

Exhibit 11: SAR Test Report IHDT56DJ1

Date of test: 18-24, July, 2003 **Date of Report:** 31 July, 2003

Motorola Personal Communications Sector Product Safety & Compliance Laboratory

600 N. US Highway 45

Laboratory: Room: MW113

Libertyville, Illinois 60048

Steven Hauswirth **Test Responsible:**

Principal Staff Engineer

Accreditation: This laboratory is accredited to ISO/IEC 17025-1999 to perform the following tests:

ACCREDITED

Tests: Procedures:

Electromagnetic Specific Absorption Rate ANSI/IEEE C95.1-1992, 1999

(SAR) IEEE C95.3-1991 IEEE P1528 (DRAFT)

FCC OET Bulletin 65 (including Supplements A, B, C)

FCC ID: IHDT56DJ1

Australian Communications Authority Radio

Communications (Electromagnetic Radiation – Human

Exposure) Standard 1999 CENELEC EN 50361 (2001)

Simulated Tissue Preparation APP-0247

RF Power Measurement DOI-0876, 0900, 0902, 0904, 0915

On the following products or types of products:

Wireless Communications Devices (Examples): Two Way Radios; Portable Phones (including

Licensed Non-Broadcast and PCS); Low Frequency Readers; and Pagers

A2LA certificate #1651-01

Motorola declares under its sole responsibility that portable cellular telephone FCC ID IHDT56DJ1 to which this declaration relates, is in conformity with the appropriate General Population/Uncontrolled RF exposure standards, recommendations and guidelines (FCC 47 CFR measurement standards, guidelines and recommended practices. Any deviations from these

Statement of **Compliance:** §2.1093). It also declares that the product was tested in accordance with the appropriate standards, guidelines and recommended practices are noted below:

(none)

©Motorola, Inc. 2003

This test report shall not be reproduced except in full, without written approval of the laboratory.

The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report.

Motorola encourages all feedback, both positive and negative, on this test report.

FCC ID: IHDT56DJ1

Table of Contents

1)	Introduction	3
2)	Description of the Device Under Test Antenna description Device description	3 3 3
3)	Test Equipment 3.1 Dosimetric system 3.2 Additional equipment used	3 3 4
4)	Electrical parameters of the tissue simulating liquid	4
5)	System Accuracy Verification	5
6)	Test Results 6.1 Head Adjacent Test Results 6.2 Body-Worn Test Results	5 6 9
Re	ferences:	
Ар	pendix 1: SAR distribution comparison for the system accuracy verification	12
Ap	pendix 2: SAR distribution plots for Phantom Head Adjacent Use	13
Ap	pendix 3: SAR distribution plots for Body Worn Configuration	16
Ар	pendix 4. Probe Calibration Certificate	18
Ар	pendix 5. Dipole Characterization Certificate	19
Ap	pendix 6: Measurement Uncertainty Budget	20
Ap	pendix 7. Photographs of the device under test	23

Page 2 Exhibit 11

1. Introduction

The Motorola Personal Communications Sector Product Safety Laboratory has performed measurements of the maximum potential exposure to the user of portable cellular phone (FCC ID IHDT56DJ1). The Specific Absorption Rate (SAR) of this product was measured. The portable cellular phone was tested in accordance with FCC OET Bulletin 65 Supplement C 01-01.

2. Description of the Device Under Test

Antenna description

Type	Stubby		
Location	Right Side		
Dimensions	Length	17mm	
Difficusions	Width	6mm	
Configuration	Stubby		

Device description

FCC ID Number	IHDT56DJ1				
Serial number	42	CCFE68 & 42CI	D03C0		
Mode(s) of Operation	AMPS800 CDMA800 CDMA				
Modulation Mode(s)	AMPS	CDMA	CDMA		
Maximum Output Power Setting	27.80 dBm	25.00 dBm	25.00 dBm		
Duty Cycle	1:1	1:1	1:1		
Transmitting Frequency Rang(s)	824-849MHz	824-849MHz	1851-1909MHz		
Production Unit or Identical Prototype (47 CFR §2908)	Identical Prototype				
Device Category	Portable				
RF Exposure Limits	Genera	l Population / U	ncontrolled		

3. Test Equipment Used

3.1 Dosimetric System

The Motorola Personal Communications Sector Product Safety & Compliance Laboratory utilizes a Dosimetric Assessment System (Dasy3TM v3.1d) manufactured by Schmid & Partner Engineering AG (SPEAGTM), of Zurich Switzerland. All the SAR measurements are taken within a shielded enclosure. The overall RSS uncertainty of the measurement system is $\pm 11.7\%$ (K=1) with an expanded uncertainty of $\pm 23.0\%$ (K=2). The measurement uncertainty budget is given in Appendix 6. Per IEEE 1528, this uncertainty budget is applicable to the SAR range of 0.4 W/kg to 10 W/kg. The list of calibrated equipment used for the measurements is shown below.

Description	Serial Number	Cal Due Date
DASY3 DAE V1	SN437	18-Mar-04
E-Field Probe ET3DV6R	SN1501	16-Apr-03
Dipole Validation Kit, D900V2	SN079	24-Jun-04
S.A.M. Phantom used for 800MHz	TP-1132	
Dipole Validation Kit, D1800V2	SN246TR	24-Jun-04
S.A.M. Phantom used for 1900MHz	TP-1160	

3.2 Additional Equipment

Description	Serial Number	Cal Due Date
Signal Generator HP8648C	3847A04633	11-Oct-04
Power Meter E4419B	US37360825	21-Apr-04
Power Sensor #1 - 8481A	US337296475	05-Nov-03
Power Sensor #2 - 8481A	US3318A25036	05-Nov-03
Network Analyzer HP8753ES	US39172529	18-Jun-04
Dielectric Probe Kit HP85070B	US33020235	

4. Electrical parameters of the tissue simulating liquid

Prior to conducting SAR measurements, the relative permittivity, ε_r , and the conductivity, σ , of the tissue simulating liquids were measured with the HP85070 Dielectric Probe Kit These values, along with the temperature of the tissue simulate are shown in the table below. The recommended limits for maximum permittivity and minimum conductivity are also shown. These come from the Federal Communication Commission, OET Bulletin 65 Supplement C 01-01. It is seen that the measured parameters are satisfactory for compliance testing.

			Dielec	ctric Paran	neters
f	Tissue				Temp (°C)
(MHz)	type	Limits / Measured	ε_r	σ (S/m)	(C)
		Measured, 19-Jul-03	43.2	0.93	20.1
	Head	Measured, 20-Jul-03	43.4	0.92	19.9
	Heau	Measured, 22-Jul-03	42.7	0.91	20.3
835		Recommended Limits	41.5	0.9	20-25
		Measured, 23-Jul-03	55.2	0.97	20.1
	Body	Measured, 24-Jul-03	55.3	0.97	20.3
		Recommended Limits	55.2	0.97	20-25
		Measured, 18-Jul-03	39.0	1.45	20.2
	Head	Measured, 18-Jul-03	38.8	1.46	20.2
1880		Recommended Limits	40.0	1.4	20-25
1000		Measured, 18-Jul-03	51.7	1.59	20.3
	Body	Measured, 19-Jul-03	51.7	1.59	20.2
		Recommended Limits	53.3	1.52	20-25

The list of ingredients and the percent composition used for the tissue simulates are indicated in the table below.

	800MHz	800MHz	1900MHz	1900MHz
Ingredient	Head	Body	Head	Body
Sugar	57.0	44.9	-	30.80
DGBE	-	-	47.0	
Water	40.45	53.06	52.8	68.91
Salt	1.45	0.94	0.2	0.29
HEC	1.0	1.0	-	
Bact.	0.1	0.1		

5. System Accuracy Verification

A system accuracy verification of the DASY3 was performed using the measurement equipment listed in Section 3.1. The daily system accuracy verification occurs within center section of the SAM phantom.

FCC ID: IHDT56DJ1

A SAR measurement was performed to see if the measured SAR was within ± 100 from the target SAR indicated on the dipole certification sheet. These tests were done at 900MHz and/or 1800MHz. These frequencies are within 100MHz of the mid-band frequency of the test device. This is within the allowable window given in Supplement C 01-01 *Appendix D System Verification* section item #5. The test was conducted on the same days as the measurement of the DUT. Recommended limits for maximum permittivity, minimum conductivity are shown in the table below. These come from the Federal Communication Commission, OET Bulletin 65 Supplement C 01-01. The obtained results from the system accuracy verification are displayed in the table below. The distributions of SAR compare well with those of the reference measurements (see Appendix 1). The tissue stimulant depth was verified to be 15.0cm ± 0.5 cm. Z-axis scans showing the SAR penetration are also included in Appendix 1. SAR values are normalized to 1W forward power delivered to the dipole.

f (MHz)	Description	SAR (W/kg), 1gram	Dielectric ϵ_r	Dielectric Parameters $\varepsilon_r \qquad \qquad \sigma$ (S/m)		Tissue Temp (°C)
	Measured, 19-Jul-03	11.27	42.4	0.99	21	20.4
	Measured, 20-Jul-03	11.30	42.6	0.99	20	20.2
900	Measured, 22-Jul-03	11.23	41.9	0.98	21	21.6
300	Measured, 23-Jul-03	11.08	41.5	0.97	20	20.7
	Measured, 24-Jul-03	11.04	41.2	0.97	21	20.7
	Recommended Limits	11.60	39.4 - 43.6	0.92 - 1.02	15-30	15-30
1800	Measured, 18-Jul-03	38.8	39.1	1.37	20	19.9
1000	Recommended Limits	39.7	38 - 42	1.33 - 1.47	15-30	15-30

The following probe conversion factors were used on the E-Field probe(s) used for the system accuracy verification measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #	
E-Field Probe	SN1501	900	6.4	7 of 10	
ETD3V6R		1800	5.0	7 of 10	

6. Test Results

The test sample was operated in a test mode that allows control of the transmitter without the need to place actual phone calls. For the purposes of this test the unit is commanded to test mode and manually set to the proper channel, transmitter power level and transmit mode of operation. The phone was tested in the configurations stipulated in OET Bulletin 65 Supplement C 01-01. Motorola also followed the requirements in Supplement. C / Appendix D: SAR Measurement Procedures, section titled "Devices Operating Next To A Person's Ear". These directions state "The device should be tested on the left and right side of the head phantom in the "Cheek/Touch" and "Ear/Tilt" positions. When applicable, each configuration should be tested with the antenna in its fully extended and fully retracted positions. These test configurations should be tested at the high, middle and low frequency channels of each operating mode; for example, AMPS, CDMA, and TDMA. If the SAR measured at the middle channel for each test configuration (left, right, Cheek/Touch, Tile/Ear, extended and retracted) is at least 2.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s)."

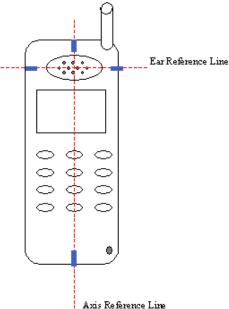
The DASY v3.1d SAR measurement system specified in section 3.1 was utilized within the intended operations as set by the SPEAGTM setup. The phone was positioned onto the measurement configurations using the positioner

supplied with the DASY 3.1d SAR measurement system. The measured dielectric constant of the material used for the positioner is less than 2.9 and the loss tangent is less than $0.02 (\pm 30\%)$ at 850MHz. The default settings for the "coarse" and "cube" scans were chosen and use for measurements. The grid spacing of the course scan was set to 15cm as shown in the SAR plots included in appendix 2 and 3. Please refer to the DASY manual for additional information on SAR scanning procedures and algorithms used.

FCC ID: IHDT56DJ1

The Cellular Phone (FCC ID IHDT56DJ1) has the following battery options:

SNN5725A – 750mAh Battery SNN5726A – 1100mAhBattery


The battery used to do most of the SAR testing is the SNN5725A. The phone was placed in the SAR measurement system with a fully charged battery. The configurations that resulted in the highest SAR values were tested using the other batteries listed above.

6.1 Head Adjacent Test Results

To aid in positioning repeatability, the ear reference line of the device and the axis reference line of the device have been physically added using a non-metallic marker.

- Per Figure 1, the "Ear Reference Line" is centered vertically through the center of the listening area (as defined by the speaker holes in the housing).
- The "Axis Reference Line" bisects the front surface of the device at its top and bottom edges.
- The intersection of these two lines defines the location of the "Ear Reference Point".

The lines drawn on the device extended to the outside edges, as shown in blue in the figure below, & wrap around the sides of the device.

The SAR results shown in tables 1 through 4 are maximum SAR values averaged over 1 gram of phantom tissue. Also shown are the measured conducted output powers, the temperature of the test facility during the test, the temperature of the tissue simulate after the test, the measured drift and the extrapolated SAR. The exact method of extrapolation is New SAR = Old SAR * 10^(-drift/10). The SAR reported at the end of the measurement process by the DASYTM measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test. The test conditions indicated as bold numbers in the following table are included in Appendix 2 All other test conditions

measured lower SAR values than those included. The phone has two different housings: "C333" and "C332". SAR measurements were done on the DUT utilizing both housings.

FCC ID: IHDT56DJ1

The SAR measurements were performed using the SAM phantoms listed in section 3.1. Since same phantoms and tissue simulate are used for the system accuracy verification as the device SAR measurements, the Z-axis scans included in within Appendix 1 are applicable for verification of tissue simulate depth to be 15.0cm ± 0.5 cm. All other test conditions measured lower SAR values than those included in Appendix 2. Note that 800MHz digital mode SAR measurements were performed in accordance with Supplement C.

The following probe conversion factors were used on the E-Field probe(s) used for the head adjacent measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #		
E-Field Probe ETD3V6R	SN1501	835	6.4	7 of 10		
		1900	5.0	7 of 10		

			C332 (Cheek / Touch Position)							
		Conducted		Le	ft Head		Right Head			
f (MHz)	Description	Output Power (dBm)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)
	Channel 991	27.76	1.05	-0.28	1.12	20.4	0.882	-0.31	0.95	20.4
Analog 800MHz	Channel 384	27.73	1.13	-0.16	1.17	20.4	1.02	-0.35	1.11	20.4
	Channel 799	27.73	1.09	-0.14	1.13	20.4	0.947	-0.14	0.98	20.0
	Channel 1013	24.98	0.878	-0.26	0.93	20.0	0.799	-0.42	0.88	20.1
Digital 800MHz	Channel 384	25.03	1.04	-0.31	1.12	20.1	0.943	0.05	0.94	20.1
	Channel 779	24.98	0.892	-0.09	0.91	20.0	0.803	-0.14	0.83	20.0
	Channel 25	24.93								
Digital 1900MHz	Channel 600	24.99	0.562	-0.4	0.62	19.9	0.515	-0.76	0.61	19.9
	Channel 1175	24.93								

Table 1: SAR measurement results for the portable cellular telephone FCC ID IHDT56DJ1 at highest possible output power. Measured against the left head in the Cheek/Touch Position.

			C332 (15° Tilt Position)							
		Conducted		Le	ft Head			Rig	ht Head	
f (MHz)	Description	Output Power (dBm)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)
	Channel 991	27.76	1.24	-0.21	1.30	20.4	1.03	0.10	1.03	20.0
Analog 800MHz	Channel 384	27.73	1.36	-0.07	1.38	20.3	1.17	0.14	1.17	20.0
	Channel 799	27.73	1.30	0.16	1.30	20.3	1.11	0.31	1.11	20.0
5	Channel 1013	24.98	1.11	-0.52	1.25	20.0	0.915	-0.4	1.00	20.0
Digital 800MHz	Channel 384	25.03	1.29	-0.20	1.35	20.1	1.12	0.07	1.12	0.95
	Channel 779	24.98	1.17	-0.08	1.19	20.0	0.945	0.14	0.95	20.0
	Channel 25	24.93								
Digital 1900MHz	Channel 600	24.99	0.718	-0.45	0.80	19.9	0.626	-0.72	0.74	19.9
	Channel 1175	24.93								

Table 2: SAR measurement results for the portable cellular telephone FCC ID IHDT56DJ1 at highest possible output power. Measured against the left head in the 15° Tilt Position.

			C332 (Left Head 15° Tilt Position)								
f		Conducted Output	w/ SNN5726A Battery								
(MHz)	Description	Power (dBm)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)					
	Channel 991	27.76	1.25	-0.01	1.25	20.0					
Analog 800MHz	Channel 384	27.73	1.40	0.00	1.40	20.0					
	Channel 799	27.73	1.35	0.04	1.35	20.0					
	Channel 1013	24.98	1.19	-0.20	1.25	20.0					
Digital 800MHz	Channel 384	25.03	1.24	0.06	1.24	20.0					
	Channel 779	24.98	1.14	0.28	1.14	20.0					
	Channel 25	24.93									
Digital 1900MHz	Channel 600	24.99	0.66	-0.6	0.76	19.9					
	Channel 1175	24.93									

FCC ID: IHDT56DJ1

Table 3: SAR measurement results for the portable cellular telephone FCC ID IHDT56DJ1 at highest possible output power. Measured against the left head in the 15° Tilt Position.

				C333 (Cheek / Touch Position)						
		Conducted		Le	ft Head		Right Head			
f (MHz)	Description	Output Power (dBm)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)
	Channel 991	27.76	1.00	-0.09	1.02	20.0	0.84	-0.12	0.86	20.6
Analog 800MHz	Channel 384	27.73	1.15	-0.29	1.23	20.0	1.14	0.08	1.14	20.0
	Channel 799	27.73	1.11	0.00	1.11	20.1	0.979	-0.08	1.00	20.6
	Channel 1013	24.98	0.923	-0.35	1.00	20.3	0.731	-0.37	0.80	20.4
Digital 800MHz	Channel 384	25.03	1.11	-0.27	1.18	20.4	0.931	-0.15	0.96	20.5
	Channel 779	24.98	0.94	-0.12	0.97	20.3	1.00	-0.04	1.01	20.4
5	Channel 25	24.93								
Digital 1900MHz	Channel 600	24.99	0.596	0.0	0.60	19.9	0.604	-0.39	0.66	19.9
	Channel 1175	24.93								

Table 4: SAR measurement results for the portable cellular telephone FCC ID IHDT56DJ1 at highest possible output power. Measured against the left head in the Cheek/Touch Position.

				C333 (15° Tilt Position)							
		Conducted		Left Head					Right Head		
f (MHz)	Description	Output Power (dBm)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)	
	Channel 991	27.76	1.19	0.05	1.19	20.1	1.01	-0.15	1.05	20.2	
Analog 800MHz	Channel 384	27.73	1.31	0.16	1.31	20.0	1.15	0.08	1.15	20.2	
	Channel 799	27.73	1.30	0.20	1.30	20.1	1.14	0.18	1.14	20.2	
	Channel 1013	24.98	1.03	-0.24	1.10	20.2	0.852	-0.36	0.93	20.3	
Digital 800MHz	Channel 384	25.03	1.22	0.02	1.22	20.3	1.09	-0.09	1.11	20.3	
	Channel 779	24.98	1.11	0.20	1.11	20.2	0.949	-0.18	0.99	20.3	
	Channel 25	24.93	1.14	0.05	1.14	20.0	1.07	-0.05	1.08	20.0	
Digital 1900MHz	Channel 600	24.99	0.887	-0.12	0.91	19.8	0.845	-0.04	0.85	19.9	
	Channel 1175	24.93	1.50	-0.01	1.50	20.0	0.824	-0.24	0.87	20.0	

Table 5: SAR measurement results for the portable cellular telephone FCC ID IHDT56DJ1 at highest possible output power. Measured against the left head in the 15° Tilt Position.

FCC ID:	IHDT56DJ1
---------	-----------

				C333 (Left Head 15° Tilt Position)							
		Conducted	With	With Carry Case AMB33105 With Carry Case 35451						1	
f (MHz)	Description	Output Power (dBm)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)	
	Channel 991	27.76	1.03	-0.05	1.04	19.7	1.13	0.02	1.13	20.0	
Analog 800MHz	Channel 384	27.73	1.13	0.01	1.13	20.0	1.27	-0.03	1.28	19.9	
	Channel 799	27.73	1.13	0.13	1.13	19.8	1.27	0.07	1.27	20.0	
	Channel 1013	24.98	0.825	-0.25	0.87	20.3	0.94	-0.25	1.00	20.4	
Digital 800MHz	Channel 384	25.03	1.04	-0.06	1.05	20.4	1.21	0.09	1.21	20.4	
	Channel 779	24.98	0.916	0.06	0.92	20.3	1.11	0.13	1.11	20.4	
.	Channel 25	24.93					1.13	0.17	1.13	20.0	
Digital 1900MHz	Channel 600	24.99	0.72	-0.09	0.74	20.0	0.859	-0.20	0.90	20.0	
	Channel 1175	24.93					1.51	-0.20	1.58	20.0	

Table 6: SAR measurement results for the portable cellular telephone FCC ID IHDT56DJ1 at highest possible output power. Measured against the left head in the 15° Tilt Position.

			C333	(Left Head	15° Tilt Posi	tion)				
f		Conducted Output	w/ SNN5726A Battery							
(MHz)	Description	Power (dBm)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)				
	Channel 991	27.76	1.17	-0.01	1.17	19.8				
Analog 800MHz	Channel 384	27.73	1.34	-0.02	1.35	20.0				
	Channel 799	27.73	1.37	0.02	1.37	19.8				
	Channel 1013	24.98	0.956	-0.22	1.01	20.3				
Digital 800MHz	Channel 384	25.03	1.16	-0.01	1.16	20.3				
	Channel 779	24.98	1.05	0.21	1.05	20.3				
	Channel 25	24.93	1.12	0.14	1.12	20.0				
Digital 1900MHz	Channel 600	24.99	0.846	-0.05	0.86	20.0				
	Channel 1175	24.93	1.47	-0.16	1.53	20.0				

Table 7: SAR measurement results for the portable cellular telephone FCC ID IHDT56DJ1 at highest possible output power. Measured against the left head in the 15° Tilt Position.

6.2 Body-Worn Test Results

The SAR results shown in table 5 are the maximum SAR values averaged over 1 gram of phantom tissue. Also shown are the measured conducted output powers, the temperature of the test facility during the test, the temperature of the tissue simulate after the test, the measured drift and the extrapolated SAR. The exact method of extrapolation is New SAR = Old SAR * 10^(-drift/10). The SAR reported at the end of the measurement process by the DASYTM measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test. The test conditions indicated as bold numbers in the following table are included in Appendix 3. Note that 800MHz digital mode SAR measurements were performed in accordance with OET Bulletin 65 Supplement C 01-01. All other test conditions measured lower SAR values than those included in Appendix 3.

A "flat" phantom was for the body-worn tests. This "flat" phantom is made out of 1" thick natural High Density Polyethylene with a thickness at the bottom equal to $2.0 \, \text{mm}$. It measures $52.7 \, \text{cm}(\log) \times 26.7 \, \text{cm}(\text{wide}) \times 21.2 \, \text{cm}(\text{tall})$. The measured dielectric constant of the material used is less than $2.3 \, \text{and}$ the loss tangent is less than $0.0046 \, \text{all}$ the way up to $2.184 \, \text{GHz}$.

The tissue stimulant depth was verified to be $15.0 \,\mathrm{cm} \pm 0.5 \,\mathrm{cm}$. The same device holder described in section 6 was used for positioning the phone. The functional accessories were divided into two categories, the ones with metal components and the ones with non-metal components. For non-metallic component accessories', testing was performed on the accessory that displayed the closest proximity to the flat phantom. Each metallic component accessory, if any, was checked for uniqueness of metal component so that each is tested with the device. If multiple accessories shared an identical metal component, only the accessory that dictates the closest spacing to the body was tested. The cellular phone was tested with a headset connected to the device for all body-worn SAR measurements.

FCC ID: IHDT56DJ1

There are no Body-Worn accessories available for this phone when using the C332 housing, so testing was performed with the front of the phone 1" away from the phantom and then with the back of the phone 1" away from the phantom.

There are two Body-Worn accessories available for this phone when using the C333 housing:

A leather carry case: Model #AMB33105 A leather/Plastic carry case: Model #35451

These two accessories differ in metal content in the belt clip. Both accessories were SAR tested.

The following probe conversion factors were used on the E-Field probe(s) used for the body worn measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe	SN1501	835	6.1	8 of 10
ETD3V6R	5111301	1900	4.6	8 of 10

				C332 Body Worn						
		Conducted	1" S	1" Separation from Front of Phone 1" Separation from Back					from Back of Pho	one
f (MHz)	Description	Output Power (dBm)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)
	Channel 991	27.76								
Analog 800MHz	Channel 384	27.73	0.228	-0.15	0.24	20.6	0.219	-0.09	0.22	20.6
	Channel 799	27.73								
	Channel 1013	24.98								
Digital 800MHz	Channel 384	25.03	0.158	-0.09	0.16	20.7	0.206	-0.03	0.21	20.6
	Channel 779	24.98								
D	Channel 25	24.93								
Digital 1900MHz	Channel 600	24.99	0.0769	-0.58	0.09	20.0	0.0856	-0.17	0.09	20.0
	Channel 1175	24.93								

Table 8: SAR measurement results for the portable cellular telephone FCC ID IHDT56DJ1 at highest possible output power. Measured against the body.

FCC ID: IHDT56DJ1

				C332 Body Worn W/ SNN5726A Battery						
		Conducted	1" Separation from Front of Phone				1" Separation from Back of Phone			
f (MHz)	Description	Output Power (dBm)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)
	Channel 991	27.76								
Analog 800MHz	Channel 384	27.73	0.226	-0.08	0.23	20.5				
	Channel 799	27.73								
5	Channel 1013	24.98								
Digital 800MHz	Channel 384	25.03					0.342	-0.06	0.35	20.7
	Channel 779	24.98								
D: : 1	Channel 25	24.93								
Digital 1900MHz	Channel 600	24.99					0.0958	-0.01	0.10	20.0
	Channel 1175	24.93								
T	able 9: SAR m	easurement	results for	the po	rtable cellula	r telepho	ne FCC ID	IHDT5	6DJ1 at high	ıest

possible output power. Measured against the body.

				C333 Body Worn							
		Conducted		With AN	/IB33105 Case		With 35451 Case				
f (MHz)	Description	Output Power (dBm)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)	
	Channel 991	27.76									
Analog 800MHz	Channel 384	27.73	0.415	-0.07	0.42	20.7	0.66	-0.04	0.67	20.6	
	Channel 799	27.73									
	Channel 1013	24.98									
Digital 800MHz	Channel 384	25.03	0.422	-0.17	0.44	20.7	0.405	-0.19	0.42	20.7	
	Channel 779	24.98									
	Channel 25	24.93									
Digital 1900MHz	Channel 600	24.99	0.328	-0.16	0.34	20.0	0.184	-0.08	0.19	20.0	
	Channel 1175	24.93									

Table 10: SAR measurement results for the portable cellular telephone FCC ID IHDT56DJ1 at highest possible output power. Measured against the body.

				C333 Body Worn w/ SNN5726A Battery						
		Conducted		With AMB33105 Case With 35451 Case						
f (MHz)	Description	Output Power (dBm)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)
	Channel 991	27.76								
Analog 800MHz	Channel 384	27.73					0.368	-0.1	0.38	20.6
	Channel 799	27.73								
D: : 1	Channel 1013	24.98								
Digital 800MHz	Channel 384	25.03	0.381	-0.22	0.40	20.7				
	Channel 779	24.98								
D: :: 1	Channel 25	24.93								
Digital 1900MHz	Channel 600	24.99	0.315	-0.04	0.32	20.0				
	Channel 1175	24.93					TO C T			

Table 11: SAR measurement results for the portable cellular telephone FCC ID IHDT56DJ1 at highest possible output power. Measured against the body.

Appendix 1

FCC ID: IHDT56DJ1

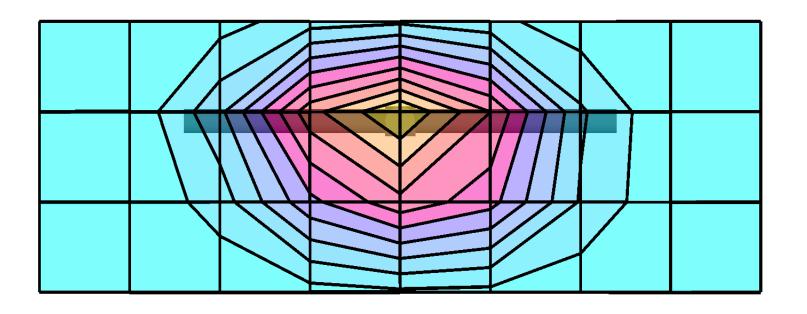
SAR distribution comparison for the system accuracy verification

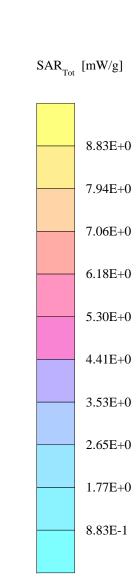
Dipole 1800 MHz

1800 MHz System Performance Check / Dipole Sn# 246tr

Forward Power = 252mW Reflected Power = -22.18dBm

Room Temp at time of measurement = 20 Simulant Temp at time of measurement = 19.9


R5: TP-1160 GLYCOL SAM Expanded (Rev. 2)-9Jan03; Flat


Probe: ET3DV6R - SN1501 - VALIDATION; ConvF(5.00,5.00,5.00); Crest factor: 1.0; 1800 MHz VALIDATION: σ = 1.37 mho/m ϵ_r = 39.1 ρ = 1.00 g/cm³

Cubes (2): Peak: 17.8 $\,$ mW/g \pm 0.13 dB, SAR (1g): 9.79 $\,$ mW/g \pm 0.11 dB, SAR (10g): 5.19 $\,$ mW/g \pm 0.09 dB, (Worst-case extrapolation)

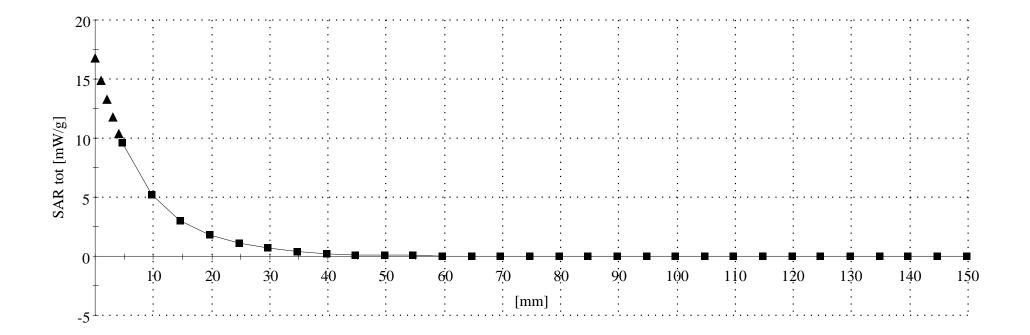
Penetration depth: 8.6 (8.2, 9.3) [mm]

Powerdrift: 0.06 dB

Dipole 1800 MHz

1800 MHz System Performance Check / Dipole Sn# 246tr

Forward Power = 252mW Reflected Power = -22.18dBm


Room Temp at time of measurement =20 Simulant Temp at time of measurement =19.9

R5: TP-1160 GLYCOL SAM Expanded (Rev. 2)-9Jan03;

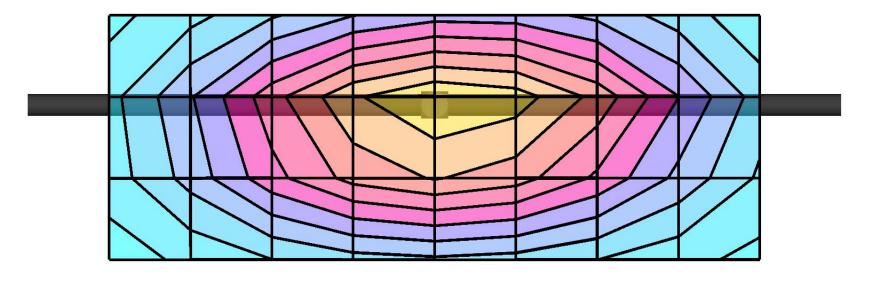
Probe: ET3DV6R - SN1501 - VALIDATION; ConvF(5.00,5.00,5.00); Crest factor: 1.0; 1800 MHz VALIDATION: $\sigma = 1.37 \text{ mho/m} \ \epsilon_r = 39.1 \ \rho = 1.00 \text{ g/cm}^3$

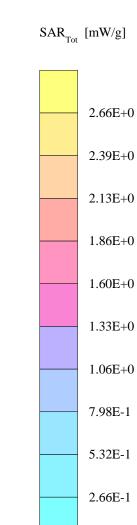
:,,()

Penetration depth: 8.5 (8.2, 9.2) [mm]

900 MHz System Performance Check / Dipole Sn# 79 Forward Power = 252mW Reflected Power = 23.7dB

Room Temp at time of measurement = 21 Simulant Temp at time of measurement = 20.4


R5 TP-1132 Sugar SAM Expanded (Rev. 2)-9Jan03; Flat


Probe: ET3DV6R - SN1501 - VALIDATION; ConvF(6.40,6.40,6.40); Crest factor: 1.0; 900 MHz VALIDATION: σ = 0.99 mho/m ϵ_r = 42.4 ρ = 1.00 g/cm³

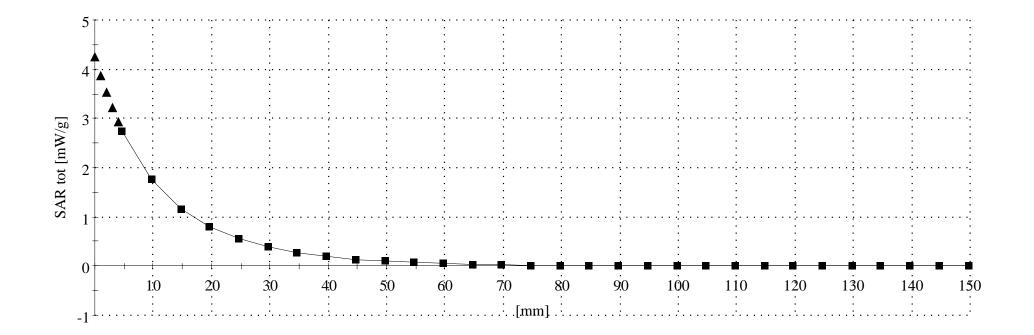
Cubes (2): Peak: 4.47 $\text{mW/g} \pm 0.12 \text{ dB}$, SAR (1g): 2.84 $\text{mW/g} \pm 0.11 \text{ dB}$, SAR (10g): 1.79 $\text{mW/g} \pm 0.10 \text{ dB}$, (Worst-case extrapolation)

Penetration depth: 11.7 (10.9, 12.7) [mm]

Powerdrift: 0.02 dB

900 MHz System Performance Check / Dipole Sn# 79

Forward Power = 252 mW Reflected Power = 23.7 dB


Room Temp at time of measurement = 21 Simulant Temp at time of measurement = 20.4

R5 TP-1132 Sugar SAM Expanded (Rev. 2)-9Jan03;

Probe: ET3DV6R - SN1501 - VALIDATION; ConvF(6.40,6.40,6.40); Crest factor: 1.0; 900 MHz VALIDATION: $\sigma = 0.99$ mho/m $\epsilon_r = 42.4$ $\rho = 1.00$ g/cm³

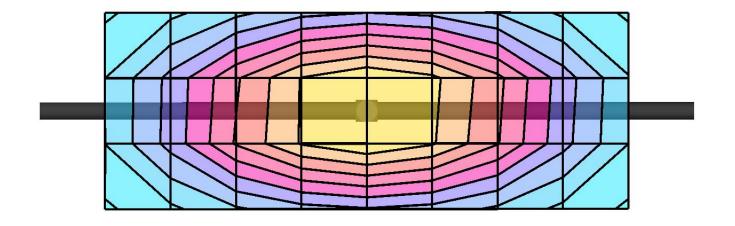
:,,()

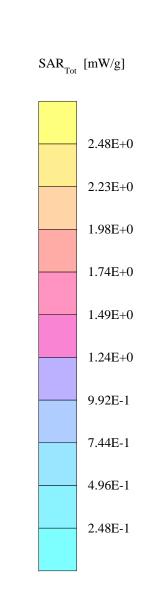
Penetration depth: 11.6 (10.9, 12.7) [mm]

900 MHz Dipole Validation / Dipole Sn# 078

Forward Power = 254mw Reflected Power = -22.00db

Room Temp at time of measurement = 21.0*C. Simulant Temp at time of measurement = 20.2*C


R5 TP-1132 Sugar SAM Expanded (Rev. 2)-9Jan03; Flat


Probe: ET3DV6R - SN1501 - VALIDATION; ConvF(6.40,6.40,6.40); Crest factor: 1.0; 900 MHz VALIDATION: $\sigma = 0.99$ mho/m $\epsilon_r = 42.6$ $\rho = 1.00$ g/cm³

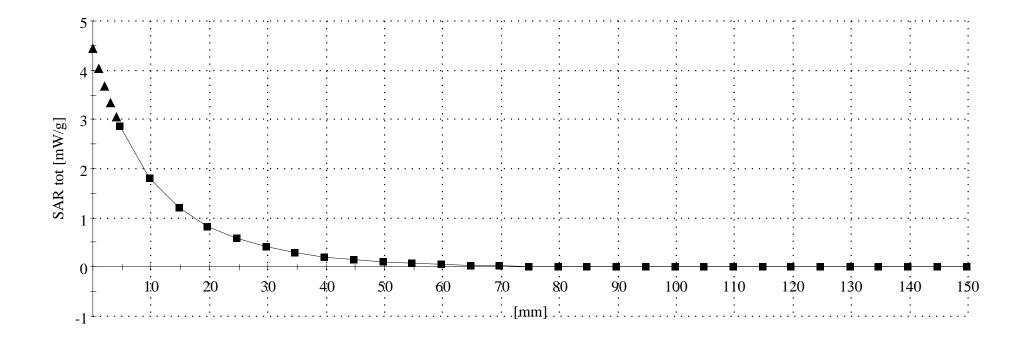
Cubes (2): Peak: $4.50 \text{ mW/g} \pm 0.08 \text{ dB}$, SAR (1g): $2.87 \text{ mW/g} \pm 0.10 \text{ dB}$, SAR (10g): $1.82 \text{ mW/g} \pm 0.11 \text{ dB}$, (Worst-case extrapolation)

Penetration depth: 11.6 (10.8, 12.6) [mm]

Powerdrift: 0.00 dB

900 MHz Dipole Validation / Dipole Sn# 078

Forward Power = 254mw Reflected Power = -22.00db


Room Temp at time of measurement = 21.0*C. Simulant Temp at time of measurement = 20.2*C

R5 TP-1132 Sugar SAM Expanded (Rev. 2)-9Jan03;

Probe: ET3DV6R - SN1501 - VALIDATION; ConvF(6.40,6.40,6.40); Crest factor: 1.0; 900 MHz VALIDATION: $\sigma = 0.99$ mho/m $\epsilon_r = 42.6$ $\rho = 1.00$ g/cm³

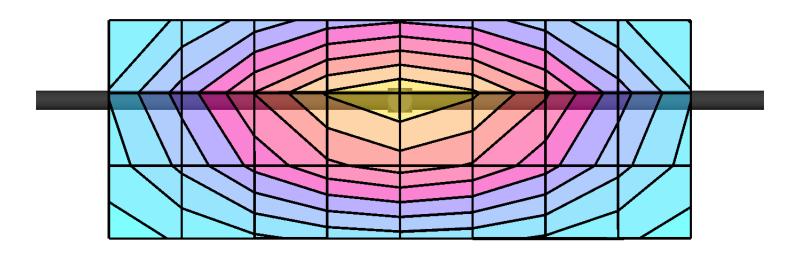
:,,()

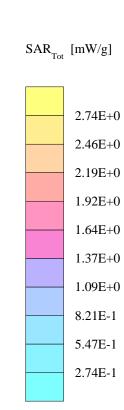
Penetration depth: 11.5 (10.8, 12.6) [mm]

900 MHz System Performance Check / Dipole Sn# 079

Forward Power = 253mW Reflected Power = -23.34dB

Room Temp at time of measurement = 21C Simulant Temp at time of measurement = 21.6C


R5 TP-1132 Sugar SAM Expanded (Rev. 2)-9Jan03; Flat


Probe: ET3DV6R - SN1501 - VALIDATION; ConvF(6.40,6.40,6.40); Crest factor: 1.0; 900 MHz VALIDATION: $\sigma = 0.98$ mho/m $\epsilon_r = 41.9$ $\rho = 1.00$ g/cm³

Cubes (2): Peak: 4.47 $\text{mW/g} \pm 0.11 \text{ dB}$, SAR (1g): 2.84 $\text{mW/g} \pm 0.10 \text{ dB}$, SAR (10g): 1.79 $\text{mW/g} \pm 0.10 \text{ dB}$, (Worst-case extrapolation)

Penetration depth: 11.7 (10.9, 12.7) [mm]

Powerdrift: 0.01 dB

900 MHz System Performance Check / Dipole Sn# 079

Forward Power = 253mW Reflected Power = -23.34dB


Room Temp at time of measurement = 21C Simulant Temp at time of measurement = 21.6C

R5 TP-1132 Sugar SAM Expanded (Rev. 2)-9Jan03;

Probe: ET3DV6R - SN1501 - VALIDATION; ConvF(6.40,6.40,6.40); Crest factor: 1.0; 900 MHz VALIDATION: σ = 0.98 mho/m ϵ_r = 41.9 ρ = 1.00 g/cm³

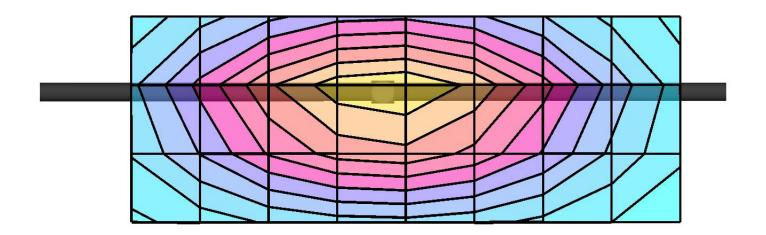
:,,()

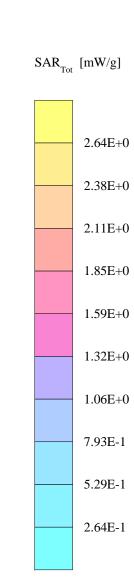
Penetration depth: 11.8 (11.0, 12.9) [mm]

900 MHz System Performance Check / Dipole Sn# 079

Forward Power = 250mW Reflected Power = -23.30dB

Room Temp at time of measurement = 20C Simulant Temp at time of measurement = 20.7C


R5 TP-1132 Sugar SAM Expanded (Rev. 2)-9Jan03; Flat


Probe: ET3DV6R - SN1501 - VALIDATION; ConvF(6.40,6.40,6.40); Crest factor: 1.0; 900 MHz VALIDATION: σ = 0.97 mho/m ϵ_r = 41.5 ρ = 1.00 g/cm³

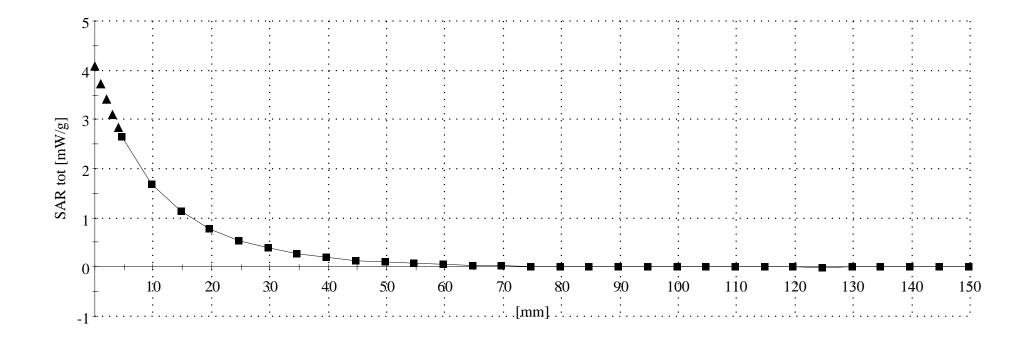
Cubes (2): Peak: 4.37 $\text{mW/g} \pm 0.08 \text{ dB}$, SAR (1g): 2.77 $\text{mW/g} \pm 0.09 \text{ dB}$, SAR (10g): 1.76 $\text{mW/g} \pm 0.09 \text{ dB}$, (Worst-case extrapolation)

Penetration depth: 11.7 (10.8, 12.8) [mm]

Powerdrift: 0.03 dB

900 MHz System Performance Check / Dipole Sn# 079

Forward Power = 250mW Reflected Power = -23.30dB


Room Temp at time of measurement = 20C Simulant Temp at time of measurement = 20.7C

R5 TP-1132 Sugar SAM Expanded (Rev. 2)-9Jan03;

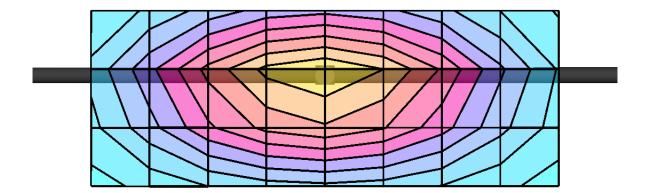
Probe: ET3DV6R - SN1501 - VALIDATION; ConvF(6.40,6.40,6.40); Crest factor: 1.0; 900 MHz VALIDATION: σ = 0.97 mho/m ϵ_r = 41.5 ρ = 1.00 g/cm³

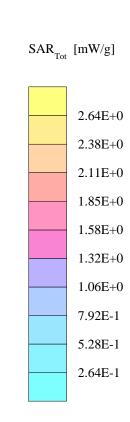
:,,()

Penetration depth: 11.8 (11.0, 12.8) [mm]

900 MHz System Performance Check / Dipole Sn# 079 Forward Power =250mW Reflected Power =-26.68dB

Room Temp at time of measurement =21.0°C Simulant Temp at time of measurement = 20.7°C


R5 TP-1132 Sugar SAM Expanded (Rev. 2)-9Jan03; Flat


Probe: ET3DV6R - SN1501 - VALIDATION; ConvF(6.40,6.40,6.40); Crest factor: 1.0; 900 MHz VALIDATION: $\sigma = 0.97$ mho/m $\epsilon_r = 41.2$ $\rho = 1.00$ g/cm³

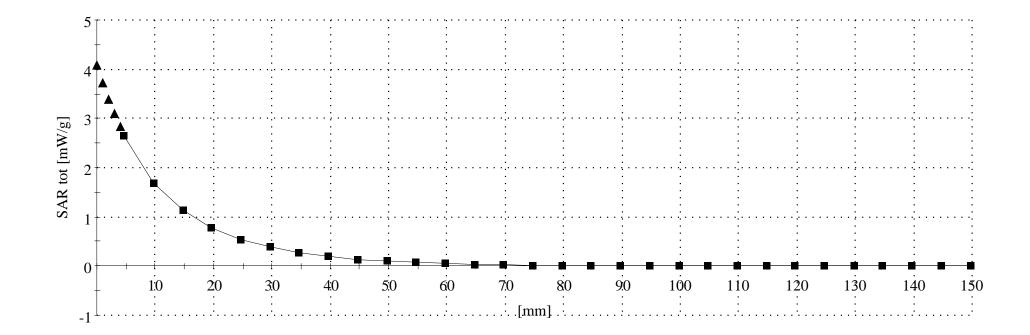
Cubes (2): Peak: 4.36 $\text{ mW/g} \pm 0.09 \text{ dB}$, SAR (1g): 2.76 $\text{ mW/g} \pm 0.09 \text{ dB}$, SAR (10g): 1.75 $\text{ mW/g} \pm 0.09 \text{ dB}$, (Worst-case extrapolation)

Penetration depth: 11.6 (10.8, 12.8) [mm]

Powerdrift: -0.04 dB

900 MHz System Performance Check / Dipole Sn# 079

Forward Power = 250mW Reflected Power = -26.68dB


Room Temp at time of measurement =21.0°C Simulant Temp at time of measurement = 20.7°C

R5 TP-1132 Sugar SAM Expanded (Rev. 2)-9Jan03;

Probe: ET3DV6R - SN1501 - VALIDATION; ConvF(6.40,6.40,6.40); Crest factor: 1.0; 900 MHz VALIDATION: $\sigma = 0.97$ mho/m $\epsilon_r = 41.2$ $\rho = 1.00$ g/cm³

:,,()

Penetration depth: 11.7 (11.0, 12.8) [mm]

Appendix 2

FCC ID: IHDT56DJ1

SAR distribution plots for Phantom Head Adjacent Use

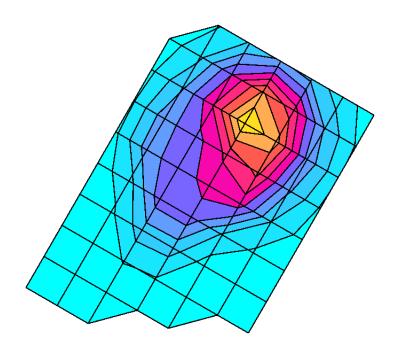
s/n: 42CCFE68

Ch# 384 / Pwr Step: 02 (OTA)

Type of Modulation: 800 Amps

Antenna Position: Fixed
Battery Model #: SNN5725A

DEVICE POSITION: Cheek C332 Housing


R5 TP-1132 Sugar SAM Expanded (Rev. 2)-9Jan03 Phantom; Left Hand Section; Position: (90°,180°); Frequency: 837 MHz


Probe: ET3DV6R - SN1501 - IEEE Head; ConvF(6.40,6.40,6.40); Crest factor: 1.0; 835 MHz Head & Body: $\sigma = 0.93$ mho/m $\epsilon_r = 43.2$ $\rho = 1.00$ g/cm³

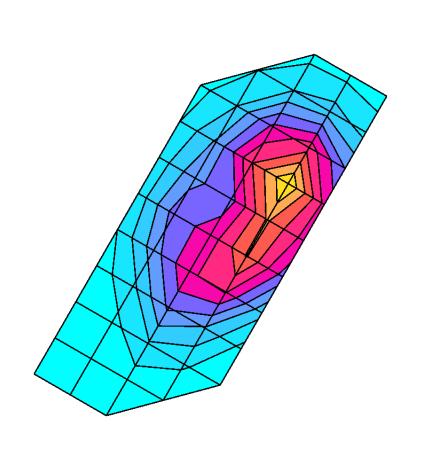
Cube 7x7x7: SAR (1g): 1.13 mW/g, SAR (10g): 0.704 mW/g, (Worst-case extrapolation)

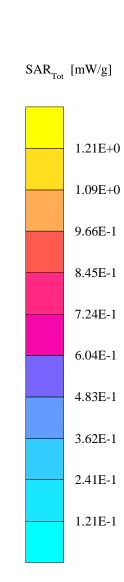
Coarse: Dx = 15.0, Dy = 15.0, Dz = 15.0 Penetration depth: 12.1 (11.6, 12.7) [mm]

Powerdrift: -0.16 dB

Ch# 384 Pwr Step: 0 (OTA) Antenna Position: FIXED
Type of Modulation: 800 AMPS Battery Model #: SNN5725A

DEVICE POSITION: CHEEK C333 Housing


R5 TP-1132 Sugar SAM Expanded (Rev. 2)-9Jan03 Phantom; Left Hand Section; Position: (90°,180°); Frequency: 837 MHz


Probe: ET3DV6R - SN1501 - IEEE Head; ConvF(6.40,6.40,6.40); Crest factor: 1.0; 835 MHz Head & Body: $\sigma = 0.92$ mho/m $\epsilon_r = 43.4$ $\rho = 1.00$ g/cm³

Cube 7x7x7: SAR (1g): 1.15 mW/g, SAR (10g): 0.717 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 15.0 Penetration depth: 12.2 (11.5, 13.1) [mm]

Powerdrift: -0.29 dB

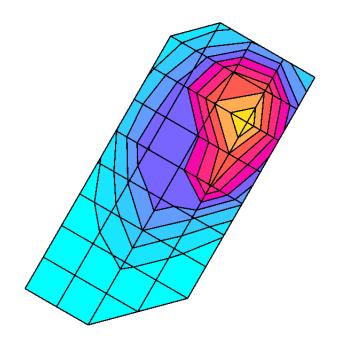
Ch# 384 Pwr Step: ALWAYS UP (OTA)

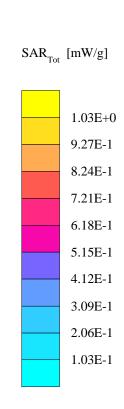
Type of Modulation: 800 CDMA

Antenna Position: FIXED

Battery Model #: SNN5725A

DEVICE POSITION: CHEEK C332 Housing


R5 TP-1132 Sugar SAM Expanded (Rev. 2)-9Jan03 Phantom; Left Hand Section; Position: (90°,180°); Frequency: 837 MHz


Probe: ET3DV6R - SN1501 - IEEE Head; ConvF(6.40,6.40,6.40); Crest factor: 1.0; 835 MHz Head & Body: $\sigma = 0.93$ mho/m $\epsilon_r = 43.2$ $\rho = 1.00$ g/cm³

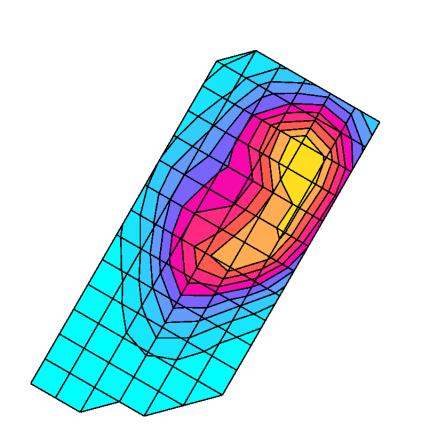
Cube 7x7x7: SAR (1g): 1.04 mW/g, SAR (10g): 0.641 mW/g, (Worst-case extrapolation)

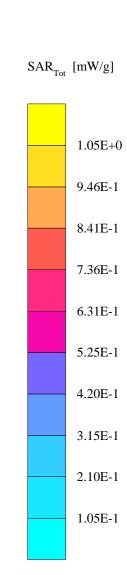
Coarse: Dx = 15.0, Dy = 15.0, Dz = 15.0 Penetration depth: 12.2 (11.9, 12.7) [mm]

Powerdrift: -0.31 dB

Ch# 384 / Pwr Step: Always UP
Type of Modulation: 800 CDMA
Antenna Position: INTERNAL
Battery Model #: SNN5725A

DEVICE POSITION: Cheek touch C333 Housing


R5 TP-1132 Sugar SAM Expanded (Rev. 2)-9Jan03 Phantom; Left Hand Section; Position: (90°,180°); Frequency: 837 MHz


Probe: ET3DV6R - SN1501 - IEEE Head; ConvF(6.40,6.40,6.40); Crest factor: 1.0; 835 MHz Head & Body: $\sigma = 0.91$ mho/m $\epsilon_r = 42.7$ $\rho = 1.00$ g/cm³

Cube 7x7x7: SAR (1g): 1.11 mW/g, SAR (10g): 0.687 mW/g, (Worst-case extrapolation)

Coarse: Dx = 10.0, Dy = 10.0, Dz = 10.0Penetration depth: 11.5 (10.5, 12.8) [mm]

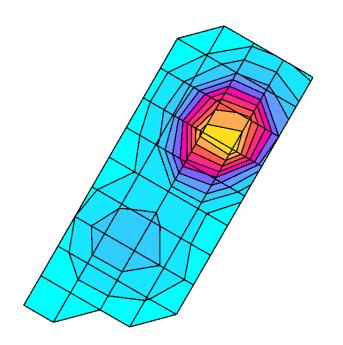
Powerdrift: -0.27 dB

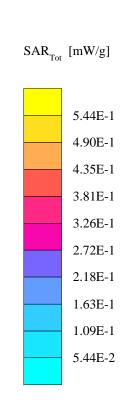
Ch# 600 / Pwr Step: Always UP (OTA)

Type of Modulation: 1900 CDMA

Battery Model #: SNN5725A

DEVICE POSITION: Cheek C332 Housing


R5: TP-1160 GLYCOL SAM Expanded (Rev. 2)-9Jan03 Phantom; Left Hand Section; Position: (90°,180°); Frequency: 1880 MHz


Probe: ET3DV6R - SN1501 - IEEE Head; ConvF(5.00,5.00,5.00); Crest factor: 1.0; 1880 MHz Head & Body: $\sigma = 1.46$ mho/m $\epsilon_r = 38.8$ $\rho = 1.00$ g/cm³

Cube 7x7x7: SAR (1g): 0.562 mW/g, SAR (10g): 0.322 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 15.0 Penetration depth: 10.0 (9.6, 10.7) [mm]

Powerdrift: -0.40 dB

s/n: 42CCFE68

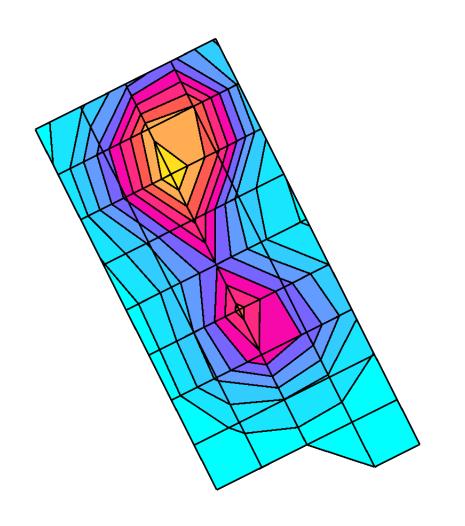
Ch# 600 / Pwr Step: Always UP (OTA)

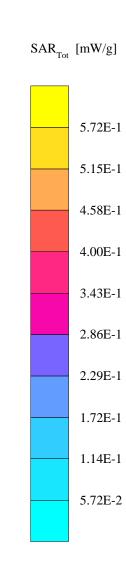
Antenna Position: Fixed

Type of Modulation: 1900 CDMA

Battery Model #: SNN5725A

DEVICE POSITION: Cheek C333 Housing


R5: TP-1160 GLYCOL SAM Expanded (Rev. 2)-9Jan03 Phantom; Right Hand Section; Position: (90°,180°); Frequency: 1880 MHz


Probe: ET3DV6R - SN1501 - IEEE Head; ConvF(5.00,5.00,5.00); Crest factor: 1.0; 1880 MHz Head & Body: $\sigma = 1.46$ mho/m $\epsilon_r = 38.8$ $\rho = 1.00$ g/cm³

Cube 7x7x7: SAR (1g): 0.604 mW/g, SAR (10g): 0.351 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 15.0 Penetration depth: 10.4 (10.1, 10.9) [mm]

Powerdrift: -0.39 dB

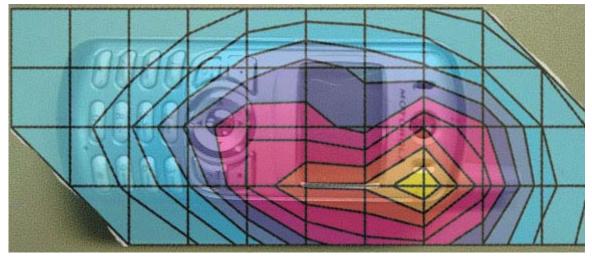


Figure 1.Typical 800MHz AMPS Mode Head Adjacent Contour Overlaid on Phone (Cheek Touch)

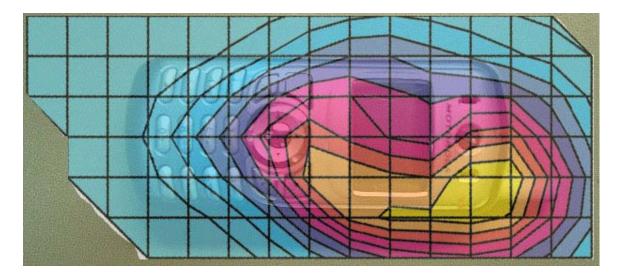


Figure 2.Typical 800MHz CDMA Mode Head Adjacent Contour Overlaid on Phone (Cheek Touch)

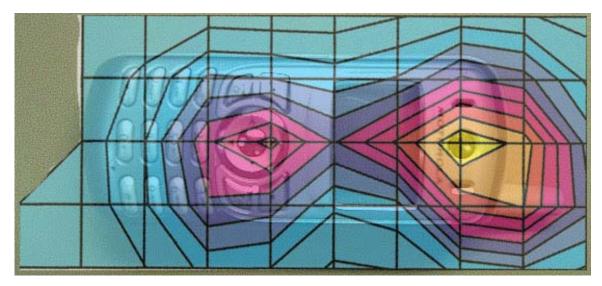


Figure 3.Typical 1900MHz CDMA Mode Head Adjacent Contour Overlaid on Phone (Cheek Touch)

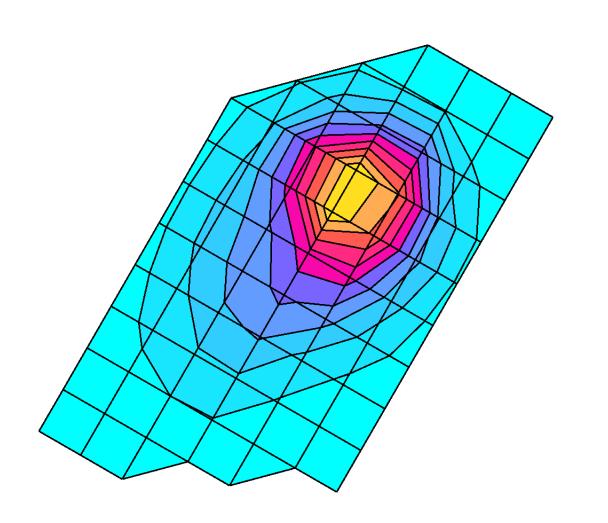
S/n: 42CD03C0

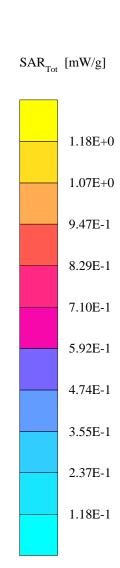
Ch# 384 / Pwr Step: 02 (OTA)

Antenna Position: Fixed
Type of Modulation: 800 Amps

Battery Model #: SNN5725A

DEVICE POSITION: Tilt 15* C332 Housing


R5 TP-1132 Sugar SAM Expanded (Rev. 2)-9Jan03 Phantom; Left Hand Section; Position: (90°,180°); Frequency: 837 MHz


Probe: ET3DV6R - SN1501 - IEEE Head; ConvF(6.40,6.40,6.40); Crest factor: 1.0; 835 MHz Head & Body: $\sigma = 0.93$ mho/m $\epsilon_r = 43.2$ $\rho = 1.00$ g/cm³

Cube 7x7x7: SAR (1g): 1.36 mW/g, SAR (10g): 0.810 mW/g, (Worst-case extrapolation)

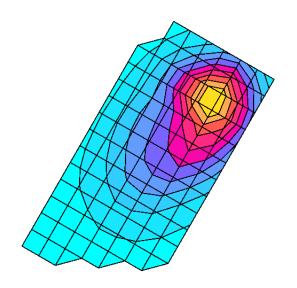
Coarse: Dx = 15.0, Dy = 15.0, Dz = 15.0Penetration depth: 11.1 (10.5, 12.0) [mm]

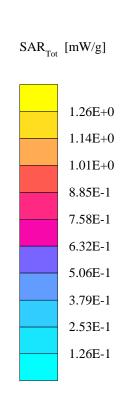
Powerdrift: -0.07 dB

Ch# 384 / Pwr Step: 02 Antenna Position: fixed

Type of Modulation: ANALOG Battery Model #: SNN5725A

DEVICE POSITION (cheek or rotated): TILTED C333 Housing


R5 TP-1132 Sugar SAM Expanded (Rev. 2)-9Jan03 Phantom; Left Hand Section; Position: (90°,180°); Frequency: 836 MHz


Probe: ET3DV6R - SN1501 - IEEE Head; ConvF(6.40,6.40,6.40); Crest factor: 1.0; 835 MHz Head & Body: $\sigma = 0.92$ mho/m $\epsilon_r = 43.4$ $\rho = 1.00$ g/cm³

Cube 7x7x7: SAR (1g): 1.31 mW/g, SAR (10g): 0.791 mW/g, (Worst-case extrapolation)

Coarse: Dx = 10.0, Dy = 10.0, Dz = 10.0Penetration depth: 11.3 (10.7, 12.2) [mm]

Powerdrift: 0.16 dB

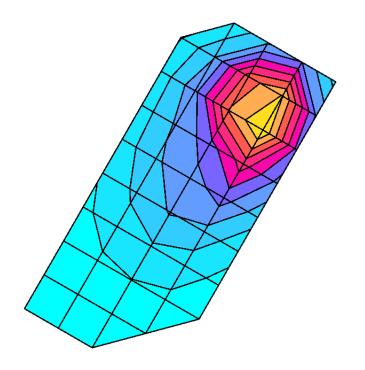
Ch# 384 Pwr Step: ALWAYS UP (OTA)

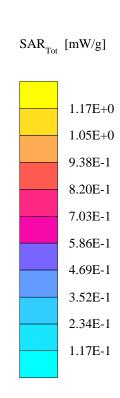
Type of Modulation: 800 CDMA

Antenna Position: FIXED

Battery Model #: SNN5725A

DEVICE POSITION: TILTED C332 Housing


R5 TP-1132 Sugar SAM Expanded (Rev. 2)-9Jan03 Phantom; Left Hand Section; Position: (90°,180°); Frequency: 837 MHz


Probe: ET3DV6R - SN1501 - IEEE Head; ConvF(6.40,6.40,6.40); Crest factor: 1.0; 835 MHz Head & Body: $\sigma = 0.93$ mho/m $\epsilon_r = 43.2$ $\rho = 1.00$ g/cm³

Cube 7x7x7: SAR (1g): 1.29 mW/g, SAR (10g): 0.764 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 15.0 Penetration depth: 11.4 (10.7, 12.3) [mm]

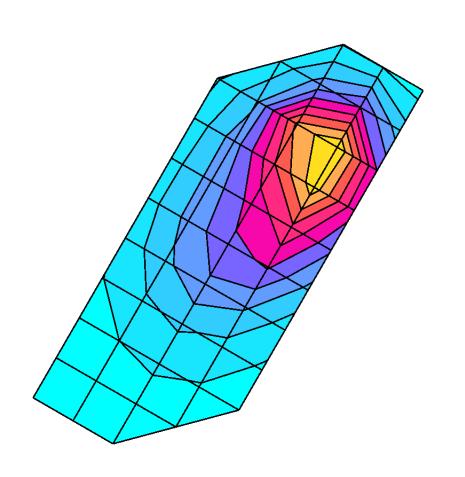
Powerdrift: -0.20 dB

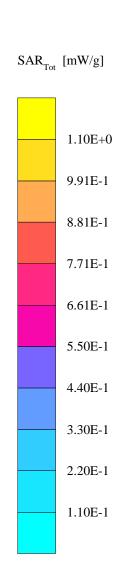
Ch# 384 / Pwr Step: Always UP)

Type of Modulation: 800 CDMA

Antenna Position: INTERNAL
Battery Model #: SNN5725A

DEVICE POSITION: 15 deg TILT C333 Housing


R5 TP-1132 Sugar SAM Expanded (Rev. 2)-9Jan03 Phantom; Left Hand Section; Position: (90°,180°); Frequency: 837 MHz


Probe: ET3DV6R - SN1501 - IEEE Head; ConvF(6.40,6.40,6.40); Crest factor: 1.0; 835 MHz Head & Body: $\sigma = 0.91$ mho/m $\epsilon_r = 42.7$ $\rho = 1.00$ g/cm³

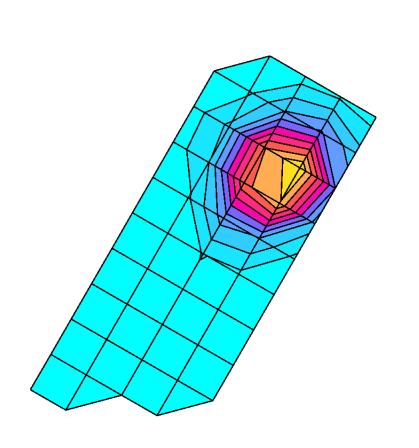
Cube 7x7x7: SAR (1g): 1.22 mW/g, SAR (10g): 0.732 mW/g, (Worst-case extrapolation)

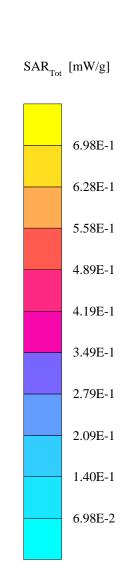
Coarse: Dx = 15.0, Dy = 15.0, Dz = 15.0Penetration depth: 11.1 (10.5, 11.9) [mm]

Powerdrift: 0.02 dB

Ch# 600 / Pwr Step: Always UP (OTA) Antenna Position: Fixed Type of Modulation: 1900 CDMA Battery Model #: SNN5725A

DEVICE POSITION: 15 deg TILT C332 Housing


R5: TP-1160 GLYCOL SAM Expanded (Rev. 2)-9Jan03 Phantom; Left Hand Section; Position: (90°,180°); Frequency: 1880 MHz


Probe: ET3DV6R - SN1501 - IEEE Head; ConvF(5.00,5.00,5.00); Crest factor: 1.0; 1880 MHz Head & Body: $\sigma = 1.46$ mho/m $\epsilon_r = 38.8$ $\rho = 1.00$ g/cm³

Cube 7x7x7: SAR (1g): 0.718 mW/g, SAR (10g): 0.401 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 15.0 Penetration depth: 9.6 (9.1, 10.3) [mm]

Powerdrift: -0.45 dB

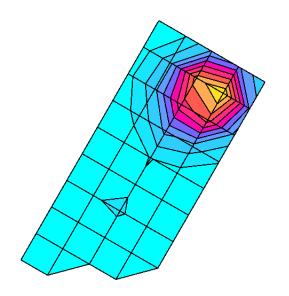
s/n: 42CCFE68

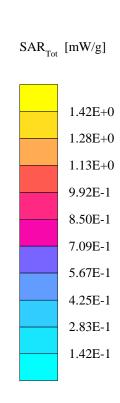
Ch# 1175 / Pwr Step: Always UP (OTA)

Type of Modulation: 1900 CDMA

Antenna Position: Fixed
Battery Model #: SNN5725A

DEVICE POSITION: 15 deg TILT C333 Housing


R5: TP-1160 GLYCOL SAM Expanded (Rev. 2)-9Jan03 Phantom; Left Hand Section; Position: (90°,180°); Frequency: 1909 MHz


Probe: ET3DV6R - SN1501 - IEEE Head; ConvF(5.00,5.00,5.00); Crest factor: 1.0; 1880 MHz Head & Body: σ = 1.45 mho/m ϵ_r = 39.0 ρ = 1.00 g/cm³

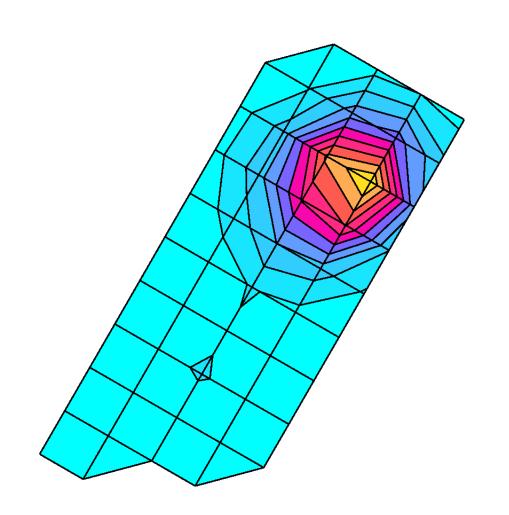
Cube 7x7x7: SAR (1g): 1.50 mW/g, SAR (10g): 0.809 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 15.0 Penetration depth: 8.6 (8.2, 9.3) [mm]

Powerdrift: -0.01 dB

s/n: 42CCFE68

Ch# 1175 Pwr Step:OTAAntenna Position:FIXEDType of Modulation:1900 CDMABattery Model #:SNN5725ADEVICE POSITION:TILTC333 Housing with 35451 carry case


R5: TP-1160 GLYCOL SAM Expanded (Rev. 2)-9Jan03 Phantom; Left Hand Section; Position: (90°,180°); Frequency: 1909 MHz

Probe: ET3DV6R - SN1501 - IEEE Head; ConvF(5.00,5.00,5.00); Crest factor: 1.0; 1880 MHz Head & Body: σ = 1.46 mho/m ϵ_r = 38.8 ρ = 1.00 g/cm³

Cube 7x7x7: SAR (1g): 1.51 mW/g, SAR (10g): 0.807 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 15.0 Penetration depth: 8.5 (8.1, 9.3) [mm]

Powerdrift: -0.20 dB

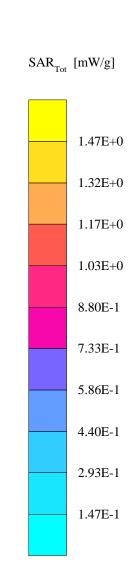


Figure 4.Typical 800MHz AMPS Mode Head Adjacent Contour Overlaid on Phone (15 ° Tilt)

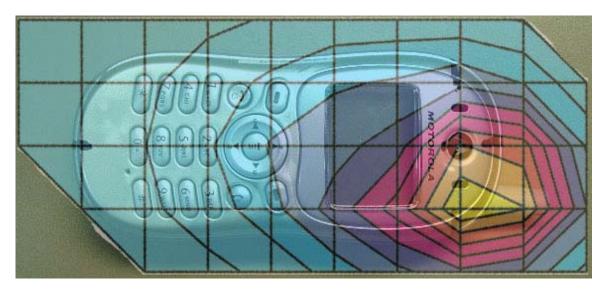


Figure 5.Typical 800MHz CDMA Mode Head Adjacent Contour Overlaid on Phone (15 ° Tilt)

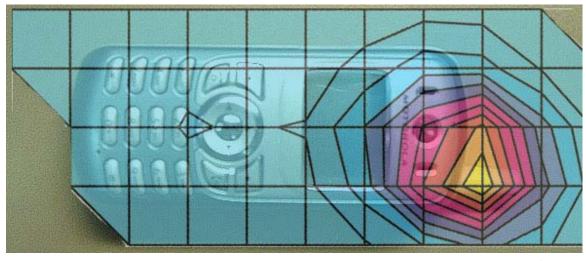


Figure 6.Typical 1900MHz CDMA Mode Head Adjacent Contour Overlaid on Phone (15 ° Tilt)

Appendix 3

FCC ID: IHDT56DJ1

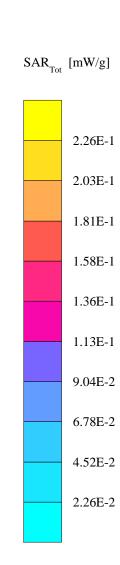
SAR distribution plots for Body Worn Configuration

Ch# 384 / Pwr Step: Always UP Antenna Position: Fixed
Type of Modulation: 800 AMPS Battery Model #: SNN5725A

Accessory Model # = Front of Phone 1 inch away from phantom

C332 Housing

R5 Amy Twin Phantom Rev.4 (22Aug02) Phantom; section 1 Section; Position: (0°,0°); Frequency: 837 MHz


Probe: ET3DV6R - SN1501 - FCC Body; ConvF(6.10,6.10,6.10); Crest factor: 1.0; 835 MHz Head & Body: $\sigma = 0.97$ mho/m $\epsilon_r = 55.2$ $\rho = 1.00$ g/cm³

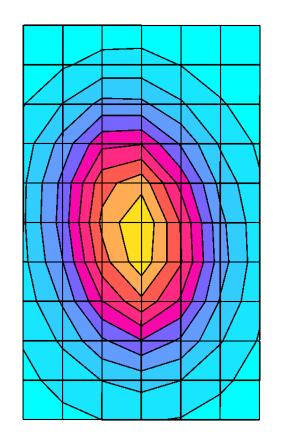
Cube 7x7x7: SAR (1g): 0.228 mW/g, SAR (10g): 0.165 mW/g, (Worst-case extrapolation)

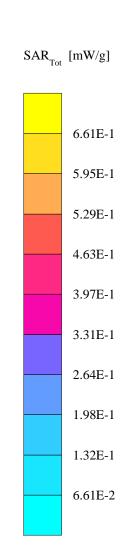
Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0Penetration depth: 17.0 (16.5, 17.7) [mm]

Powerdrift: -0.15 dB

Ch# 384 / Pwr Step: Always UP Type of Modulation: 800 AMPS Accessory Model # = 35451 Case Antenna Position: Fixed Battery Model #: SNN5725A

C333 Housing


R5 Amy Twin Phantom Rev.4 (22Aug02) Phantom; section 1 Section; Position: (0°,0°); Frequency: 837 MHz


Probe: ET3DV6R - SN1501 - FCC Body; ConvF(6.10,6.10,6.10); Crest factor: 1.0; 835 MHz Head & Body: $\sigma = 0.97$ mho/m $\epsilon_r = 55.2$ $\rho = 1.00$ g/cm³

Cube 7x7x7: SAR (1g): 0.660 mW/g, SAR (10g): 0.465 mW/g, (Worst-case extrapolation)

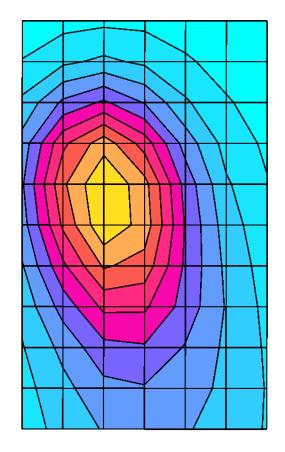
Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0Penetration depth: 16.1 (14.9, 17.5) [mm]

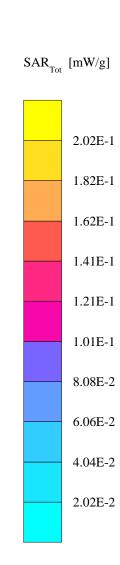
Powerdrift: -0.04 dB

Ch# 384 / Pwr Step: Always Up
Type of Modulation: 800 CDMA
Antenna Position: Fixed
Battery Model #: SNN5725A

Accessory Model # = Back of Phone 1 inch away from phantom

C332 Housing


R5 Amy Twin Phantom Rev.4 (22Aug02) Phantom; section 1 Section; Position: (0°,0°); Frequency: 837 MHz


Probe: ET3DV6R - SN1501 - FCC Body; ConvF(6.10,6.10,6.10); Crest factor: 1.0; 835 MHz Head & Body: $\sigma = 0.97$ mho/m $\epsilon_r = 55.3$ $\rho = 1.00$ g/cm³

Cube 7x7x7: SAR (1g): 0.206 mW/g, SAR (10g): 0.145 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0 Penetration depth: 15.6 (14.4, 17.0) [mm]

Powerdrift: -0.03 dB

Ch# 384 / Pwr Step: Always UP

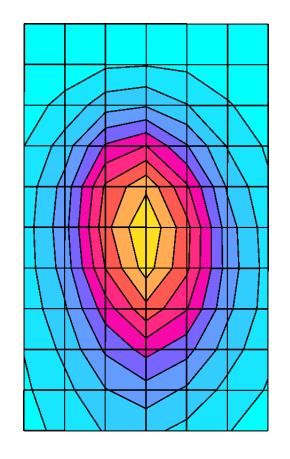
Type of Modulation: 800 CDMA

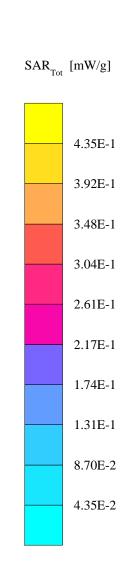
Battery Description: Accessory Model # = AMP 23105 Coses

Antenna Position: Fixed Battery Model #: SNN5725A

Accessory Model # = AMB33105 Case

C333 Housing


R5 Amy Twin Phantom Rev.4 (22Aug02) Phantom; section 1 Section; Position: (0°,0°); Frequency: 837 MHz


Probe: ET3DV6R - SN1501 - FCC Body; ConvF(6.10,6.10,6.10); Crest factor: 1.0; 835 MHz Head & Body: $\sigma = 0.97$ mho/m $\epsilon_r = 55.2$ $\rho = 1.00$ g/cm³

Cube 7x7x7: SAR (1g): 0.422 mW/g, SAR (10g): 0.296 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0 Penetration depth: 15.5 (14.5, 16.7) [mm]

Powerdrift: -0.17 dB

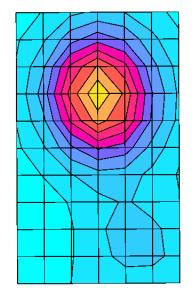
Ch# 600 / Pwr Step: Always UP (OTA)

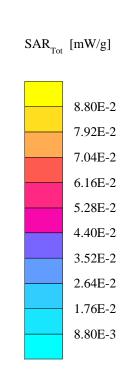
Type of Modulation: 1900 CDMA

Antenna Position: Fixed
Battery Model #: SNN5725A

Accessory Model #: Back of phone 1in from Phantom

C332 Housing


R5 Amy Twin Phantom Rev.4 (22Aug02) Phantom; section 2 Section; Position: (0°,0°); Frequency: 1880 MHz


Probe: ET3DV6R - SN1501 - FCC Body; ConvF(4.60,4.60,4.60); Crest factor: 1.0; 1880 MHz Head & Body: $\sigma = 1.59$ mho/m $\epsilon_r = 51.7$ $\rho = 1.00$ g/cm³

Cube 7x7x7: SAR (1g): 0.0856 mW/g, SAR (10g): 0.0531 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0 Penetration depth: 10.1 (8.8, 12.1) [mm]

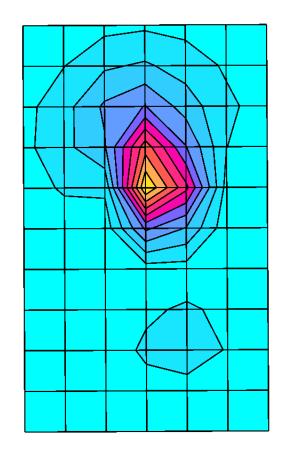
Powerdrift: -0.17 dB

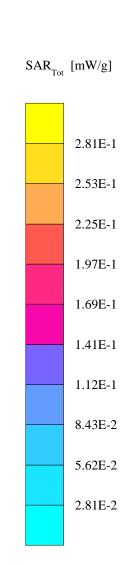
s/n: 42CCFE68

Ch# 600 Pwr Step: OTA Antenna Position: FIXED
Type of Modulation: 1900 CDMA Battery Model #: SNN5725A

Accessory Model #: AMB33105 case

C333 Housing


R5 Amy Twin Phantom Rev.4 (22Aug02) Phantom; section 2 Section; Position: (0°,0°); Frequency: 1880 MHz


Probe: ET3DV6R - SN1501 - FCC Body; ConvF(4.60,4.60,4.60); Crest factor: 1.0; 1880 MHz Head & Body: $\sigma = 1.59$ mho/m $\epsilon_r = 51.7$ $\rho = 1.00$ g/cm³

Cube 7x7x7: SAR (1g): 0.328 mW/g, SAR (10g): 0.161 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0Penetration depth: 9.1 (8.7, 9.9) [mm]

Powerdrift: -0.16 dB

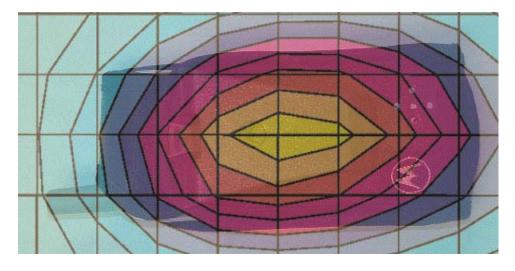


Figure 7.Typical 800MHz AMPS Mode Body-Worn Contour Overlaid on Phone

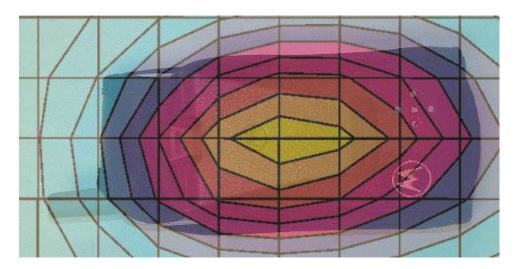


Figure 8.Typical 800MHz CDMA Mode Body-Worn Contour Overlaid on Phone

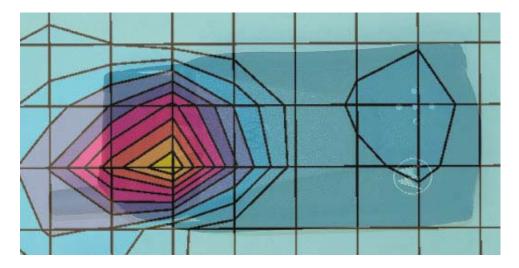


Figure 9.Typical 1900MHz CDMA Mode Body-Worn Contour Overlaid on Phone

Appendix 4

FCC ID: IHDT56DJ1

Probe Calibration Certificate

Calibration Laboratory of

Schmid & Partner

Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Motorola MRO

	,,,,,,,,,,	8897°S		80 KS	moving,	,,,,,,,,,	rann	~~~	g	997***	~~~		<i>77777</i>	@mm.m	Sec. 100	4000		e construction of the cons	\sim	errengg	$m = \infty$		man,
88	100	<i>788</i> . 1	SS 586	8 S	3370	8 000	. 223	25335	355	76° 1800	. W.	W 8	86 see.	X 4202	3533	200.5	200	0.000		Sec. 35	2 · 32	112 613	100.500
80	0000	37 6	W 333	2 . 3		a	411	2, 26%	322	3 323	8 3 5	33	n wa	2	8	an:	286 3	3000	1 %	W W.	2.3	14. W	
112	2 700	ž	2 333	22 3	2000	3 24	W .	100	202	Z 49	0 %	a. 63		3 mm	a su.	w.	200	2 1000	8 2	46.3		32. 32.	- mac

Object(s)

ET3DV6R - SN:1501

Calibration procedure(s)

QA CAL-01.v2

Calibration procedure for dosimetric E-field probes

Calibration date:

April 16, 2003

Condition of the calibrated item

In Tolerance (according to the specific calibration document)

This calibration statement documents traceability of M&TE used in the calibration procedures and conformity of the procedures with the ISO/IEC 17025 international standard.

All calibrations have been conducted in the closed laboratory facility: environment temperature 22 +/- 2 degrees Celsius and humidity < 75%.

Calibration Equipment used (M&TE critical for calibration)

Model Type	ID#	Cal Date	Scheduled Calibration
RF generator HP 8684C	US3642U01700	4-Aug-99 (in house check Aug-02)	In house check: Aug-05
Power sensor E4412A	MY41495277	2-Apr-03	Apr-04
Power sensor HP 8481A	MY41092180	18-Sep-02	Sep-03
Power meter EPM E4419B	GB41293874	13-Sep-02	Sep-03
Network Analyzer HP 8753E	US38432426	3-May-00	In house check: May 03
Fluke Process Calibrator Type 702	SN: 6295803	3-Sep-01	Sep-03
ł			

Calibrated by:

Name Function Signature
Nico Vetterii Technician Dividati

Approved by:

Katja Pokovic Laboratory Director May - Watje

Date issued: April 16, 2003

This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for Calibration Laboratory of Schmid & Partner Engineering AG is completed.

880-KP0301061-A Page 1 (1)

2.55

DASY - Parameters of Probe: ET3DV6R SN:1501

Sensitivity in Free Space

Diode Compression

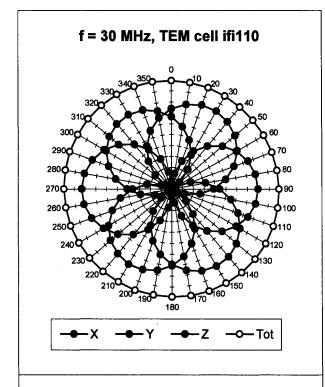
Depth

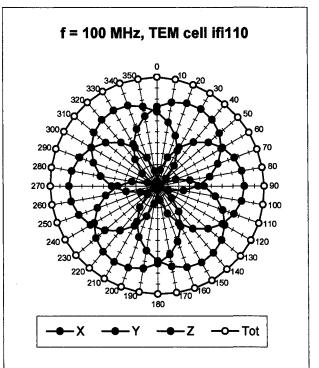
NormX	2.08 μV/(V/m) ²	DCP X	96	mV
NormY	2.09 μV/(V/m) ²	DCP Y	96	mV
NormZ	2.14 μV/(V/m) ²	DCP Z	96	mV

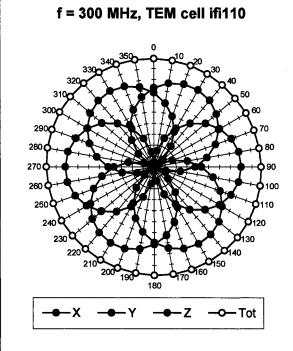
Sensitivity in Tissue Simulating Liquid

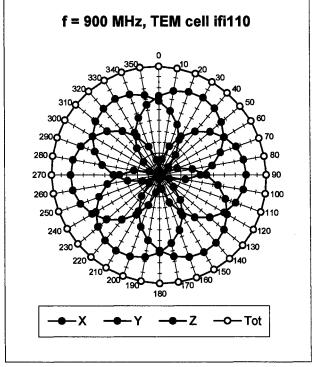
ConvF Z **5.0** \pm 9.5% (k=2)

Head	900 MHz		ϵ_r = 41.5 ± 5%	0.97 ± 5% mho/m		
Valid for f=	800-1000 MHz with I	lead T	issue Simulating Liquid acco	rding to	EEE P1528	-200X
	ConvF X	6.4	± 9.5% (k=2)		Boundary e	ffect:
	ConvF Y	6.4	± 9.5% (k=2)		Alpha	0.39
	ConvF Z	6.4	± 9.5% (k=2)		Depth	2.31
Head	1800 M Hz		$\varepsilon_{\rm r}$ = 40.0 ± 5%	σ=	1.40 ± 5% r	nho/m
Valid for f=	1710-1910 MHz with	Head	Tissue Simulating Liquid acc	ording	to IEEE P152	8-200X
	ConvF X	5.0	± 9.5% (k=2)		Boundary e	ffect:
	ConvF Y	5.0	± 9.5% (k=2)		Alpha	0.49

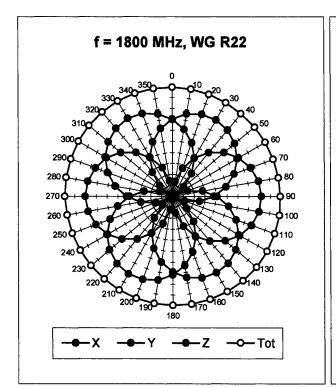

Boundary Effect

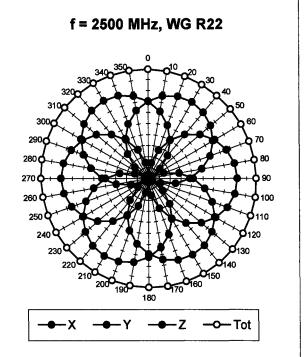

Head	900 MHz Typical SAR gradi	ent: 5 % per mm	
	Probe Tip to Boundary	1 mm	2 mm
	SAR _{be} [%] Without Correction Algorithm	8.9	4.9
	SAR _{be} [%] With Correction Algorithm	0.3	0.5
Head	1800 MHz Typical SAR gradi	ent: 10 % per mm	
	Probe Tip to Boundary	1 mm	2 mm
	SAR _{be} [%] Without Correction Algorithm	12.8	8.6
	SAR _{be} [%] With Correction Algorithm	0.2	0.2

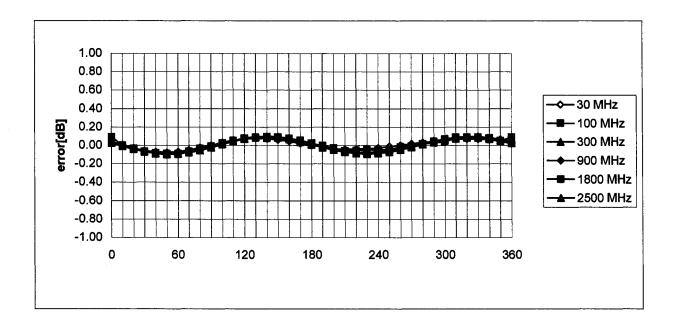

Sensor Offset


Probe Tip to Sensor Center 2.7 mm

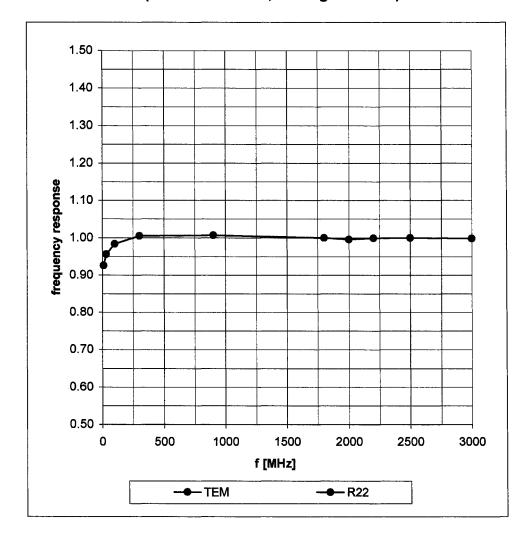
Receiving Pattern (ϕ , θ = 0°



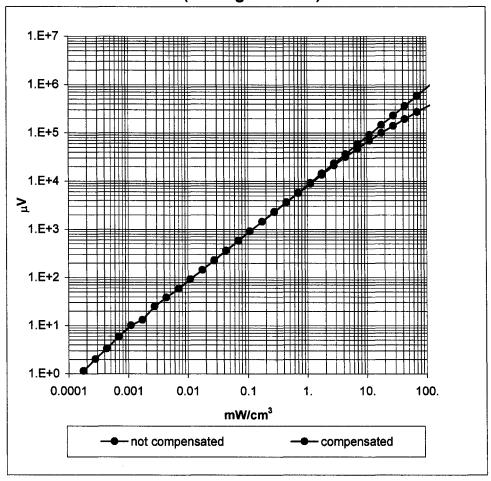


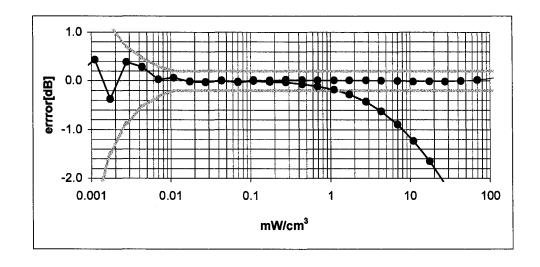


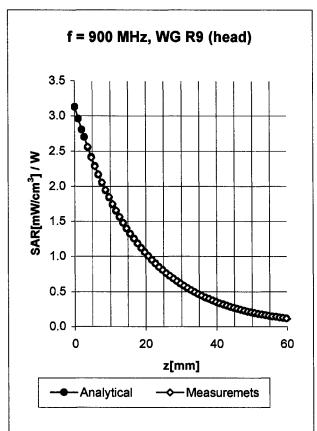
ET3DV6R SN:1501 April 16, 2003



Isotropy Error (ϕ), θ = 0°


Frequency Response of E-Field


(TEM-Cell:ifi110, Waveguide R22)


Dynamic Range f(SAR_{brain})

(Waveguide R22)

Conversion Factor Assessment

Head

900 MHz

 $\varepsilon_{\rm r} = 41.5 \pm 5\%$

 σ = 0.97 ± 5% mho/m

Valid for f=800-1000 MHz with Head Tissue Simulating Liquid according to IEEE P1528-200X

ConvF X

6.4 \pm 9.5% (k=2)

Boundary effect:

ConvF Y

6.4 \pm 9.5% (k=2)

Alpha

0.39

ConvF Z

6.4 \pm 9.5% (k=2)

Depth

2.31

Head

1800 MHz

 $\epsilon_{\rm r}$ = 40.0 ± 5%

 σ = 1.40 ± 5% mho/m

Valid for f=1710-1910 MHz with Head Tissue Simulating Liquid according to IEEE P1528-200X

ConvF X

5.0 \pm 9.5% (k=2)

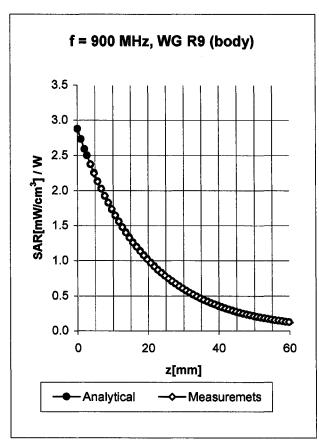
Boundary effect:

ConvF Y

5.0 \pm 9.5% (k=2)

Alpha

0.49


ConvF Z


5.0 \pm 9.5% (k=2)

Depth

2.55

Conversion Factor Assessment

Body

900 MHz

 $\epsilon_{\rm r}$ = 55.0 ± 5%

 $\sigma = 1.05 \pm 5\% \text{ mho/m}$

Valid for f=800-1000 MHz with Body Tissue Simulating Liquid according to OET 65 Suppl. C

ConvF X

6.1 \pm 9.5% (k=2)

Boundary effect:

ConvF Y

6.1 \pm 9.5% (k=2)

Boardary oncot.

ConvF Z

6.1 ± 9.5% (k=2)

Alpha Depth 0.402.37

Body

1800 MHz

 $\varepsilon_{\rm r}$ = 53.3 ± 5%

 σ = 1.52 ± 5% mho/m

Valid for f=1710-1910 MHz with Body Tissue Simulating Liquid according to OET 65 Suppl. C

ConvF X

4.6 \pm 9.5% (k=2)

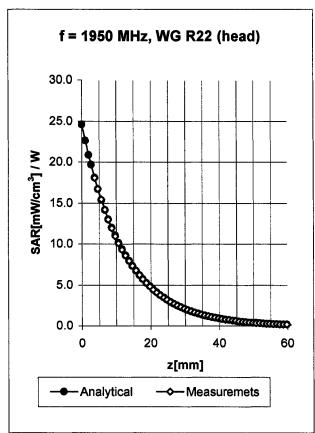
Boundary effect:

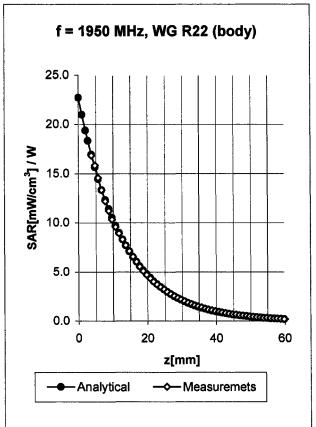
ConvF Y

4.6 \pm 9.5% (k=2)

Alpha

0.55


ConvF Z


4.6 \pm 9.5% (k=2)

Depth

2.59

Conversion Factor Assessment

Head	1950	MHz	$\varepsilon_{\rm r}$ = 40.0 ± 5%	σ = 1.40 ± 5% mh	o/m	
	ConvF X	4.7	± 8.9% (k=2)	Boundary effe	ct:	
	ConvF Y	4.7	± 8.9% (k=2)	Alpha	0.53	
	ConvF Z	4.7	± 8.9% (k=2)	Depth	2.53	
Body	1950	MHz	$\varepsilon_{\rm r}$ = 53.3 ± 5%	σ = 1.52 ± 5% mho/m		
	ConvF X	4.2	± 8.9% (k=2)	Boundary effe	ect:	
	ConvF Y	4.2	± 8.9% (k=2)	Alpha	0.70	
	ConvF Z	4.2	± 8.9% (k=2)	Depth	2.26	

Deviation from Isotropy in HSL

Error ($\theta \phi$), f = 900 MHz

Appendix 5

FCC ID: IHDT56DJ1

Dipole Characterization Certificate

Certification of System Performance Check Targets Based on APP-0396

-Historical Data-

	835MHz	900MHz	1800MHz	1900MHz	
P1528 Target: Advanced Extrapolation	9.5	10.8	38.1	39.7	(W/kg)
Measurement Uncertainty (k=1):	10.2%	10.2%	10.2%	10.2%	
Measurement Period:	November '02 - June '03	November '02 - June '03	November '02 - June '03	November '02 - June '03	
# of tests performed:	169	728	868	26	
Grand Average: Worst Case Extrapolation	10.1	11.6	39.7	42.0	(W/kg)
% Delta (Average - P1528 Target)	6.5%	7.7%	4.2%	5.9%	
Is % Delta <= Measurement Uncertainty?	Yes	Yes	Yes	Yes	
Accept/Reject <u>Average</u> as new system performance check target?	ACCEPT	ACCEPT	ACCEPT	ACCEPT	
	Applicable 835MHz Dipole Serial Numbers:	Applicable 900MHz Dipole Serial Numbers:	Applicable <u>1800MHz</u> Dipole Serial Numbers:	Applicable <u>1900Mhz</u> Dipole Serial Numbers:	
	420(TR), 421(TR)	77, 78	246(TR), 250(TR)	514(TR), 518(TR)	
	422(TR), 423(TR)	79, 80	251(TR), 258(TR)	519(TR), 520(TR)	
	424(TR), 425(TR)	91, 92	259(TR), 262(TR)	523(TR), 524(TR)	4
	431(TR), 432(TR)	93, 94 95, 96	263(TR), 271(TR)	526(TR), 527(TR)	-
	433(TR), 434(TR) 436(TR)	95, 96 97	272(TR), 273(TR) 276(TR), 277(TR)	528(TR), 529(TR) 530(TR), 533(TR)	
	750(111)	- 51	279(TR), 280(TR)	330(111), 333(111)	1
			281(TR), 282(TR)		1
			283(TR), 284(TR)]

-New System Performance Check Targets- per APP-0396

(based on analysis of historical data)

Frequency	SAR Target (W/kg)	Permittivity	Conductivity (S/m)		
835MHz	10.1	41.5 ± 5%	0.90 ± 5%		
900MHz	11.6 41.5 ± 5%		0.97 ± 5%		
1800MHz	39.7	40.0 ± 5%	1.40 ± 5%		
1900MHz	42.0	40.0 ± 5%	1.40 ± 5%		

-Approvals-				
Subm	nitted by: Marge I	Kaunas	Date:	24-Jun-03
	Signed:	za Kaurae		
Cor	mments:	spreadsheet detailing all measur	ements available upon rec	uest
Appro	oved by:	Antonio Faraone	Date:	24-Jun-03
:	Signed: Auto	wo tomer-e		
Con	nments: Targets	s and associated simulant properties are	derived from the IEEE P152	8 draft standard

Appendix 6

FCC ID: IHDT56DJ1

Measurement Uncertainty Budget

Uncertainty Budget for I)evic	e Un	der 7	rest					
Cheertainty Budget for I							h =	i =	
a	b	c	d	e = f(d,k)	f	α	cxf/e	$\begin{array}{c c} & i - \\ c \times g / e \end{array}$	\boldsymbol{k}
a	U			$e = J(a, \kappa)$		g			ĸ
		Tol.	Prob.		c_i	c_i	1 g	10 g	
	Sec.	(± %)	Dist.		(1 g)	(10 g)	\boldsymbol{u}_i	\boldsymbol{u}_i	
Uncertainty Component	Sec.			Div.			(±%)	(±%)	v_i
Measurement System									
Probe Calibration	E.2.1	9.5	N	2.00	1	1	4.8	4.8	∞
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	∞
Spherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	∞
Boundary Effect	E.2.3	5.8	R	1.73	1	1	3.3	3.3	∞
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	8
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	∞
Readout Electronics	E.2.6	1.0	N	1.00	1	1	1.0	1.0	8
Response Time	E.2.7	0.8	R	1.73	1	1	0.5	0.5	∞
Integration Time	E.2.8	1.3	R	1.73	1	1	0.8	0.8	8
RF Ambient Conditions	E.6.1	3.0	R	1.73	1	1	1.7	1.7	8
Probe Positioner Mechanical									
Tolerance	E.6.2	0.3	R	1.73	1	1	0.2	0.2	8
Probe Positioning with respect to									
Phantom Shell	E.6.3	1.1	R	1.73	1	1	0.6	0.6	∞
Extrapolation, interpolation and									
Integration Algorithms for Max. SAR									
Evaluation	E.5	3.9	R	1.73	1	1	2.3	2.3	8
Test sample Related									
Test Sample Positioning	E.4.2	3.6	N	1.00	1	1	3.6	3.6	29
Device Holder Uncertainty	E.4.1	2.8	N	1.00	1	1	2.8	2.8	8
Output Power Variation - SAR drift									
measurement	6.6.2	5.0	R	1.73	1	1	2.9	2.9	8
Phantom and Tissue Parameters									
Phantom Uncertainty (shape and									
thickness tolerances)	E.3.1	4.0	R	1.73	1	1	2.3	2.3	8
Liquid Conductivity - deviation from									
target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	8
Liquid Conductivity - measurement									
uncertainty	E.3.3	10.0	R	1.73	0.64	0.43	3.7	2.5	8
Liquid Permittivity - deviation from									
target values	E.3.2	10.0	R	1.73	0.6	0.49	3.5	2.8	8
Liquid Permittivity - measurement									
uncertainty	E.3.3	5.0	R	1.73	0.6	0.49	1.7	1.4	8
Combined Standard Uncertainty			RSS				11.72	11.09	1363
Expanded Uncertainty									
(95% CONFIDENCE LEVEL)			k=2				22.98	21.75	

FCC ID: IHDT56DJ1

Uncertainty Budget for System Performance Check (dipole & flat phantom)

FCC ID: IHDT56DJ1

Boundary Effect Fig. Fi	Uncertainty budget for	Systen	renc	Tillali	ce Cii	eck (urpore	& Hat	рпапі	om)
Tol. Prob. Co. C					<i>e</i> =			<i>h</i> =	<i>i</i> =	
Tol. Prob. Ci Ci Ci Ci Ui Ui Ui Ui					f(d,k)			cxf/	c x g	
Uncertainty Component	а	b	c	d)	f	g	e	/ e	k
Value Val			Tol.	Prob.		c_i	c_i	1 g	10 g	
Probe Calibration			(± %)	Dist.		(1 g)	(10 g)	u_i	u_i	
Measurement System	Uncertainty Component	Sec.			Div.			(±%)	(±%)	v_i
Probe Calibration	Measurement System									
Spherical Isotropy E.2.2 9.6 R 1.73 0 0 0.0 0.0 ∞	-	E.2.1	9.5	N	2.00	1	1	4.8	4.8	∞
Spherical Isotropy E.2.2 9.6 R 1.73 0 0 0.0 0.0 ∞	Axial Isotropy	E.2.2	4.7	R	1.73	1	1	2.7	2.7	∞
Boundary Effect	Spherical Isotropy	1	1	R		0	0			∞
System Detection Limits		E.2.3	5.8	R	1.73	1	1	3.3	3.3	∞
System Detection Limits	*			R		1	1	2.7	2.7	∞
Readout Electronics		E.2.5	1			1	1	0.6	0.6	oc .
Response Time	·						1			
Integration Time	Response Time			R		1	1	0.0	0.0	oc.
RF Ambient Conditions					1		1			o o
Probe Positioner Mechanical Tolerance										
Probe Positioning with respect to Phantom Shell										
Phantom Shell E.6.3 1.1 R 1.73 1 1 0.6 0.6 ∞ Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation E.5 3.9 R 1.73 1 1 2.3 2.3 ∞ Dipole Dipole Axis to Liquid Distance Input Power and SAR Drift Measurement 8, E.4.2 1.0 R 1.73 1 1 0.6 0.6 ∞ Phantom and Tissue Parameters 8, 6.6.2 4.7 R 1.73 1 1 2.7 2.7 ∞ Phantom Uncertainty (shape and thickness tolerances) E.3.1 4.0 R 1.73 1 1 2.3 2.3 ∞ Liquid Conductivity - deviation from target values E.3.2 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Permittivity - deviation from target values E.3.2 10.0 R 1.73 0.6 0.49 3.5 2.8 ∞ Liquid Permittivity - measurement uncertainty E.3.3 5.0	Tolerance	E.6.2	0.3	R	1.73	1	1	0.2	0.2	∞
Phantom Shell E.6.3 1.1 R 1.73 1 1 0.6 0.6 ∞ Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation E.5 3.9 R 1.73 1 1 2.3 2.3 ∞ Dipole Dipole Axis to Liquid Distance Input Power and SAR Drift Measurement 8, E.4.2 1.0 R 1.73 1 1 0.6 0.6 ∞ Phantom and Tissue Parameters 8, 6.6.2 4.7 R 1.73 1 1 2.7 2.7 ∞ Phantom Uncertainty (shape and thickness tolerances) E.3.1 4.0 R 1.73 1 1 2.3 2.3 ∞ Liquid Conductivity - deviation from target values E.3.2 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Permittivity - deviation from target values E.3.2 10.0 R 1.73 0.6 0.49 3.5 2.8 ∞ Liquid Permittivity - measurement uncertainty E.3.3 5.0	Probe Positioning with respect to									
Integration Algorithms for Max. SAR Evaluation		E.6.3	1.1	R	1.73	1	1	0.6	0.6	∞
Integration Algorithms for Max. SAR Evaluation	Extrapolation, interpolation and									
Dipole Bipole Axis to Liquid Distance 8, E.4.2 1.0 R 1.73 1 1 0.6 0.6 ∞ Input Power and SAR Drift Measurement 8, 6.6.2 4.7 R 1.73 1 1 2.7 2.7 ∞ Phantom and Tissue Parameters Phantom Uncertainty (shape and thickness tolerances) E.3.1 4.0 R 1.73 1 1 2.3 2.3 ∞ Liquid Conductivity - deviation from target values E.3.2 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Permittivity - deviation from target values E.3.2 10.0 R 1.73 0.64 0.43 3.7 2.5 ∞ Liquid Permittivity - deviation from target values E.3.2 10.0 R 1.73 0.6 0.49 3.5 2.8 ∞ Liquid Permittivity - measurement uncertainty E.3.3 5.0 R 1.73 0.6 0.49 3.5 2.8 ∞ Combined Standard Uncertainty RSS										
Dipole Axis to Liquid Distance 8, E.4.2 1.0 R 1.73 1 1 0.6 0.6 ∞ Input Power and SAR Drift Measurement 8, 6.6.2 4.7 R 1.73 1 1 2.7 2.7 ∞ Phantom and Tissue Parameters Phantom Uncertainty (shape and thickness tolerances) E.3.1 4.0 R 1.73 1 1 2.3 2.3 ∞ Liquid Conductivity - deviation from target values E.3.2 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Permittivity - measurement uncertainty E.3.3 10.0 R 1.73 0.64 0.43 3.7 2.5 ∞ Liquid Permittivity - deviation from target values E.3.2 10.0 R 1.73 0.6 0.49 3.5 2.8 ∞ Liquid Permittivity - measurement uncertainty E.3.3 5.0 R 1.73 0.6 0.49 3.5 2.8 ∞ Combined Standard Uncertainty RSS Incompany for the pa	SAR Evaluation	E.5	3.9	R	1.73	1	1	2.3	2.3	∞
Input Power and SAR Drift Measurement 8,66.2 4.7 R 1.73 1 1 2.7 2.7 ∞ Phantom and Tissue Parameters Phantom Uncertainty (shape and thickness tolerances) E.3.1 4.0 R 1.73 1 1 2.3 2.3 ∞ Liquid Conductivity - deviation from target values E.3.2 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Conductivity - measurement uncertainty E.3.3 10.0 R 1.73 0.64 0.43 3.7 2.5 ∞ Liquid Permittivity - deviation from target values E.3.2 10.0 R 1.73 0.6 0.49 3.5 2.8 ∞ Liquid Permittivity - measurement uncertainty E.3.3 5.0 R 1.73 0.6 0.49 3.5 2.8 ∞ Combined Standard Uncertainty RSS RSS Investment Uncertainty Investment Uncertainty Investment Uncertainty Investment Uncertainty Investment Uncertainty Investment Uncertainty Investment Unce	Dipole									
Measurement 8,6.6.2 4.7 R 1.73 1 1 2.7 2.7 ∞ Phantom and Tissue Parameters Phantom Uncertainty (shape and thickness tolerances) E.3.1 4.0 R 1.73 1 1 2.3 2.3 ∞ Liquid Conductivity - deviation from target values E.3.2 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Conductivity - measurement uncertainty E.3.3 10.0 R 1.73 0.64 0.43 3.7 2.5 ∞ Liquid Permittivity - deviation from target values E.3.2 10.0 R 1.73 0.6 0.49 3.5 2.8 ∞ Liquid Permittivity - measurement uncertainty E.3.3 5.0 R 1.73 0.6 0.49 1.7 1.4 ∞ Combined Standard Uncertainty RSS Incertainty		8, E.4.2	1.0	R	1.73	1	1	0.6	0.6	∞
Phantom and Tissue Parameters Phantom Uncertainty (shape and thickness tolerances) E.3.1 4.0 R 1.73 1 1 2.3 2.3 ∞ Liquid Conductivity - deviation from target values E.3.2 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Conductivity - measurement uncertainty E.3.3 10.0 R 1.73 0.64 0.43 3.7 2.5 ∞ Liquid Permittivity - deviation from target values E.3.2 10.0 R 1.73 0.6 0.49 3.5 2.8 ∞ Liquid Permittivity - measurement uncertainty E.3.3 5.0 R 1.73 0.6 0.49 1.7 1.4 ∞ Combined Standard Uncertainty RSS RSS 10.16 9.43 99999 Expanded Uncertainty RSS 10.16 9.43 99999										
Phantom Uncertainty (shape and thickness tolerances) E.3.1 4.0 R 1.73 1 1 2.3 2.3 ∞ Liquid Conductivity - deviation from target values E.3.2 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Conductivity - measurement uncertainty E.3.3 10.0 R 1.73 0.64 0.43 3.7 2.5 ∞ Liquid Permittivity - deviation from target values E.3.2 10.0 R 1.73 0.6 0.49 3.5 2.8 ∞ Liquid Permittivity - measurement uncertainty E.3.3 5.0 R 1.73 0.6 0.49 3.5 2.8 ∞ Combined Standard Uncertainty RSS RSS 10.16 9.43 99999		8, 6.6.2	4.7	R	1.73	1	1	2.7	2.7	∞
Phantom Uncertainty (shape and thickness tolerances) E.3.1 4.0 R 1.73 1 1 2.3 2.3 $_{\odot}$ Liquid Conductivity - deviation from target values E.3.2 5.0 R 1.73 0.64 0.43 1.8 1.2 $_{\odot}$ Liquid Conductivity - measurement uncertainty E.3.3 10.0 R 1.73 0.64 0.43 3.7 2.5 $_{\odot}$ Liquid Permittivity - deviation from target values E.3.2 10.0 R 1.73 0.6 0.49 3.5 2.8 $_{\odot}$ Liquid Permittivity - measurement uncertainty E.3.3 5.0 R 1.73 0.6 0.49 1.7 1.4 $_{\odot}$ Combined Standard Uncertainty Expanded Uncertainty										
thickness tolerances)										
Liquid Conductivity - deviation from target values $E.3.2$ 5.0 R 1.73 0.64 0.43 1.8 1.2 $∞$ 0.64 0.43 0.64 0.44		E 2.1	4.0	D	1.72	1	1	2.2	2.2	
from target values E.3.2 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Conductivity - measurement uncertainty E.3.3 10.0 R 1.73 0.64 0.43 3.7 2.5 ∞ Liquid Permittivity - deviation from target values E.3.2 10.0 R 1.73 0.6 0.49 3.5 2.8 ∞ Liquid Permittivity - measurement uncertainty E.3.3 5.0 R 1.73 0.6 0.49 1.7 1.4 ∞ Combined Standard Uncertainty RSS RSS 10.16 9.43 99999 Expanded Uncertainty RSS 10.16 9.43 99999		E.3.1	4.0	K	1./3	1	1	2.3	2.3	∞
Liquid Conductivity - measurement uncertainty $E.3.3$ 10.0 R 1.73 0.64 0.43 3.7 2.5 ∞ Liquid Permittivity - deviation from target values $E.3.2$ 10.0 R 1.73 0.6 0.49 3.5 2.8 ∞ Liquid Permittivity - measurement uncertainty $E.3.3$ 5.0 R 1.73 0.6 0.49 1.7 1.4 ∞ Combined Standard Uncertainty RSS RS	•	E 2 2	5.0	D	1.72	0.64	0.42	1.0	1.0	
measurement uncertainty E.3.3 10.0 R 1.73 0.64 0.43 3.7 2.5 ∞ Liquid Permittivity - deviation from target values E.3.2 10.0 R 1.73 0.6 0.49 3.5 2.8 ∞ Liquid Permittivity - measurement uncertainty E.3.3 5.0 R 1.73 0.6 0.49 1.7 1.4 ∞ Combined Standard Uncertainty RSS I0.16 9.43 99999 Expanded Uncertainty RSS I0.16 9.43 99999		E.3.2	5.0	K	1./3	0.04	0.43	1.8	1.2	∞
Liquid Permittivity - deviation from target values E.3.2 10.0 R 1.73 0.6 0.49 3.5 2.8 $_{\odot}$ Liquid Permittivity - measurement uncertainty E.3.3 5.0 R 1.73 0.6 0.49 1.7 1.4 $_{\odot}$ Combined Standard Uncertainty RSS 10.16 9.43 99999 Expanded Uncertainty		Б 2 2	10.0	D	1 72	0.64	0.42	27	2.5	
from target values E.3.2 10.0 R 1.73 0.6 0.49 3.5 2.8 $_{\infty}$ Liquid Permittivity - measurement uncertainty E.3.3 5.0 R 1.73 0.6 0.49 1.7 1.4 $_{\infty}$ Combined Standard Uncertainty RSS 10.16 9.43 99999 Expanded Uncertainty		E.3.3	10.0	K	1./3	0.04	0.43	3.7	2.3	∞
Liquid Permittivity - measurement uncertainty E.3.3 5.0 R 1.73 0.6 0.49 1.7 1.4 ∞ Combined Standard Uncertainty RSS 10.16 9.43 99999 Expanded Uncertainty	1	E 2 2	10.0	D	1 72	0.6	0.40	3.5	20	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		E.3.2	10.0	K	1./3	0.0	0.49	3.3	2.0	∞
Combined Standard Uncertainty RSS 10.16 9.43 99999 Expanded Uncertainty	1	E 2 2	5.0	D	1 72	0.6	0.40	1.7	1.4	
Uncertainty RSS 10.16 9.43 99999 Expanded Uncertainty		E.3.3	3.0	K	1./3	0.0	0.49	1./	1.4	
Expanded Uncertainty				RSS				10.16	9.43	99999
	-			1.00				20.10	7.13	22777
				k=2				19.92	18.48	

Appendix 7

FCC ID: IHDT56DJ1

Photographs of the device under test

FCC ID: IHDT56DJ1

Exhibit 11 Page 26

Exhibit 11 Page 27

