.0; 1800 MHz VALIDATION:  $\sigma = 1.35 \text{ mho/m} \ \epsilon_r = 38.6 \ \rho = 1.00 \text{ g/cm}^3$ 

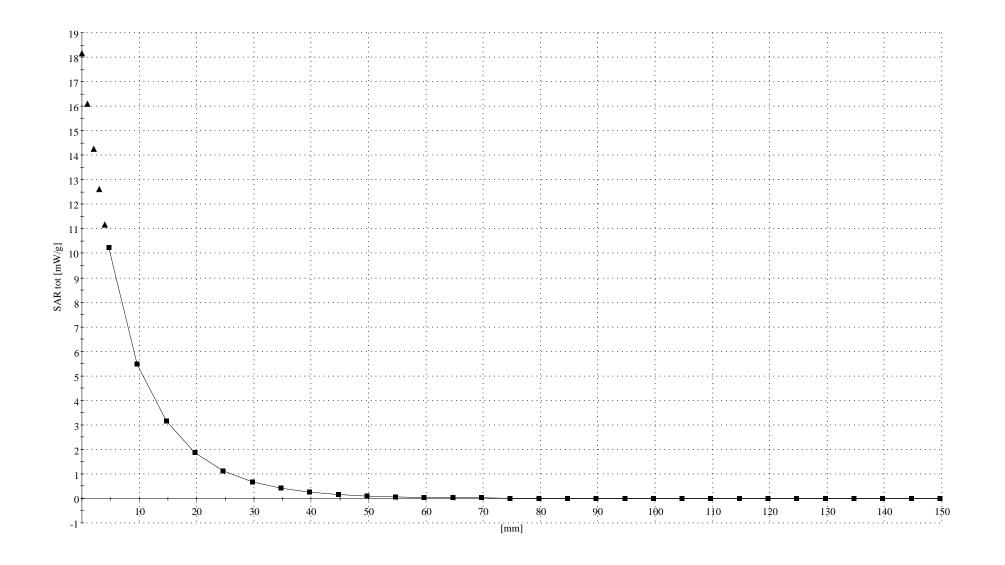
Cubes (2): SAR (1g): 9.89  $\text{mW/g} \pm 0.06 \text{ dB}$ , SAR (10g): 5.22  $\text{mW/g} \pm 0.07 \text{ dB}$ , (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0Penetration depth: 8.4 (8.1, 9.2) [mm]

Powerdrift: 0.02 dB






1800 MHz System Performance Check / Dipole Sn# 246TR / Forward Power = 248mW / Acceptable Temp Range is 18-25°C Room Temp at time of measurement = 20C Simulant Temp at time of measurement = 20.4C

R5 Amy Twin Phantom Rev.4 (22Aug02) Phantom; Section; Position: ; Frequency: 1800 MHz

Probe: ET3DV6R - SN1501 - VALIDATION; ConvF(5.00,5.00,5.00); Crest factor: 1.0; 1800 MHz VALIDATION:  $\sigma = 1.35 \text{ mho/m} \ \epsilon_r = 38.6 \ \rho = 1.00 \ \text{g/cm}^3$ 

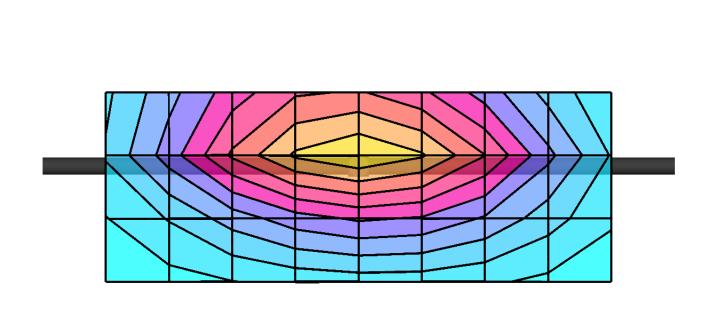
:,()

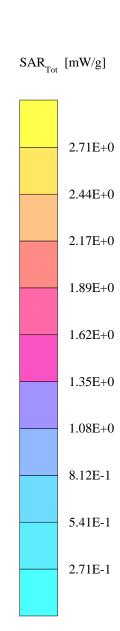
Z-Axis: Dx = 0.0, Dy = 0.0, Dz = 5.0Penetration depth: 8.4 (8.0, 9.1) [mm]



## Dipole 900 MHz

900 MHz System Performance Check / Dipole Sn# 079 / Forward Power = 252mW / Acceptable Temp Range is 18-25°C Room Temp at time of measurement = 20.0C Simulant Temp at time of measurement = 20.9C


R5 TP-1132 Sugar SAM Expanded (Rev. 2)-9Jan03 Phantom; Flat Section; Position: (90°,90°); Frequency: 900 MHz


Probe: ET3DV6R - SN1501 - VALIDATION; ConvF(6.40,6.40,6.40); Crest factor: 1.0; 900 MHz VALIDATION:  $\sigma = 0.96$  mho/m  $\epsilon_r = 41.0 \ \rho = 1.00$  g/cm<sup>3</sup>

Cubes (2): SAR (1g): 2.76  $\,$  mW/g  $\pm$  0.08 dB, SAR (10g): 1.75  $\,$  mW/g  $\pm$  0.08 dB, (Worst-case extrapolation)

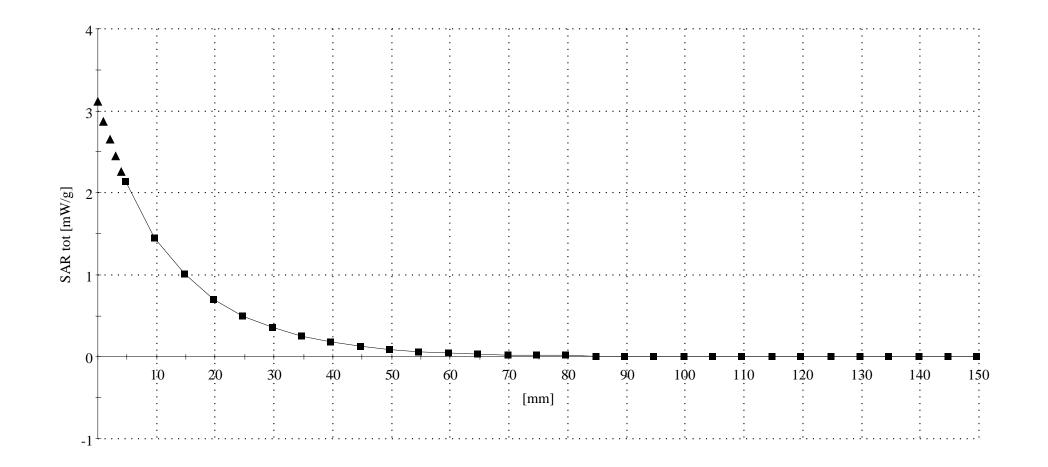
Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0 Penetration depth: 11.7 (10.9, 12.7) [mm]

Powerdrift: 0.00 dB





## Dipole 900 MHz


900 MHz System Performance Check / Dipole Sn# 079 / Forward Power = 252mW / Acceptable Temp Range is 18-25°C Room Temp at time of measurement = 20.0C Simulant Temp at time of measurement = 20.9C

R5 TP-1132 Sugar SAM Expanded (Rev. 2)-9Jan03 Phantom; Section; Position: ; Frequency: 900 MHz

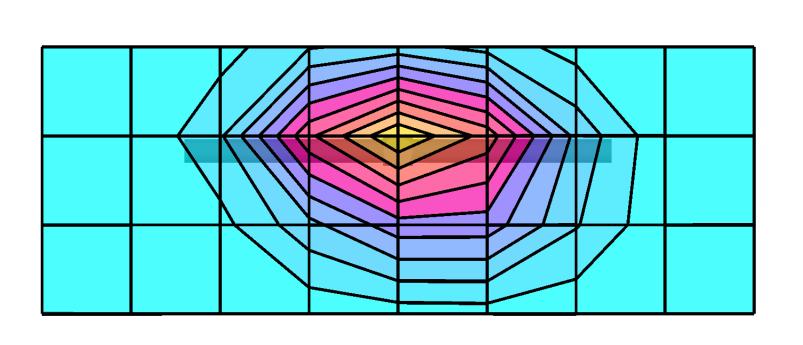
Probe: ET3DV6R - SN1501 - VALIDATION; ConvF(6.40,6.40,6.40); Crest factor: 1.0; 900 MHz VALIDATION:  $\sigma = 0.96$  mho/m  $\epsilon_r = 41.0$   $\rho = 1.00$  g/cm<sup>3</sup>

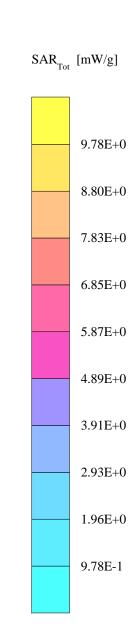
:,()

Z-Axis: Dx = 0.0, Dy = 0.0, Dz = 5.0Penetration depth: 13.1 (12.6, 13.8) [mm]



1800 MHz System Performance Check / Dipole Sn# 246tr / Forward Power = 250mW / Acceptable Temp Range is 18-25°C Room Temp at time of measurement = 21 C Simulant Temp at time of measurement = 20.2 C


R5: TP-1160 GLYCOL SAM Expanded (Rev. 2)-9Jan03 Phantom; Flat Section; Position: (90°,90°); Frequency: 1800 MHz


Probe: ET3DV6R - SN1501 - VALIDATION; ConvF(5.00,5.00,5.00); Crest factor: 1.0; 1800 MHz VALIDATION:  $\sigma = 1.38 \text{ mho/m } \epsilon_r = 40.0 \text{ } \rho = 1.00 \text{ g/cm}^3$ 

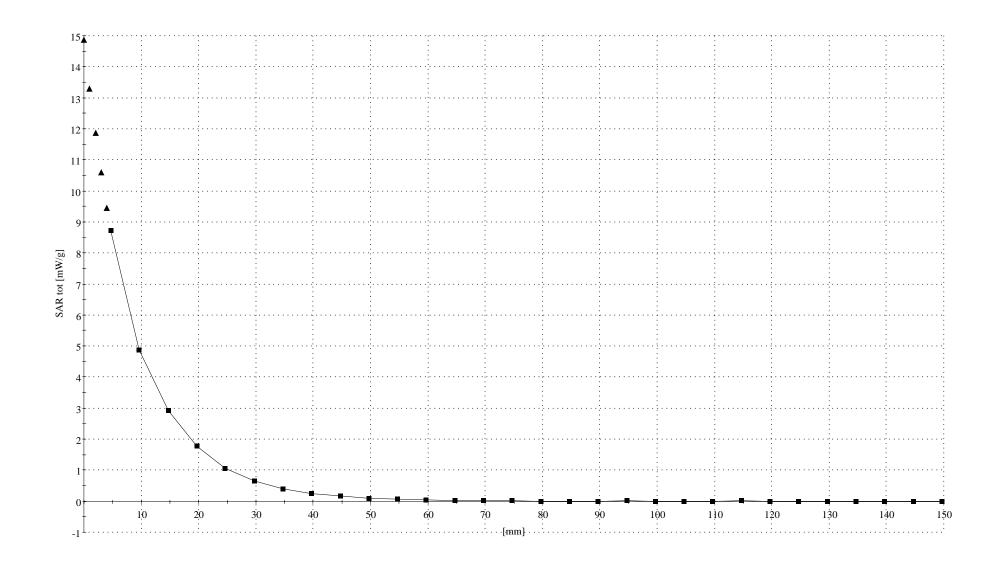
Cubes (2): SAR (1g): 9.80  $\text{mW/g} \pm 0.06 \text{ dB}$ , SAR (10g): 5.21  $\text{mW/g} \pm 0.03 \text{ dB}$ , (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0Penetration depth: 8.7 (8.4, 9.5) [mm]

Powerdrift: 0.09 dB






1800 MHz System Performance Check / Dipole Sn# 246tr / Forward Power = 250mW / Acceptable Temp Range is 18-25°C Room Temp at time of measurement = 21 C Simulant Temp at time of measurement = 20.2 C

R5: TP-1160 GLYCOL SAM Expanded (Rev. 2)-9Jan03 Phantom; Section; Position: ; Frequency: 1800 MHz

Probe: ET3DV6R - SN1501 - VALIDATION; ConvF(5.00,5.00,5.00); Crest factor: 1.0; 1800 MHz VALIDATION:  $\sigma$  = 1.38 mho/m  $\epsilon_r$  = 40.0  $\rho$  = 1.00 g/cm<sup>3</sup>

:,()

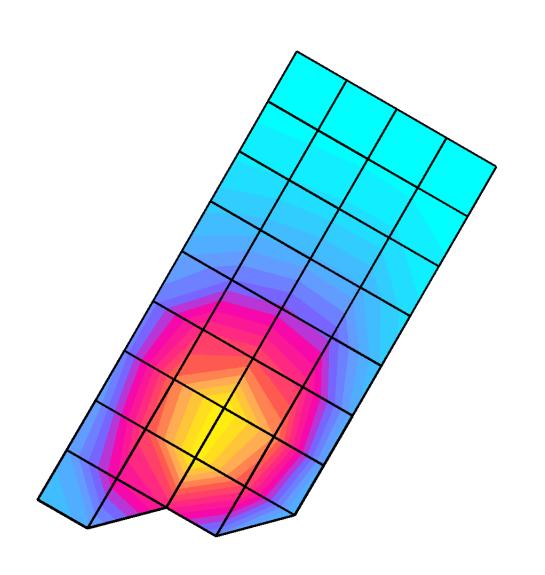
Z-Axis: Dx = 0.0, Dy = 0.0, Dz = 5.0Penetration depth: 9.0 (8.7, 9.7) [mm]

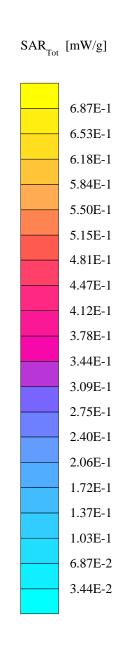


# Appendix 2

FCC ID: IHDT56DR1

## SAR distribution plots for Phantom Head Adjacent Use


Ch# 190 / Pwr Step:05 / Antenna Position:FIXED / Battery Model #: SNN5704A / DEVICE POSITION (cheek or rotated): CHEEK R1 TP-1005 SAM Expanded Sugar (Rev. 2)-9Jan03 Phantom; Left Hand Section; Position: (90°,180°); Frequency: 837 MHz


Probe: ET3DV6R - SN1506 - IEEE Head; ConvF(6.10,6.10,6.10); Crest factor: 8.0; 835 MHz Head & Body:  $\sigma = 0.91$  mho/m  $\epsilon_r = 42.2$   $\rho = 1.00$  g/cm<sup>3</sup>

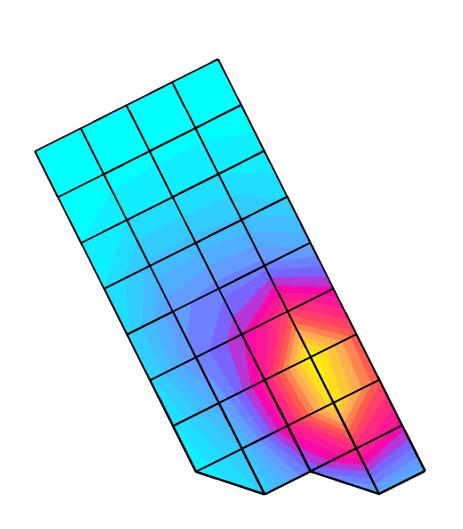
Cube 7x7x7: SAR (1g): 0.698 mW/g, SAR (10g): 0.482 mW/g, (Worst-case extrapolation)

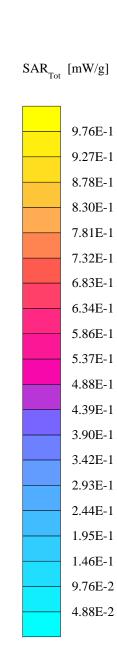
Coarse: Dx = 15.0, Dy = 15.0, Dz = 15.0 Penetration depth: 15.8 (13.9, 18.1) [mm]

Powerdrift: -0.37 dB






Ch# 251 / Pwr Step:05 / Antenna Position:FIXED/ Battery Model #: SNN5704A / DEVICE POSITION (cheek or rotated): CHEEK R1 TP-1005 SAM Expanded Sugar (Rev. 2)-9Jan03 Phantom; Right Hand Section; Position: (90°,180°); Frequency: 849 MHz


Probe: ET3DV6R - SN1506 - IEEE Head; ConvF(6.10,6.10,6.10); Crest factor: 8.0; 835 MHz Head & Body:  $\sigma = 0.91$  mho/m  $\epsilon_r = 42.2$   $\rho = 1.00$  g/cm<sup>3</sup>

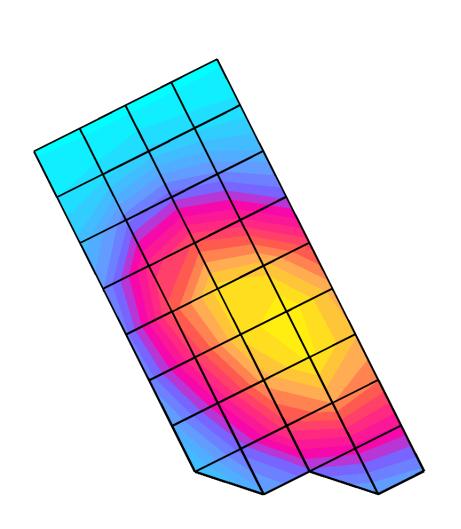
Cube 7x7x7: SAR (1g): 1.01 mW/g, SAR (10g): 0.656 mW/g, (Worst-case extrapolation)

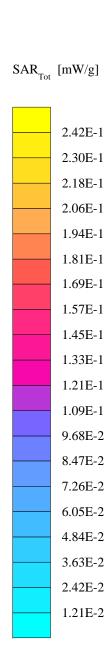
Coarse: Dx = 15.0, Dy = 15.0, Dz = 15.0 Penetration depth: 14.0 (12.2, 16.2) [mm]

Powerdrift: -0.34 dB






Ch# 190 / Pwr Step:05 / Antenna Position:FIXED / Battery Model #: SNN5704A / DEVICE POSITION (cheek or rotated): CHEEK R1 TP-1005 SAM Expanded Sugar (Rev. 2)-9Jan03 Phantom; Right Hand Section; Position: (90°,180°); Frequency: 837 MHz


Probe: ET3DV6R - SN1506 - IEEE Head; ConvF(6.10,6.10,6.10); Crest factor: 8.0; 835 MHz Head & Body:  $\sigma = 0.91$  mho/m  $\epsilon_r = 42.2$   $\rho = 1.00$  g/cm<sup>3</sup>

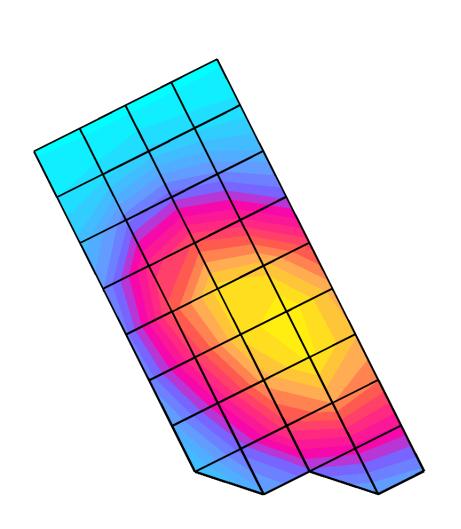
Cube 7x7x7: SAR (1g): 0.238 mW/g, SAR (10g): 0.178 mW/g, (Worst-case extrapolation)

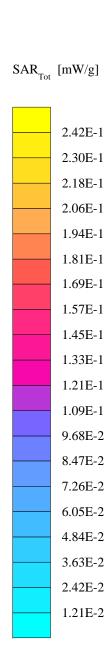
Coarse: Dx = 15.0, Dy = 15.0, Dz = 15.0 Penetration depth: 19.8 (17.8, 21.8) [mm]

Powerdrift: -0.16 dB






Ch# 190 / Pwr Step:05 / Antenna Position:FIXED / Battery Model #: SNN5704A / DEVICE POSITION (cheek or rotated): CHEEK R1 TP-1005 SAM Expanded Sugar (Rev. 2)-9Jan03 Phantom; Right Hand Section; Position: (90°,180°); Frequency: 837 MHz


Probe: ET3DV6R - SN1506 - IEEE Head; ConvF(6.10,6.10,6.10); Crest factor: 8.0; 835 MHz Head & Body:  $\sigma = 0.91$  mho/m  $\epsilon_r = 42.2$   $\rho = 1.00$  g/cm<sup>3</sup>

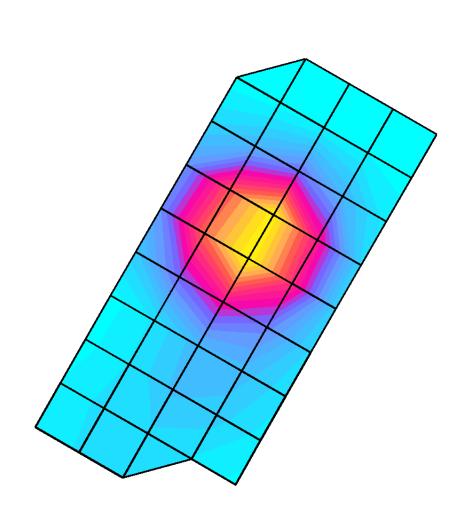
Cube 7x7x7: SAR (1g): 0.238 mW/g, SAR (10g): 0.178 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 15.0 Penetration depth: 19.8 (17.8, 21.8) [mm]

Powerdrift: -0.16 dB






Ch# 661 / Pwr Step: 0 / Antenna Position: FIXED / Battery Model #: SNN5704A / DEVICE POSITION (cheek or rotated):TILTED R1 TP-1154 GLYCOL SAM Expanded (Rev. 2)-9Jan03 Phantom; Left Hand Section; Position: (90°,180°); Frequency: 1880 MHz

Probe: ET3DV6R - SN1506 - IEEE Head; ConvF(4.90,4.90,4.90); Crest factor: 8.0; 1880 MHz Head & Body:  $\sigma = 1.45 \text{ mho/m} \ \epsilon_r = 38.2 \ \rho = 1.00 \text{ g/cm}^3$ 

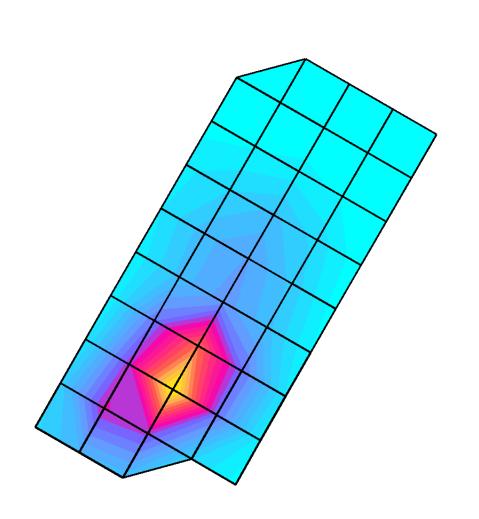
Cube 7x7x7: SAR (1g): 0.189 mW/g, SAR (10g): 0.115 mW/g, (Worst-case extrapolation)

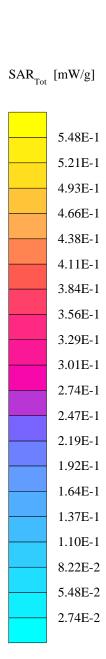
Coarse: Dx = 15.0, Dy = 15.0, Dz = 15.0 Penetration depth: 11.2 (10.5, 12.0) [mm]

Powerdrift: -0.01 dB



 $SAR_{Tot} [mW/g]$ 1.80E-1 1.71E-1 1.62E-1 1.53E-1 1.44E-1 1.35E-1 1.26E-1 1.17E-1 1.08E-1 9.90E-2 9.00E-2 8.10E-2 7.20E-2 6.30E-2 5.40E-2 4.50E-2 3.60E-2 2.70E-2 1.80E-2 9.00E-3


Ch# 661 / Pwr Step: 0 / Antenna Position: FIXED / Battery Model #: SNN5704A / DEVICE POSITION (cheek or rotated): CHEEK R1 TP-1154 GLYCOL SAM Expanded (Rev. 2)-9Jan03 Phantom; Left Hand Section; Position: (90°,180°); Frequency: 1880 MHz


Probe: ET3DV6R - SN1506 - IEEE Head; ConvF(4.90,4.90,4.90); Crest factor: 8.0; 1880 MHz Head & Body:  $\sigma = 1.45 \text{ mho/m} \ \epsilon_r = 38.2 \ \rho = 1.00 \ \text{g/cm}^3$ 

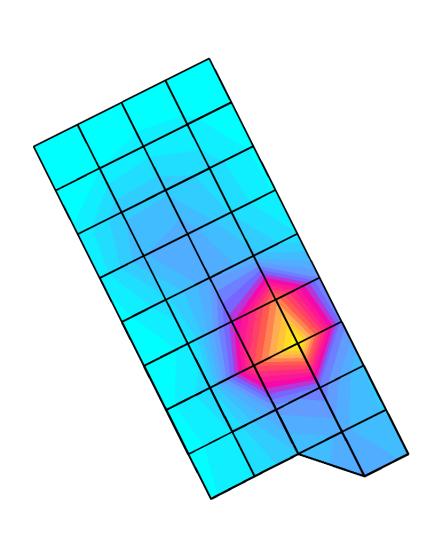
Cube 7x7x7: SAR (1g): 0.555 mW/g, SAR (10g): 0.296 mW/g, (Worst-case extrapolation)

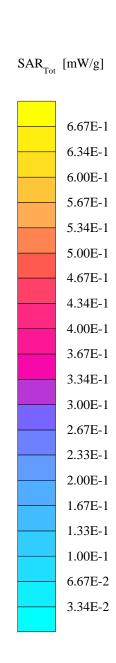
Coarse: Dx = 15.0, Dy = 15.0, Dz = 15.0Penetration depth: 9.3 (8.7, 10.4) [mm]

Powerdrift: -0.01 dB






Ch# 661 / Pwr Step: 0 / Antenna Position: FIXED / Battery Model #: SNN5704A / DEVICE POSITION (cheek or rotated): CHEEK R1 TP-1154 GLYCOL SAM Expanded (Rev. 2)-9Jan03 Phantom; Right Hand Section; Position: (90°,180°); Frequency: 1880 MHz


Probe: ET3DV6R - SN1506 - IEEE Head; ConvF(4.90,4.90,4.90); Crest factor: 8.0; 1880 MHz Head & Body:  $\sigma = 1.45 \text{ mho/m} \ \epsilon_r = 38.2 \ \rho = 1.00 \text{ g/cm}^3$ 

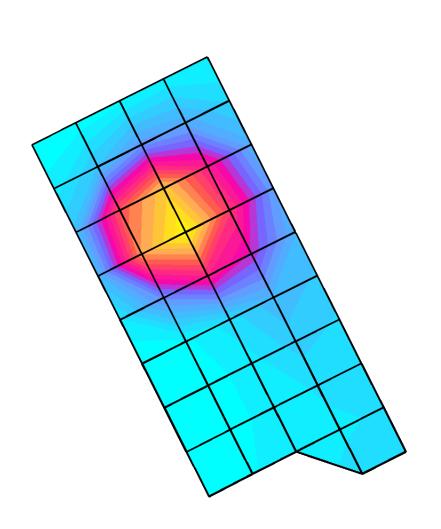
Cube 7x7x7: SAR (1g): 0.696 mW/g, SAR (10g): 0.370 mW/g, (Worst-case extrapolation)

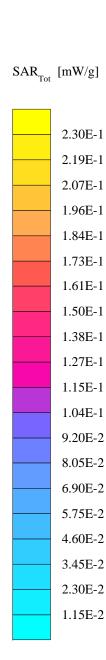
Coarse: Dx = 15.0, Dy = 15.0, Dz = 15.0 Penetration depth: 9.4 (8.9, 10.3) [mm]

Powerdrift: -0.09 dB






Ch# 661 / Pwr Step: 0 / Antenna Position: FIXED / Battery Model #: SNN5704A / DEVICE POSITION (cheek or rotated): TILTED R1 TP-1154 GLYCOL SAM Expanded (Rev. 2)-9Jan03 Phantom; Right Hand Section; Position: (90°,180°); Frequency: 1880 MHz


Probe: ET3DV6R - SN1506 - IEEE Head; ConvF(4.90,4.90,4.90); Crest factor: 8.0; 1880 MHz Head & Body:  $\sigma = 1.45 \text{ mho/m} \ \epsilon_r = 38.2 \ \rho = 1.00 \text{ g/cm}^3$ 

Cube 7x7x7: SAR (1g): 0.240 mW/g, SAR (10g): 0.146 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 15.0Penetration depth: 11.2 (10.4, 12.2) [mm]

Powerdrift: -0.05 dB





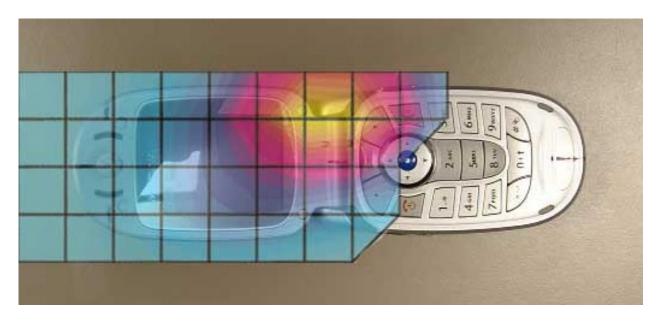



Figure 1.Typical 850MHz Right Head Adjacent Contour Overlaid on Phone with Antenna Fixed (Cheek Touch)



Figure 2.Typical 850MHz Left Head Adjacent Contour Overlaid on Phone with Antenna Fixed (15° Tilt)

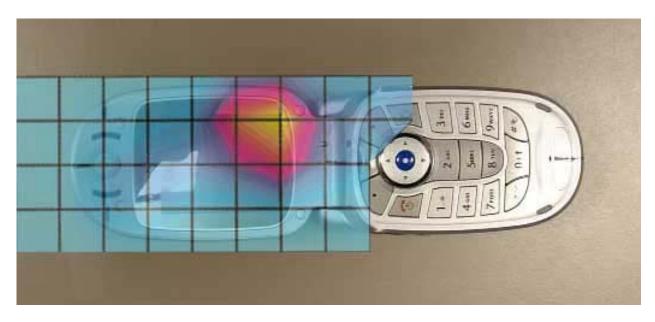



Figure 3.Typical 1900MHz Right Head Adjacent Contour Overlaid on Phone with Antenna Fixed (Cheek Touch)

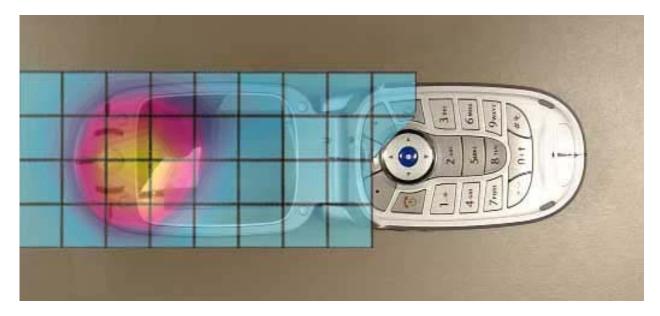


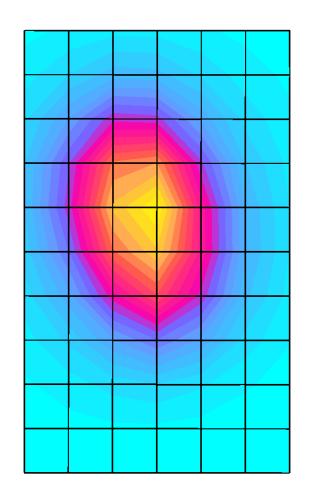

Figure 4.Typical 1900MHz Right Head Adjacent Contour Overlaid on Phone with Antenna Fixed (15° Tilt)

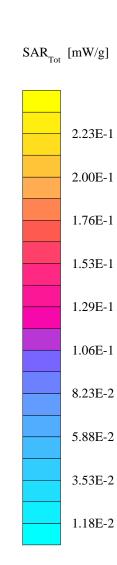
# Appendix 3

FCC ID: IHDT56DR1

## **SAR distribution plots for Body Worn Configuration**

Ch# 190 / Pwr Step: 05 (OTA) / Antenna Position: FIXED / Battery Model #: SNN5704A / Accessory Model #: EVA Pouch


R5 Amy Twin Phantom Rev.4 (22Aug02) Phantom; section 1 Section; Position: (0°,0°); Frequency: 837 MHz


Probe: ET3DV6R - SN1501 - FCC Body; ConvF(6.10,6.10,6.10); Crest factor: 8.0; 835 MHz Head & Body:  $\sigma = 0.96$  mho/m  $\epsilon_r = 54.3$   $\rho = 1.00$  g/cm<sup>3</sup>

Cube 7x7x7: SAR (1g): 0.231 mW/g, SAR (10g): 0.158 mW/g, (Worst-case extrapolation)

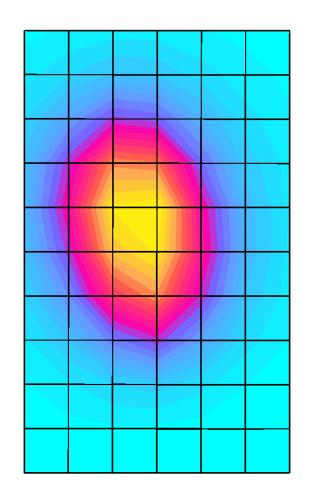
Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0Penetration depth: 15.0 (13.7, 16.5) [mm]

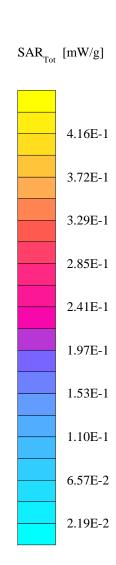
Powerdrift: -0.29 dB





Ch# 190 / Pwr Step: 05 (OTA) / Antenna Position: FIXED / Battery Model #: SNN5704A / Accessory Model #: EVA Pouch + GPRS


R5 Amy Twin Phantom Rev.4 (22Aug02) Phantom; section 1 Section; Position: (0°,0°); Frequency: 837 MHz


Probe: ET3DV6R - SN1501 - FCC Body; ConvF(6.10,6.10,6.10); Crest factor: 4.0; 835 MHz Head & Body:  $\sigma = 0.96$  mho/m  $\epsilon_r = 54.3$   $\rho = 1.00$  g/cm<sup>3</sup>

Cube 7x7x7: SAR (1g): 0.445 mW/g, SAR (10g): 0.307 mW/g, (Worst-case extrapolation)

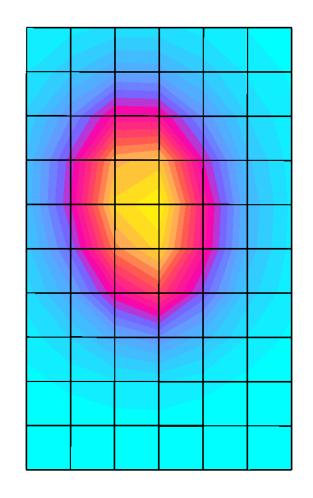
Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0 Penetration depth: 15.3 (14.1, 16.8) [mm]

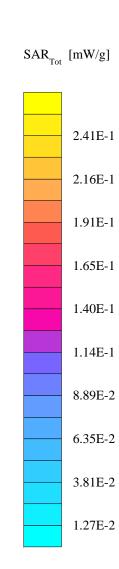
Powerdrift: -0.47 dB





 $Ch\#\ 190\ /\ Pwr\ Step:\ 05\ (OTA)\ Antenna\ Position:\ FIXED\ /\ Battery\ Model\ \#:\ SNN5704A\ /\ Accessory\ Model\ \#:\ EVA\ Pouch\ w\ Bluetooth\ Antenna\ Position:\ FIXED\ /\ Battery\ Model\ \#:\ SNN5704A\ /\ Accessory\ Model\ \#:\ EVA\ Pouch\ w\ Bluetooth\ Antenna\ Position:\ FIXED\ /\ Battery\ Model\ \#:\ SNN5704A\ /\ Accessory\ Model\ \#:\ EVA\ Pouch\ w\ Bluetooth\ Antenna\ Position:\ FIXED\ /\ Battery\ Model\ \#:\ Bull\ Model\ FIXED\ /\ Battery\ Model\ Model\ Model\ Model\ FIXED\ /\ Battery\ Model\ Mode$ 


R5 Amy Twin Phantom Rev.4 (22Aug02) Phantom; section 1 Section; Position: (0°,0°); Frequency: 837 MHz


Probe: ET3DV6R - SN1501 - FCC Body; ConvF(6.10,6.10,6.10); Crest factor: 8.0; 835 MHz Head & Body:  $\sigma = 0.97$  mho/m  $\epsilon_r = 54.4$   $\rho = 1.00$  g/cm<sup>3</sup>

Cube 7x7x7: SAR (1g): 0.259 mW/g, SAR (10g): 0.179 mW/g, (Worst-case extrapolation)

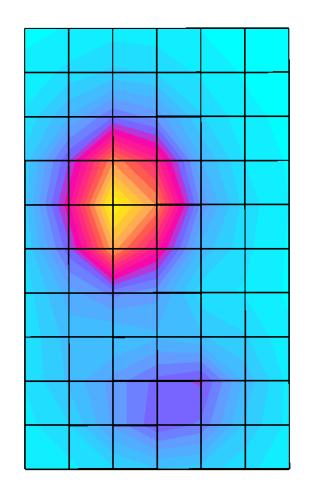
Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0 Penetration depth: 15.7 (14.5, 17.1) [mm]

Powerdrift: -0.28 dB





Ch# 661 / Pwr Step: 00 (OTA) / Antenna Position: FIXED / Battery Model #: SNN5704A


R5 Amy Twin Phantom Rev.4 (22Aug02) Phantom; section 2 Section; Position: (0°,0°); Frequency: 1880 MHz

Probe: ET3DV6R - SN1501 - FCC Body; ConvF(4.60,4.60,4.60); Crest factor: 8.0; 1880 MHz Head & Body:  $\sigma = 1.57$  mho/m  $\epsilon_r = 52.3$   $\rho = 1.00$  g/cm<sup>3</sup>

Cube 7x7x7: SAR (1g): 0.107 mW/g, SAR (10g): 0.0648 mW/g, (Worst-case extrapolation)

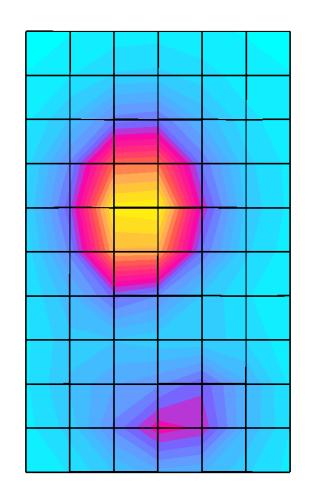
Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0 Penetration depth: 10.6 (9.6, 11.9) [mm]

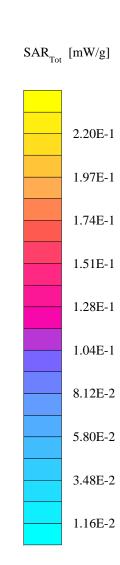
Powerdrift: -0.05 dB





 $Ch\#\ 661\ /\ Pwr\ Step:\ 00\ \ (OTA)\ /\ Antenna\ Position:\ FIXED\ /\ Battery\ Model\ \#:\ SNN5704A\ /\ Accessory\ Model\ \#:\ EVA\ Pouch\ +\ GPRS$ 


R5 Amy Twin Phantom Rev.4 (22Aug02) Phantom; section 2 Section; Position: (0°,0°); Frequency: 1880 MHz


Probe: ET3DV6R - SN1501 - FCC Body; ConvF(4.60,4.60,4.60); Crest factor: 4.0; 1880 MHz Head & Body:  $\sigma = 1.57$  mho/m  $\epsilon_r = 52.3$   $\rho = 1.00$  g/cm<sup>3</sup>

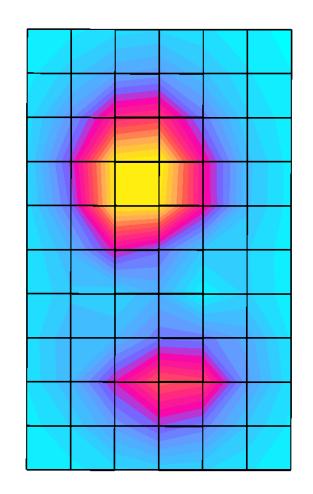
Cube 7x7x7: SAR (1g): 0.251 mW/g, SAR (10g): 0.153 mW/g, (Worst-case extrapolation)

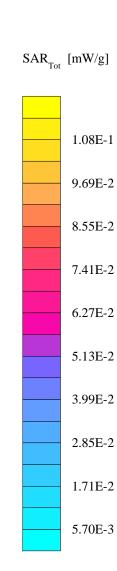
Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0Penetration depth: 10.7 (9.6, 12.3) [mm]

Powerdrift: -0.07 dB






Ch# 661 / Pwr Step: 00 (OTA) / Antenna Position: FIXED / Battery Model #: SNN5704A / Accessory Model #: EVA Pouch Bluetooth Mode R5 Amy Twin Phantom Rev.4 (22Aug02) Phantom; section 2 Section; Position: (0°,0°); Frequency: 1880 MHz


Probe: ET3DV6R - SN1501 - FCC Body; ConvF(4.60,4.60,4.60); Crest factor: 8.0; 1880 MHz Head & Body:  $\sigma = 1.59$  mho/m  $\epsilon_r = 52.0$   $\rho = 1.00$  g/cm<sup>3</sup>

Cube 7x7x7: SAR (1g): 0.128 mW/g, SAR (10g): 0.0777 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0Penetration depth: 10.6 (9.7, 11.9) [mm]

Powerdrift: -0.05 dB





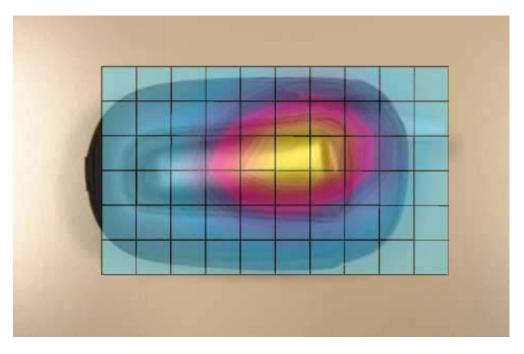



Figure 5. Typical 850 MHz Body-Worn Contour Overlaid on Phone with Antenna Fixed

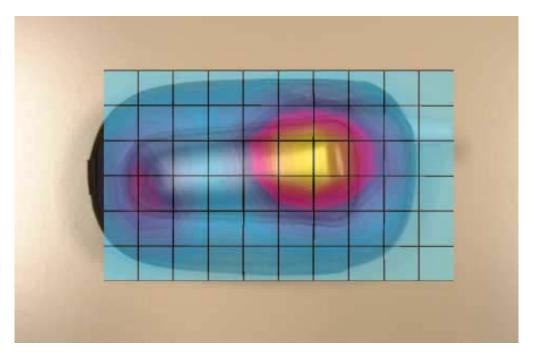



Figure 6. Typical 1900 MHz Body-Worn Contour Overlaid on Phone with Antenna Fixed

## Appendix 4

FCC ID: IHDT56DR1

### **Probe Calibration Certificate**

#### **Calibration Laboratory of**

Schmid & Partner

**Engineering AG** 

Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Motorola MRO

|     | ,,,,,,,,,, | 8897°S         | ****** | 88345         | 2000000 | ,,,,,,,,, | rann  | 200    | g   | 997***   | ~~~   |       | <i>77799</i> | Sec. 10 | -garana | <i>y</i> | may. | Marie . | 200  |        | $m_{2}$ | 8,000 | 777       | ж.  |
|-----|------------|----------------|--------|---------------|---------|-----------|-------|--------|-----|----------|-------|-------|--------------|---------|---------|----------|------|---------|------|--------|---------|-------|-----------|-----|
| 88  | 100        | <i>788</i> . 1 | 88 SW  | 88 S          | 3000    | 8 000     | . 223 | 6500   | 333 | 76° 1800 | . W.  | W 8   | SE 1994      | X 480   | 27 3534 | 2000     | 202  | 50 0000 | 8 87 | 524.10 | z . $z$ | Siz 6 | SE 1800   | 90  |
| 80  | 0000       | 37 6           | 38 38  | <b>72</b> . 3 |         | a         | 411   | 2, 200 | 322 | 3 323    | 8 3 5 | 33    | m 200        | 33      | X       | un:      | 226  | 2       | 3 %  | 200200 | 2 2 3   | 200 Z | <b>//</b> | w.  |
| 7/2 | 2 700      | ž              | 9 30   | <i>1</i> 2 3  | 2000    | 3 24      | W .   | 100    | 202 | Z 49     | 0 %   | a. 63 |              | 3 700   | the the | w.       | 2000 | 2 800   | ž 8. | 400.2  |         | W 8   | 26 W      | 220 |
|     |            |                |        |               |         |           |       |        |     |          |       |       |              |         |         |          |      |         |      |        |         |       |           |     |

Object(s)

ET3DV6R - SN:1501

Calibration procedure(s)

**QA CAL-01.v2** 

Calibration procedure for dosimetric E-field probes

Calibration date:

April 16, 2003

Condition of the calibrated item

In Tolerance (according to the specific calibration document)

This calibration statement documents traceability of M&TE used in the calibration procedures and conformity of the procedures with the ISO/IEC 17025 international standard.

All calibrations have been conducted in the closed laboratory facility: environment temperature 22 +/- 2 degrees Celsius and humidity < 75%.

Calibration Equipment used (M&TE critical for calibration)

| Model Type                              | ID#          | Cal Date                         | Scheduled Calibration  |
|-----------------------------------------|--------------|----------------------------------|------------------------|
| RF generator HP 8684C                   | US3642U01700 | 4-Aug-99 (in house check Aug-02) | In house check: Aug-05 |
| Power sensor E4412A                     | MY41495277   | 2-Apr-03                         | Apr-04                 |
| Power sensor HP 8481A                   | MY41092180   | 18-Sep-02                        | Sep-03                 |
| Power meter EPM E4419B                  | GB41293874   | 13-Sep-02                        | Sep-03                 |
| Network Analyzer HP 8753E               | US38432426   | 3-May-00                         | In house check: May 03 |
| Fluke Process Calibrator Type 702       | SN: 6295803  | 3-Sep-01                         | Sep-03                 |
| t e e e e e e e e e e e e e e e e e e e |              |                                  |                        |

Calibrated by:

Name Function Signature
Nico Vetterii Technician Dividati

Approved by:

Katja Pokovic Laboratory Director May - Watje

Date issued: April 16, 2003

This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for Calibration Laboratory of Schmid & Partner Engineering AG is completed.

880-KP0301061-A Page 1 (1)

2.55

# DASY - Parameters of Probe: ET3DV6R SN:1501

# Sensitivity in Free Space

# **Diode Compression**

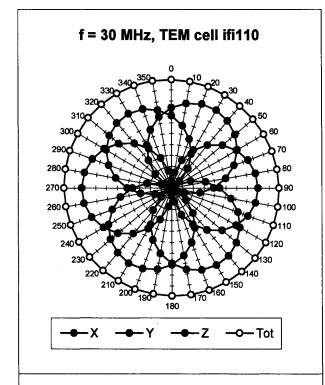
Depth

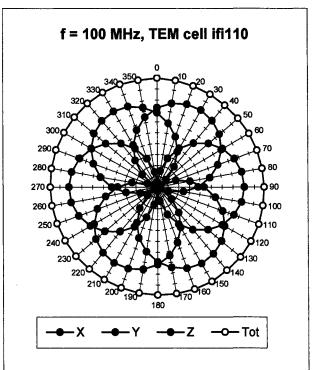
| NormX | <b>2.08</b> μV/(V/m) <sup>2</sup> | DCP X | 96 | mV |
|-------|-----------------------------------|-------|----|----|
| NormY | <b>2.09</b> μV/(V/m) <sup>2</sup> | DCP Y | 96 | mV |
| NormZ | <b>2.14</b> μV/(V/m) <sup>2</sup> | DCP Z | 96 | mV |

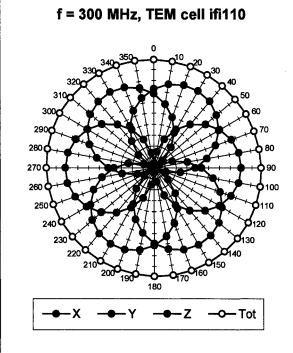
## Sensitivity in Tissue Simulating Liquid

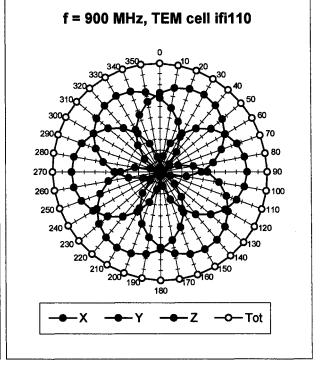
ConvF Z **5.0**  $\pm$  9.5% (k=2)

| Head         | 900 MHz             |        | $\epsilon_r$ = 41.5 ± 5%      | σ=       | 0.97 ± 5% n  | nho/m  |
|--------------|---------------------|--------|-------------------------------|----------|--------------|--------|
| Valid for f= | 800-1000 MHz with I | lead T | issue Simulating Liquid accor | rding to | EEE P1528    | -200X  |
|              | ConvF X             | 6.4    | ± 9.5% (k=2)                  |          | Boundary e   | ffect: |
|              | ConvF Y             | 6.4    | ± 9.5% (k=2)                  |          | Alpha        | 0.39   |
|              | ConvF Z             | 6.4    | ± 9.5% (k=2)                  |          | Depth        | 2.31   |
| Head         | 1800 <b>M</b> Hz    |        | $\epsilon_r$ = 40.0 ± 5%      | σ=       | 1.40 ± 5% n  | nho/m  |
| Valid for f= | 1710-1910 MHz with  | Head   | Tissue Simulating Liquid acco | ording   | to IEEE P152 | 8-200X |
|              | ConvF X             | 5.0    | ± 9.5% (k=2)                  |          | Boundary e   | ffect: |
|              | ConvF Y             | 5.0    | ± 9.5% (k=2)                  |          | Alpha        | 0.49   |

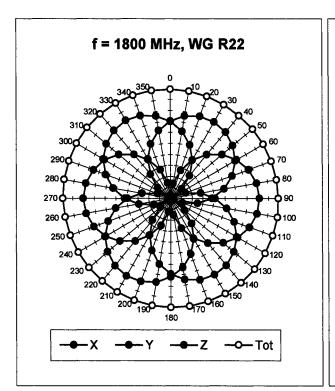

### **Boundary Effect**

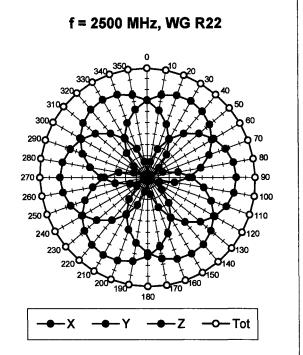

| Head | 900 MHz Typical SAR gradi                          | ent: 5 % per mm  |      |
|------|----------------------------------------------------|------------------|------|
|      | Probe Tip to Boundary                              | 1 mm             | 2 mm |
|      | SAR <sub>be</sub> [%] Without Correction Algorithm | 8.9              | 4.9  |
|      | SAR <sub>be</sub> [%] With Correction Algorithm    | 0.3              | 0.5  |
| Head | 1800 MHz Typical SAR gradi                         | ent: 10 % per mm |      |
|      | Probe Tip to Boundary                              | 1 mm             | 2 mm |
|      | SAR <sub>be</sub> [%] Without Correction Algorithm | 12.8             | 8.6  |
|      | SAR <sub>be</sub> [%] With Correction Algorithm    | 0.2              | 0.2  |


### **Sensor Offset**

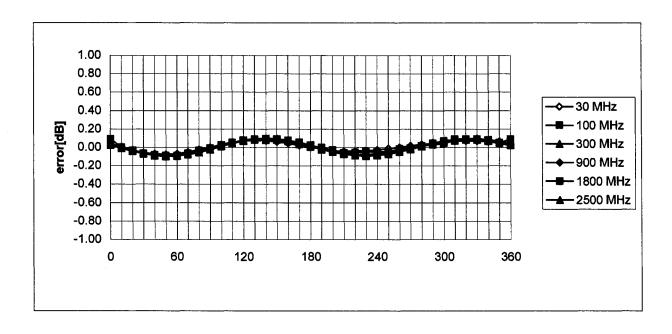

Probe Tip to Sensor Center 2.7 mm

# Receiving Pattern ( $\phi$ , $\theta$ = 0°



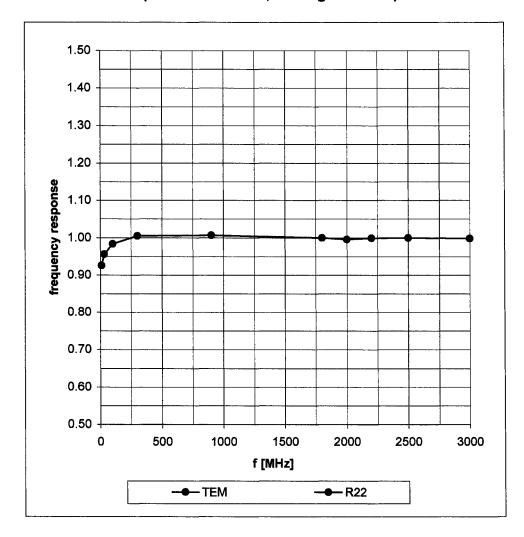





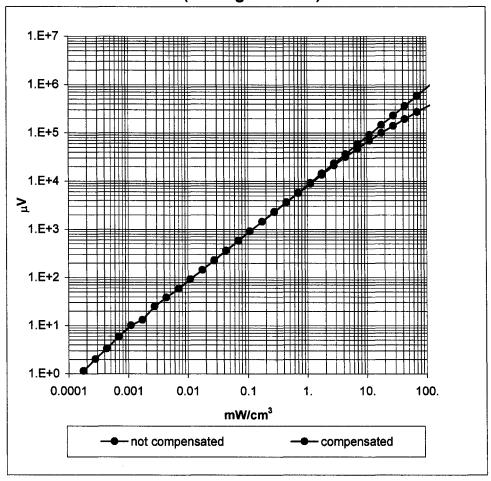

ET3DV6R SN:1501 April 16, 2003

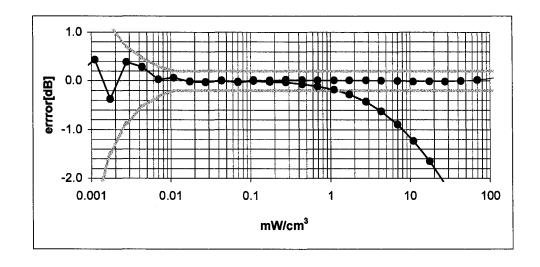


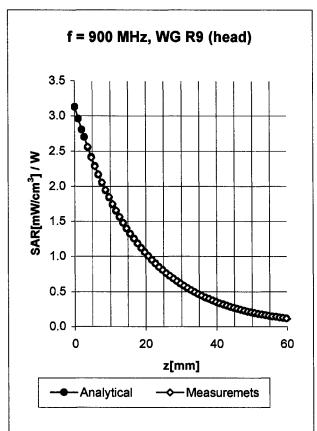



# Isotropy Error ( $\phi$ ), $\theta$ = 0°




# Frequency Response of E-Field


(TEM-Cell:ifi110, Waveguide R22)




# Dynamic Range f(SAR<sub>brain</sub>)

(Waveguide R22)









Head

900 MHz

 $\varepsilon_{\rm r} = 41.5 \pm 5\%$ 

 $\sigma$  = 0.97 ± 5% mho/m

Valid for f=800-1000 MHz with Head Tissue Simulating Liquid according to IEEE P1528-200X

ConvF X

**6.4**  $\pm$  9.5% (k=2)

Boundary effect:

ConvF Y

**6.4**  $\pm$  9.5% (k=2)

Alpha

0.39

ConvF Z

**6.4**  $\pm$  9.5% (k=2)

Depth

2.31

Head

1800 MHz

 $\epsilon_{\rm r}$  = 40.0 ± 5%

 $\sigma$  = 1.40 ± 5% mho/m

Valid for f=1710-1910 MHz with Head Tissue Simulating Liquid according to IEEE P1528-200X

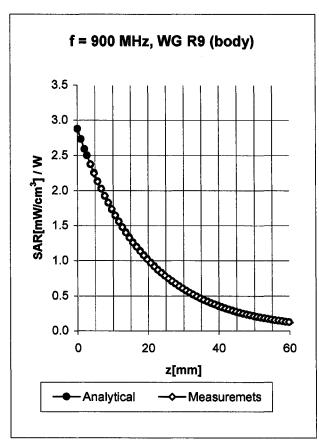
ConvF X

**5.0**  $\pm$  9.5% (k=2)

Boundary effect:

ConvF Y

**5.0**  $\pm$  9.5% (k=2)


Alpha


0.49

ConvF Z

5.0  $\pm$  9.5% (k=2)

Depth





**Body** 

900 MHz

 $\epsilon_{\rm r}$  = 55.0 ± 5%

 $\sigma = 1.05 \pm 5\% \text{ mho/m}$ 

Valid for f=800-1000 MHz with Body Tissue Simulating Liquid according to OET 65 Suppl. C

ConvF X

**6.1**  $\pm$  9.5% (k=2)

Boundary effect:

ConvF Y

**6.1**  $\pm$  9.5% (k=2)

Boardary oncot.

ConvF Z

**6.1** ± 9.5% (k=2)

Alpha Depth 0.402.37

Body

1800 MHz

 $\varepsilon_{\rm r}$  = 53.3 ± 5%

 $\sigma$  = 1.52 ± 5% mho/m

Valid for f=1710-1910 MHz with Body Tissue Simulating Liquid according to OET 65 Suppl. C

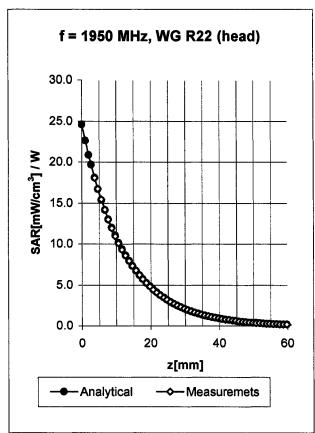
ConvF X

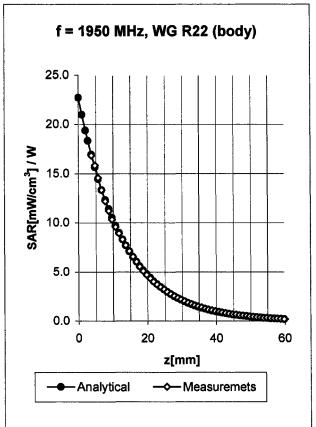
**4.6**  $\pm$  9.5% (k=2)

Boundary effect:

ConvF Y

**4.6**  $\pm$  9.5% (k=2)


Alpha


0.55

ConvF Z

**4.6**  $\pm$  9.5% (k=2)

Depth





| Head | 1950    | MHz | $\varepsilon_{\rm r}$ = 40.0 ± 5% | σ = 1.40 ± 5% mh         | o/m  |
|------|---------|-----|-----------------------------------|--------------------------|------|
|      | ConvF X | 4.7 | ± 8.9% (k=2)                      | Boundary effe            | ct:  |
|      | ConvF Y | 4.7 | ± 8.9% (k=2)                      | Alpha                    | 0.53 |
|      | ConvF Z | 4.7 | ± 8.9% (k=2)                      | Depth                    | 2.53 |
| Body | 1950    | MHz | $\varepsilon_{\rm r}$ = 53.3 ± 5% | ਰ <b>= 1.52 ± 5% m</b> h | o/m  |
|      | ConvF X | 4.2 | ± 8.9% (k=2)                      | Boundary effe            | ect: |
|      | ConvF Y | 4.2 | ± 8.9% (k=2)                      | Alpha                    | 0.70 |
|      | ConvF Z | 4.2 | ± 8.9% (k=2)                      | Depth                    | 2.26 |

# **Deviation from Isotropy in HSL**

Error ( $\theta \phi$  ), f = 900 MHz



#### **Calibration Laboratory of**

Schmid & Partner

**Engineering AG** 

Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

**Motorola MRO** 

| × | 32 |                | 973  | 86°88       | 26         |      | <i>*******</i> | 466 | ~3KC | m   | upper | w.   | 7700 | grand) |      | mm  | 200 | mm.       | ,     | 77 | Security | mm     | ~~~  | morning |
|---|----|----------------|------|-------------|------------|------|----------------|-----|------|-----|-------|------|------|--------|------|-----|-----|-----------|-------|----|----------|--------|------|---------|
|   | 2  | and the second | 123  | # #         | <b>@</b> 8 | Sm.  | g 200          | M   | , W  | 333 | 8 400 | 3 .  |      | Mili.  | 2000 | W . | m   | <i>m</i>  | š maš | 9  | Unite    | 2. 111 | 99   | 12512   |
| ž | ä  | 700 7          | 7112 | <b>यु</b> % | 20 S       | 6339 | ã m            | w.  | 72 W | 926 | 8 ACC | 28 3 |      | 480    | 3888 | 822 | -   | <b>##</b> | 8 553 |    |          | O22 3  | : 22 | 3300    |

Object(s)

ET3DV6R - SN 1506

Calibration procedure(s)

QA CAL-01 v2

Calibration procedure for dosimetric E-field probes

Calibration date:

May 14, 2003

Condition of the calibrated item

In Tolerance (according to the specific calibration document)

This calibration statement documents traceability of M&TE used in the calibration procedures and conformity of the procedures with the ISO/IEC 17025 international standard.

All calibrations have been conducted in the closed laboratory facility: environment temperature 22 +/- 2 degrees Celsius and humidity < 75%.

Calibration Equipment used (M&TE critical for calibration)

| Model Type                        | ID#          | Caf Date (Calibrated by, Certificate No.) | Scheduled Calibration  |
|-----------------------------------|--------------|-------------------------------------------|------------------------|
| RF generator HP 8684C             | US3642U01700 | 4-Aug-99 (SPEAG, in house check Aug-02)   | In house check: Aug-05 |
| Power sensor E4412A               | MY41495277   | 2-Apr-03 (METAS, No 252-0250)             | Apr-04                 |
| Power sensor HP 8481A             | MY41092180   | 18-Sep-02 (Agilent, No. 20020918)         | Sep-03                 |
| Power meter EPM E4419B            | GB41293874   | 2-Apr-03 (METAS, No 252-0250)             | Apr-04                 |
| Network Analyzer HP 8753E         | US38432426   | 3-May-00 (Agilent, No. 8702K064602)       | In house check: May 03 |
| Fluke Process Calibrator Type 702 | SN: 6295803  | 3-Sep-01 (ELCAL, No.2360)                 | Sep-03                 |

Calibrated by:

Name Function Signature
Nice Vetterii Technician

Approved by:

Katje Pokovic Laboratory Director

Date issued: May 15, 2003

This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for Calibration Laboratory of Schmid & Partner Engineering AG is completed.

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

# Probe ET3DV6R

SN:1506

Manufactured:

October 24, 1999

Last calibration:

May 3, 2002

Recalibrated:

May 14, 2003

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

ET3DV6R SN:1506 May 14, 2003

## DASY - Parameters of Probe: ET3DV6R SN:1506

#### Sensitivity in Free Space

#### **Diode Compression**

| NormX | <b>2.22</b> μV/(V/m) <sup>2</sup> | DCP X | 97 | mV |
|-------|-----------------------------------|-------|----|----|
| NormY | <b>2.04</b> μV/(V/m) <sup>2</sup> | DCP Y | 97 | mV |
| NormZ | <b>1.22</b> μV/(V/m) <sup>2</sup> | DCP Z | 97 | mV |

#### Sensitivity in Tissue Simulating Liquid

Head

900 MHz

 $\varepsilon_r$  = 41.5 ± 5%

 $\sigma$  = 0.97 ± 5% mho/m

Valid for f=800-1000 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X

ConvF X

**6.1**  $\pm$  9.5% (k=2)

Boundary effect:

ConvF Y

**6.1** ± 9.5% (k=2)

Alpha

0.60

ConvF Z

**6.1** ± 9.5% (k=2)

Depth

2.02

Head

1800 MHz

 $\varepsilon_r$  = 40.0 ± 5%

 $\sigma$  = 1.40 ± 5% mho/m

Valid for f=1710-1910 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X

ConvF X

4.9  $\pm$  9.5% (k=2)

Boundary effect:

ConvF Y

4.9  $\pm$  9.5% (k=2)

Alpha

0.61

ConvF Z

4.9  $\pm$  9.5% (k=2)

Depth

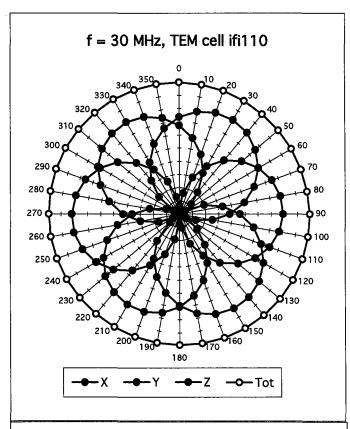
2.37

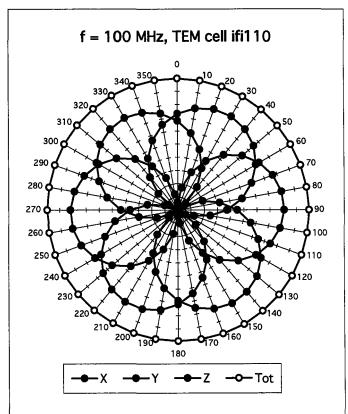
### **Boundary Effect**

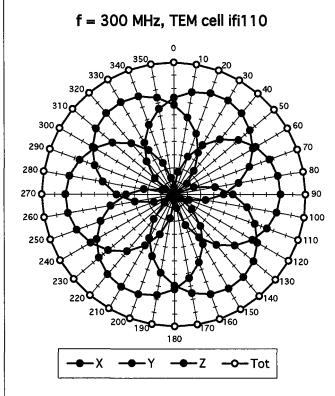
Typical SAR gradient: 5 % per mm

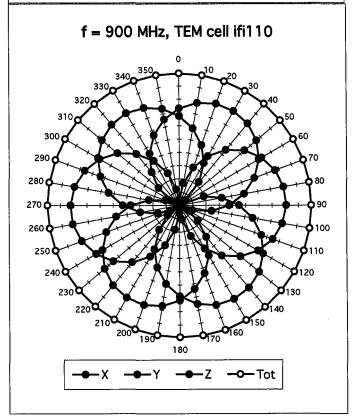
| Probe Tip to E        | Boundary                     | 1 mm | 2 mm |
|-----------------------|------------------------------|------|------|
| SAR <sub>be</sub> [%] | Without Correction Algorithm | 11.0 | 5.7  |
| SAR <sub>be</sub> [%] | With Correction Algorithm    | 0.3  | 0.5  |

Head 1800 MHz Typical SAR gradient: 10 % per mm

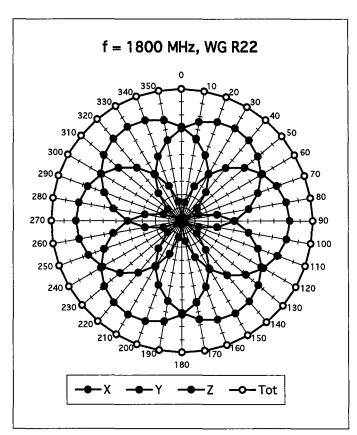

| Probe Tip to          | Boundary                     | 1 mm | 2 mm |
|-----------------------|------------------------------|------|------|
| SAR <sub>be</sub> [%] | Without Correction Algorithm | 14.6 | 9.3  |
| SAR <sub>be</sub> [%] | With Correction Algorithm    | 0.1  | 0.2  |

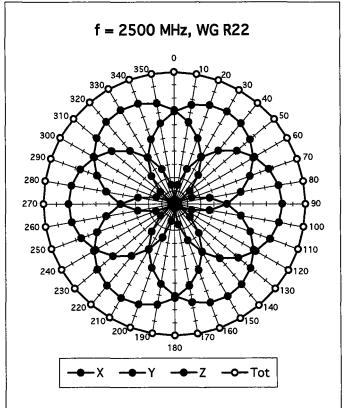

### Sensor Offset


Probe Tip to Sensor Center 2.7 mm

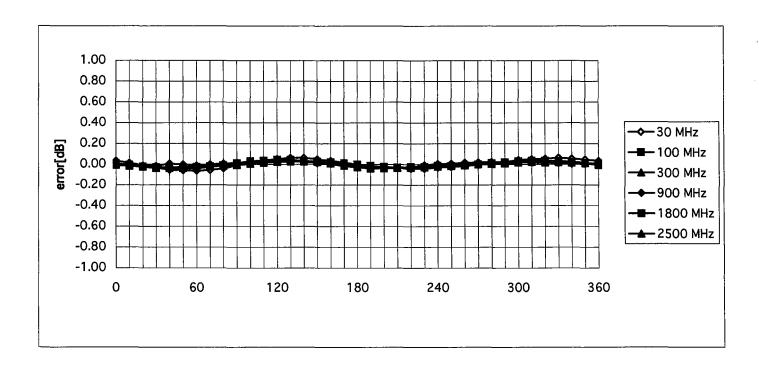

Optical Surface Detection mm

# Receiving Pattern ( $\phi$ ), $\theta = 0^{\circ}$



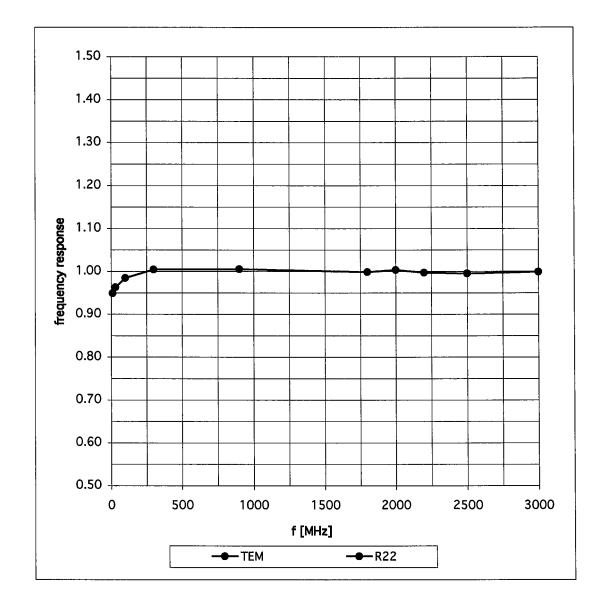





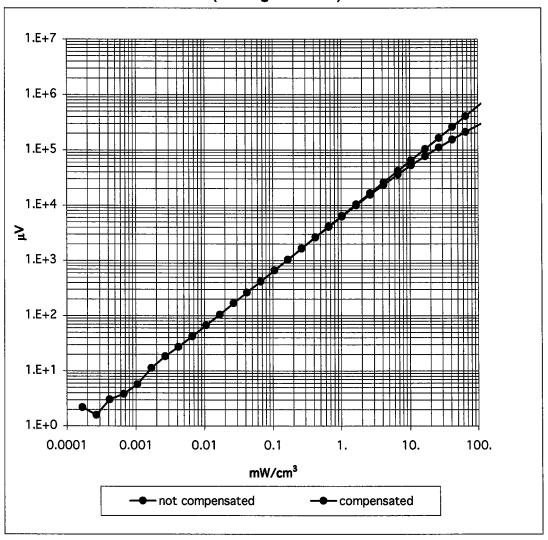

ET3DV6R SN:1506 May 14, 2003

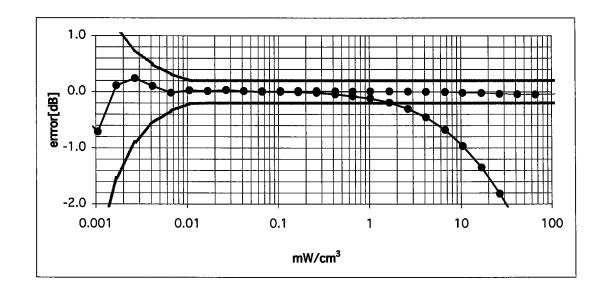


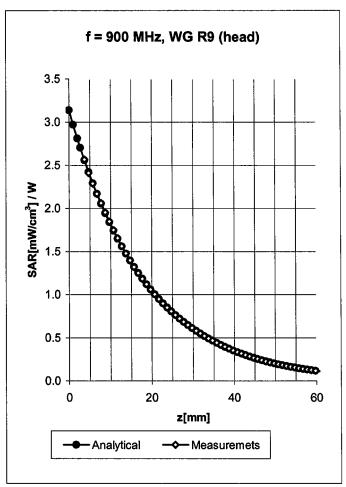


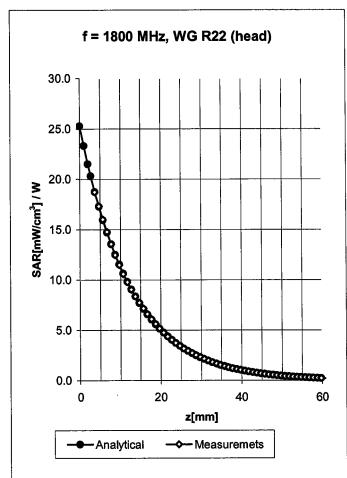

# Isotropy Error ( $\phi$ ), $\theta = 0^{\circ}$




# Frequency Response of E-Field


(TEM-Cell:ifi110, Waveguide R22)





# Dynamic Range f(SAR<sub>brain</sub>)

(Waveguide R22)









Head

900 MHz

 $\varepsilon_r$ = 41.5 ± 5%

 $\sigma$  = 0.97 ± 5% mho/m

Valid for f=800-1000 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X

ConvF X

 $6.1 \pm 9.5\% (k=2)$ 

Boundary effect:

ConvF Y

 $6.1 \pm 9.5\% (k=2)$ 

Alpha

0.60

ConvF Z

**6.1**  $\pm$  9.5% (k=2)

Depth

2.02

Head

1800 MHz

 $\varepsilon_r$  = 40.0 ± 5%

 $\sigma$  = 1.40 ± 5% mho/m

Valid for f=1710-1910 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X

ConvF X

4.9  $\pm 9.5\%$  (k=2)

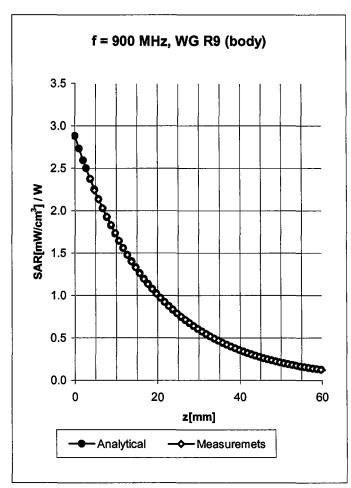
Boundary effect:

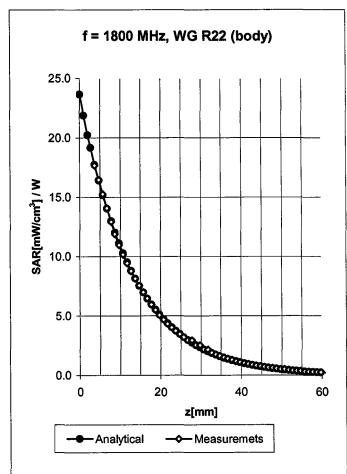
ConvF Y

4.9  $\pm$  9.5% (k=2)

Alpha

0.61


ConvF Z


4.9  $\pm 9.5\%$  (k=2)

Depth

ET3DV6R SN:1506 May 14, 2003

#### **Conversion Factor Assessment**





Body

900 MHz

 $\varepsilon_r$  = 55.0 ± 5%

 $\sigma = 1.05 \pm 5\%$  mho/m

Valid for f=800-1000 MHz with Body Tissue Simulating Liquid according to OET 65 Suppl. C

ConvF X

 $5.8 \pm 9.5\%$  (k=2)

Boundary effect:

ConvF Y

 $5.8 \pm 9.5\% (k=2)$ 

Alpha

0.53

ConvF Z

 $5.8 \pm 9.5\% (k=2)$ 

Depth

2.24

**Body** 

1800 MHz

 $\varepsilon_r = 53.3 \pm 5\%$ 

 $\sigma$  = 1.52 ± 5% mho/m

Valid for f=1710-1910 MHz with Body Tissue Simulating Liquid according to OET 65 Suppl. C

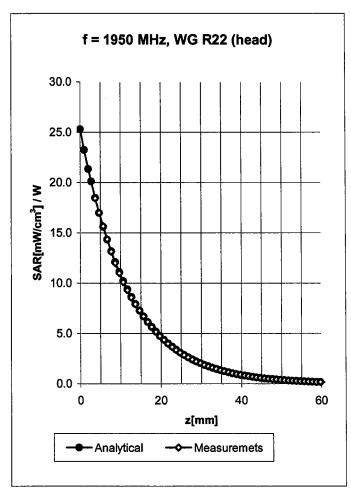
ConvF X

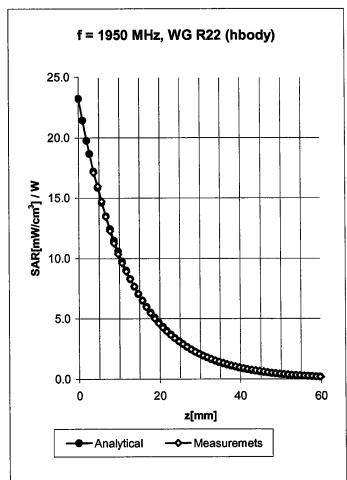
 $4.5 \pm 9.5\%$  (k=2)

Boundary effect:

ConvF Y

4.5  $\pm$  9.5% (k=2)


Alpha


0.69

ConvF Z

4.5  $\pm 9.5\%$  (k=2)

Depth





Head

1950 MHz

 $\varepsilon_{\rm r}$  = 40.0 ± 5%

 $\sigma = 1.40 \pm 5\%$  mho/m

Valid for f=1910-2100 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X

ConvF X

 $4.6 \pm 8.9\% (k=2)$ 

Boundary effect:

ConvF Y

4.6  $\pm$  8.9% (k=2)

Alpha

0.62

ConvF Z

4.6  $\pm$  8.9% (k=2)

Depth

2.45

**Body** 

1950 MHz

 $\varepsilon_r$  = 53.3 ± 5%

 $\sigma = 1.52 \pm 5\%$  mho/m

Valid for f=1910-2100 MHz with Body Tissue Simulating Liquid according to OET 65 Suppl. C

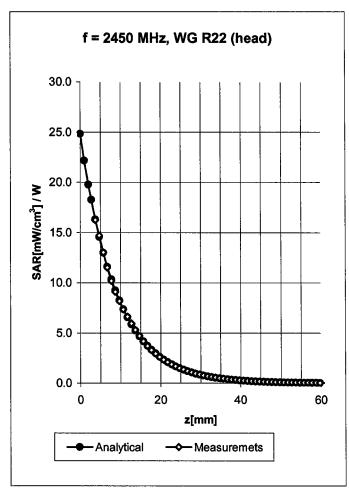
ConvF X

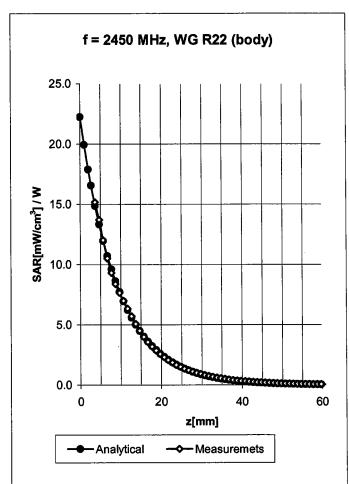
4.3  $\pm$  8.9% (k=2)

Boundary effect:

ConvF Y

4.3  $\pm$  8.9% (k=2)


Alpha


0.85

ConvF Z

4.3  $\pm 8.9\%$  (k=2)

Depth





Head

2450

MHz

 $\varepsilon_{\rm r}$  = 39.2 ± 5%

 $\sigma = 1.80 \pm 5\%$  mho/m

Valid for f=2400-2500 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X

ConvF X

4.5  $\pm 8.9\%$  (k=2)

Boundary effect:

ConvF Y

 $4.5 \pm 8.9\% (k=2)$ 

Alpha

1.22

ConvF Z

 $4.5 \pm 8.9\% (k=2)$ 

Depth

1.73

**Body** 

2450

MHz

 $\varepsilon_r = 52.7 \pm 5\%$ 

 $\sigma$  = 1.95 ± 5% mho/m

Valid for f=2400-2500 MHz with Body Tissue Simulating Liquid according to OET 65 Suppl. C

ConvF X

4.2 ± 8.9% (k=2)

**Boundary effect:** 

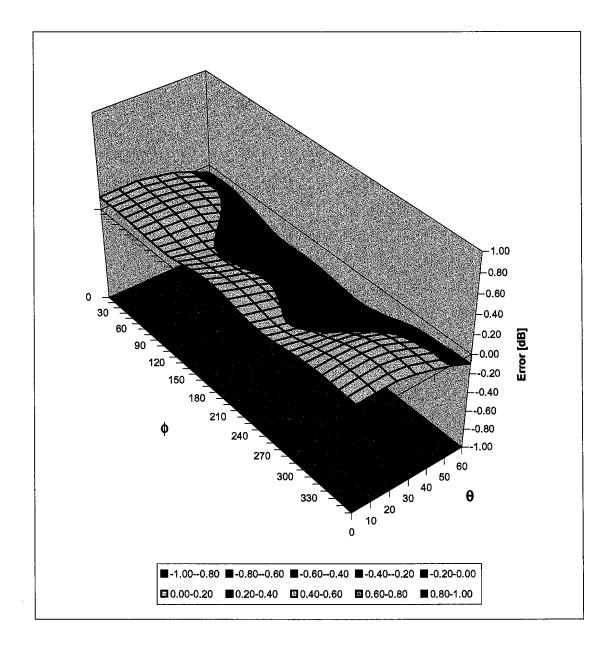
ConvF Y

4.2  $\pm 8.9\%$  (k=2)

Alpha

1.90

ConvF Z


4.2  $\pm 8.9\%$  (k=2)

Depth

ET3DV6R SN:1506 May 14, 2003

# **Deviation from Isotropy in HSL**

Error  $(\theta,\phi)$ , f = 900 MHz



# Appendix 5

FCC ID: IHDT56DR1

## **Dipole Characterization Certificate**

# **Certification of System Performance Check Targets Based on APP-0396**

#### -Historical Data-

|                                                                      | 835MHz                                   | 900MHz                                          | 1800MHz                                                | 1900MHz                                                |        |
|----------------------------------------------------------------------|------------------------------------------|-------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------|
| P1528 Target:<br>Advanced Extrapolation                              | 9.5                                      | 10.8                                            | 38.1                                                   | 39.7                                                   | (W/kg) |
| Measurement Uncertainty<br>(k=1):                                    | 10.2%                                    | 10.2%                                           | 10.2%                                                  | 10.2%                                                  |        |
| Measurement Period:                                                  | November '02 - June '03                  | November '02 - June '03                         | November '02 - June '03                                | November '02 - June '03                                | -      |
| # of tests performed:                                                | 169                                      | 728                                             | 868                                                    | 26                                                     |        |
| Grand Average: Worst Case Extrapolation                              | 10.1                                     | 11.6                                            | 39.7                                                   | 42.0                                                   | (W/kg) |
| <b>% Delta</b><br>(Average - P1528 Target)                           | 6.5%                                     | 7.7%                                            | 4.2%                                                   | 5.9%                                                   |        |
| Is % Delta <= Measurement<br>Uncertainty?                            | Yes                                      | Yes                                             | Yes                                                    | Yes                                                    |        |
| Accept/Reject <u>Average</u> as new system performance check target? | ACCEPT                                   | ACCEPT                                          | ACCEPT                                                 | ACCEPT                                                 |        |
|                                                                      | Applicable 835MHz Dipole Serial Numbers: | Applicable <u>900MHz</u> Dipole Serial Numbers: | Applicable <u>1800MHz</u><br>Dipole Serial<br>Numbers: | Applicable <u>1900Mhz</u><br>Dipole Serial<br>Numbers: |        |
|                                                                      | 420(TR), 421(TR)                         | 77, 78                                          | 246(TR), 250(TR)                                       | 514(TR), 518(TR)                                       |        |
|                                                                      | 422(TR), 423(TR)                         | 79, 80                                          | 251(TR), 258(TR)                                       | 519(TR), 520(TR)                                       |        |
|                                                                      | 424(TR), 425(TR)                         | 91, 92                                          | 259(TR), 262(TR)                                       | 523(TR), 524(TR)                                       |        |
|                                                                      | 431(TR), 432(TR)<br>433(TR), 434(TR)     | 93, 94<br>95, 96                                | 263(TR), 271(TR)<br>272(TR), 273(TR)                   | 526(TR), 527(TR)<br>528(TR), 529(TR)                   |        |
|                                                                      | 436(TR)                                  | 93, 90                                          | 276(TR), 277(TR)                                       | 530(TR), 533(TR)                                       | 1      |
|                                                                      | ,                                        | •                                               | 279(TR), 280(TR)                                       | ()                                                     | 1      |
|                                                                      | _                                        | _                                               | 281(TR), 282(TR)                                       |                                                        |        |
|                                                                      |                                          |                                                 | 283(TR), 284(TR)                                       |                                                        | ]      |

#### -New System Performance Check Targets- per APP-0396

(based on analysis of historical data)

| Frequency | SAR Target (W/kg) | Permittivity | Conductivity (S/m) |
|-----------|-------------------|--------------|--------------------|
| 835MHz    | 10.1              | 41.5 ± 5%    | 0.90 ± 5%          |
| 900MHz    | 11.6              | 41.5 ± 5%    | 0.97 ± 5%          |
| 1800MHz   | 39.7              | 40.0 ± 5%    | 1.40 ± 5%          |
| 1900MHz   | 42.0              | 40.0 ± 5%    | 1.40 ± 5%          |

| -Approvals- |               |                                                                                           |                           |           |  |  |  |
|-------------|---------------|-------------------------------------------------------------------------------------------|---------------------------|-----------|--|--|--|
|             | Submitted by: | Marge Kaunas                                                                              | Date:                     | 24-Jun-03 |  |  |  |
|             | Signed:       | Manja Kanna                                                                               |                           |           |  |  |  |
|             | Comments:     | spreadsheet detailing all measu                                                           | rements available upon re | quest     |  |  |  |
| <u>.</u>    | Approved by:  | Antonio Faraone                                                                           | Date:                     | 24-Jun-03 |  |  |  |
|             | Signed:       | Automo Faner-e                                                                            |                           |           |  |  |  |
|             | Comments:     | Targets and associated simulant properties are derived from the IEEE P1528 draft standard |                           |           |  |  |  |

## Appendix 6

FCC ID: IHDT56DR1

### **Measurement Uncertainty Budget**

FCC ID: IHDT56DR1

**Uncertainty Budget for System Performance Check (dipole & flat phantom)** 

FCC ID: IHDT56DR1

| Uncertainty budget for                               | Dysten.  | i i ciic | )1 111a11 | cc Ch  | CCIX ( | uipoic | C Hat              | pnant              | <del>om,</del> |
|------------------------------------------------------|----------|----------|-----------|--------|--------|--------|--------------------|--------------------|----------------|
|                                                      |          |          |           | e =    |        |        | <b>h</b> =         | <i>i</i> =         |                |
|                                                      |          |          |           | f(d,k) |        |        | cxf/               | c x g              |                |
| а                                                    | b        | c        | d         | )      | f      | g      | e                  | / e                | k              |
|                                                      |          | Tol.     | Prob.     |        | $c_i$  | $c_i$  | 1 g                | 10 g               |                |
|                                                      |          | (± %)    | Dist.     |        | (1 g)  | (10 g) | $\boldsymbol{u}_i$ | $\boldsymbol{u}_i$ |                |
| <b>Uncertainty Component</b>                         | Sec.     |          |           | Div.   | , ,    | , 2,   | (±%)               | (±%)               | $v_i$          |
| Measurement System                                   |          |          |           |        |        |        |                    |                    |                |
| Probe Calibration                                    | E.2.1    | 9.5      | N         | 2.00   | 1      | 1      | 4.8                | 4.8                | × ×            |
| Axial Isotropy                                       | E.2.2    | 4.7      | R         | 1.73   | 1      | 1      | 2.7                | 2.7                | oc             |
| Spherical Isotropy                                   | E.2.2    | 9.6      | R         | 1.73   | 0      | 0      | 0.0                | 0.0                | oc             |
| Boundary Effect                                      | E.2.3    | 5.8      | R         | 1.73   | 1      | 1      | 3.3                | 3.3                | oc             |
| Linearity                                            | E.2.4    | 4.7      | R         | 1.73   | 1      | 1      | 2.7                | 2.7                | oc             |
| System Detection Limits                              | E.2.5    | 1.0      | R         | 1.73   | 1      | 1      | 0.6                | 0.6                | ∞              |
| Readout Electronics                                  | E.2.6    | 1.0      | N         | 1.00   | 1      | 1      | 1.0                | 1.0                | oc             |
| Response Time                                        | E.2.7    | 0.0      | R         | 1.73   | 1      | 1      | 0.0                | 0.0                | oc             |
| Integration Time                                     | E.2.8    | 0.0      | R         | 1.73   | 1      | 1      | 0.0                | 0.0                | oc             |
| RF Ambient Conditions                                | E.6.1    | 3.0      | R         | 1.73   | 1      | 1      | 1.7                | 1.7                | oc             |
| Probe Positioner Mechanical                          |          |          |           |        |        |        |                    |                    |                |
| Tolerance                                            | E.6.2    | 0.3      | R         | 1.73   | 1      | 1      | 0.2                | 0.2                | ∞              |
| Probe Positioning with respect to                    |          |          |           |        |        |        |                    |                    |                |
| Phantom Shell                                        | E.6.3    | 1.1      | R         | 1.73   | 1      | 1      | 0.6                | 0.6                | ∞              |
| Extrapolation, interpolation and                     |          |          |           |        |        |        |                    |                    |                |
| Integration Algorithms for Max.                      |          |          |           |        |        |        |                    |                    |                |
| SAR Evaluation                                       | E.5      | 3.9      | R         | 1.73   | 1      | 1      | 2.3                | 2.3                | ∞              |
| Dipole                                               |          |          |           |        |        |        |                    |                    |                |
| Dipole Axis to Liquid Distance                       | 8, E.4.2 | 1.0      | R         | 1.73   | 1      | 1      | 0.6                | 0.6                | ∞              |
| Input Power and SAR Drift                            |          |          | _         |        |        |        |                    |                    |                |
| Measurement                                          | 8, 6.6.2 | 4.7      | R         | 1.73   | 1      | 1      | 2.7                | 2.7                | ∞              |
| Phantom and Tissue                                   |          |          |           |        |        |        |                    |                    |                |
| Parameters                                           |          |          |           |        |        |        |                    |                    |                |
| Phantom Uncertainty (shape and thickness tolerances) | E.3.1    | 4.0      | D         | 1.73   | 1      | 1      | 2.3                | 2.3                |                |
| ,                                                    | E.3.1    | 4.0      | R         | 1./3   | 1      | 1      | 2.3                | 2.3                | ∞              |
| Liquid Conductivity - deviation from target values   | E.3.2    | 5.0      | R         | 1 72   | 0.64   | 0.43   | 1 0                | 1.2                |                |
|                                                      | E.3.2    | 5.0      | K         | 1.73   | 0.04   | 0.43   | 1.8                | 1.2                | ∞              |
| Liquid Conductivity - measurement uncertainty        | E.3.3    | 10.0     | R         | 1.73   | 0.64   | 0.43   | 3.7                | 2.5                |                |
|                                                      | E.3.3    | 10.0     | K         | 1./3   | 0.04   | 0.43   | 3.7                | 2.3                | ∞              |
| Liquid Permittivity - deviation from target values   | E.3.2    | 10.0     | R         | 1.73   | 0.6    | 0.49   | 3.5                | 2.8                |                |
| Liquid Permittivity -                                | 15.5.4   | 10.0     | 1         | 1./3   | 0.0    | 0.47   | ٠.٠                | 2.0                | ∞              |
| measurement uncertainty                              | E.3.3    | 5.0      | R         | 1.73   | 0.6    | 0.49   | 1.7                | 1.4                |                |
| Combined Standard                                    | 15.3.3   | 3.0      | IX.       | 1./3   | 0.0    | 0.47   | 1./                | 1.4                | ∞              |
| Uncertainty                                          |          |          | RSS       |        |        |        | 10.16              | 9.43               | 99999          |
| Expanded Uncertainty                                 |          |          |           |        |        |        |                    |                    |                |
| (95% CONFIDENCE LEVEL)                               |          |          | k=2       |        |        |        | 19.92              | 18.48              |                |

### Appendix 7

FCC ID: IHDT56DR1

## Photographs of the device under test















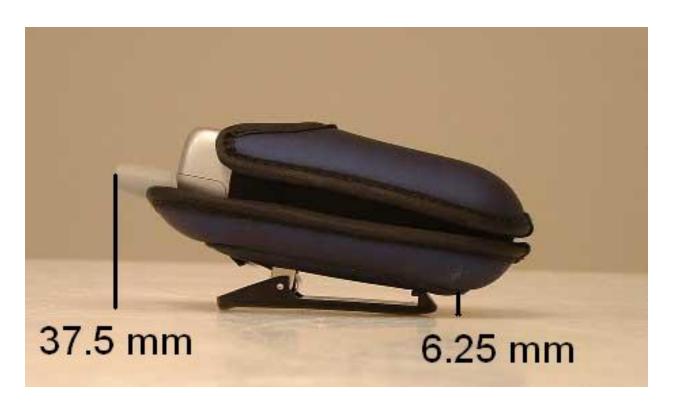



Exhibit 11

Page 25









