

Portable Cellular Phone SAR Test Report

Motorola Mobile Devices Business Product Safety & Compliance Laboratory

19th Floor, Hibrand Living Hall,

Tests Requested By: 215, Yanjae-Dong, Seocho-Gu, Seoul, 137-130,

South Korea

Test Report #: 23062-1F **Date of Report:** 21-May-2009

Date of Test: 29-Apr-2009 ~ 11-May-2009

FCC ID #: IHDP6KL1

Generic Name: V11

Motorola Mobile Devices Business Product Safety & Compliance Laboratory

11th Floor, Hibrand Living Hall,

Test Laboratory: 215, Yanjae-Dong, Seocho-Gu, Seoul, 137-130,

South Korea Brian Lee RF Engineer

Brian Lee

Report Author:

This laboratory is accredited to ISO/IEC 17025-2005 to perform the following tests:

Tests: Procedures:

Electromagnetic Specific Absorption Rate IEC 62209-1

RSS-102

IEEE 1528 - 2003

FCC OET Bulletin 65 (*including Supplement C*) Australian Communications Authority Radio

Communications (Electromagnetic Radiation – Human

Exposure) Standard 2003 CENELEC EN 50360 ARIB Std. T-56 (2002)

TESTING CERT #2518-03

Statement of

Compliance:

Accreditation:

On the following products or types of products:

On the following products or types of products: Wireless Communications Devices (Examples): Two Way Radios; Portable Phones (including Cellular, Licensed Non-Broadcast and PCS); Low

Frequency Readers; and Pagers

Motorola declares under its sole responsibility that the portable cellular telephone model to which this declaration relates, is in conformity with the appropriate General Population/Uncontrolled RF exposure standards, recommendations and guidelines (FCC 47 CFR §2.1093) as well as with CENELEC en50360:2001 and ANSI / IEEE C95.1. It also declares that the product was tested in accordance with IEEE 1528 / CENELEC EN62209-1 (2006), as well as other appropriate measurement standards, guidelines and recommended practices. Any deviations from these standards,

guidelines and recommended practices are noted below:

(none)

©Motorola, Inc. 2009

This test report shall not be reproduced except in full, without written approval of the laboratory. The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report. Motorola encourages all feedback, both positive and negative, on this test report.

MOTOROLA, INC. Portable Cellular Phone SAR Test Report Number: 23062-1F

Table of Contents

1. Introduction	3
2. Description of the Device Under Test	3
2.1 Antenna description	3
2.2 Device description	3
3. Test Equipment Used	4
3.1 Dosimetric System	4
3.2 Additional Equipment	4
4. Electrical parameters of the tissue simulating liquid	5
5. System Accuracy Verification	6
6. Test Results	7
6.1 Head Adjacent Test Results	8
6.2 Body Worn Test Results	11
References	14
Appendix 1: SAR distribution comparison for the system accuracy verification	
Appendix 2: SAR distribution plots for Phantom Head Adjacent Use	
Appendix 3: SAR distribution plots for Body Worn Configuration	
Appendix 4: Probe Calibration Certificate	
Appendix 5: Measurement Uncertainty Budget	
Appendix 6: Dipole Characterization Certificate	

1. Introduction

The Motorola Mobile Devices Business Product Safety Laboratory has performed measurements of the maximum potential exposure to the user of the portable cellular phone covered by this test report. The Specific Absorption Rate (SAR) of this product was measured. The portable cellular phone was tested in accordance with [1], [4] and [5]. The SAR values measured for the portable cellular phone are below the maximum recommended levels of 1.6 W/kg in a 1g average set in [3] and 2.0W/kg in a 10g average set in [2].

For ICNIRP (10g), the final SAR reading for this phone is 0.65 W/kg for head adjacent use and 0.81 W/kg for body worn use. For ANSI / IEEE C95.1 (1g), the final SAR reading for this phone is 0.88 W/kg for head adjacent use and 1.13 W/kg for body worn use. These measurements were performed using a Dasy4TM v4.7 system manufactured by Schmid & Partner Engineering AG (SPEAG), of Zurich Switzerland.

2. Description of the Device Under Test

2.1 Antenna description

Type	Internal Antenna		
Location	Bottom of Transceiver		
D'	Length	37.85mm	
Dimensions	Width 7.20mm		
Configuration	FJA		

2.2 Device description

Serial number	TA4000002P				
Mode(s) of Operation	800 CDMA 800 EV-DO Rev.O Bluetooth				
Modulation Mode(s)	QPSK	QPSK	GFSK		
Maximum Output Power Setting	25.0 dBm 25.0 dBm 4.0 dBm				
Duty Cycle	1:1	1:1	1:1		
Transmitting Frequency Rang(s)	824.7 – 848.31 MHz	824.7 – 848.31 MHz	2400 – 2483 MHz		
Production Unit or Identical Prototype (47 CFR §2908)	Identical Prototype				
Device Category	Portable				
RF Exposure Limits	Gene	ral Population / Uncontro	lled		

3. Test Equipment Used

3.1 Dosimetric System

The Motorola Mobile Devices Business Product Safety & Compliance Laboratory utilizes a Dosimetric Assessment System (Dasy4TM v4.7) manufactured by Schmid & Partner Engineering AG (SPEAGTM), of Zurich Switzerland. All the SAR measurements are taken within a shielded enclosure. The overall 10g RSS uncertainty of the measurement system is $\pm 10.8\%$ (K=1) with an expanded uncertainty of $\pm 21.6\%$ (K=2). The overall 1g RSS uncertainty of the measurement system is $\pm 11.1\%$ (K=1) with an expanded uncertainty of $\pm 22.2\%$ (K=2). The measurement uncertainty budget is given in Appendix 5. Per IEEE 1528, this uncertainty budget is applicable to the SAR range of 0.4W/kg to 10W/kg.

The list of calibrated equipment used for the measurements is shown in the following table.

Description	Serial Number	Cal Due Date
DASY4™ DAE V1	656	19-May-2009
E-Field Probe ES3DV3	3178	14-Jul-2009
S.A.M. Phantom used for 800/900MHz	TP-1129	
S.A.M. Phantom used for 2450MHz	TP-1134	
Dipole Validation Kit, DV900V2	97	01-Apr-10
Dipole Validation Kit, DV2450V2	767	01-Apr-10

3.2 Additional Equipment

Description	Serial Number	Cal Due Date
Signal Generator HP8648C	3847A04840	21-Jan-2010
Power Meter E4419B	GB39511085	21-Jan-2010
Power Sensor #1 - 8481A	MY41095450	21-Jan-2010
Power Sensor #2 - 8481A	2702A82671	21-Jan-2010
Network Analyzer HP8753ES	US39172714	22-Jan-2009
Dielectric Probe Kit HP85070C	US99360207	

4. Electrical parameters of the tissue simulating liquid

Prior to conducting SAR measurements, the relative permittivity, ε_r , and the conductivity, σ , of the tissue simulating liquids were measured with a HP85070 Dielectric Probe Kit These values, along with the temperature of the simulated tissue are shown in the table below. The recommended limits for permittivity and conductivity are also shown. A mass density of $\rho=1g/cm3$ was entered into the system in all the cases. It can be seen that the measured parameters are within tolerance of the recommended limits specified in [1] and [5].

	Tionus		Diele	ctric Parame	eters
(MHz)	Tissue type	Limits / Measured	ϵ_r	σ (S/m)	Temp (°C)
		Measured, 08-May-2009	42.6	0.91	20.7
	Head 835	Measured, 29-Apr-2009	41.8	0.90	21.7
835		Recommended Limits	41.5 ±5%	$0.90 \pm 5\%$	18-25
	Dody	Measured, 08-May-2009	55.5	1.00	21.2
	Body	Recommended Limits	55.2 ±5%	$0.97 \pm 5\%$	18-25
2450	Body	Measured, 11-May-2009	49.6	2.04	21.4
2430	Bouy	Recommended Limits	52.7 ±10%	1.95 ±5%	18-25

The list of ingredients and the percent composition used for the tissue simulates are indicated in the table below.

Ingredient	835MHz / 900 MHz Head	835MHz / 900 MHz Body	1800MHz / 1900 MHz Head	1800 MHz / 1900 MHz Body	2450MHz Head	2450 MHz Body
Sugar	57	44.9			1	
DGBE			47	30.8		30
Diacetin					51	
Water	40.45	53.06	52.62	68.8	48.75	70
Salt	1.45	0.94	0.38	0.4	0.15	
HEC	1	1				
Bact.	0.1	0.1			0.1	

5. System Accuracy Verification

A system accuracy verification of the DASY4TM was performed using the measurement equipment listed in Section 3.1. The daily system accuracy verification occurs within the flat section of the SAM phantom.

A SAR measurement was performed to verify the measured SAR was within $\pm 10\%$ from the target SAR indicated in Appendix 6. These frequencies are within $\pm 10\%$ of the compliance test mid-band frequency as required in [1] and [5]. The test was conducted on the same days as the measurement of the DUT. Recommended limits for permittivity and conductivity, specified in [5], are shown in the table below. The obtained results from the system accuracy verification are also displayed in the table below. SAR values are normalized to 1W forward power delivered to the dipole. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values. The distributions of SAR compare well with those of the reference measurements (see Appendix 1). The tissue stimulant depth was verified to be 15.0cm ± 0.5 cm. Z-axis scans showing the SAR penetration are also included in Appendix 1.

f		SAR (W/kg),	Dielectric Parameters		Ambient	Tissue
(MHz)	Description	1gram	ϵ_r	σ (S/m)	Temp (°C)	Temp (°C)
	Measured, 08-May-2009	11.73	41.8	0.97	19.9	20.7
900	Measured, 29-Apr-2009	11.63	41.1	0.96	22.2	21.7
	Recommended Limits	11.19	41.5 ±5%	0.97 ±5%	18-25	18-25
2450	Measured, 11-May-2009	51.75	37.9	1.88	21.0	22.2
2430	Recommended Limits	56.68	39.2 ±10%	$1.80 \pm 5\%$	18-25	18-25

The following probe conversion factors were used on the E-Field probe(s) used for the system accuracy verification measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe	SN3178	900	5.63	8 of 9
ES3DV3		2450	4.29	8 of 9

6. Test Results

The test sample was operated using an actual transmission through a base station simulator. The base station simulator was setup to the proper channel, transmitter power level and transmit mode of operation. The phone was tested in the configurations stipulated in [1], [4] and [5]. The phone was positioned into these configurations using the device holder supplied with the DASY4TM SAR measurement system The measured dielectric constant of the material used for the device holder is less than 2.9 and the loss tangent is less than 0.02 (± 30%) at 850MHz. The default settings for the "coarse" and "cube" scans were chosen and used for measurements. The grid spacing of the course scan was set to 15 mm as shown in the SAR plots included in Appendix 2 and 3. Please refer to the DASY4TM manual for additional information on SAR scanning procedures and algorithms used.

The Cellular Phone model covered by this report has the following battery options: SNN5813B - 920 mAH Battery

The battery with the highest capacity is the SNN5813B. This battery was used to do most of the SAR testing. The phone was placed in the SAR measurement system with a fully charged battery.

Per the "SAR Measurement Procedures for 3G Devices" released in October, 2007, RC1, RC3 and RC3 (FCH + SCH) CDMA modes, EVDO Rev O, EVDO Rev A were considered. The conducted power measurements (per steps 3, 4 & 10 of section 4.4.5.2 of 3GPP2 C.5.011 / TIA -98-E) for each mode are shown in the table below.

Conducted power (dBm) for CDMA modes								
	Channel RC1 RC3					RC3 (FCH + SCH)		
	Chainlei	SO2	SO55	SO2	SO55	RC3 (FCH + SCH)		
an i t	1013	25.06	25.16	25.24	25.18	Per Motorola designs, the maximum power,		
CDMA 800	384	25.07	25.14	25.17	25.18	when in a mode that allows supplemental channels, will always be less than the RC3/RC1 maximum conducted power		
	777	24.89	24.78	24.91	24.92			

Conducted power (dBm) for EVDO modes						
	Rev 0					
	Channel	FTAP 307.2k	RTAP 153.6k			
CDM	1013	24.87	24.91			
CDMA 800	384	24.87	24.88			
300	777	24.59	24.62			

6.1 Head Adjacent Test Results

The SAR results shown in tables 1 through 4 are maximum SAR values averaged over 1 gram of phantom tissue, to demonstrate compliance to [3] and also over 10 grams of phantom tissue, to demonstrate compliance to the [6]. Also shown are the measured conducted output power levels for the CDMA RC3/SO55 mode, the temperature of the simulated tissue after the test, the measured drift and the extrapolated SAR. The exact method of extrapolation is New SAR = Old SAR * 10^(-drift/10). The SAR reported at the end of the measurement process by the DASY4TM measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test. Note that 800MHz digital mode SAR measurements were performed in accordance with [4].

The left head and right head SAR contour distributions are similar. Because of this similarity, the cheek/touch and 15° tilt test conditions with the highest SAR values in each band are indicated as bold numbers in the following tables and are included in Appendix 2. All other test conditions measured lower SAR values than those included in Appendix 2.

The SAR measurements were performed using the SAM phantoms listed in section 3.1. Since the same phantoms and simulated tissue were used for the system accuracy verification and the device SAR measurements, the Z-axis scans included in Appendix 1 are applicable for verification of simulated tissue depth to be 15.0cm ± 0.5 cm.

The following probe conversion factors were used on the E-Field probe(s) used for the head adjacent measurements:

Description	Serial	f	Conversion	Cal Cert
	Number	(MHz)	Factor	pg #
E-Field Probe ES3DV3	SN3178	900	5.63	8 of 9

	Left Head Cheek Position								
f		Conducted Output	Temp	Drift (dB)	10g SAR value		1g SAR value		
(MHz)	Description	Power (dBm)	(°C)		Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)	
	Channel 1013	25.18	21.8	-0.18	0.55	0.75	0.718	0.75	
850MHz	Channel 384	25.18	20.9	-0.02	0.642	0.64	0.842	0.85	
	Channel 777	24.92	20.7	-0.19	0.573	0.60	0.826	0.86	

Table 1: SAR measurement results at the highest possible output power, measured in a head cheek position against the ICNIRP and ANSI SAR Limit.

Right Head Cheek Position									
f		Conducted Output Tem		Drift	10g SA	R value	1g SAR value		
(MHz)	Description	Power (dBm)	(°C)	(dB)	Measured (W/kg)			Extrapolated (W/kg)	
	Channel 1013	25.18	21.2	0.22	0.49	0.49	0.727	0.73	
850MHz	Channel 384	25.18	21.7	0.00	0.619	0.62	0.854	0.85	
	Channel 777	24.92	21.1	-0.02	0.522	0.52	0.829	0.83	

Table 2: SAR measurement results at the highest possible output power, measured in a head cheek position against the ICNIRP and ANSI SAR Limit.

	Left Head 15° Tilt Position								
f		Conducted Output	Temp	Drift	10g SA	R value	1g SAR value		
(MHz)	Description Power (dBm) (°C) (dB)		Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)			
	Channel 1013	25.18							
850MHz	Channel 384	25.18	21.7	-0.03	0.438	0.44	0.571	0.57	
	Channel 777	24.92							

Table 3: SAR measurement results at the highest possible output power, measured in a head 15° Tilt position against the ICNIRP and ANSI SAR Limit.

	Right Head 15° Tilt Position								
f	f Conc		Temp	Drift	10g SAR value		1g SAR value		
(MHz)	Description	Power (dBm)	(°C)	(dB)	Measured (W/kg)			Extrapolated (W/kg)	
	Channel 1013	25.18							
850MHz	Channel 384	25.18	21.1	-0.1	0.347	0.36	0.536	0.55	
	Channel 777	24.92							

Table 4: SAR measurement results at the highest possible output power, measured in a head 15° Tilt position against the ICNIRP and ANSI SAR Limit.

MOTOROLA, INC. Portable Cellular Phone SAR Test Report Number: 23062-1F

The below 835 MHz SAR results were corrected for the tissue permittivity that was measured above the nominal target. Corrections were performed using the data provided in FCC KDB 450824. No correction was made for conductivity, since the measured tissue value already represents a conservative result in the measured SAR.

	The noted Highest Head Position scaled SAR									
f	Description	Conducted Output	Temp	Drift (dB)	10g SAR value		1g SAR value			
(MHz)		Power (dBm)	(°C)		Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)		
CDMA	Channel 1013	25.18								
	Channel 384	25.18	20.9	-0.02	0.65	0.65	0.85	0.85		
Cheek	Channel 777	24.92	20.7	-0.19	0.58	0.61	0.84	0.88		
CDMA	Channel 1013	25.18								
	Channel 384	25.18	21.7	-0.03	0.44	0.44	0.57	0.57		
Tilt	Channel 777	24.92								

6.2 Body Worn Test Results

The SAR results shown in tables 5 through 8 are maximum SAR values averaged over 1 gram of phantom tissue, to demonstrate compliance to [3] and also over 10 grams of phantom tissue, to demonstrate compliance to the [6]. Also shown are the measured conducted output power levels for the CDMA RC3/SO55 mode, the temperature of the test facility during the test, the temperature of the tissue simulate after the test, the measured drift and the extrapolated SAR. The exact method of extrapolation is New SAR = Old SAR * 10^(-drift/10). The SAR reported at the end of the measurement process by the DASY4TM measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test. Note that 800MHz digital mode SAR measurements were performed in accordance with [4].

The test conditions that produced the highest SAR values in each band are indicated as bold numbers in the following tables and are included in Appendix 3. All other test conditions measured lower SAR values than those included in Appendix 3.

A "flat" phantom was for the body-worn tests. This "flat" phantom is made out of 1" thick natural High Density Polyethylene with a thickness at the bottom equal to $2.0 \, \text{mm}$. It measures $52.7 \, \text{cm}(\log) \times 26.7 \, \text{cm}(\text{wide}) \times 21.2 \, \text{cm}(\text{tall})$. The measured dielectric constant of the material used is less than $2.3 \, \text{and}$ the loss tangent is less than $0.0046 \, \text{all}$ the way up to $2.184 \, \text{GHz}$.

The tissue stimulant depth was verified to be 15.0cm ±0.5cm. The same device holder described in section 6 was used for positioning the phone. The functional accessories were divided into two categories, the ones with metal components and the ones with non-metal components. For non-metallic component accessories', testing was performed on the accessory that displayed the closest proximity to the flat phantom. Each metallic component accessory, if any, was checked for uniqueness of metal component so that each is tested with the device. If multiple accessories shared an identical metal component, only the accessory that dictates the closest spacing to the body was tested. The cellular phone was tested with a headset connected to the device for all body-worn SAR measurements.

There are no Body-Worn Accessories available for this phone at the time of testing hence the device was tested per the supplement C testing guidelines for devices that do not have body worn accessories. A separation distance of 15mm between the device and the flat phantom was used for testing body-worn SAR. The device was tested with the front and back of the device facing the phantom.

The following probe conversion factors were used on the E-Field probe(s) used for the body worn measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe	SN3178	900	5.64	8 of 9
ES3DV3	3113176	2450	3.90	8 of 9

	Body-Worn; Front of Phone 15mm from Phantom									
f		Conducted Output Temp		Femp Drift	10g SAR value		1g SAR value			
(MHz)	Description	Power (dBm)	(°C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)		
	Channel 1013	25.18	21.3	-0.01	0.546	0.55	0.759	0.76		
850MHz	Channel 384	25.18	21.1	-0.05	0.674	0.68	0.95	0.96		
	Channel 777	24.92	21.2	-0.12	0.62	0.64	0.861	0.89		

Table 5: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

	Body-Worn; Back of Phone 15mm from Phantom									
f		Conducted Output Temp		Drift	10g SA	R value	1g SAR value			
(MHz)	Description	Power (dBm)	(°C)	C) (dB) Measured Extrapola		Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)		
	Channel 1013	25.18	21.1	-0.1	0.595	0.61	0.839	0.86		
850MHz	Channel 384	25.18	21.2	0.04	0.805	0.81	1.13	1.13		
	Channel 777	24.92	21.1	-0.05	0.717	0.73	1.02	1.03		

Table 6: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

	Bluetooth Stand-alone with Noted highest Body-Worn configuration								
f			Temp	Drift	10g SAR value		1g SAR value		
(MHz)	Description (°C) (dB) Meas		Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)			
2450MHz	Channel 0								
Back 15mm	Channel 39		21.4	1.32	0.000504	0.00	0.00158	0.00	
	Channel 78								

Table 7: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

	Highest Extrapolated SAR Values (including Bluetooth summation)								
		1	10 g SAR value	2		1 g SAR value			
(MHz)	Description	Original Measurement (W/kg)	Bluetooth Measurement (W/kg)	Summation (W/kg)	Original Measurement (W/kg)	Bluetooth Measurement (W/kg)	Summation (W/kg)		
CDMA 800 MHz	Back of phone 15mm from phantom	0.81	0.00	0.81	1.13	0.00	1.13		

Table 8: SAR measurement results at the highest possible output power, calculated for the body-worn position against the ICNIRP and ANSI SAR Limit.

MOTOROLA, INC. Portable Cellular Phone SAR Test Report Number: 23062-1F

The below 835 MHz SAR results were corrected for the tissue permittivity that was measured above the nominal target. Corrections were performed using the data provided in FCC KDB 450824. No correction was made for conductivity, since the measured tissue value already represents a conservative result in the measured SAR.

	The noted Highest Body-Worn Position scaled SAR								
f		Conducted Output	Temp	Drift	10g SA	R value	1g SAR value		
(MHz)	Description	Power (dBm)	(°C) (dB)		Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)	
	Channel 1013	25.18							
800 MHz Back	Channel 384	25.18	21.2	0.04	0.81	0.81	1.13	1.13	
15mm	Channel 777	24.92							

MOTOROLA, INC. Portable Cellular Phone SAR Test Report Number: 23062-1F

References

- [1] CENELEC, en62209-1:2006 "Human Exposure to Radio Frequency Fields From Hand Held and Body Mounted Wireless Communication Devices Human Models, Instrumentation, and Procedures"
- [2] CENELEC, en50360:2001 "Product standard to demonstrate the compliance of mobile phones with the basic restrictions related to human exposure to electromagnetic fields (300MHz 3GHz)".
- [3] ANSI / IEEE, C95.1 1999 Edition "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3kHz to 300GHz"
- [4] FCC OET Bulletin 65 Supplement C 01-01
- [5] IEEE 1528 2003 Edition "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques"
- [6] ICNIRP Guidelines "Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic, and Electromagnetic Fields (up to $300~\mathrm{GHz}$)"

Appendix 1

SAR distribution comparison for the system accuracy verification

Date/Time: 4/29/2009 1:14:00 PM

Test Laboratory: Motorola 0429'2009_900MHz_Good +3.9%

Procedure Notes: 900 MHz System Performance Check / Dipole Sn# 097 PM1 Power = 200 mW

Sim. Temp@meas = 22.3C Sim. Temp@SPC = 21.7C Room Temp @ SPC = 22.2C

Communication System: CW - Dipole; Frequency: 900 MHz; Channel Number: 4; Duty Cycle: 1:1

Medium: VALIDATION Only; Medium parameters used: f = 900 MHz; $\sigma = 0.96 \text{ mho/m}$; $\varepsilon_r = 41.1$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ES3DV3 SN3178; ConvF(5.63, 5.63, 5.63); Calibrated: 7/14/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn656; Calibrated: 5/19/2008
- Phantom: PCS-9 Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1129;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Dipole Area Scan (4x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 2.38 mW/g

Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 53.2 V/m; Power Drift = -0.045 dB

Peak SAR (extrapolated) = 3.57 W/kg

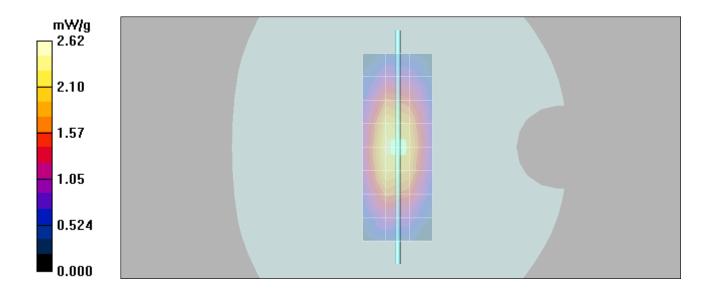
SAR(1 g) = 2.4 mW/g; SAR(10 g) = 1.54 mW/g

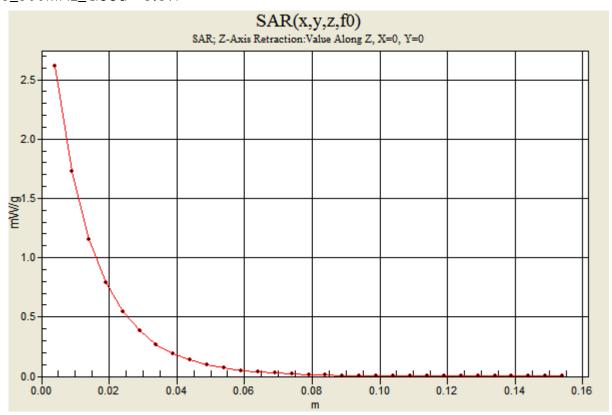
Maximum value of SAR (measured) = 2.59 mW/g

Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 53.2 V/m; Power Drift = -0.045 dB


Peak SAR (extrapolated) = 3.35 W/kg


SAR(1 g) = 2.25 mW/g; SAR(10 g) = 1.44 mW/g

Maximum value of SAR (measured) = 2.41 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 2.62 mW/g

Date/Time: 5/8/2009 11:06:14 AM

Test Laboratory: Motorola 0508'2009_900MHz_Good +4.8%

Procedure Notes: 900 MHz System Performance Check / Dipole Sn# 097 PM1 Power = 200 mW

Sim.Temp@meas = 21.1C Sim.Temp@SPC = 20.7C Room Temp @ SPC = 19.9C

Communication System: CW - Dipole; Frequency: 900 MHz; Channel Number: 4; Duty Cycle: 1:1

Medium: VALIDATION Only; Medium parameters used: f = 900 MHz; $\sigma = 0.97$ mho/m; $\varepsilon_r = 41.8$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3178; ConvF(5.63, 5.63, 5.63); Calibrated: 7/14/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn656; Calibrated: 5/19/2008
- Phantom: PCS-9 Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1129;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Dipole Area Scan (4x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 2.40 mW/g

Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 53.3 V/m; Power Drift = -0.076 dB

Peak SAR (extrapolated) = 3.63 W/kg

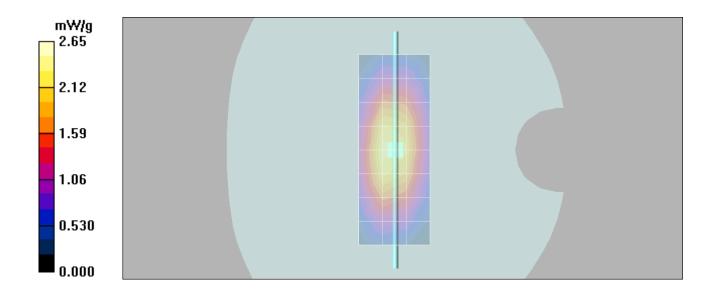
SAR(1 g) = 2.43 mW/g; SAR(10 g) = 1.56 mW/g

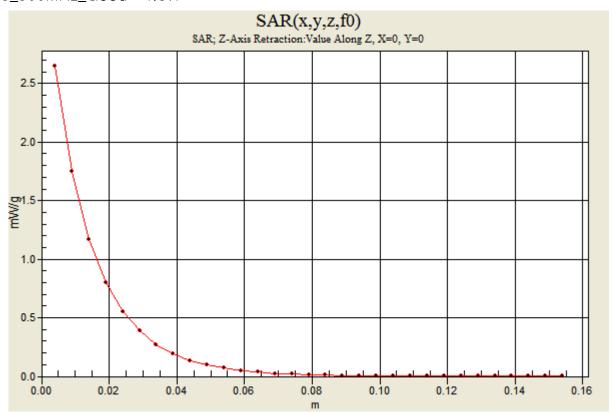
Maximum value of SAR (measured) = 2.65 mW/g

Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 53.3 V/m; Power Drift = -0.076 dB


Peak SAR (extrapolated) = 3.37 W/kg


SAR(1 g) = 2.26 mW/g; SAR(10 g) = 1.45 mW/g

Maximum value of SAR (measured) = 2.45 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm

Date/Time: 5/11/2009 11:38:48 AM

Test Laboratory: Motorola 0511'2009_2450MHz_Good -8.7%

Procedure Notes: 2450 MHz System Performance Check / Dipole Sn# 767 PM1 Power = 200 mW

Sim. Temp@meas = 23C Sim. Temp@SPC = 22.2C Room Temp @ SPC = 21C

Communication System: CW - Dipole; Frequency: 2450 MHz; Channel Number: 11; Duty Cycle: 1:1

Medium: VALIDATION Only; Medium parameters used: f = 2450 MHz; $\sigma = 1.88 \text{ mho/m}$; $\varepsilon_r = 37.9$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ES3DV3 SN3178; ConvF(4.29, 4.29, 4.29); Calibrated: 7/14/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn656; Calibrated: 5/19/2008
- Phantom: PCS-9 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1134;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Dipole Area Scan (4x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 9.88 mW/g

Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 78.8 V/m; Power Drift = 0.073 dB

Peak SAR (extrapolated) = 23.5 W/kg

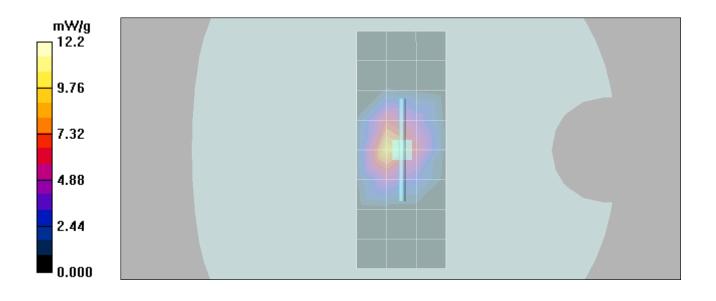
SAR(1 g) = 10.7 mW/g; SAR(10 g) = 4.88 mW/g

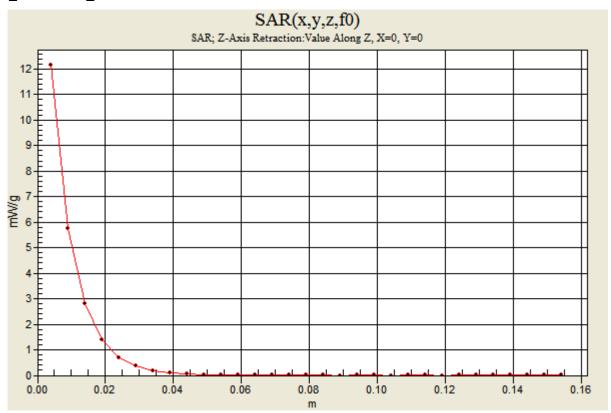
Maximum value of SAR (measured) = 12.0 mW/g

Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 78.8 V/m; Power Drift = 0.073 dB


Peak SAR (extrapolated) = 22.0 W/kg


SAR(1 g) = 10 mW/g; SAR(10 g) = 4.58 mW/g

Maximum value of SAR (measured) = 11.2 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 12.2 mW/g

Appendix 2

SAR distribution plots for Phantom Head Adjacent Use

FCCID: IHDP6KL1 CDMA800 Cheek

Date/Time: 5/8/2009 12:38:09 PM

Test Laboratory: Motorola CDMA800 Cheek

TA4000002P;

Procedure Notes: Pwr Step: All up(OTA) Antenna Position: Internal

Battery Model #: SNN5813B; DEVICE POSITION (cheek or rotated): Cheek

Communication System: CDMA 835; Frequency: 848.31 MHz; Channel Number: 777; Duty Cycle: 1:1 Medium: Low Freq Head; Medium parameters used: f = 835 MHz; $\sigma = 0.91$ mho/m; $\varepsilon_r = 42.6$; $\rho = 1000$ kg/m³

DASY4 Configuration:

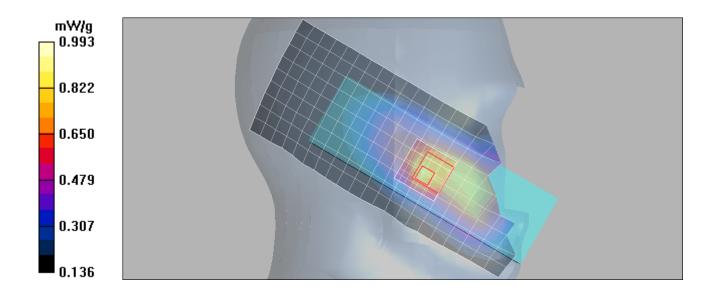
- Probe: ES3DV3 SN3178; ConvF(5.63, 5.63, 5.63); Calibrated: 7/14/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn656; Calibrated: 5/19/2008
- Phantom: PCS-9_Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1129;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Left Head Template/Area Scan - Normal (10mm) (10x25x1):

Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.857 mW/g

Left Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 29.6 V/m; Power Drift = -0.194 dB

Peak SAR (extrapolated) = 1.35 W/kg

SAR(1 g) = 0.826 mW/g; SAR(10 g) = 0.573 mW/g

Maximum value of SAR (measured) = 0.993 mW/g

FCCID: IHDP6KL1 CDMA800 Tilted

Date/Time: 4/29/2009 2:50:04 PM

Test Laboratory: Motorola CDMA800 Tilted

TA4000002P;

Procedure Notes: Pwr Step: All up(OTA) Antenna Position: Internal

Battery Model #: SNN5813B; DEVICE POSITION (cheek or rotated): Rotated

Communication System: CDMA 835; Frequency: 836.52 MHz; Channel Number: 384; Duty Cycle: 1:1 Medium: Low Freq Head; Medium parameters used: f = 835 MHz; $\sigma = 0.9$ mho/m; $\varepsilon_r = 41.8$; $\rho = 1000$ kg/m³

DASY4 Configuration:

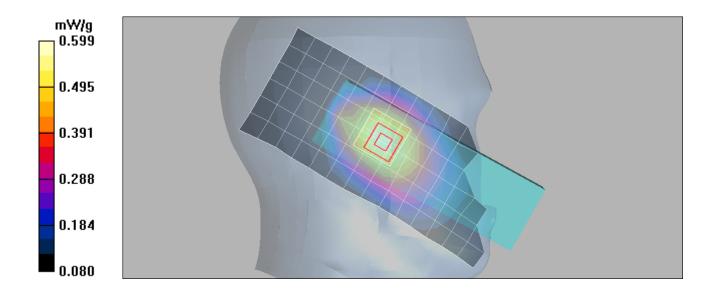
- Probe: ES3DV3 SN3178; ConvF(5.63, 5.63, 5.63); Calibrated: 7/14/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn656; Calibrated: 5/19/2008
- Phantom: PCS-9_Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1129;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186

Left Head Template/Area Scan - Normal (15mm) (7x17x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.580 mW/g

Left Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.1 V/m; Power Drift = -0.030 dB

Peak SAR (extrapolated) = 0.679 W/kg

SAR(1 g) = 0.571 mW/g; SAR(10 g) = 0.438 mW/g

Maximum value of SAR (measured) = 0.599 mW/g

Appendix 3

SAR distribution plots for Body Worn Configuration

FCCID: IHDP6KL1 CDMA800 BodyWorn

Date/Time: 5/8/2009 4:52:02 PM

Test Laboratory: Motorola CDMA800 BodyWorn

TA4000002P;

Procedure Notes: Pwr Step: Always Up(OTA) Antenna Position: Internal

Battery Model #: SNN5813B; Device Position: Back of phone 15mm away from flat phantom

Communication System: CDMA 835; Frequency: 836.52 MHz; Channel Number: 384; Duty Cycle: 1:1 Medium: Low Freq Body; Medium parameters used: f = 835 MHz; $\sigma = 1$ mho/m; $\varepsilon_r = 55.5$; $\rho = 1000$ kg/m³

DASY4 Configuration:

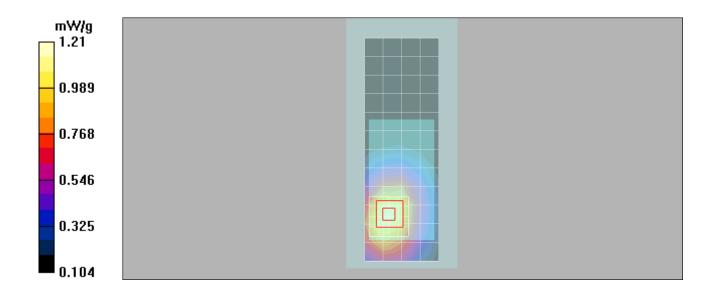
- Probe: ES3DV3 SN3178; ConvF(5.64, 5.64, 5.64); Calibrated: 7/14/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn656; Calibrated: 5/19/2008
- Phantom: R#9_ Section 1, Amy Twin, Rev2 (23-June-04); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Amy Twin Phone Template/Area Scan - Normal Body (15mm) (13x7x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.16 mW/g

Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 32.7 V/m; Power Drift = 0.041 dB

Peak SAR (extrapolated) = 1.47 W/kg

SAR(1 g) = 1.13 mW/g; SAR(10 g) = 0.805 mW/g

Maximum value of SAR (measured) = 1.21 mW/g

FCCID: IHDP6KL1 Bluetooth2450 BodyWorn

Date/Time: 5/11/2009 2:04:44 PM

Test Laboratory: Motorola Bluetooth2450 BodyWorn

TA4000002P;

Procedure Notes: Pwr Step: Test mode Antenna Position: Internal

Battery Model #: SNN5813B; Device Position: Back of phone 15mm away from the flat phantom Communication System: Bluetooth; Frequency: 2441 MHz; Channel Number: 39; Duty Cycle: 1:1

Medium: 2450 Glycol Body; Medium parameters used: f = 2450 MHz; $\sigma = 2.04$ mho/m; $\varepsilon_r = 49.6$; $\rho = 1000$ kg/m³

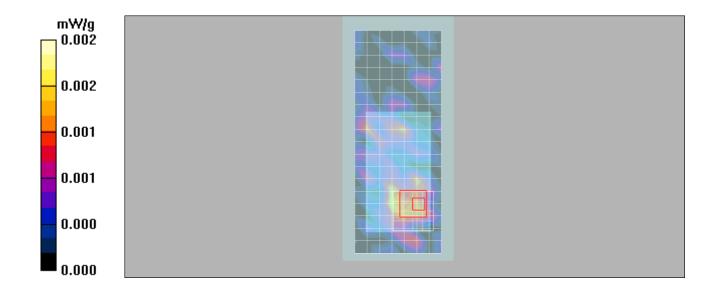
DASY4 Configuration:

- Probe: ES3DV3 SN3178; ConvF(3.9, 3.9, 3.9); Calibrated: 7/14/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn656; Calibrated: 5/19/2008
- Phantom: R#9 Section 2, Amy Twin, Rev2 (23-June-04); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Amy Twin Phone Template/Area Scan - Normal Body (10mm) (19x10x1):

Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.002 mW/g


Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.788 V/m; Power Drift = 1.32 dB

Peak SAR (extrapolated) = 0.007 W/kg

SAR(1 g) = 0.00158 mW/g; SAR(10 g) = 0.000504 mW/g

Appendix 4 Probe Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Motorola Korea

Certificate No: ES3-3178_Jul08

Accreditation No.: SCS 108

GALIBRATION	Pervieure		
Object	ES3DV3FSN:8	I //⊙	
Calibration procedure(s)		ind QA CAL-23.v3	
Cambration procedure(s)	to the second	edure for dosimetric E-field probes	
		Andrewski survey server some	
Calibration date:	July 14, 2008 +		
Condition of the calibrated item	In Tolerance		
	http://www.communication.com	gentagangangan etabahkan berahan berah Berahan	And Albert Charles and all materials and an invalid
This calibration certificate docume	ents the traceability to na	tional standards, which realize the physical uni	ts of measurements (SI).
The measurements and the unce	rtainties with confidence p	probability are given on the following pages an	d are part of the certificate.
All calibrations have been conduc	cted in the closed laborate	ory facility: environment temperature (22 ± 3)°C	and humidity < 70%.
Calibration Equipment used (M&T	E critical for calibration)		
Cambratan Equipment about (man	I		
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	1-Apr-08 (No. 217-00788)	Apr-09
Power sensor E4412A	MY41495277	1-Apr-08 (No. 217-00788)	Apr-09
Power sensor E4412A	MY41498087	1-Apr-08 (No. 217-00788)	Apr-09
Reference 3 dB Attenuator	SN: S5054 (3c)	1-Jul-08 (No. 217-00865)	Jul-09
Reference 20 dB Attenuator	SN: S5086 (20b)	31-Mar-08 (No. 217-00787)	Apr-09
Reference 30 dB Attenuator	SN: S5129 (30b)	1-Jul-08 (No. 217-00866)	Jul-09
Reference Probe ES3DV2	SN: 3013	2-Jan-08 (No. ES3-3013_Jan08)	Jan-09
DAE4	SN: 660	3-Sep-07 (No. DAE4-660_Sep07)	Sep-08
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-07)	In house check: Oct-08
	Name	Function	Signature
Calibrated by:	Katja Pokovic	Technical Manager	- RI-MI
			XIII
Approved by:	Niels Kuster	Quality Manager	1/6/25
	and the second s		lequed: July 14, 2008

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ES3-3178_Jul08

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point

Polarization φ

φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3178_Jul08 Page 2 of 9

Probe ES3DV3

SN:3178

Manufactured: January 23, 2008 Calibrated: July 14, 2008

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ES3-3178_Jul08 Page 3 of 9

DASY - Parameters of Probe: ES3DV3 SN:3178

Sensitivity in Free	Diode C	ompression	В		
NormX	1.30 ± 10.1%	μV/(V/m) ²	DCP X	91 mV	
NormY	1.21 ± 10.1%	μ V/(V/m) ²	DCP Y	87 mV	
NormZ	1.33 ± 10.1%	μV/(V/m) ²	DCP Z	94 mV	

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL 900 MHz Typical SAR gradient: 5 % per mm

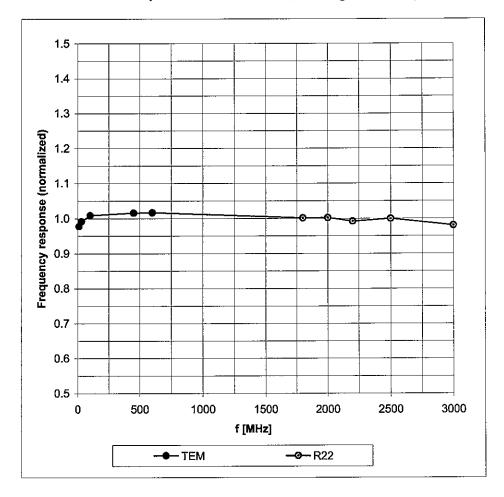
Sensor Center to	3.0 mm	4.0 mm	
SAR _{be} [%]	Without Correction Algorithm	9.7	5.9
SAR _{be} [%]	With Correction Algorithm	0.6	0.5

TSL 1810 MHz Typical SAR gradient: 10 % per mm

Sensor Center to	3.0 mm	4.0 mm	
SAR _{be} [%]	Without Correction Algorithm	8.1	4.6
SAR _{be} [%]	With Correction Algorithm	0.4	0.3

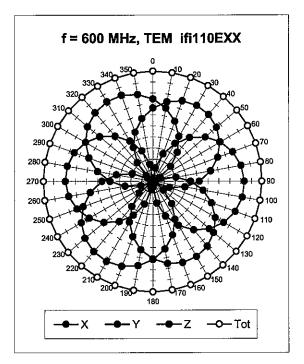
Sensor Offset

Probe Tip to Sensor Center 2.0 mm

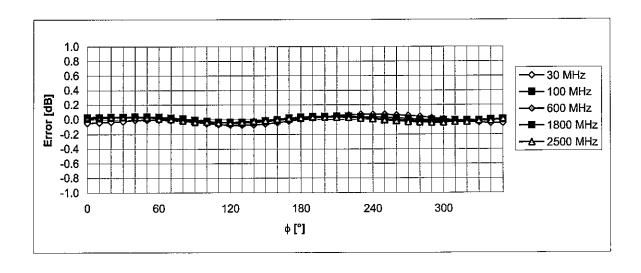

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

⁸ Numerical linearization parameter: uncertainty not required.

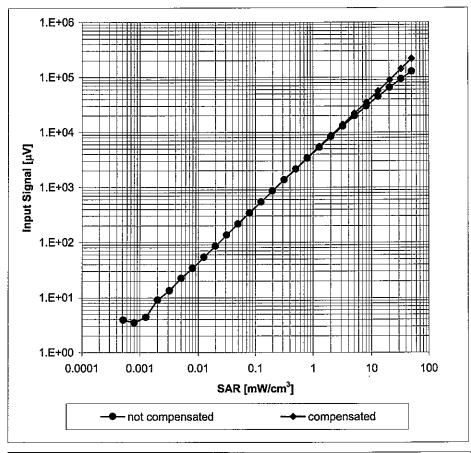

Frequency Response of E-Field

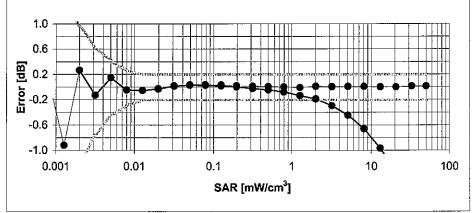
(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

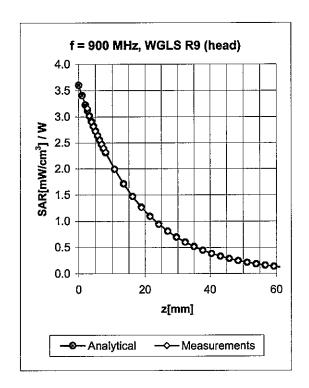
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

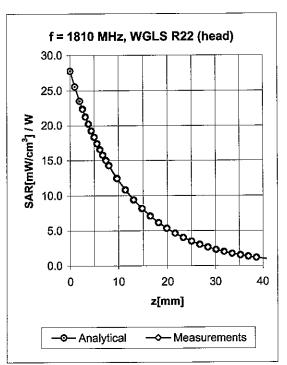



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ES3-3178_Jul08

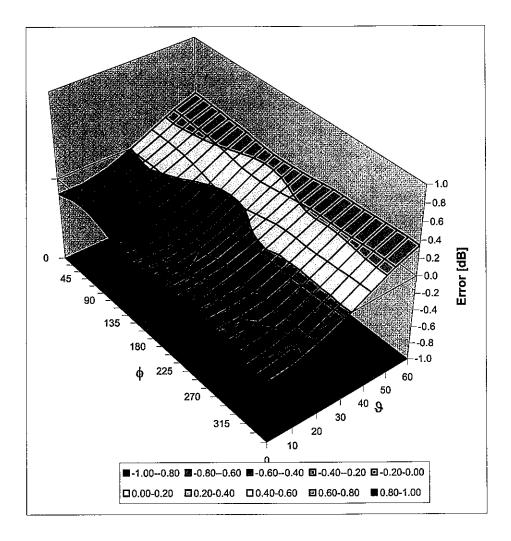
Dynamic Range f(SAR_{head})


(Waveguide R22, f = 1800 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment


f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.30	1.91	5.63 ± 11.0% (k=2)
1810	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.58	1.33	4.82 ± 11.0% (k=2)
1950	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.45	1.50	4.63 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.70	1.25	4.29 ± 11.0% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.52	1.41	5.64 ± 11.0% (k=2)
1810	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.36	1.82	4.50 ± 11.0% (k=2)
1950	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.51	1.48	4.47 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.70	1.25	3.90 ± 11.0% (k=2)

Certificate No: ES3-3178_Jul08 Page 8 of 9

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Appendix 5 Measurement Uncertainty Budget

							6	i =	
				e =			h =		
a	b	С	d	e = f(d,k)	l f	~	cxf /e	cxg /e	k
a a	D		u	i(u,n)		g	<u> </u>		^
	IEEE	Tol.	Prob		Ci	Ci	1 g	10 g	
	1528	(0()				(10			
	section	(± %)	Dist		(1 g)	g)	u_i	u_i	
Uncertainty Component				Div.			(±%)	(±%)	Vi
Measurement System									
Probe Calibration	E.2.1	5.9	N	1.00	1	1	5.9	5.9	∞
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	∞
Hemispherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	∞
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	∞
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	∞
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	∞
Readout Electronics	E.2.6	0.3	Ν	1.00	1	1	0.3	0.3	8
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	∞
Integration Time	E.2.8	1.1	R	1.73	1	1	0.6	0.6	∞
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	∞
RF Ambient Conditions -									
Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	∞
Probe Positioner Mech.									
Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	∞
Probe Positioning w.r.t			_						
Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8	∞
Max. SAR Evaluation (ext.,		2.4	n	4 70	_	4	2.0	0.0	
int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	∞
Test sample Related	F 4.0	0.0		4.00	4	4	0.0	0.0	
Test Sample Positioning	E.4.2	3.2	N	1.00	1	1	3.2	3.2	29
Device Holder Uncertainty	E.4.1	4.0	N	1.00	1	1	4.0	4.0	8
SAR drift	6.6.2	5.0	R	1.73	1	1	2.9	2.9	∞
Phantom and Tissue									
Parameters	F 0.4	4.0		4.70	4		0.0	0.0	
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	∞
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity	Egg	2.2	N.	1.00	0.64	0.42	2.4	4 4	
(measurement)	E.3.3	3.3	N	1.00	0.64	0.43	2.1	1.4	∞
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	∞
Liquid Permittivity (measurement)	E.3.3	1.9	N	1.00	0.6	0.49	1.1	0.9	∞
Combined Standard	L.3.3	1.8	IV	1.00	0.0	0.49	1.1	0.8	ω
Uncertainty			RSS				11.1	10.8	411
Expanded Uncertainty			1.00					10.0	
(95% CONFIDENCE LEVEL)			k=2				22.2	21.6	
(3370 CONTIDENCE LEVEL)			N-Z				LL.L	21.0	

Appendix 6

Dipole Characterization Certificate

Certification of System Performance Check Targets

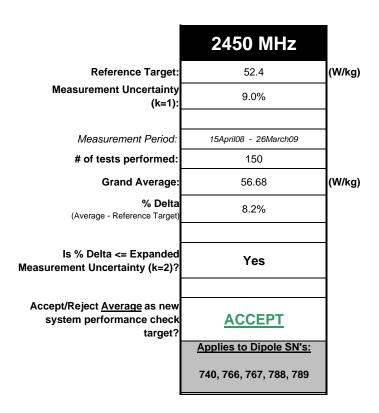
FCD-1806, rev-1

-Historical Data-

	900 MHz	
Reference Target:	10.9	(W/kg)
Measurement Uncertainty (k=1):	9.0%	
Measurement Period:	15April08 - 26March09	
# of tests performed:	1,099	
Grand Average:	11.19	(W/kg)
% Delta (Average - Reference Target)	2.7%	
Is % Delta <= Expanded Measurement Uncertainty (k=2)?	Yes	
Accept/Reject <u>Average</u> as new system performance check target?	ACCEPT	
	Applies to Dipole SN's: 55, 69, 77, 78, 79, 80, 91, 92, 93, 94, 95, 96, 97, 1d034, 1d035	

-New System Performance Check Targets- per WI-0396

(based on analysis of historical data)


Frequency	SAR Target (W/kg)	Permittivity Target +/- %	Conductivity (S/m) Target +/- %	
900 MHz	11.19	41.5 +/- 5%	0.97 +/- 5%	

-Approvals-		
Submitted by:	Marge Kaunas	Date: 1-Apr-09
Signed:	Marge Kauvas	
Comments:	Data file available upon reques	st.
Approved by:	Steve Hauswirth	Date: 1-Apr-09
<u>Signed:</u>	Stonen Hauswart	
Comments:		

Certification of System Performance Check Targets

FCD-1806, rev-1

-Historical Data-

-New System Performance Check Targets- per WI-0396

(based on analysis of historical data)

Frequency	SAR Target (W/kg)	Permittivity Target +/- %	Conductivity (S/m) Target +/- %	
2450 MHz	56.68	39.2 +/- 10%	1.80 +/- 5%	

Approvals-		
Submitted by:	Marge Kaunas	Date: 1-Apr-09
Signed:	Marge Kauvas	
Comments:	Data file available upon request.	
Approved by:	Steve Hauswirth	Date: 1-Apr-09
<u>Signed:</u>	Steven Hauswork	
Comments:		

END OF REPORT