

Exhibit 11: Class II Permissive Change SAR Test Report IHDT56DG1

Date of test: 10 & 11 Feb, 2004 **Date of Report:** 9 March, 2004

Motorola Personal Communications Sector Product Safety & Compliance Laboratory

600 N. US Highway 45

Laboratory: Room: MW113

Libertyville, Illinois 60048

Test Responsible: Steven Hauswirth

Principal Staff Engineer

Accreditation: This laboratory is accredited to ISO/IEC 17025-1999 to perform the following tests:

ACCREDITED

<u>Tests</u>: <u>Procedures</u>:

Electromagnetic Specific Absorption Rate ANSI/IEEE C95.1-1992, 1999

(SAR) IEEE C95.3-1991 IEEE P1528 (*DRAFT*)

FCC OET Bulletin 65 (including Supplements A, B, C)

FCC ID: IHDT56DG1

Australian Communications Authority Radio

Communications (Electromagnetic Radiation – Human

Exposure) Standard 1999 CENELEC EN 50361 (2001)

Simulated Tissue Preparation APP-0247

RF Power Measurement DOI-0876, 0900, 0902, 0904, 0915

On the following products or types of products:

Wireless Communications Devices (Examples): Two Way Radios; Portable Phones (including

Cellular.

Licensed Non-Broadcast and PCS); Low Frequency Readers; and Pagers

A2LA certificate #1651-01

Motorola declares under its sole responsibility that portable cellular telephone FCC ID IHDT56DG1 to which this declaration relates, is in conformity with the appropriate General Population/Uncontrolled RF exposure standards, recommendations and guidelines (FCC 47 CFR §2.1093). It also declares that the product was tested in accordance with the appropriate measurement standards, guidelines and recommended practices. Any deviations from these

Statement of Compliance:

standards, guidelines and recommended practices are noted below:

(none)

©Motorola, Inc. 2003

This test report shall not be reproduced except in full, without written approval of the laboratory.

The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report.

Motorola encourages all feedback, both positive and negative, on this test report.

Table of Contents

1. INTRODUCTION	3
2. DESCRIPTION OF THE DEVICE UNDER TEST	3
2.1 Antenna description	3
2.2 Device description	3
3. TEST EQUIPMENT USED	3
3.1 Dosimetric System	3
3.2 Additional Equipment	4
4. ELECTRICAL PARAMETERS OF THE TISSUE SIMULATING LIQUID	4
5. SYSTEM ACCURACY VERIFICATION	4
6. TEST RESULTS	5
6.1 Body Worn Test Results	6
APPENDIX 1: SAR DISTRIBUTION COMPARISON FOR SYSTEM ACCURACY VERIFICATION	8
APPENDIX 2: SAR DISTRIBUTION PLOTS FOR BODY WORN CONFIGURATION	9
APPENDIX 3: PROBE CALIBRATION CERTIFICATE	.12
APPENDIX 4: DIPOLE CHARACTERIZATION CERTIFICATE	.13
APPENDIX 5: MEASUREMENT UNCERTAINTY BUDGET	.14
APPENDIX 6: PHOTOGRAPHS OF DEVICE UNDER TEST	.17

1. Introduction

The Motorola Personal Communications Sector Product Safety Laboratory has performed measurements of the maximum potential exposure to the user of portable cellular phone (FCC ID IHDT56DG1). The Specific Absorption Rate (SAR) of this product was measured. The portable cellular phone was tested in accordance with FCC OET Bulletin 65 Supplement C 01-01.

2. Description of the Device Under Test

a. Antenna description

Type	Retractable			
Location	Right Side of Phone			
Dimensions	Length	106 mm		
Dimensions	Width 4 mm			
Configuration	Extendable Whip			

b. Device description

FCC ID Number	IHDT56DG1					
Serial number	3D50ACF3					
Mode(s) of Operation	800 AMPS 800 CDMA 1900 CDMA					
Modulation Mode(s)	AMPS CDMA CDMA					
Maximum Output Power Setting	27.00 dBm 24.50 dBm 24.10 dBm					
Duty Cycle	1:1	1:1	1:1			
Transmitting Frequency Rang(s)	824-849MHz	824-849MHz	1851-1909MHz			
Production Unit or Identical Prototype (47 CFR §2908)	Identical Prototype					
Device Category	Portable					
RF Exposure Limits	Gener	al Population / U	ncontrolled			

3. Test Equipment Used

3.1 Dosimetric System

The Motorola Personal Communications Sector Product Safety & Compliance Laboratory utilizes a Dosimetric Assessment System (Dasy3TM v3.1d) manufactured by Schmid & Partner Engineering AG (SPEAGTM), of Zurich Switzerland. All the SAR measurements are taken within a shielded enclosure. The overall RSS uncertainty of the measurement system is $\pm 11.7\%$ (K=1) with an expanded uncertainty of $\pm 23.0\%$ (K=2). The measurement uncertainty budget is given in Appendix 6. Per IEEE 1528, this uncertainty budget is applicable to the SAR range of 0.4 W/kg to 10 W/kg. The list of calibrated equipment used for the measurements is shown below.

Description	Serial Number	Cal Due Date
DASY3 DAE V1	SN385	14-May-04
E-Field Probe ET3DV6	SN3037	10-Oct-04
Dipole Validation Kit, D900V2	SN425TR	24-Jun-04
Dipole Validation Kit, D1800V2	SN259TR	24-Jun-04

3.2 Additional Equipment

Description	Serial Number	Cal Due Date
Signal Generator HP8648C	3847A04845	5-Nov-04
Power Meter E4419B	US39250622	8-Jan-05
Power Sensor #1 - E9301A	US39210918	5-Aug-04
Power Sensor #2 - E9301A	US39210917	5-Aug-04
Network Analyzer HP8753ES	US39171846	3-Jun-04
Dielectric Probe Kit HP85070B	US99360074	N/A

4. Electrical parameters of the tissue simulating liquid

Prior to conducting SAR measurements, the relative permittivity, ε_r , and the conductivity, σ , of the tissue simulating liquids were measured with the HP85070 Dielectric Probe Kit These values, along with the temperature of the tissue simulate are shown in the table below. The recommended limits for maximum permittivity and minimum conductivity are also shown. These come from the Federal Communication Commission, OET Bulletin 65 Supplement C 01-01. It is seen that the measured parameters are satisfactory for compliance testing.

			Dielect	Dielectric Parame		
f (MHz)	Tissue type	Limits / Measured	$\mathbf{\epsilon}_r$	σ (S/m)	Temp (°C)	
835	Body	Measured, 10-Feb-04	54.6	0.98	19.0	
633	Douy	Recommended Limits	55.2 ±5%	0.97 ±5%	18-25	
1990 D ody		Measured, 11-Feb-04	52.1	1.59	18.8	
1880	Body	Recommended Limits	53.3 ±5%	1.52 ±5%	18-25	

The list of ingredients and the percent composition used for the tissue simulates are indicated in the table below.

Ingredien	800MHz	800MHz	1900MHz	1900MHz
t	Head	Body	Head	Body
Sugar	57.0	44.9	-	30.80
DGBE		-	47.0	
Water	40.45	53.06	52.8	68.91
Salt	1.45	0.94	0.2	0.29
HEC	1.0	1.0	-	
Bact.	0.1	0.1		

5. System Accuracy Verification

A system accuracy verification of the DASY3 was performed using the measurement equipment listed in Section 3.1. The daily system accuracy verification occurs within center section of the SAM phantom.

A SAR measurement was performed to see if the measured SAR was within +/- 10% from the target SAR indicated on the dipole certification sheet. These tests were done at 900MHz and/or 1800MHz. These frequencies are within 100MHz of the mid-band frequency of the test device. This is within the allowable window given in Supplement C 01-01 *Appendix D System Verification* section item #5. The test was conducted on the same days as the

measurement of the DUT. Recommended limits for maximum permittivity, minimum conductivity are shown in the table below. These come from the Federal Communication Commission, OET Bulletin 65 Supplement C 01-01. The obtained results from the system accuracy verification are displayed in the table below. The distributions of SAR compare well with those of the reference measurements (see Appendix 1). The tissue stimulant depth was verified to be $15.0 \text{cm} \pm 0.5 \text{cm}$. Z-axis scans showing the SAR penetration are also included in Appendix 1. SAR values are normalized to 1W forward power delivered to the dipole.

FCC ID: IHDT56DG1

f	Description	Dielectric	Parameters	Ambient Temp	Tissue Temp		
(MHz)		1gram	$\mathbf{\epsilon}_r$	σ (S/m)	(°C)	(°C)	
835	Measured, 10-Feb-04	9.9	42.6	0.92	20	19.5	
633	Recommended Limits	10.1	41.5 ±5%	$0.90 \pm 5\%$	18-25	18-25	
1800	Measured, 11-Feb-04	41.1	39.1	1.37	20	19.1	
1800	Recommended Limits	39.7	40.0 ±5%	1.4 ±5%	18-25	18-25	

The following probe conversion factors were used on the E-Field probe(s) used for the system accuracy verification measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe	SN3037	835	6.1	7 of 10
ET3DV6	5113037	1800	4.9	7 of 10

6. Test Results

The test sample was operated in a test mode that allows control of the transmitter without the need to place actual phone calls. For the purposes of this test the unit is commanded to test mode and manually set to the proper channel, transmitter power level and transmit mode of operation. The phone was tested in the configurations stipulated in OET Bulletin 65 Supplement C 01-01. Motorola also followed the requirements in Supplement. C / Appendix D: SAR Measurement Procedures, section titled "Devices Operating Next To A Person's Ear". These directions state "The device should be tested on the left and right side of the head phantom in the "Cheek/Touch" and "Ear/Tilt" positions. When applicable, each configuration should be tested with the antenna in its fully extended and fully retracted positions. These test configurations should be tested at the high, middle and low frequency channels of each operating mode; for example, AMPS, CDMA, and TDMA. If the SAR measured at the middle channel for each test configuration (left, right, Cheek/Touch, Tile/Ear, extended and retracted) is at least 2.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s)."

The DASY v3.1d SAR measurement system specified in section 3.1 was utilized within the intended operations as set by the SPEAGTM setup. The phone was positioned into the measurement configurations using the positioner supplied with the DASY 3.1d SAR measurement system. The measured dielectric constant of the material used for the positioner is less than 2.9 and the loss tangent is less than 0.02 (\pm 30%) at 850MHz. The default settings for the "coarse" and "cube" scans were chosen and use for measurements. The grid spacing of the course scan was set to 15cm as shown in the SAR plots included in appendix 2 and 3. Please refer to the DASY manual for additional information on SAR scanning procedures and algorithms used.

The Cellular Phone (FCC ID IHDT56DG1) has the SNN5588A as the only available battery option. This battery was used to do all of the SAR testing. The phone was placed in the SAR measurement system with a fully charged battery.

6.1 Body Worn Test Results

The SAR results shown in table 5 are the maximum SAR values averaged over 1 gram of phantom tissue. Also shown are the measured conducted output powers, the temperature of the test facility during the test, the temperature of the tissue simulate after the test, the measured drift and the extrapolated SAR. The exact method of extrapolation is New SAR = Old SAR * 10^(-drift/10). The SAR reported at the end of the measurement process by the DASYTM measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test. The test conditions indicated as bold numbers in the following table are included in Appendix 3. All other test conditions measured lower SAR values than those included in Appendix 3.

FCC ID: IHDT56DG1

A "flat" phantom was for the body-worn tests. This "flat" phantom is made out of 1" thick natural High Density Polyethylene with a thickness at the bottom equal to 2.0mm. It measures 52.7cm(long) x 26.7cm(wide) x 21.2cm(tall). The measured dielectric constant of the material used is less than 2.3 and the loss tangent is less than 0.0046 all the way up to 2.184GHz.

The tissue stimulant depth was verified to be $15.0 \, \mathrm{cm} \pm 0.5 \, \mathrm{cm}$. The same device holder described in section 6 was used for positioning the phone. The functional accessories were divided into two categories, the ones with metal components and the ones with non-metal components. For non-metallic component accessories', testing was performed on the accessory that displayed the closest proximity to the flat phantom. Each metallic component accessory, if any, was checked for uniqueness of metal component so that each is tested with the device. If multiple accessories shared an identical metal component, only the accessory that dictates the closest spacing to the body was tested. The cellular phone was tested with a headset connected to the device for all body-worn SAR measurements.

There are two new Body-Worn Accessories available for this phone. Each one utilizes the same leather pouch, but a different belt clip:

A Leather Pouch (model # VL31000) with Belt Clip (model #SYN8631A)

A Leather Pouch (model # VL31000) with Belt Clip (model #SYN8763A)

The following probe conversion factors were used on the E-Field probe(s) used for the body worn measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe	SN3037	835	5.9	8 of 10
ET3DV6	3113037	1900	4.7	8 of 10

Digital

1900MHz

Channel 600

Channel 1175

24.52

24.75

0.397

-0.17

	T	•								
				Body Worn Carry Case VL3100 with SYN8631A Clip						
		Conducted		Ant	Extended			Ant	Retracted	
f (MHz)	Description	Output Power (dBm)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)
	Channel 991	27.03	0.705	-0.2	0.74	19.0	0.916	-0.46	1.02	19.2
Analog 800MHz	Channel 384	27.18	0.875	-0.38	0.96	19.1	0.881	-0.24	0.93	19.2
	Channel 799	26.93	1.08	0.32	1.08	19.1	0.917	-0.76	1.09	19.1
	Channel 1013	24.54	0.408	0.04	0.41	18.3				
Digital 800MHz	Channel 384	24.65	0.80	-0.18	0.83	18.3	0.596	-0.44	0.66	18.7
	Channel 779	24.56	0.54	-0.07	0.55	18.0				
	Channel 25	24.42								

FCC ID: IHDT56DG1

Table 1: SAR measurement results for the portable cellular telephone FCC ID IHDT56DG1 at highest possible output power. Measured against the body.

0.41

19.1

0.288

-0.38

0.31

19.4

			Body Worn Carry Case VL3100 with SYN8763A Clip							
		Conducted		Ant	Extended		Ant Retracted			
f (MHz)	Description	Output Power (dBm)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)
	Channel 991	27.03								
Analog 800MHz	Channel 384	27.18	0.457	-0.27	0.49	18.8	0.405	-0.28	0.43	18.8
	Channel 799	26.93								
	Channel 1013	24.54								
Digital 800MHz	Channel 384	24.65	0.296	-0.19	0.31	18.4	0.252	-0.25	0.27	18.8
	Channel 779	24.56								
D: 1: 1	Channel 25	24.42					1.11	-0.23	1.17	18.9
Digital 1900MHz	Channel 600	24.52	0.729	-0.12	0.75	18.6	0.856	0.07	0.86	19.0
	Channel 1175	24.75					0.597	-1.18	0.78	18.8

Table 2: SAR measurement results for the portable cellular telephone FCC ID IHDT56DG1 at highest possible output power. Measured against the body.

FCC ID: IHDT56DG1

SAR distribution comparison for the system accuracy verification

FCC ID: IHDT56DG1

SAR distribution plots for Body Worn Configuration

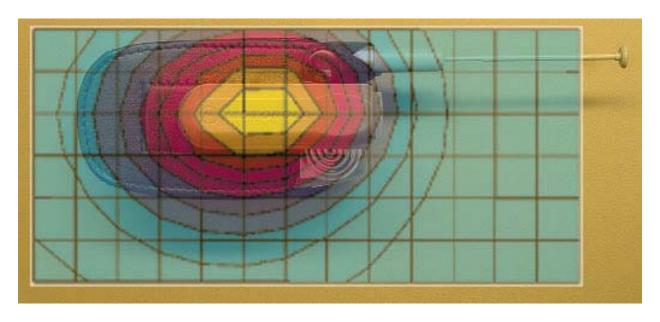


Figure 1.Typical 800 MHz Body-Worn Contour Overlaid on Phone with Antenna Extended

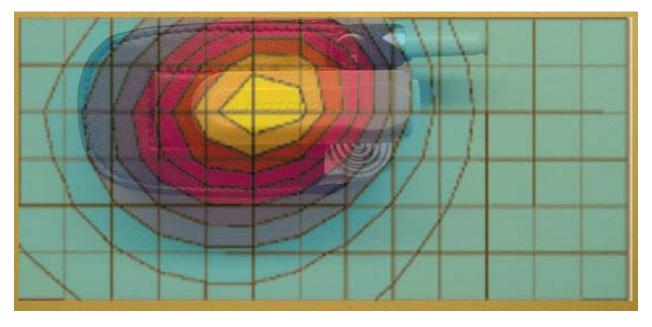


Figure 2.Typical 800 MHz Body-Worn Contour Overlaid on Phone with Antenna Retracted

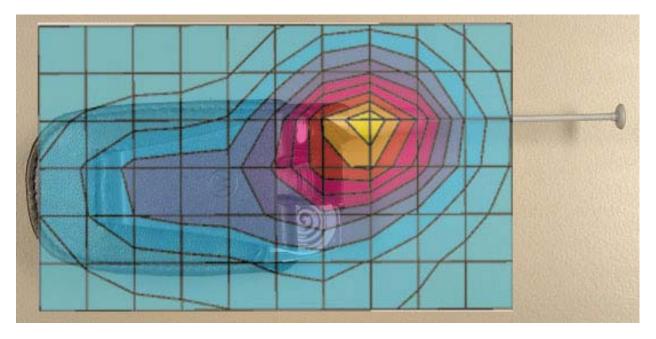


Figure 3. Typical 1900 MHz Body-Worn Contour Overlaid on Phone with Antenna Extended

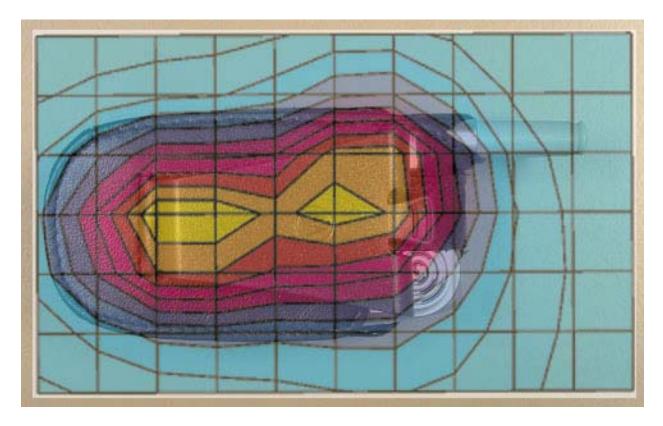


Figure 4. Typical 1900 MHz Body-Worn Contour Overlaid on Phone with Antenna Retracted

FCC ID: IHDT56DG1

Probe Calibration Certificate

FCC ID: IHDT56DG1

Dipole Characterization Certificate

FCC ID: IHDT56DG1

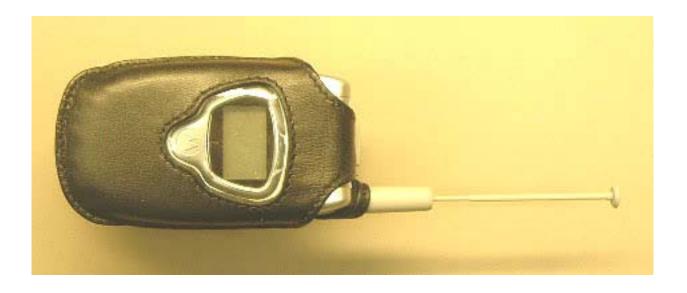
Measurement Uncertainty Budget

Uncertainty Budget for I	<i>j</i> evic	e Uno	aer 1	est					
Probe Calibration	E.2.1	9.5	N	2.00	1	1	4.8	4.8	∞
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	∞
Spherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	∞
Boundary Effect	E.2.3	5.8	R	1.73	1	1	3.3	3.3	∞
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	∞
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	8
Readout Electronics	E.2.6	1.0	N	1.00	1	1	1.0	1.0	∞
Response Time	E.2.7	0.8	R	1.73	1	1	0.5	0.5	∞
Integration Time	E.2.8	1.3	R	1.73	1	1	0.8	0.8	∞
RF Ambient Conditions	E.6.1	3.0	R	1.73	1	1	1.7	1.7	∞
Probe Positioner Mechanical									
Tolerance	E.6.2	0.3	R	1.73	1	1	0.2	0.2	∞
Probe Positioning with respect to									
Phantom Shell	E.6.3	1.1	R	1.73	1	1	0.6	0.6	∞
Extrapolation, interpolation and									
Integration Algorithms for Max. SAR									
Evaluation	E.5	3.9	R	1.73	1	1	2.3	2.3	∞
Test Sample Positioning	E.4.2	3.6	N	1.00	1	1	3.6	3.6	29
Device Holder Uncertainty	E.4.1	2.8	N	1.00	1	1	2.8	2.8	8
Output Power Variation - SAR drift									
measurement	6.6.2	5.0	R	1.73	1	1	2.9	2.9	∞
Phantom Uncertainty (shape and									
thickness tolerances)	E.3.1	4.0	R	1.73	1	1	2.3	2.3	∞
Liquid Conductivity - deviation from					<u> </u>	-			
target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity - measurement					1				
uncertainty	E.3.3	10.0	R	1.73	0.64	0.43	3.7	2.5	∞
Liquid Permittivity - deviation from						2			
target values	E.3.2	10.0	R	1.73	0.6	0.49	3.5	2.8	∞
Liquid Permittivity - measurement		20.0		2.70		5.17	2.0	0	–
uncertainty	E.3.3	5.0	R	1.73	0.6	0.49	1.7	1.4	∞
	ال.ال.ال	5.0		1.13	0.0	0.72	1.7	1,-T	-

FCC ID: IHDT56DG1

Uncertainty Budget for System Performance Check (dipole & flat phantom)

FCC ID: IHDT56DG1


Uncertainty budget for	Systen	i r ei ic	ıı ıllalı	CE CII	CK (urpore	X Hat	рпаш	om)
				<i>e</i> =			<i>h</i> =	<i>i</i> =	
				f(d,k)			cxf/	c x g	
а	b	c	d)	f	g	e	/ e	k
		Tol.	Prob.		c_i	c_i	1 g	10 g	
		(± %)	Dist.		(1 g)	(10 g)	\boldsymbol{u}_i	\boldsymbol{u}_i	
Uncertainty Component	Sec.			Div.		, 2,	(±%)	(±%)	v_i
Measurement System									
Probe Calibration	E.2.1	9.5	N	2.00	1	1	4.8	4.8	8
Axial Isotropy	E.2.2	4.7	R	1.73	1	1	2.7	2.7	8
Spherical Isotropy	E.2.2	9.6	R	1.73	0	0	0.0	0.0	8
Boundary Effect	E.2.3	5.8	R	1.73	1	1	3.3	3.3	8
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	8
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	8
Readout Electronics	E.2.6	1.0	N	1.00	1	1	1.0	1.0	∞
Response Time	E.2.7	0.0	R	1.73	1	1	0.0	0.0	∞
Integration Time	E.2.8	0.0	R	1.73	1	1	0.0	0.0	∞
RF Ambient Conditions	E.6.1	3.0	R	1.73	1	1	1.7	1.7	∞
Probe Positioner Mechanical	2.0.1	2.0		11,75		-	211	1.,	
Tolerance	E.6.2	0.3	R	1.73	1	1	0.2	0.2	∞
Probe Positioning with respect to									
Phantom Shell	E.6.3	1.1	R	1.73	1	1	0.6	0.6	∞
Extrapolation, interpolation and									
Integration Algorithms for Max.									
SAR Evaluation	E.5	3.9	R	1.73	1	1	2.3	2.3	8
Dipole									
Dipole Axis to Liquid Distance	8, E.4.2	1.0	R	1.73	1	1	0.6	0.6	8
Input Power and SAR Drift									
Measurement	8, 6.6.2	4.7	R	1.73	1	1	2.7	2.7	8
Phantom and Tissue									
Parameters									
Phantom Uncertainty (shape and			_						
thickness tolerances)	E.3.1	4.0	R	1.73	1	1	2.3	2.3	∞
Liquid Conductivity - deviation			_				4.0		
from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity -		100		4.50	0.54	0.42	2.5	2 7	
measurement uncertainty	E.3.3	10.0	R	1.73	0.64	0.43	3.7	2.5	∞
Liquid Permittivity - deviation	F 0 0	100	-	1.50	0.5	0.40	2 -	2.0	
from target values	E.3.2	10.0	R	1.73	0.6	0.49	3.5	2.8	8
Liquid Permittivity -	Баа	5 0		1.70	0.5	0.40	1.7	1.4	
measurement uncertainty	E.3.3	5.0	R	1.73	0.6	0.49	1.7	1.4	∞
Combined Standard			RSS				10.16	0.42	99999
Uncertainty Expanded Uncertainty			KSS				10.16	9.43	77777
Expanded Uncertainty (95% CONFIDENCE LEVEL)			k=2				19.92	18.48	
(93% CONTIDENCE LEVEL)			K=Z				19.92	10.40	

FCC ID: IHDT56DG1

Photographs of the device under test

Page 18

Exhibit 11

Page 19

