

Date: November 18, 2002

Subject: Request for additional information (FCC ID IHDT56CG1; reference 5284)

Reference:

Correspondence Reference Number: 5688
Confirmation Number: TC516641
Date of Original Email: 11/4/2002

Prepared by:

Steven Hauswirth Motorola Personal Communications Sector Product Safety Laboratory Harvard, Illinois

Andrew Bachler, Principal Staff Engineer Motorola Personal Communications Sector Libertyville, Illinois

November 18, 2002 Supplement to SAR Test Report for Motorola portable cellular phone (FCC ID IHDT56CG1)

Prepared by: Steven Hauswirth Motorola Personal Communications Sector Product Safety Laboratory Harvard, Illinois

Summary of FCC request for additional information

There was a request for additional information regarding Motorola's SAR Test Report for Motorola portable cellular phone (FCC ID IHDT56CG1). The requested information is addressed below in the same numbering sequence received.

1) Regarding your answer to question 2 of correspondence The FCC has been aware of differences conversion factor between 1800 and 1900 MHz. Because of the difference in frequency we do not believe that the conversion factor would be necessarily the same liquid parameters even though the are the same. Please remeasure with certified probe calibration. Alternatively for this application only, demonstrate that the conversion factors are identical. For example use the validation setup to show that there is no change in SAR for the two frequencies in liquids with the identical target parameters. Please also describe what steps are being taken to obtain fully calibrated probes for future measurements.

Response: Motorola is not aware of differences in conversion factors between 1800MHz and 1900MHz for the same simulated tissue. Our probe supplier (SPEAG[™]) has been providing the same probe conversion factor the 1800MHz and 1900MHz head for quite some time. Please see "Page 2 of 8" of the Probe SN1508 Calibration Certificate in Appendix A for an example). SPEAG[™] has begun to provide probe conversion factors that are common for 1800MHz and 1900MHz body on the newer probe calibration certificates (please see page "8 of 10" in the Probe SN1398 Calibration Certificate in Appendix B for an example). It is our belief that these probes have been fully calibrated by the manufacturer and properly utilized by Motorola.

If the "Additional Conversion Factors" for Probe SN1508 ("Page 2 of 2" in Appendix A) are examined, it can be seen that the conversion factor for 1800MHz body factor differs from the 1950MHz body conversion factor by only 6%. This is well within the stated 8% uncertainty of the probe conversion factor. The 1950MHz body probe conversion factor is included for the testing of 3G/UMTS products for Europe.

Motorola believes that if a single validation setup were to be measured at two different frequencies using the same simulated tissue, that different values would be measured. This is because the dipole is centered or "tuned" for only a single frequency. Using a frequency different than the center frequency of the dipole will result in a different efficiency and radiated power value. Thus the measured SAR would be different.

Appendix 1

Probe SN1508 Calibration Certificate

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Calibration Certificate

Dosimetric E-Field Probe

Type:	ET3DV6
Serial Number:	1508
Place of Calibration:	Zurich
Date of Calibration:	October 25, 2001
Calibration Interval:	12 months

Schmid & Partner Engineering AG hereby certifies, that this device has been calibrated on the date indicated above. The calibration was performed in accordance with specifications and procedures of Schmid & Partner Engineering AG.

Wherever applicable, the standards used in the calibration process are traceable to international standards. In all other cases the standards of the Laboratory for EMF and Microwave Electronics at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland have been applied.

Calibrated by:

Nikoloski Neviana

Approved by:

Mair Katj-

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Telephone +41 1 245 97 00, Fax +41 1 245 97 79

Probe ET3DV6

SN:1508

Manufactured:

October 24, 1999

Remade:

October 11, 2001

Recalibrated:

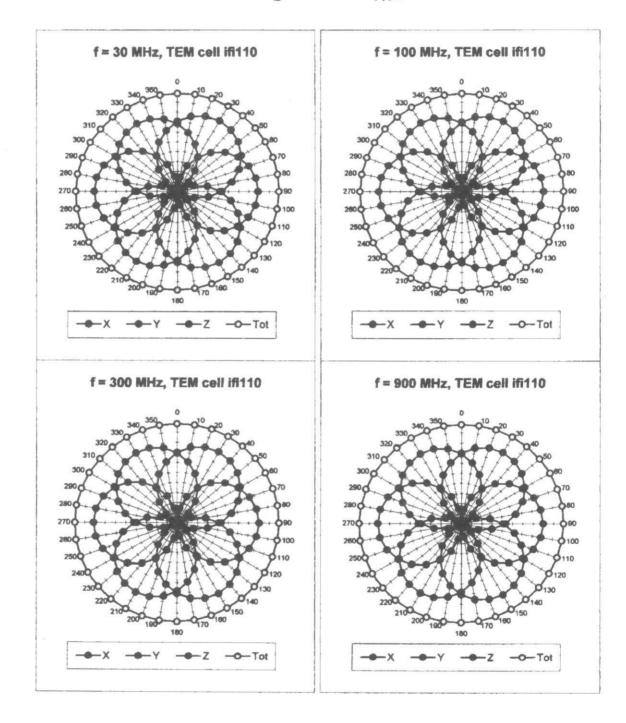
October 25, 2001

Calibrated for System DASY3

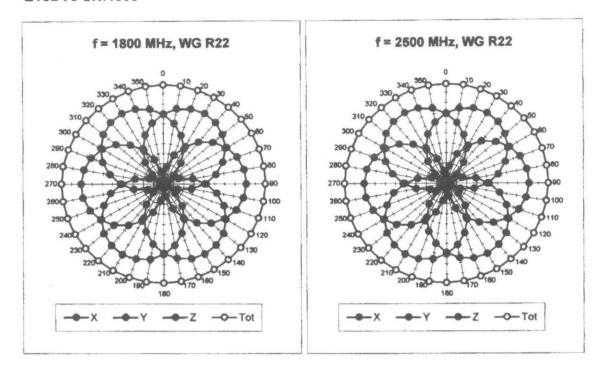
DASY3 - Parameters of Probe: ET3DV6 SN:1508

Sensitivity in Free	Space	Diode Compression
,		

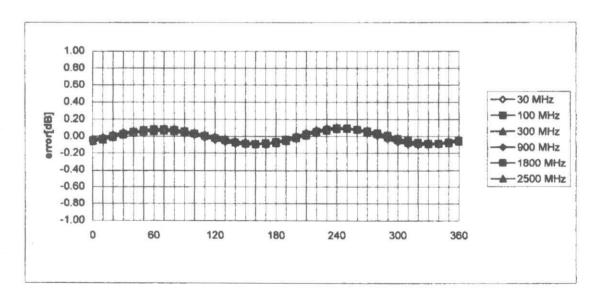
NormX	1.62 μV/(V/m) ²	DCP X	97 mV
NormY	1.51 μV/(V/m) ²	DCP Y	97 mV
NormZ	1.49 μV/(V/m) ²	DCP Z	97 mV


Sensitivity in Tissue Simulating Liquid

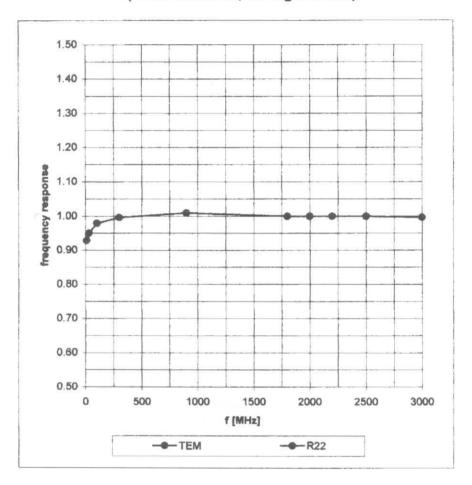
Head	450 MHz		e_r = 40.4 ± 5%	s =	0.87 ± 5% mho/	m
	ConvF X	6.82	extrapolated		Boundary effect	:
	ConvF Y	6.82	extrapolated		Alpha	0.25
	ConvF Z	6.82	extrapolated		Depth	2.86
Head Head	900 MHz 835 MHz		$e_r = 41.5 \pm 5\%$ $e_r = 41.5 \pm 5\%$		0.97 ± 5% mho/ 0.90 ± 5% mho/	
	ConvF X	6.35	± 9.5% (k=2)		Boundary effect	:
	ConvF Y	6.35	± 9.5% (k=2)		Alpha	0.35
	ConvF Z	6.35	± 9.5% (k=2)		Depth	2.68
Head	1500 MHz		$e_r = 40.4 \pm 5\%$	s =	1.23 ± 5% mho/	m
	ConvF X	5.72	interpolated		Boundary effect	:
	ConvF Y	5.72	interpolated		Alpha	0.47
	ConvF Z	5.72	interpolated		Depth	2.43
Head Head	1800 MHz 1900 MHz		$e_r = 40.0 \pm 5\%$ $e_r = 40.0 \pm 5\%$		1.40 ± 5% mho/ 1.40 ± 5% mho/	
	ConvF X	5.41	± 9.5% (k=2)		Boundary effect	:
	ConvF Y	5.41	± 9.5% (k=2)		Alpha	0.53
	ConvF Z	5.41	± 9.5% (k=2)		Depth	2.31


Sensor Offset

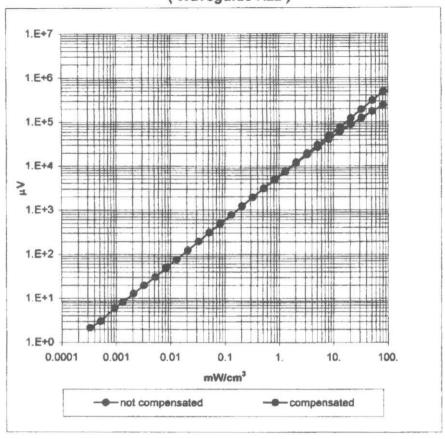
Probe Tip to Sensor Center	2.7	mm
Optical Surface Detection	1.4 ± 0.2	mm

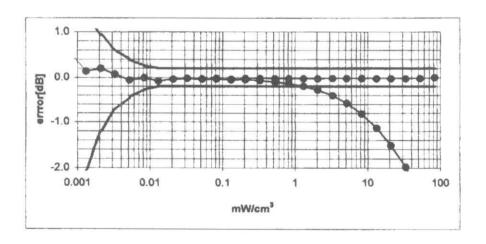

Receiving Pattern (ϕ), θ = 0°

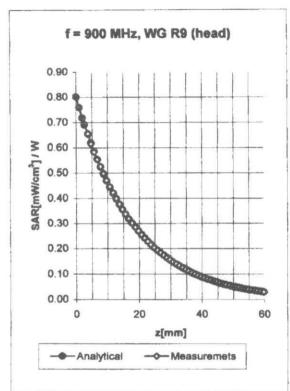
ET3DV6 SN:1508

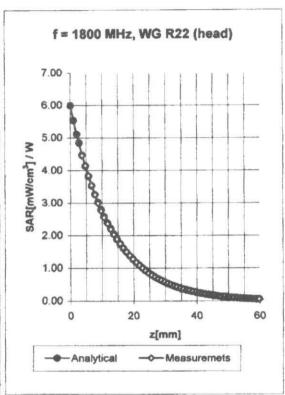


Isotropy Error (ϕ), θ = 0°


Frequency Response of E-Field


(TEM-Cell:ifi110, Waveguide R22)




Dynamic Range f(SAR_{brain})

(Waveguide R22)

Head 800 - 1000 MHz

 $\varepsilon_r = 39.0 - 43.5$

 σ = 0.80 - 1.10 mho/m

ConvF X

6.35 ± 9.5% (k=2)

Boundary effect:

ConvF Y

6.35 ± 9.5% (k=2)

Alpha 0.35

ConvF Z

6.35 ± 9.5% (k=2)

Depth

2.68

Head

1700 - 1910 MHz

 $\varepsilon_r = 39.5 - 41.0$

 $\sigma = 1.20 - 1.55 \text{ mho/m}$

ConvF X

5.41 ± 9.5% (k=2)

Boundary effect:

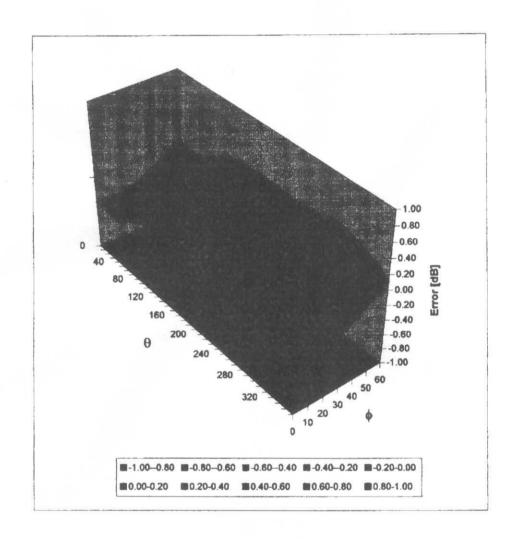
ConvF Y

5.41 ± 9.5% (k=2)

Alpha

0.53

ConvF Z


5.41 ± 9.5% (k=2)

Depth

2.31

Deviation from Isotropy in HSL

Error (θ, ϕ) , f = 900 MHz

Schmid & Partner Engineering AG

Zaughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Additional Conversion Factors

for Dosimetric E-Field Probe

Type:	ET3DV6
Serial Number:	1508
Place of Assessment:	Zurich
Date of Assessment:	November 14, 2001
Probe Calibration Date:	October 25, 2001

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

Assessed by:

Dosimetric E-Field Probe ET3DV6 SN:1508

Conversion factor (± standard deviation)

835 MHz	ConvF	6.5 ± 8%	$\varepsilon_r = 41.5$ $\sigma = 0.90 \text{ mho/m}$ (head tissue)
1950 MHz	ConvF	5.1 ± 8%	$\varepsilon_r = 40.0$ $\sigma = 1.40 \text{ mho/m}$ (head tissue)
835 MHz	ConvF	6.2 ± 8%	$\varepsilon_{r} = 55.2$ $\sigma = 0.97 \text{ mho/m}$ (body tissue)
900 MHz	ConvF	6.1 ± 8%	$\varepsilon_r = 55.0$ $\sigma = 1.05 \text{ mho/m}$ (body tissue)
1800 MHz	ConvF	5.0 ± 8%	$\varepsilon_r = 53.3$ $\sigma = 1.52 \text{ mho/m}$ (body tissue)
1950 MHz	ConvF	4.7 ± 8%	$\varepsilon_r = 53.3$ $\sigma = 1.52 \text{ mho/m}$ (body tissue)

Appendix 2 Probe SN1398 Calibration Certificate

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax.+41-1 245-97 79.

Calibration Certificate

Dosimetric E-Field Probe

Туре:	ET3DV6
Serial Number:	1398
Place of Calibration:	Zurich
Date of Calibration:	September 6, 2002
Calibration Interval:	12 months

Schmid & Partner Engineering AG hereby certifies, that this device has been calibrated on the date indicated above. The calibration was performed in accordance with specifications and procedures of Schmid & Partner Engineering AG.

Wherever applicable, the standards used in the calibration process are traceable to international standards. In all other cases the standards of the Laboratory for EMF and Microwave Electronics at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland have been applied.

Zeughausstrasse 43, 8004 Zurich, Switzerland, Telephone +41 1 245 97 00, Fax +41 1 245 97 79

Probe ET3DV6

SN:1398

Manufactured:

October 24, 1999

Last calibration:

August 31, 2001

Recalibrated:

September 6, 2002

Calibrated for System DASY3

DASY3 - Parameters of Probe: ET3DV6 SN:1398

Sensitivity in Free Space

Diode Compression

NormX	1.31 µV/(V/m) ²	DCP X	96	mV
NormY	1.33 µV/(V/m) ²	DCP Y	96	mV
NormZ	1.48 μV/(V/m) ²	DCP Z	96	mV-

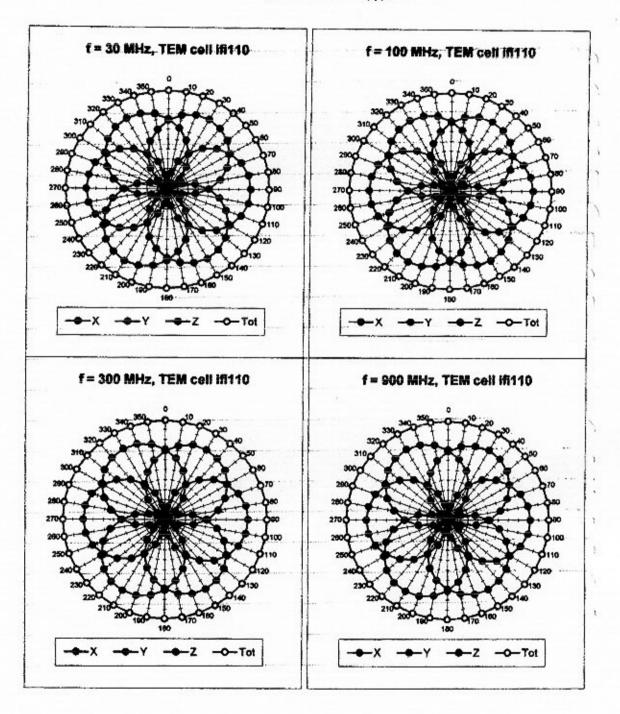
Sensitivity in Tissue Simulating Liquid

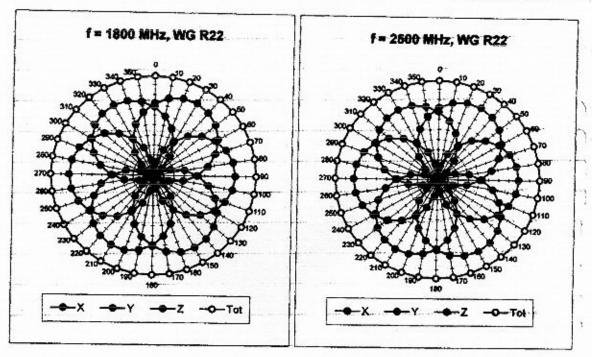
Head Head	900 MHz 835 MHz	ε _τ = 41.5 ± 5% ε _τ = 41.5 ± 5%	a = 0.97 ± 5% mho/m a = 0.90 ± 5% mho/m
	ConvF X	6.2 ± 9.5% (k=2)	Boundary effect:
	ConvF Y	6.2 ± 9.5% (k=2)	Alpha 0.35
	ConvF Z	6.2 ± 9.5% (k=2)	Depth 2.80
Head Head	1800 MHz 1900 MHz	ε _r = 40.0 ± 5% ε _r = 40.0 ± 5%	o = 1.40 ± 5% mho/m o = 1.40 ± 5% mho/m
	ConvF X	5.2 ± 9.5% (k=2)	Boundary effect:
	ConvF Y	5.2 ± 9.5% (k=2)	Alpha 0.55
	ConvF Z	5.2 ± 9.5% (k=2)	Depth 2.37

Boundary Effect

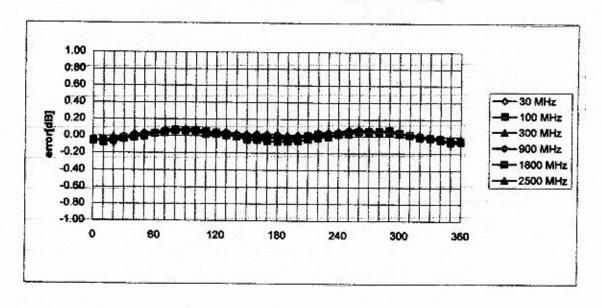
Head	900 MHz	Typical SAR gradient: 5 % per mm
------	---------	----------------------------------

Probe Tip t	o Boundary	1 mm	2 mm
SAR (%)	Without Correction Algorithm	10.9	6.3
SAR _{be} [%]	With Correction Algorithm	0.5	0.7

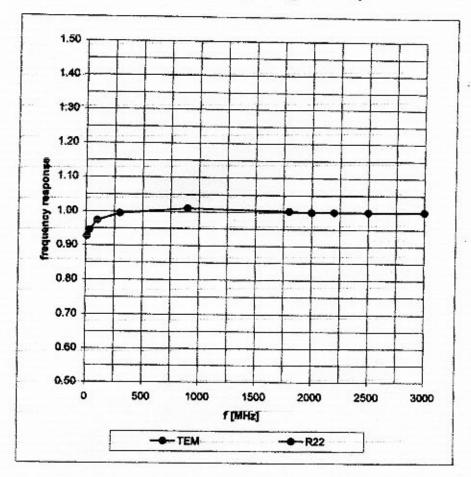

Head 1800 MHz Typical SAR gradient: 10 % per mm


Probe Tip to Boundary		1 mm	2 mm
SAR [%]	Without Correction Algorithm	12.8	8.3
SAR _{be} [%]	With Correction Algorithm	0.1	0.1

Sensor Offset

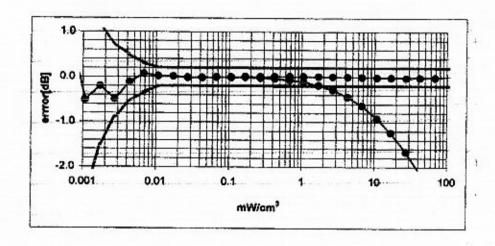

Probe Tip to Sensor Center	2.7	mm
Optical Surface Detection	1.0 ± 0.2	mm

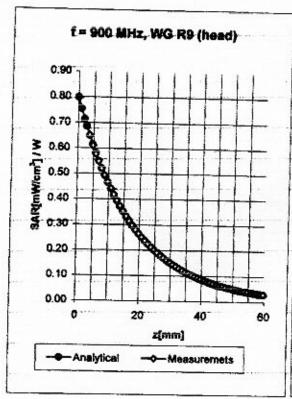
Receiving Pattern (ϕ), $\theta = 0^{\circ}$

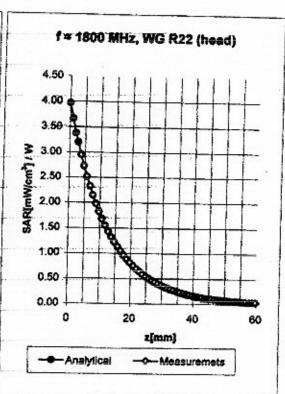


Isotropy Error (ϕ), $\theta = 0^{\circ}$

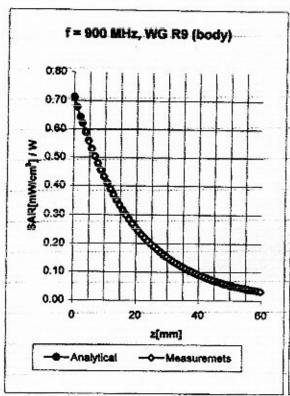
Frequency Response of E-Field

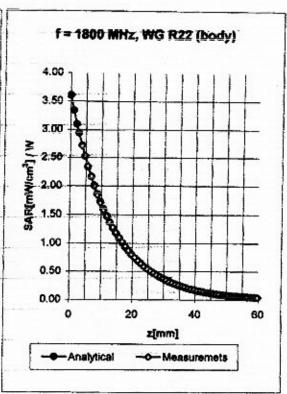

(TEM-Cell:ifi110, Waveguide R22)



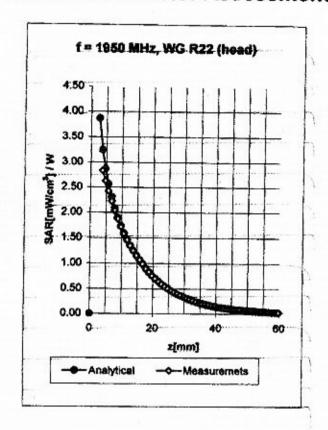

Dynamic Range f(SAR_{brain})

(Waveguide R22)

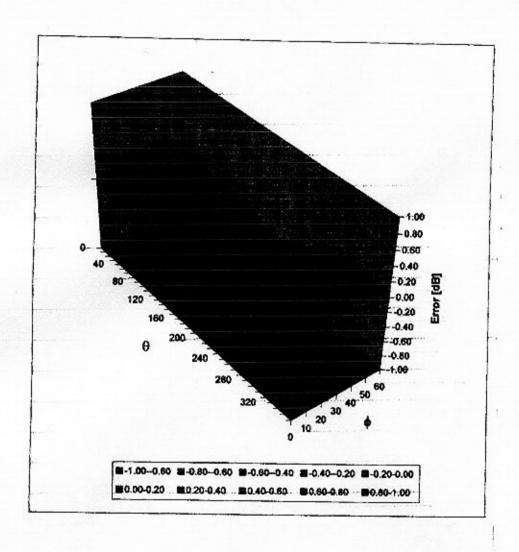




Head	900 MHz	E,= 41.5 ± 5%	o = 0.97 ± 5% n	nho/m
Head	935 MHz	e,= 41.5 ± 5%	σ= 0.90 ± 5% n	nho/m
	ConvF X	6.2 ± 9.5% (k=2)	Boundary.e	ffect:
	ConvF Y	6.2 ± 9.5% (k=2)	Alpha	0.35
	ConvF Z	6.2 ± 9.5% (k=2)	Depth	2.80


Head	1800 MHz	ε,= 40.0 ± 5%	$\sigma = 1.40 \pm 5\% \text{ mho/m}$
Head	1900 MHz	ε,= 40.0 ± 5%	$\sigma = 1.40 \pm 5\%$ mho/m
	ConvF X	5.2 ± 9.5% (k=2)	Boundary effect:
	ConvF Y	5.2 ± 9.5% (k=2)	Alpha 0.55
	ConvF Z	5.2 ± 9.5% (k=2)	Depth 2.37

Body	900 MHz	e, = 55.0 ± 5%	$\sigma = 1.05 \pm 5\% \text{ mho/m}$	
Body	835 MHz	ε _t = 55.2 ± 5%	σ = 0.97 ± 5% mhoim	
	ConvF X	5.9 ± 9.5% (k=2)	Boundary effect:	1
	ConvF Y	5.9 ± 9.5% (k=2)	Alpha 0.4	40
	ConvF Z	5.9 ± 9.5% (k=2)	Depth 2.7	70


Body	1800 MHz	ε,= 53.3 ± 5%	σ = 1.52 ± 5% mho/m	
Body	1900 MHz	€ _c = 53.3 ± 6%	σ = 1.52 ± 5% mho/m	
	ConvF X	4.9 ± 9.5% (k=2)	Boundary effect:	
	ConvF Y	4.9 ± 9.5% (k=2)	Alpha 0.61	,
	ConvF Z	4.9 ± 9.5% (k=2)	Depth 2.41	1

Head	1960 MH	z ε _τ = 40.0 ± 5%	o = 1.40 ± 5% mho/m	
	ConvF X	4.9 ± 9.5% (k=2)	Boundary.effect:	
	ConvF Y	4.9 ± 9.5% (k=2)	Alpha 0.63	3
	ConvF Z	4.9 ± 9.5% (k=2)	Depth 2.3	2

Deviation from Isotropy in HSL

Error (θ, φ), f = 900 MHz

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Additional Conversion Factors

for Dosimetric E-Field Probe

Туре:	ET3DV6
Serial Number:	1398
Place of Assessment:	Zurich
Date of Assessment:	September 8, 2002
Probe Calibration Date:	September 6, 2002

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

Assessed by:

Marillat -

Dosimetric E-Field Probe ET3DV6 SN:1398

Conversion factor (± standard deviation)

1950 MHz

ConvF

 $4.6 \pm 8\%$

E = 53.3 ± 5%

 $\sigma = 1.52 \pm 5\% \text{ mho/m}$

(body tissue)