

Exhibit 11: Class II Permissive Change SAR Test Report IHDT56CU1

Date of test: February 10 – 14, 2003 **Date of Report:** February 19, 2003

Motorola Personal Communications Sector Product Safety & Compliance Laboratory

FCC ID: IHDT56CU1

Laboratory: 2001 N. Division

Room: AS228

Harvard, Illinois 60033

Test Responsible: Steven Hauswirth

Principal Staff Engineer

This laboratory is accredited to ISO/IEC 17025-1999 to perform the following **Accreditation:**

electromagnetic exposure tests:

System Validation & Interlaboratory Comparison Simulated Tissue Specifications and Procedure

EME Cellular Phone Testing Procedure

On the following types of products:

Wireless Communications Devices (Examples): Two Way Radios; Portable Phones (including Cellular, Licensed Non-Broadcast and PCS); Low Frequency Readers; and

Pagers

A2LA certificate #1651-01

Statement of **Compliance:**

Motorola declares under its sole responsibility that portable cellular telephone FCC ID IHDT56CU1 to which this declaration relates, is in conformity with the appropriate General Population/Uncontrolled RF exposure standards, recommendations and guidelines (FCC 47 CFR §2.1093). It also declares that the product was tested in accordance with the appropriate measurement standards, guidelines and recommended practices. Any deviations from these standards, guidelines and recommended practices

are noted below:

(none)

©Motorola, Inc. 2002

This test report shall not be reproduced except in full, without written approval of the laboratory.

The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report.

Motorola encourages all feedback, both positive and negative, on this test report.

Table of Contents

FCC ID: IHDT56CU1

1)	Introduction	3				
2)	Description of the Device Under Test Antenna description Device description	3 3 3				
3)	Test Equipment 3.1 Dosimetric system 3.2 Additional equipment used	3 3 4				
4)	Electrical parameters of the tissue simulating liquid	4				
5)	System Accuracy Verification	5				
6)	6) Test Results 6.1 Head Adjacent Test Results 6.1.1 Head Adjacent Test Results with Mini Housing 6.2 Body-Worn Test Results					
Re	ferences:					
App	pendix 1: SAR distribution comparison for the system accuracy verification	10				
App	pendix 2: SAR distribution plots for Phantom Head Adjacent Use	11				
App	3.1 Dosimetric system 3.2 Additional equipment used 4) Electrical parameters of the tissue simulating liquid 4 5) System Accuracy Verification 5) Test Results 6.1 Head Adjacent Test Results 6.1.1 Head Adjacent Test Results with Mini Housing 7 6.2 Body-Worn Test Results Appendix 1: SAR distribution comparison for the system accuracy verification Appendix 2: SAR distribution plots for Phantom Head Adjacent Use Appendix 3: SAR distribution plots for Body Worn Configuration Appendix 4. Probe Calibration Certificate Appendix 5. Dipole Characterization Certificate Appendix 6: Measurement Uncertainty Budget					
App	pendix 4. Probe Calibration Certificate	16				
App	Appendix 5. Dipole Characterization Certificate					
App	Appendix 6: Measurement Uncertainty Budget					
App	appendix 7. Photographs of the device under test					

1. Introduction

The Motorola Personal Communications Sector Product Safety Laboratory has performed measurements of the maximum potential exposure to the user of portable cellular phone (FCC ID IHDT56CU1). The Specific Absorption Rate (SAR) of this product was measured. The portable cellular phone was tested in accordance with FCC OET Bulletin 65 Supplement C 01-01.

2. Description of the Device Under Test

Antenna description

Type	Internal Antenna			
Location	Back of Phone			
Dimensions	Length	20mm		
Difficusions	Width	35mm		

Device description

FCC ID Number	IHDT56CU1				
Serial number	SH0MJ1229V				
Mode(s) of Operation	GSM 850 GSM 1900				
Modulation Mode(s)	GSM GSM				
Maximum Output Power Setting	30.00 dBm 29.60 dBm				
Duty Cycle	1:8	1:8			
Transmitting Frequency Rang(s)	824.20 - 848.80 MHz	1850.20 – 1909.80 MHz			
Production Unit or Identical Prototype (47 CFR §2908)	Identical Prototype				
Device Category	Portable				
RF Exposure Limits	General Popula	tion / Uncontrolled			

3. Test Equipment Used

3.1 Dosimetric System

The Motorola Personal Communications Sector Product Safety & Compliance Laboratory utilizes a Dosimetric Assessment System (Dasy3TM v3.1d) manufactured by Schmid & Partner Engineering AG (SPEAGTM), of Zurich Switzerland. The overall RSS uncertainty of the measurement system is $\pm 11.7\%$ (K=1) with an expanded uncertainty of $\pm 23.0\%$ (K=2). The measurement uncertainty budget is given in Appendix 6. Per IEEE 1528, this uncertainty budget is applicable to the SAR range of 0.4 W/kg to 10 W/kg. The list of calibrated equipment used for the measurements is shown below.

Description	Serial Number	Cal Due Date
DASY3 DAE3 V1	SN385	20-Mar-03
E-Field Probe ET3DV6	SN1515	25-Jul-03
Dipole Validation Kit, D900V2	SN078	23-Aug-03
S.A.M. Phantom used for 800MHz	TP-1106	
Dipole Validation Kit, D1800V2	SN273TR	17-Jul-04
S.A.M. Phantom used for 1900MHz	TP-1235	

3.2 Additional Equipment

Description	Serial Number	Cal Due Date
Signal Generator HP8648C	3847A04632	10-Oct-04
Power Meter E4419B	GB39510961	5-Nov-03
Power Sensor #1 – E9301A	US39210917	23-Feb-03
Power Sensor #2 - E9301A	US39210934	14-Feb-03
Network Analyzer HP8753ES	US39171846	2-May-03
Dielectric Probe Kit HP85070C	US99360074	N/A

4. Electrical parameters of the tissue simulating liquid

Prior to conducting SAR measurements, the relative permittivity, ε_r , and the conductivity, σ , of the tissue simulating liquids were measured with the HP85070 Dielectric Probe Kit These values, along with the temperature of the tissue simulate are shown in the table below. The recommended limits for maximum permittivity and minimum conductivity are also shown. These come from the Federal Communication Commission, OET Bulletin 65 Supplement C 01-01. It is seen that the measured parameters are satisfactory for compliance testing.

f			Dielec	neters	
(MHz)	Tissue type	Limits / Measured	$\mathbf{\epsilon}_r$	თ (S/m)	Temp (°C)
		Measured, 10-Feb-03	40.8	0.91	21
	Head	Measured, 11-Feb-03	41.3	0.91	20.4
835		Recommended Limits	41.5	0.9	18-25
	Body	Measured, 11-Feb-03	53.4	1.01	20.3
	Douy	Recommended Limits	55.2	0.97	18-25
		Measured, 12-Feb-03	38.8	1.46	19.4
	Head	Measured, 14-Feb-03	38.4	1.46	19.6
1880		Recommended Limits	40	1.4	18-25
	Dody	Measured, 12-Feb-03	50.9	1.58	20
	Body	Recommended Limits	53.3	1.52	18-25

The list of ingredients and the percent composition used for the tissue simulates are indicated in the table below.

Ingredient	800MHz Head	800MHz Body	1900MHz Head	1900MHz Body
Sugar	57.0	44.9	47.0	30.80
DGBE			52.8	68.91
Water	40.45	53.06	0.2	0.29
Salt	1.45	0.94		
HEC	1.0	1.0		
Bact.	0.1	0.1		

5. System Accuracy Verification

A system accuracy verification of the DASY3 was performed using the measurement equipment listed in Section 3.1. The daily system accuracy verification occurs within center section of the SAM phantom.

FCC ID: IHDT56CU1

A SAR measurement was performed to see if the measured SAR was within ± 100 from the target SAR indicated on the dipole certification sheet. These tests were done at 900MHz and/or 1800MHz. These frequencies are within 100MHz of the mid-band frequency of the test device. This is within the allowable window given in Supplement C 01-01 *Appendix D System Verification* section item #5. The test was conducted on the same days as the measurement of the DUT. Recommended limits for maximum permittivity, minimum conductivity are shown in the table below. These come from the Federal Communication Commission, OET Bulletin 65 Supplement C 01-01. The obtained results from the system accuracy verification are displayed in the table below. The distributions of SAR compare well with those of the reference measurements (see Appendix 1). The tissue stimulant depth was verified to be 15.0cm ± 0.5 cm. Z-axis scans showing the SAR penetration are also included in Appendix 1. SAR values are normalized to 1W forward power delivered to the dipole.

Daily, prior to conducting tests, measurements were made with the RF sources powered off to determine the system noise level. The highest system noise was 0.01~W/kg, which is below the recommended limit.

f		SAR (W/kg),		electric rameters	Ambien t Temp	Tissue Temp
(MHz)	Description	1gram	ϵ_r	σ (S/m)	(°C)	(°C)
	Measured, 10-Feb-03	11.71	40	0.97	22	21.5
900	Measured, 11-Feb-03	11.87	40.6	0.97	21	21
	Recommended Limits	11.3	40.3	0.95	20-25	18-25
	Measured, 11-Feb-03	41.6	39	1.38	21	20.2
1800	Measured, 12-Feb-03	40.2	39.6	1.41	22	20.5
1000	Measured, 14-Feb-03	40.8	39.5	1.41	22	20.5
	Recommended Limits	38.8	39.6	1.37	20-25	18-25

The following probe conversion factors were used on the E-Field probe(s) used for the system accuracy verification measurements:

Description	stion Serial Number		Conversion Factor	Cal Cert pg #
E-Field Probe	I SN1515		6.50	2 of 8
ET3DV6	51(1515	1800	5.40	2 of 8

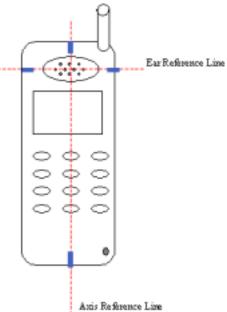
6. Test Results

The test sample was operated in a test mode that allows control of the transmitter without the need to place actual phone calls. For the purposes of this test the unit is commanded to test mode and manually set to the proper channel, transmitter power level and transmit mode of operation. The phone was tested in the configurations stipulated in OET Bulletin 65 Supplement C 01-01. Motorola also followed the requirements in Supplement. C / Appendix D: SAR Measurement Procedures, section titled "Devices Operating Next To A Person's Ear". These directions state "The device should be tested on the left and right side of the head phantom in the "Cheek/Touch" and "Ear/Tilt" positions. When applicable, each configuration should be tested with the antenna in its fully extended and fully retracted positions. These test configurations should be tested at the high, middle and low frequency channels of each operating mode; for example, AMPS, CDMA, and TDMA. If the SAR measured at the middle channel for each test configuration (left, right, Cheek/Touch, Tile/Ear, extended and retracted) is at least 3.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s)."

The DASY v3.1d SAR measurement system specified in section 3.1 was utilized within the intended operations as set by the SPEAGTM setup. The phone was positioned into the measurement configurations using the positioner

supplied with the DASY 3.1d SAR measurement system. The measured dielectric constant of the material used for the positioner is less than 2.9 and the loss tangent is less than $0.02 (\pm 30\%)$ at 850MHz. The default settings for the "coarse" and "cube" scans were chosen and use for measurements. The grid spacing of the course scan was set to 15cm as shown in the SAR plots included in appendix 2 and 3. Please refer to the DASY manual for additional information on SAR scanning procedures and algorithms used.

FCC ID: IHDT56CU1


The Cellular Phone (FCC ID IHDT56CU1) has AANN4204A as the only available battery option. This battery was used to do all of the SAR testing. The phone was placed in the SAR measurement system with a fully charged battery.

6.1 Head Adjacent Test Results

To aid in positioning repeatability, the ear reference line of the device and the axis reference line of the device have been physically added using a non-Metallic marker.

- Per Figure 1, the "Ear Reference Line" is centered vertically through the center of the listening area (as defined by the speaker holes in the housing).
- The "Axis Reference Line" bisects the front surface of the device at its top and bottom edges.
- The intersection of these two lines defines the location of the "Ear Reference Point".

The lines drawn on the device extended to the outside edges, as shown in blue in the figure below, & wrap around the sides of the device.

The SAR results shown in tables 1 through 4 are maximum SAR values averaged over 1 gram of phantom tissue. Also shown are the measured conducted output powers, the temperature of the test facility during the test, the temperature of the tissue simulate after the test, the measured drift and the extrapolated SAR. The exact method of extrapolation is New SAR = Old SAR * 10^(drift/10). The SAR reported at the end of the measurement process by the DASYTM measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test. The test conditions indicated as bold numbers in the following table are included in Appendix 2

The SAR measurements were performed using the SAM phantoms listed in section 3.1. Since same phantoms and tissue simulate are used for the system accuracy verification as the device SAR measurements, the Z-axis scans included in within Appendix 1 are applicable for verification of tissue simulate depth to be 15.0cm ± 0.5 cm. All other test conditions measured lower SAR values than those included in Appendix 2.

The following probe conversion factors were used on the E-Field probe(s) used for the head adjacent measurements:

FCC ID: IHDT56CU1

Description	escription Serial Number		Conversion Factor	Cal Cert pg #
E-Field Probe ET3DV6	SN1515	835	6.50	2 of 8
L Heid Hood LISD VO	5111313	1900	5.40	2 of 8

There are five different external housings for this phone. They are:

Premium Housing, Hour Glass Housing, Peanut Shaped Housing, Mini Housing, "Metal" Box Housing

It was seen on the original filing that all the housings resulted in SAR values in a very close range, with the Mini housing resulting in the highest measured SAR. Because of the SAR similarity between the housings, only the Mini housing will be evaluated for changes in SAR values.

6.1.1 Head Adjacent Test Results with Mini Housing

			Cheek Position SAR, 1g								
f		Conducted		Left Head				Right Head			
(MHz)	Description	Output Power (dBm)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Temp (°C)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Temp (°C)	
D: 1/ 1	Channel 128	29.92									
Digital 800MHz	Channel 190	29.90	0.723	0.05	0.72	20.9	0.73	-0.03	0.74	21.0	
OUUIVIIIZ	Channel 251	29.90									
D:-24-1	Channel 512	29.54	0.896	-0.13	0.92	19.4					
Digital 1900MHz	Channel 661	29.51	0.783	0.02	0.78	20.0	0.509	0.03	0.51	19.6	
	Channel 810	29.50	0.458	0.14	0.46	19.6					

Table 1: SAR measurement results for the portable cellular telephone FCC ID IHDT56CU1 at highest possible output power. Measured against the head with the Mini Housing.

					15°	Tilt Posi	tion SAR, 1g			
f		Conducted		Left Head			Right Head			
(MHz)	Description	Output Power (dBm)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Temp (°C)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Temp (°C)
D: 1/ 1	Channel 128	29.92								
Digital 800MHz	Channel 190	29.90	0.491	-0.01	0.49	20.1	0.499	-0.04	0.50	20.4
GOOTVIIIZ	Channel 251	29.90								
D:-:4-1	Channel 512	29.54	1.05	-0.05	1.06	19.6				
Digital 1900MHz	Channel 661	29.51	0.765	-0.18	0.80	19.7	0.619	-0.29	0.66	19.5
170011112	Channel 810	29.50	0.548	0.26	0.55	19.6				

Table 2: SAR measurement results for the portable cellular telephone FCC ID IHDT56CU1 at highest possible output power. Measured against the head the Mini Housing.

6.2 Body-Worn Test Results

The SAR results shown in table 3 are the maximum SAR values averaged over 1 gram of phantom tissue. Also shown are the measured conducted output powers, the temperature of the test facility during the test, the temperature of the tissue simulate after the test, the measured drift and the extrapolated SAR. The exact method of extrapolation is New SAR = Old SAR * 10^(drift/10). The SAR reported at the end of the measurement process by the DASYTM measurement system can be scaled up by the measured drift to determine th+-e SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test. The test conditions indicated as bold numbers in the following table are included in Appendix 3. All other test conditions measured lower SAR values than those included in Appendix 3.

A "flat" phantom was for the body-worn tests. This "flat" phantom is made out of 1" thick natural High Density Polyethylene with a thickness at the bottom equal to $2.0 \, \text{mm}$. It measures $52.7 \, \text{cm}(\log) \times 26.7 \, \text{cm}(\text{wide}) \times 21.2 \, \text{cm}(\text{tall})$. The measured dielectric constant of the material used is less than $2.3 \, \text{and}$ the loss tangent is less than $0.0046 \, \text{all}$ the way up to $2.184 \, \text{GHz}$.

The tissue stimulant depth was verified to be $15.0 \,\mathrm{cm} \pm 0.5 \,\mathrm{cm}$. The same device holder described in section 6 was used for positioning the phone. The functional accessories were divided into two categories, the ones with metal components and the ones with non-metal components. For non-metallic component accessories', testing was performed on the accessory that displayed the closest proximity to the flat phantom. Each metallic component accessory, if any, was checked for uniqueness of the metal component so that each is tested with the device. If multiple accessories shared an identical metal component, only the accessory that dictates the closest spacing to the body was tested. The cellular phone was tested with a headset connected to the device for all body-worn SAR measurements.

There are two Body-Worn Accessories available for this phone with the Mini housing: Mini Housing: MN33301 with SYN8763A & MN33301 with SYN8631A

It was seen on the original filing that for this housing in the 800MHz band, the MN3301 with SYN8631A resulted in the highest measured SAR. Because it results in lower SAR, we did not measure the MN3301 with SYN8763A in the 800MHz band.

It was seen on the original filing that for this housing in the 1900MHz band, the MN3301 with SYN8763A resulted in the highest measured SAR. Because it results in lower SAR, we did not measure the MN3301 with SYN8631A in the 1900MHz band.

The following probe conversion factors were used on the E-Field probe(s) used for the body worn measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #	
E-Field Probe ET3DV6	SN1515	835	6.40	2 of 2	
	5111313	1900	4.70	2 of 2	

			Body Worn for Mini Housing							
		Conducted	MN33301 with SYN8763A			MN33301 with SYN8631A				
f (MHz)	Description	Output Power (dBm)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)
D: 1/ 1	Channel 128	29.92								
Digital 800MHz	Channel 190	29.90					0.285	-0.1	0.29	20.3
OUUVIIIZ	Channel 251	29.90								
D: '/ 1	Channel 512	29.54								
Digital 1900MHz	Channel 661	29.51	0.172	-0.02	0.17	20.0				
15001/1112	Channel 810	29.50								

Table 3: SAR measurement results for the portable cellular telephone FCC ID IHDT56CU1 at highest possible output power. Measured against the body with Mini Housing.

Appendix 1

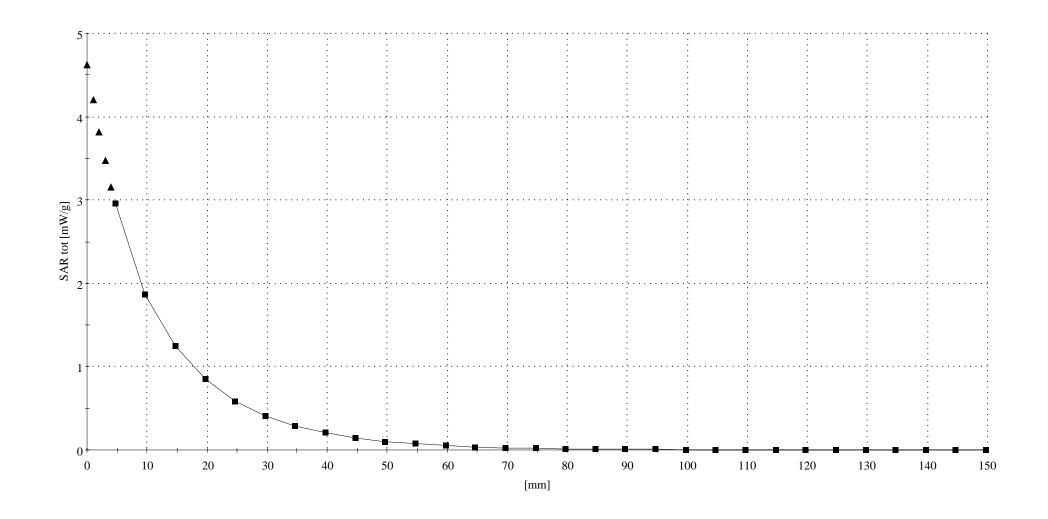
FCC ID: IHDT56CU1

SAR distribution comparison for the system accuracy verification

Dipole 900 MHz

900 MHz Dipole Validation / Dipole Sn# 78

Forward Power = 252mW Reflected Power = -24.84db


Room Temp at time of measurement = 22C. Simulant Temp at time of measurement = 21.5C.

R2 TP-1106 SUGAR SAM (rev. 4);

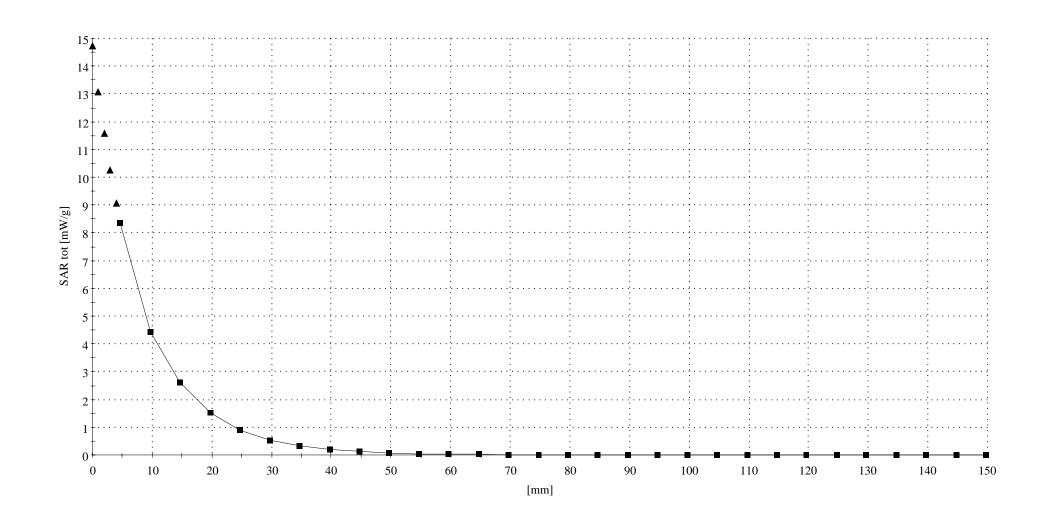
Probe: ET3DV6 - SN1515 - Validation(2); ConvF(6.50,6.50,6.50); Crest factor: 1.0; 900 MHz VALIDATION: σ = 0.97 mho/m ϵ_r = 40.0 ρ = 1.00 g/cm³

:,,()

Penetration depth: 11.5 (10.6, 12.6) [mm]

1800 MHz Dipole Validation / Dipole Sn# 273tr

Forward Power = 251 Reflected Power = -25.33


Room Temp at time of measurement = 22 Simulant Temp at time of measurement = 20.5

R2 Amy Twin Phantom Rev.3;

Probe: ET3DV6 - SN1515 - Validation(2); ConvF(5.40,5.40,5.40); Crest factor: 1.0; 1800 MHz VALIDATION: $\sigma = 1.41 \text{ mho/m} \ \epsilon_r = 39.5 \ \rho = 1.00 \text{ g/cm}^3$

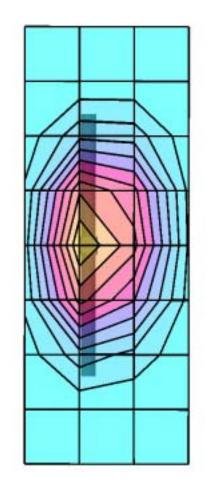
:,,()

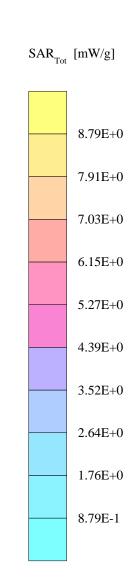
Penetration depth: 8.4 (8.1, 9.2) [mm]

1800 MHz Dipole Validation / Dipole Sn# 273tr

Forward Power = 249mW Reflected Power = -24.04db

Room Temp at time of measurement = 22C. Simulant Temp at time of measurement = 20.5C


R2 Amy Twin Phantom Rev.3; section 1


Probe: ET3DV6 - SN1515 - Validation(2); ConvF(5.40,5.40,5.40); Crest factor: 1.0; 1800 MHz VALIDATION: σ = 1.41 mho/m ϵ_r = 39.6 ρ = 1.00 g/cm³

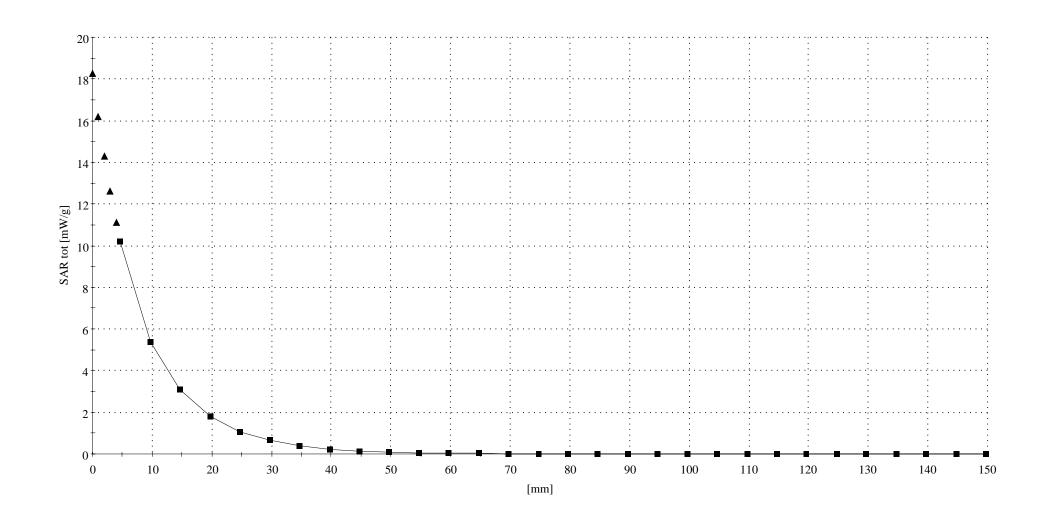
Cubes (2): Peak: 18.6 $\text{mW/g} \pm 0.03 \text{ dB}$, SAR (1g): 10.0 $\text{mW/g} \pm 0.03 \text{ dB}$, SAR (10g): 5.26 $\text{mW/g} \pm 0.04 \text{ dB}$, (Worst-case extrapolation)

Penetration depth: 8.2 (7.8, 9.0) [mm]

Powerdrift: 0.02 dB

1800 MHz Dipole Validation / Dipole Sn# 273tr

Forward Power = 249mW Reflected Power = -24.04db


Room Temp at time of measurement = 22C. Simulant Temp at time of measurement = 20.5C

R2 Amy Twin Phantom Rev.3;

Probe: ET3DV6 - SN1515 - Validation(2); ConvF(5.40,5.40,5.40); Crest factor: 1.0; 1800 MHz VALIDATION: σ = 1.41 mho/m ϵ_r = 39.6 ρ = 1.00 g/cm³

:,,()

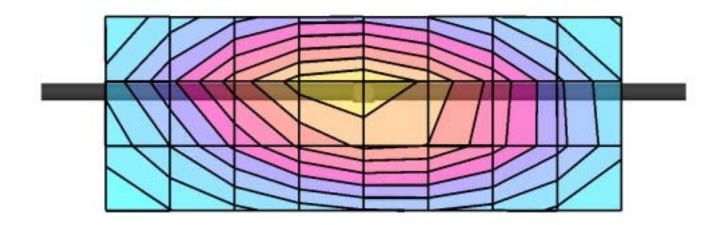
Penetration depth: 8.2 (7.9, 9.0) [mm]

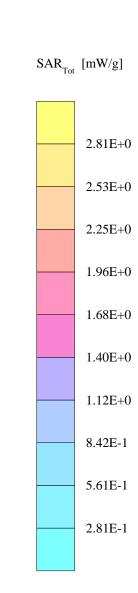
Dipole 900 MHz

900 MHz Dipole Validation / Dipole Sn# 78

Forward Power = 252mW Reflected Power = -24.89db

Room Temp at time of measurement = 21C. Simulant Temp at time of measurement = 21.0C


R2 TP-1106 SUGAR SAM (rev. 4); Flat


Probe: ET3DV6 - SN1515 - Validation(2); ConvF(6.50,6.50,6.50); Crest factor: 1.0; 900 MHz VALIDATION: σ = 0.97 mho/m ϵ_r = 40.6 ρ = 1.00 g/cm³

Cubes (2): Peak: 4.76 $\text{mW/g} \pm 0.12 \text{ dB}$, SAR (1g): 2.99 $\text{mW/g} \pm 0.10 \text{ dB}$, SAR (10g): 1.88 $\text{mW/g} \pm 0.09 \text{ dB}$, (Worst-case extrapolation)

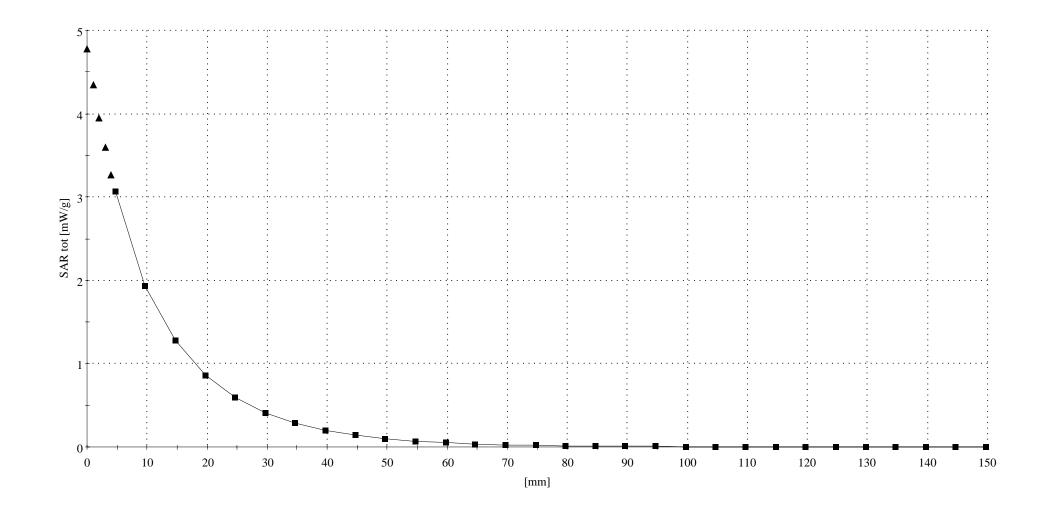
Penetration depth: 11.5 (10.7, 12.6) [mm]

Powerdrift: 0.05 dB

Dipole 900 MHz

900 MHz Dipole Validation / Dipole Sn# 78

Forward Power = 252mW Reflected Power = -24.89db


Room Temp at time of measurement = 21C. Simulant Temp at time of measurement = 21.0C

R2 TP-1106 SUGAR SAM (rev. 4);

Probe: ET3DV6 - SN1515 - Validation(2); ConvF(6.50,6.50,6.50); Crest factor: 1.0; 900 MHz VALIDATION: σ = 0.97 mho/m ϵ_r = 40.6 ρ = 1.00 g/cm³

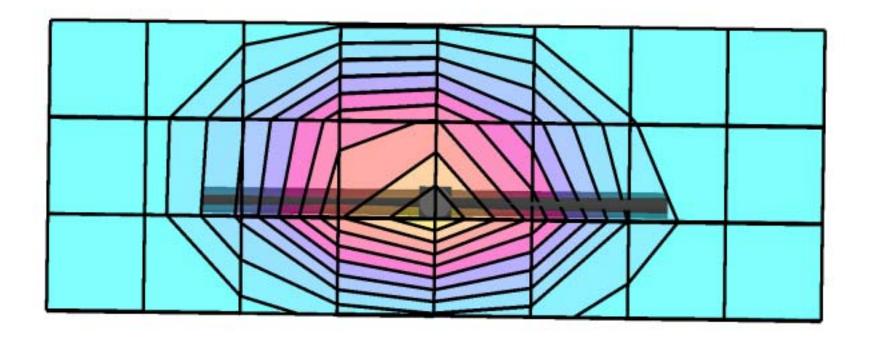
:,,()

Penetration depth: 11.3 (10.6, 12.3) [mm]

1800 MHz Dipole Validation / Dipole Sn# 273tr

Forward Power = 250mW Reflected Power = -24.79db

Room Temp at time of measurement = 21C. Simulant Temp at time of measurement = 20.2C.


R2: TP-1235 GLYCOL SAM (rev. 4); Flat

Probe: ET3DV6 - SN1515 - Validation(2); ConvF(5.40,5.40,5.40); Crest factor: 1.0; 1800 MHz VALIDATION: σ = 1.39 mho/m ϵ_r = 39.0 ρ = 1.00 g/cm³

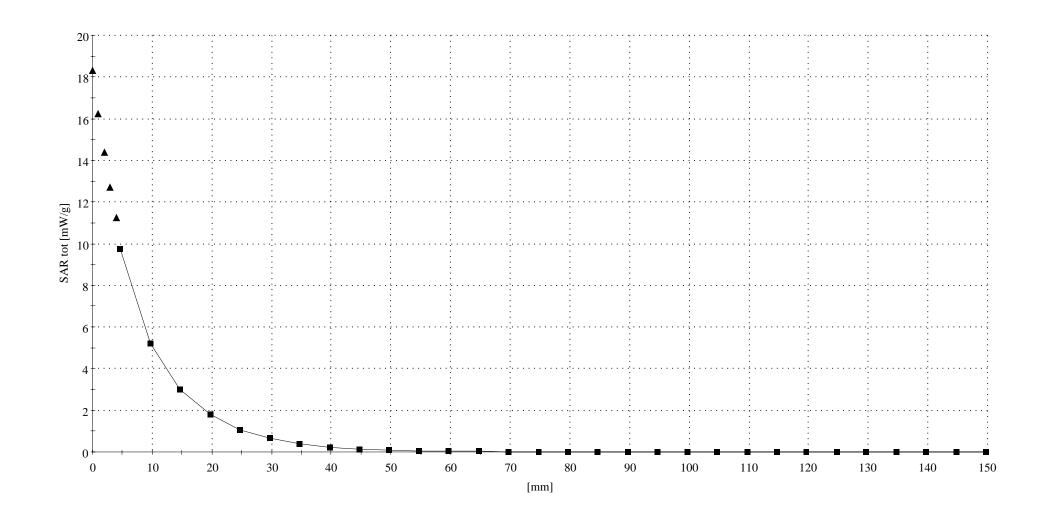
Cubes (2): Peak: 19.1 $\text{mW/g} \pm 0.10 \text{ dB}$, SAR (1g): 10.4 $\text{mW/g} \pm 0.05 \text{ dB}$, SAR (10g): 5.50 $\text{mW/g} \pm 0.01 \text{ dB}$, (Worst-case extrapolation)

Penetration depth: 8.5 (8.2, 9.3) [mm]

Powerdrift: -0.00 dB

1800 MHz Dipole Validation / Dipole Sn# 273tr

Forward Power = 250mW Reflected Power = -24.79db


Room Temp at time of measurement = 21C. Simulant Temp at time of measurement = 20.2C.

R2: TP-1235 GLYCOL SAM (rev. 4);

Probe: ET3DV6 - SN1515 - Validation(2); ConvF(5.40,5.40,5.40); Crest factor: 1.0; 1800 MHz VALIDATION: σ = 1.39 mho/m ϵ_r = 39.0 ρ = 1.00 g/cm³

:,,()

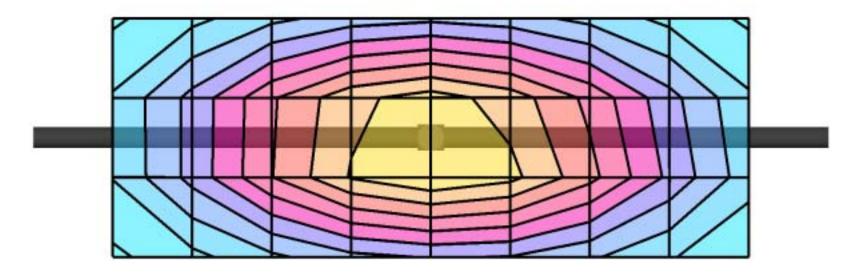
Penetration depth: 8.4 (8.0, 9.2) [mm]

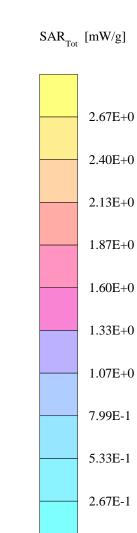
Dipole 900 MHz

900 MHz Dipole Validation / Dipole Sn# 78

Forward Power = 252mW Reflected Power = -24.84db

Room Temp at time of measurement = 22C. Simulant Temp at time of measurement = 21.5C.


R2 TP-1106 SUGAR SAM (rev. 4); Flat


Probe: ET3DV6 - SN1515 - Validation(2); ConvF(6.50,6.50,6.50); Crest factor: 1.0; 900 MHz VALIDATION: σ = 0.97 mho/m ϵ_r = 40.0 ρ = 1.00 g/cm³

Cubes (2): Peak: 4.69 $\text{mW/g} \pm 0.02 \text{ dB}$, SAR (1g): 2.95 $\text{mW/g} \pm 0.03 \text{ dB}$, SAR (10g): 1.86 $\text{mW/g} \pm 0.03 \text{ dB}$, (Worst-case extrapolation)

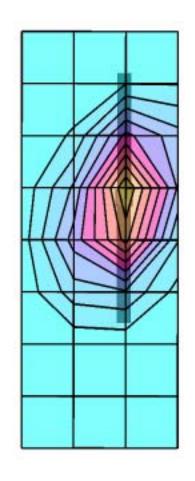
Penetration depth: 11.4 (10.6, 12.7) [mm]

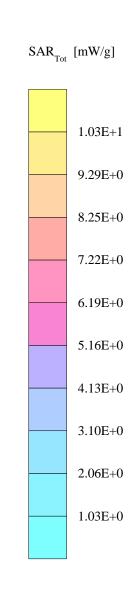
Powerdrift: -0.01 dB

1800 MHz Dipole Validation / Dipole Sn# 273tr

Forward Power = 251 Reflected Power = -25.33

Room Temp at time of measurement = 22 Simulant Temp at time of measurement = 20.5


R2 Amy Twin Phantom Rev.3; section 1


Probe: ET3DV6 - SN1515 - Validation(2); ConvF(5.40,5.40,5.40); Crest factor: 1.0; 1800 MHz VALIDATION: σ = 1.41 mho/m ϵ_r = 39.5 ρ = 1.00 g/cm³

Cubes (2): Peak: 18.9 $\text{mW/g} \pm 0.05 \text{ dB}$, SAR (1g): 10.2 $\text{mW/g} \pm 0.02 \text{ dB}$, SAR (10g): 5.36 $\text{mW/g} \pm 0.01 \text{ dB}$, (Worst-case extrapolation)

Penetration depth: 8.3 (7.9, 9.1) [mm]

Powerdrift: 0.03 dB

Appendix 2

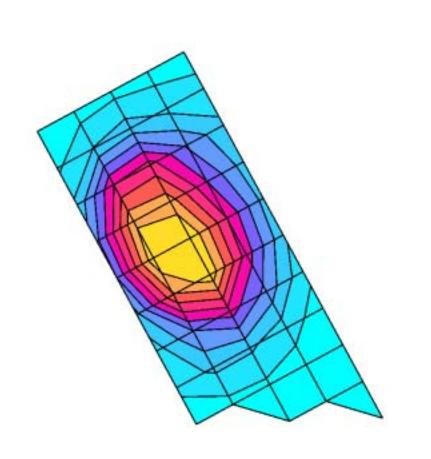
FCC ID: IHDT56CU1

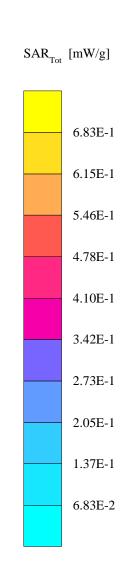
SAR distribution plots for Phantom Head Adjacent Use

Ch# 190 / Pwr Step: 7 / Type of Modulation: GSM850 / Battery Model #: AANN4204A

DEVICE POSITION (cheek or rotated): Cheek

Mini Housing


R2 TP-1106 SUGAR SAM (rev. 4) Phantom; R2 Right Hand Section; Position: (90°,180°); Frequency: 837 MHz


Probe: ET3DV6 - SN1515 - IEEE Head; ConvF(6.50,6.50,6.50); Crest factor: 8.0; 835 MHz Head & Body: $\sigma = 0.91 \text{ mho/m} \ \epsilon_r = 40.8 \ \rho = 1.00 \text{ g/cm}^3$

Cube 7x7x7: SAR (1g): 0.730 mW/g, SAR (10g): 0.499 mW/g, (Worst-case extrapolation)

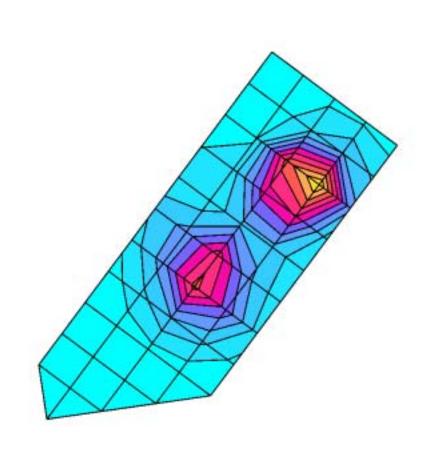
Coarse: Dx = 15.0, Dy = 15.0, Dz = 15.0 Penetration depth: 15.0 (14.3, 15.8) [mm]

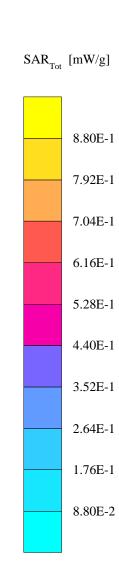
Powerdrift: -0.03 dB

Ch# 512 / Pwr Step: 0 / Type of Modulation: GSM 1900 / Battery Model #: AANN4204A

DEVICE POSITION (cheek or rotated): Cheek

Mini Housing


R2: TP-1235 GLYCOL SAM (rev. 4) Phantom; R2 George Left Hand Section; Position: (90°,180°); Frequency: 1850 MHz


Probe: ET3DV6 - SN1515 - IEEE Head; ConvF(5.40,5.40,5.40); Crest factor: 8.0; 1880 MHz Head & Body: $\sigma = 1.46 \text{ mho/m} \ \epsilon_r = 38.8 \ \rho = 1.00 \ \text{g/cm}^3$

Cube 7x7x7: SAR (1g): 0.896 mW/g, SAR (10g): 0.446 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 15.0 Penetration depth: 8.1 (7.9, 8.6) [mm]

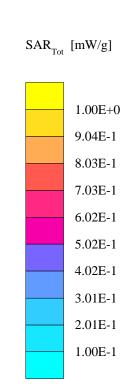
Powerdrift: -0.13 dB

Ch# 512 / Pwr Step: 0 / Type of Modulation: GSM 1900 / Battery Model #: AANN4204A

DEVICE POSITION (cheek or rotated): Cheek

Mini Housing 2nd Hot Spot

R2: TP-1235 GLYCOL SAM (rev. 4) Phantom; R2 George Left Hand Section; Position: (90°,180°); Frequency: 1850 MHz


Probe: ET3DV6 - SN1515 - IEEE Head; ConvF(5.40,5.40,5.40); Crest factor: 8.0; 1880 MHz Head & Body: σ = 1.46 mho/m ϵ_r = 38.8 ρ = 1.00 g/cm³

Cube 7x7x7: SAR (1g): 0.662 mW/g, SAR (10g): 0.385 mW/g, (Worst-case extrapolation)

Cube 7x7x7: Dx = 5.0, Dy = 5.0, Dz = 5.0 Penetration depth: 11.2 (10.8, 11.7) [mm]

Powerdrift: -0.18 dB

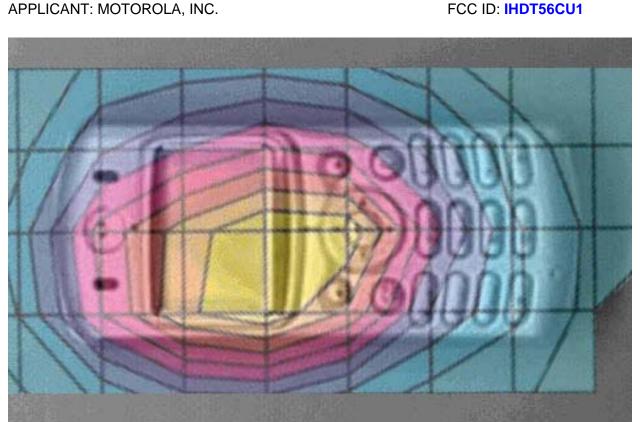


Figure 1.Typical 800MHz Head Adjacent Contour Overlaid on Phone (Cheek Touch)

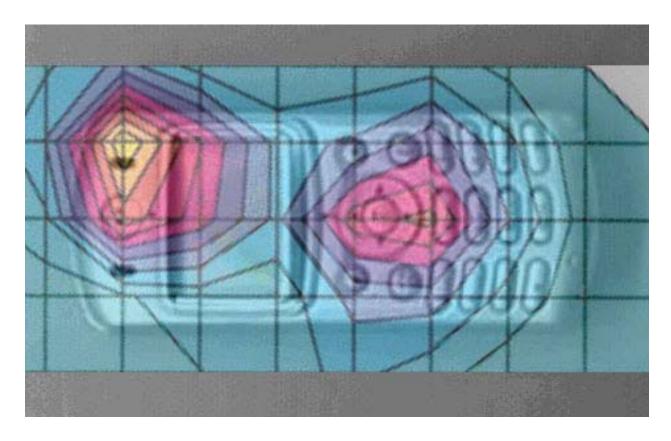


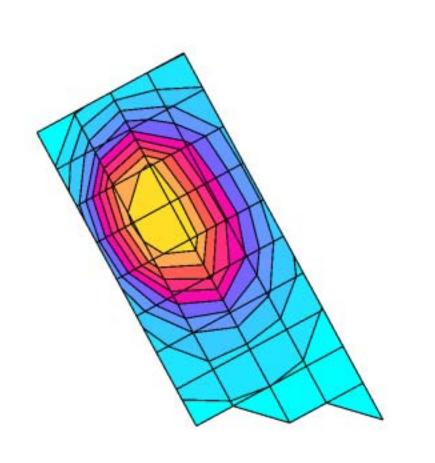
Figure 2.Typical 1900MHz Head Adjacent Contour Overlaid on Phone (Cheek Touch)

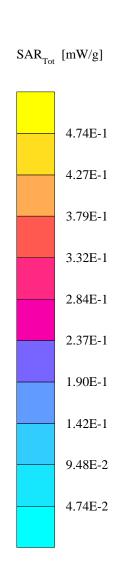
Page 12 Exhibit 11

Ch# 190 / Pwr Step: 7 / Type of Modulation: GSM850 / Battery Model #: AANN4204A

DEVICE POSITION (cheek or rotated): Rotated

Mini Housing


R2 TP-1106 SUGAR SAM (rev. 4) Phantom; R2 Right Hand Section; Position: (90°,180°); Frequency: 837 MHz


Probe: ET3DV6 - SN1515 - IEEE Head; ConvF(6.50,6.50,6.50); Crest factor: 8.0; 835 MHz Head & Body: $\sigma = 0.91 \text{ mho/m} \ \epsilon_r = 41.3 \ \rho = 1.00 \text{ g/cm}^3$

Cube 7x7x7: SAR (1g): 0.499 mW/g, SAR (10g): 0.342 mW/g, (Worst-case extrapolation)

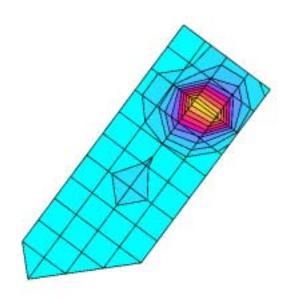
Coarse: Dx = 15.0, Dy = 15.0, Dz = 15.0 Penetration depth: 14.6 (13.3, 16.0) [mm]

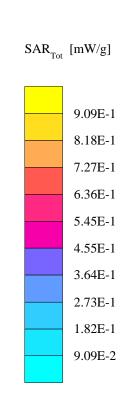
Powerdrift: -0.04 dB

Ch# 512 / Pwr Step: O / Type of Modulation: GSM1900 / Battery Model #: aahn4204a

DEVICE POSITION (cheek or rotated): tilt

Mini Housing


R2: TP-1235 GLYCOL SAM (rev. 4) Phantom; R2 George Left Hand Section; Position: (90°,180°); Frequency: 1850 MHz


Probe: ET3DV6 - SN1515 - IEEE Head; ConvF(5.40,5.40,5.40); Crest factor: 8.0; 1880 MHz Head & Body: $\sigma = 1.46 \text{ mho/m} \ \epsilon_r = 38.4 \ \rho = 1.00 \ \text{g/cm}^3$

Cube 5x5x7: SAR (1g): 1.05 mW/g, SAR (10g): 0.510 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 15.0 Penetration depth: 8.0 (7.8, 8.4) [mm]

Powerdrift: -0.05 dB

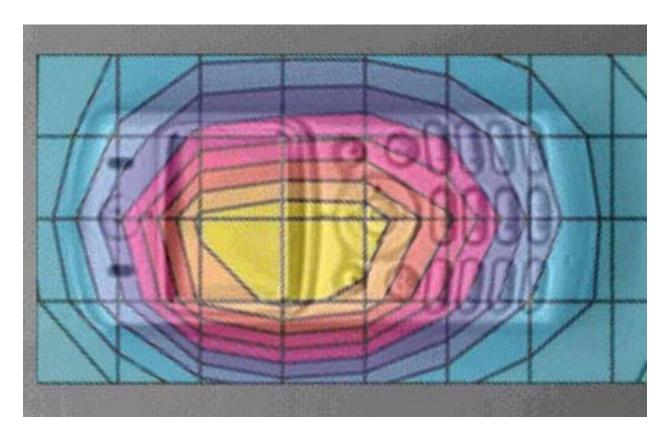


Figure 3.Typical 800MHz Adjacent Contour Overlaid on Phone (15 ° Tilt)

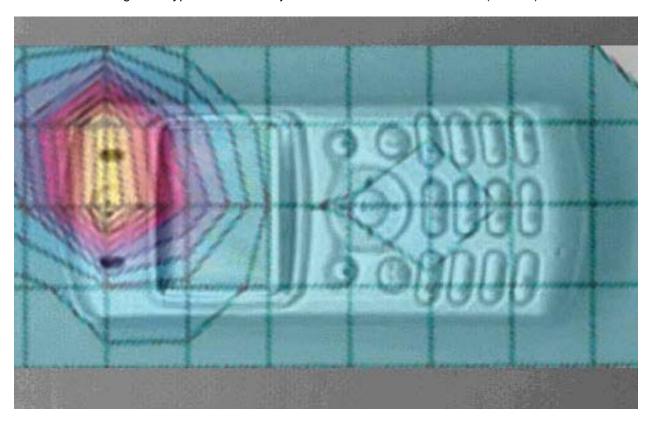


Figure 4.Typical 1900MHz Head Adjacent Contour Overlaid on Phone (15 ° Tilt)

Exhibit 11 Page 13

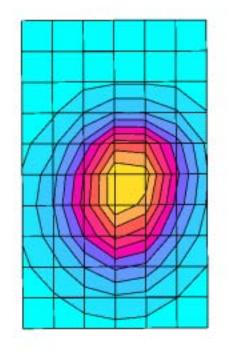
Appendix 3

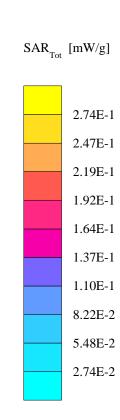
FCC ID: IHDT56CU1

SAR distribution plots for Body Worn Configuration

Ch# 190 / Pwr Step: 07 / Type of Modulation: 850 GSM / Battery Model #: AANN4204A

Accessory Model #: Mini Housing w/ MN33301 & SYN8631A


R2 Amy Twin Phantom Rev.3 Phantom; section 2 Section; Position: (0°,0°); Frequency: 836 MHz


Probe: ET3DV6 - SN1515 - FCC Body; ConvF(6.40,6.40,6.40); Crest factor: 8.0; 835 MHz Head & Body: $\sigma = 1.01$ mho/m $\epsilon_r = 53.4$ $\rho = 1.00$ g/cm³

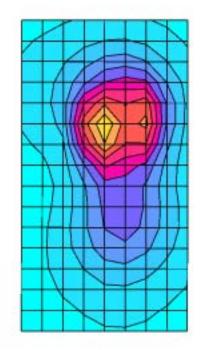
Cube 7x7x7: SAR (1g): 0.285 mW/g, SAR (10g): 0.197 mW/g, (Worst-case extrapolation)

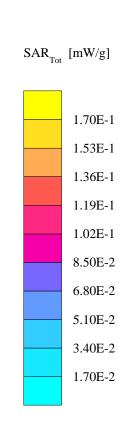
Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0 Penetration depth: 15.2 (14.4, 16.2) [mm]

Powerdrift: -0.10 dB

Ch# 661 / Pwr Step: 00 / Type of Modulation: 1900 GSM / Battery Model #: AANN4204A

Accessory Model #: Mini Housing w/ MN33301 & SYN8763A


R2 Amy Twin Phantom Rev.3 Phantom; section 1 Section; Position: (0°,0°); Frequency: 1880 MHz


Probe: ET3DV6 - SN1515 - FCC Body; ConvF(4.70,4.70,4.70); Crest factor: 8.0; 1880 MHz Head & Body: $\sigma = 1.58$ mho/m $\epsilon_r = 50.9$ $\rho = 1.00$ g/cm³

Cube 7x7x7: SAR (1g): 0.172 mW/g, SAR (10g): 0.0922 mW/g, (Worst-case extrapolation)

Coarse: Dx = 10.0, Dy = 10.0, Dz = 10.0Penetration depth: 8.1 (7.7, 8.9) [mm]

Powerdrift: -0.02 dB

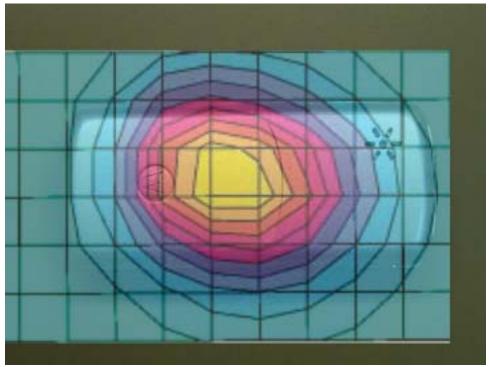


Figure 5. Typical 800 MHz Body-Worn Contour Overlaid on Phone

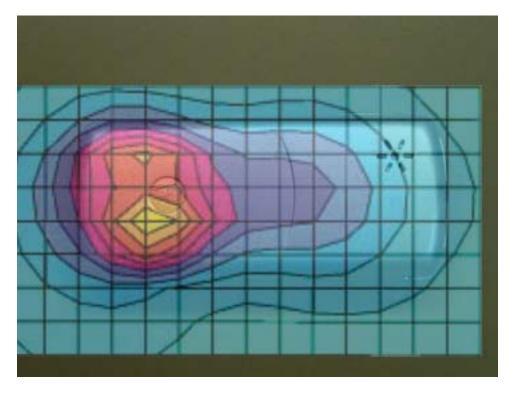


Figure 6. Typical 1900 MHz Body-Worn Contour Overlaid on Phone

Appendix 4

FCC ID: IHDT56CU1

Probe Calibration Certificate

Appendix 5

FCC ID: IHDT56CU1

Dipole Characterization Certificate

Schmid & Partner Engineering AG

Zaughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Calibration Certificate

900 MHz System Validation Dipole

Туре:	D900V2
Serial Number:	078
Place of Calibration:	Zwish
Date of Calibration:	August 23, 2001
Calibration Interval:	24 months

Schmid & Partner Engineering AG hereby certifies, that this device has been calibrated on the date indicated above. The calibration was performed in accordance with specifications and procedures of Schmid & Partner Engineering AG.

Wherever applicable, the standards used in the calibration process are traceable to international standards. In all other cases the standards of the Laboratory for EMF and Microwave Electronics at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland have been applied.

Calibrated by:

Approved by:

DASY

Dipole Validation Kit

Type: D900V2

Serial: 078

Manufactured: August 21, 2000 Calibrated: August 23, 2001

1. Measurement Conditions

The measurements were performed in the flat section of the new generic twin phantom filled with head simulating solution of the following electrical parameters at 900 MHz:

Relative Dielectricity 40.3 ± 5% Conductivity 0.95 mho/m ± 5%

The DASY3 System (Software version 3.1c) with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 6.27 at 900 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 15mm from dipole center to the solution surface. The included distance holder was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 5x5x7 fine cube was chosen for cube integration. Probe isotropy errors were cancelled by measuring the SAR with normal and 90° turned probe orientations and averaging.

The dipole input power (forward power) was 250mW ± 3 %. The results are normalized to 1W input power.

2. SAR Measurement

Standard SAR-measurements were performed with the phantom according to the measurement conditions described in section 1. The results have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values are:

averaged over 1 cm3 (1 g) of tissue: 11.3 mW/g

averaged over 10 cm³ (10 g) of tissue: 7.12 mW/g

Note: If the liquid parameters for validation are slightly different from the ones used for initial calibration, the SAR-values will be different as well.

1. Measurement Conditions

The measurements were performed in the flat section of the new generic twin phantom filled with head simulating solution of the following electrical parameters at 900 MHz:

Relative Dielectricity 40.3 ± 5% Conductivity 0.95 mho/m ± 5%

The DASY3 System (Software version 3.1c) with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 6.27 at 900 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 15mm from dipole center to the solution surface. The included distance holder was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 5x5x7 fine cube was chosen for cube integration. Probe isotropy errors were cancelled by measuring the SAR with normal and 90° turned probe orientations and averaging.

The dipole input power (forward power) was 250mW ± 3 %. The results are normalized to 1W input power.

2. SAR Measurement

Standard SAR-measurements were performed with the phantom according to the measurement conditions described in section 1. The results have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values are:

averaged over 1 cm3 (1 g) of tissue: 11.3 mW/g

averaged over 10 cm³ (10 g) of tissue: 7.12 mW/g

Note: If the liquid parameters for validation are slightly different from the ones used for initial calibration, the SAR-values will be different as well.

3. Dipole Impedance and Return Loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay:

1.410 ns (

(one direction)

Transmission factor:

0.988

(voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 1 and the distance holder was in place during impedance measurements.

Feedpoint impedance at 900 MHz:

 $Re\{Z\} = 50.5 \Omega$

 $\text{Im} \{Z\} = -4.6 \Omega$

Return Loss at 900 MHz

-26.7 dB

4. Handling

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

Do not apply excessive force to the dipole arms, because they might bend. If the dipole arms have to be bent back, take care to release stress to the soldered connections near the feedpoint; they might come off.

After prolonged use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Validation Dipole D900V2 SN:078, d = 15 mm

Frequency: 900 MHz; Antenna Input Power: 250 [mW] SAM Phanton; Flat Section; Grid Spacing: 0x = 20.0, 0y = 20.0, 0z = 10.0 Prube: ET30V6 - SN1507; ConvF(6.27,6.27) at 900 MHz; IEEE 1528 900 MHz; σ = 0.95 mho/m s_{ν} = 40.3 p = 1.00 g/cm³

Cubes (2); Peak 4.57 mWig ± 0.02 dB, SAR (1g); 2.82 mWig ± 0.02 dB, SAR (10g); 1.78 mWig ± 0.02 dB, (Worst-case extrapolation) Penetration depth: 11.5 (10.2, 13.1) [mm]

Powerdrift: -0.01 dB

SAR_{Ta} [mW/g]

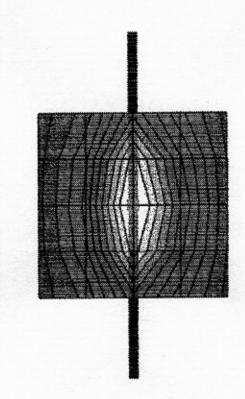
2.00E+0

2.50E+0

2.25E+0

1.75E+0

1.50E+0


1,25E+0

1.00E+0

7.50E-1

2.50E-1

5.00E-1

Interim Dipole Correlation Certificate

FCD-0359, Rev.001

Dipole Serial Number:

273(TR)
D1800V2 w/ Teflon

Last Calibration Date:

July 17, 2002

Dipole Type (MHz):

V2 w/ Teflon Rings Calibration Due:

July 17, 2004

Manufacturer:

SPEAG

-Manufacturer's Original Calibration Information-

Dipole to be correlated:

[Serial Number: 273(TR)]

1g SAR normalized to 1W forward power (mW/g):	39.6 mW/g
Relative Dielectric:	40.3
Conductivity:	1.36
Probe Serial Number:	1507
Forward Power:	250mW

Primary Dipole Referenced: [Serial Number: 246(TR)]

1g SAR normalized to 1W forward power (mW/g):	38.8 mW/g
Relative Dielectric:	39.6
Conductivity:	1.37
Probe Serial Number:	1507
Forward Power:	250mW

-Correlation Method Utilized- per DOI-1265

(select one)

By Similarity: X

By Transfer Calibration:

-Measured Data-

Probe S/N: 1515
Robot Cell #: PCS-2

Conductivity (meas.):
Permittivity (meas.):

1.36 38.9

Primary Standard (average of 0-degree & 90-degree 1g cubes):

9.805 mW/g				
	(if required	1)	(if required))

Secondary Standard (average of 0-degree & 90-degree 1g cubes):Mayo Tic

9.900 mW/g		
	(if required)	(if required)

-NEW Correlated Target-

1g SAR normalized to 1W forward power (mW/g):	38.8 mW/g
Relative Dielectric:	39.6
Conductivity:	1.37

Approved by:

Date:

7-Nov-02

Comments:

Secondary dipole measured +1% from primary dipole. (this correlation required for use with Teflon ring endcaps.)

Appendix 6

FCC ID: IHDT56CU1

Measurement Uncertainty Budget

Uncertainty Rudget for I	lovio	o I In	dor 7	Post					
Uncertainty Budget for I	Je vic	e one	uer i	lest			7. –	• <u>-</u>	
	,		,	C(11)	C		h =	i =	7
a	b	С	d	e = f(d,k)	f	g	cxf/e	c x g / e	k
		Tol.	Prob.		c_{i}	c_i	1 g	10 g	
		(± %)	Dist.		(1 g)	(10 g)	\boldsymbol{u}_i	\boldsymbol{u}_i	
Uncertainty Component	Sec.			Div.			(±%)	(±%)	v_i
Measurement System									
Probe Calibration	E.2.1	9.5	N	2.00	1	1	4.8	4.8	8
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	8
Spherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	8
Boundary Effect	E.2.3	5.8	R	1.73	1	1	3.3	3.3	∞
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	∞
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	8
Readout Electronics	E.2.6	1.0	N	1.00	1	1	1.0	1.0	× ×
Response Time	E.2.7	0.8	R	1.73	1	1	0.5	0.5	∞
Integration Time	E.2.8	1.3	R	1.73	1	1	0.8	0.8	8
RF Ambient Conditions	E.6.1	3.0	R	1.73	1	1	1.7	1.7	~
Probe Positioner Mechanical									
Tolerance	E.6.2	0.3	R	1.73	1	1	0.2	0.2	∞
Probe Positioning with respect to									
Phantom Shell	E.6.3	1.1	R	1.73	1	1	0.6	0.6	∞
Extrapolation, interpolation and									
Integration Algorithms for Max. SAR									
Evaluation	E.5	3.9	R	1.73	1	1	2.3	2.3	∞
Test sample Related									
Test Sample Positioning	E.4.2	3.6	N	1.00	1	1	3.6	3.6	29
Device Holder Uncertainty	E.4.1	2.8	N	1.00	1	1	2.8	2.8	8
Output Power Variation - SAR drift									
measurement	6.6.2	5.0	R	1.73	1	1	2.9	2.9	∞
Phantom and Tissue Parameters									
Phantom Uncertainty (shape and									
thickness tolerances)	E.3.1	4.0	R	1.73	1	1	2.3	2.3	∞
Liquid Conductivity - deviation from									
target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity - measurement									
uncertainty	E.3.3	10.0	R	1.73	0.64	0.43	3.7	2.5	∞
Liquid Permittivity - deviation from									
target values	E.3.2	10.0	R	1.73	0.6	0.49	3.5	2.8	∞
Liquid Permittivity - measurement									
uncertainty	E.3.3	5.0	R	1.73	0.6	0.49	1.7	1.4	∞
Combined Standard Uncertainty			RSS				11.72	11.09	1363
Expanded Uncertainty									
(95% CONFIDENCE LEVEL)			k =2				22.98	21.75	

FCC ID: IHDT56CU1

Uncertainty Budget for System Performance Check (dipole & flat phantom)

FCC ID: IHDT56CU1

Uncertainty Budget for	System	<u>i Perio</u>	<u>rman</u>	<u>ce Un</u>	eck (aipoie	& Hat	pnant	om)
				e =			h =	<i>i</i> =	
				f(d,k)			cxf/	c x g	
a	b	c	d)	f	g	e	/ e	k
		Tol.	Prob.		c_i	c_i	1 g	10 g	
		(± %)	Dist.		(1 g)	(10 g)	\boldsymbol{u}_i	u_i	
Uncertainty Component	Sec.			Div.			(±%)	(±%)	v_i
Measurement System									
Probe Calibration	E.2.1	9.5	N	2.00	1	1	4.8	4.8	8
Axial Isotropy	E.2.2	4.7	R	1.73	1	1	2.7	2.7	8
Spherical Isotropy	E.2.2	9.6	R	1.73	0	0	0.0	0.0	× ×
Boundary Effect	E.2.3	5.8	R	1.73	1	1	3.3	3.3	~
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	∞
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	∞
Readout Electronics	E.2.6	1.0	N	1.00	1	1	1.0	1.0	∞
Response Time	E.2.7	0.0	R	1.73	1	1	0.0	0.0	∞
Integration Time	E.2.8	0.0	R	1.73	1	1	0.0	0.0	× ×
RF Ambient Conditions	E.6.1	3.0	R	1.73	1	1	1.7	1.7	~
Probe Positioner Mechanical									
Tolerance	E.6.2	0.3	R	1.73	1	1	0.2	0.2	∞
Probe Positioning with respect to									
Phantom Shell	E.6.3	1.1	R	1.73	1	1	0.6	0.6	∞
Extrapolation, interpolation and									
Integration Algorithms for Max.			_						
SAR Evaluation	E.5	3.9	R	1.73	1	1	2.3	2.3	∞
Dipole			_						
Dipole Axis to Liquid Distance	8, E.4.2	1.0	R	1.73	1	1	0.6	0.6	∞
Input Power and SAR Drift Measurement	0.662	4.7	R	1.73	1	1	2.7	2.7	
Phantom and Tissue	8, 6.6.2	4.7	K	1./3	1	1	2.1	2.1	∞
Parameters									
Phantom Uncertainty (shape and									
thickness tolerances)	E.3.1	4.0	R	1.73	1	1	2.3	2.3	∞
Liquid Conductivity - deviation									
from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity -									
measurement uncertainty	E.3.3	10.0	R	1.73	0.64	0.43	3.7	2.5	∞
Liquid Permittivity - deviation									
from target values	E.3.2	10.0	R	1.73	0.6	0.49	3.5	2.8	∞
Liquid Permittivity -									
measurement uncertainty	E.3.3	5.0	R	1.73	0.6	0.49	1.7	1.4	∞
Combined Standard									
Uncertainty			RSS				10.16	9.43	99999
Expanded Uncertainty									
(95% CONFIDENCE LEVEL)			k=2				19.92	18.48	

Appendix 7

FCC ID: IHDT56CU1

Photographs of the device under test

Front of Phone "Mini Housing"

Back of Phone "Mini Housing"



Phone Placed Against Phantom Head in Check Touch Position

Phone Placed Against Phantom Head in Check Touch Position

Phone Placed Against Phantom Head in 15 Degree Tilt Position

Phone Placed Against Phantom Head in 15 Degree Tilt Position