

Supplemental Portable Cellular Phone SAR Test Report

Motorola Mobility, Inc.

Tests Requested By: 600 N. US Highway 45

Libertyville, IL 60048

Test Report #: 24700-1F Rev. 0 **Date of Report:** Sep 29, 2011

Date of Test: Aug 29, 2011 and Sep 21, 2011

FCC ID #: IHDP56ME2
Generic Name: M0C2E

Motorola Mobility, Inc. - Product Safety & Compliance Laboratory

Test Laboratory: 600 N. US Highway 45

Libertyville, IL 60048

Report Author: Steven Hauswirth

Distinguished Member of the Technical Staff

This laboratory is accredited to ISO/IEC 17025-2005 to perform the following tests:

Accreditation:

↓ ↓ UKAS

2404

sts: <u>Procedures</u>:

Electromagnetic Specific Absorption Rate IEC 62209-1 RSS-102

K55-102

IEEE 1528 - 2003

FCC OET Bulletin 65 (including Supplement C) Australian Communications Authority Radio

Communications (Electromagnetic Radiation – Human

Exposure) Standard 2003 CENELEC EN 50360 ARIB Std. T-56 (2002)

On the following products or types of products:

Wireless Communications Devices (Examples): Two Way Radios; Portable Phones (including

Cellular, Licensed Non-Broadcast and PCS); Low Frequency Readers; and Pagers

Motorola declares under its sole responsibility that the portable cellular telephone model to which this declaration relates, is in conformity with the appropriate General Population/Uncontrolled RF exposure standards, recommendations and guidelines (FCC 47 CFR §2.1093) as well as with CENELEC en50360:2001 and ANSI / IEEE C95.1. It also declares that the product was tested in accordance with IEEE 1528 / CENELEC EN62209-1 (2006), as well as other appropriate measurement standards, guidelines and recommended practices. Any deviations from these standards, guidelines and recommended practices are noted below:

Statement of Compliance:

Motorola's ISO 17025 accreditation scope does not currently include SAR testing in the 5 GHz band. Therefore, SAR testing performed in this band was performed outside of our ISO 17025 accreditation. The general procedures and guidelines provided within; FCC KDB 248227 D01, FCC KDB 648474 D01, FCC KDB 865664 D01 and IEC 62209-2 were utilized for testing.

©Motorola, Inc. 2011

This test report shall not be reproduced except in full, without written approval of the laboratory. The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report. Motorola encourages all feedback, both positive and negative, on this test report.

Table of Contents

1. Introduction	3
2. Description of the Device Under Test	4
3. Test Equipment Used	6
3.1 Dosimetric System	6
3.2 Additional Equipment	6
4. Electrical parameters of the tissue simulating liquid	7
5. Test Results	8
References	9

Appendix 1: SAR distribution plots for Mobile Hotspot Configuration

1. Introduction

The Motorola Mobility Product Safety & Compliance Laboratory has performed measurements of the maximum potential exposure to the user of the portable cellular phone covered by this test report. The Specific Absorption Rate (SAR) of this product was measured. The portable cellular phone was tested in accordance with [1], [4] and [5]. The SAR values measured for the portable cellular phone are below the maximum recommended levels of 1.6 W/kg in a 1 g average set in [3] and 2.0 W/kg in a 10 g average set in [2].

Per direction of the FCC, the following SAR test data is being provided to demonstrate the device's effective utilization of power reduction conditions specified in Exhibit 12 - Operational Description. The values in the table in Section 6.0 are provided solely for purposes of confirming compliant power reduction operation and do not represent maximum SAR values of the product. For maximum reported SAR compliance values, refer to the Exhibit 11 SAR test report.

2. Description of the Device Under Test

Serial Number(s) (Functional Use)	LS3A280035
Production Unit or Identical Prototype (47 CFR §2908)	Identical Prototype
Device Category	Portable (Mobile Station Class B)
RF Exposure Limits	General Population / Uncontrolled

Mode(s) of Operation	Modulation Mode(s)	Maximum Output Power Setting	Duty Cycle	Transmitting Frequency Range(s)
GSM 850	GMSK	33.5 dBm	1:8	824.2 - 848.8 MHz
GSM 1900	GMSK	31.0 dBm	1:8	1850.2 - 1909.8 MHz
WCDMA 850	QPSK	24.0 dBm	1:1	826.4 - 846.6 MHz
WCDMA 1900	QPSK	24.0 dBm	1:1	1852.4 - 1907.6 MHz
Wi-Fi 802.11b/g/n	BPSK	16.15 dBm	1:1	2412.0 - 2462.5 MHz
Wi-Fi 802.11a/n	BPSK	11.25 dBm	1:1	5180.0 - 5240.0 MHz, 5260.0 - 5320.0 MHz, 5500.0 - 5700.0 MHz, 5745.0 - 5805.0 MHz
Bluetooth	GFSK	8.2 dBm	1:1	2402.0 - 2483.5 MHz

GSM Data	GPRS/EDGE Class 12 (4 uplink timeslots; 4 downlink timeslots; 5 total timeslots per frame)
Functionality	Class B (DTM not supported)

Mode(s) of Operation	GPRS/EDGE 850			GPRS/EDGE 1900				
Modulation	GMSK				GM	ISK		
Maximum Output Power Setting (dBm)	33.5	30.5	28.8	27.5	31.0	28.0	26.5	25.0
Time Average Output Power Setting (dBm)	24.5	24.5	24.6	24.5	22.0	22.0	22.3	22.0
Duty Cycle	1:8	2:8	3:8	4:8	1:8	2:8	3:8	4:8
Transmitting Frequency Range(s)	8	824.2 - 848.8 MHz			18	350.2 - 19	909.8 MI	Hz

Mode(s) of Operation	EDGE 850			EDGE 1900						
Modulation	8PSK			odulation				8P	SK	
Maximum Output Power Setting (dBm)	28.6	25.6	23.9	22.6	27.8	24.8	23.1	21.8		
Time Average Output Power Setting (dBm)	19.6	19.6	19.7	19.6	18.8	18.8	18.9	18.8		
Duty Cycle	1:8	2:8	3:8	4:8	1:8	2:8	3:8	4:8		
Transmitting Frequency Range(s)	8	824.2 - 848.8 MHz			18	350.2 - 19	909.8 MI	Hz		

For specified modes of operation, the DUT utilizes reduced maximum power limits to maintain compliance to SAR exposure limits. Complete descriptions of the following functionalities are provided in the Operational Description contained within Exhibit 12. The implementations to trigger the reductions in power require the device to be radiating, which prevents conducted power measurements of these functionalities without modification of the DUT.

The DUT utilizes reduced limits for the maximum WCDMA 1900 band transmit power on the high channel range when the mobile hotspot functionality is enabled. A table of the reduced limits used for testing is given below.

Mode(s) of Operation	WCDMA 1900				
Test Channel	9262 9400 9538				
Channel Ranges	9262- 9367	9368- 9455	9456- 9538		
Maximum Output Power Setting (dBm)	24.0	24.0	24.0		
Reduced Maximum Output Power Setting (dBm)	24.0	24.0	22.0		
Duty Cycle	1:1	1:1	1:1		

3. Test Equipment Used

3.1 Dosimetric System

The Motorola Mobile Devices Business Product Safety & Compliance Laboratory utilizes a Dosimetric Assessment System (Dasy4TM v4.7) manufactured by Schmid & Partner Engineering AG (SPEAGTM), of Zurich Switzerland. All the SAR measurements are taken within a shielded enclosure. The overall 10 g RSS uncertainty of the measurement system is $\pm 10.8\%$ (K=1) with an expanded uncertainty of $\pm 21.6\%$ (K=2). The overall 1 g RSS uncertainty of the measurement system is $\pm 11.1\%$ (K=1) with an expanded uncertainty of $\pm 22.2\%$ (K=2). Per IEEE 1528, this uncertainty budget is applicable to the SAR range of 0.4 W/kg to 10 W/kg.

The list of calibrated equipment used for the measurements is shown in the following table.

Description	Serial Number	Cal Date	Cal Due Date
DASY4™ DAE V1	434	Jan-13-2011	Jan-13-2012
E-Field Probe ES3DV3	3115	Jan-12-2011	Jan-12-2012
DASY4™ DAE V1	699	Sep-20-2010	Sep-20-2011
E-Field Probe ES3DV3	3184	Mar-11-2011	Mar-11-2012

3.2 Additional Equipment

Description	Serial Number	Cal Date	Cal Due Date
Signal Generator HP8648C	3847A04982	Nov-18-2009	Nov-18-2011
Power Meter E4419B	GB39510900	Mar-28-2011	Mar-28-2013
Power Sensor #1 - E9301A	US39211007	Aug-16-2011	Aug-16-2012
Power Sensor #2 - E9301A	US39211008	Aug-16-2011	Aug-16-2012
Signal Generator HP8648C	3847A04632	Aug-13-2011	Aug-13-2013
Power Meter E4419B	GB39511087	Dec-22-2009	Dec-22-2011
Power Sensor #1 - E9301A	US39211006	Oct-25-2010	Oct-25-2011
Power Sensor #2 - E9301A	US39210934	Oct-25-2010	Oct-25-2011
Signal Generator HP8648C	3847A04843	Mar-28-2011	Mar-28-2013
Power Meter E4419B	GB39511084	Mar-28-2011	Mar-28-2013
Power Sensor #1 - E9301A	US39210929	Mar-31-2011	Mar-31-2012
Power Sensor #2 - E9301A	US39210930	Mar-31-2011	Mar-31-2012
Network Analyzer HP8753ES	US39172529	Jun-04-2010	Jun-04-2011
Dielectric Probe Kit HP85070C	US99360070		

4. Electrical parameters of the tissue simulating liquid

Prior to conducting SAR measurements, the relative permittivity, ϵ_r , and the conductivity, σ , of the tissue simulating liquids were measured with a HP85070 Dielectric Probe Kit These values, along with the temperature of the simulated tissue are shown in the table below. The recommended limits for permittivity and conductivity are also shown. A mass density of ρ = 1 g /_{cm³} was entered into the system in all the cases. It can be seen that the measured parameters are within tolerance of the recommended limits specified in [1] and [5].

E-field probes calibrated at 1810 MHz were used for "1900 MHz" band (1850 MHz - 1910 MHz) SAR measurements. FCC KDB pub. 450824 provides additional requirements on page 3 of 6 for SAR testing that is performed with probe calibration points that are more than 50 MHz removed from the measured bands. The KDB requires; "(2) When nominal tissue dielectric parameters are specified in the probe calibration data, the tissue dielectric parameters measured for routine measurements should be less than the target Er and higher than the target Sigma values to minimize SAR underestimations". The 1900 MHz simulated tissues listed below meet these criteria.

f Tissue			Dielectric Parameters		
(MHz)	type	Limits / Measured	$\mathbf{\epsilon}_r$	σ (S/m)	Temp (°C)
		Measured, Aug-29-2011	50.9	1.58	19.8
1880	Body	Measured, Sep-21-2011	51.3	1.59	20.1
		Recommended Limits	53.3 ±5%	$1.52 \pm 5\%$	18-25

The list of ingredients and the percent composition used for the simulated tissues are indicated in the table below.

Ingredient	835 MHz / 900 MHz Head	835 MHz / 900 MHz Body	1800 MHz / 1900 MHz Head	1800 MHz / 1900 MHz Body	2450 MHz Head	2450 MHz Body
Sugar	57	44.9				
DGBE			47	30.8		30
Diacetin					51	
9Water	40.45	53.06	52.62	68.8	48.75	70
Salt	1.45	0.94	0.38	0.4	0.15	
HEC	1	1			-	
Bact.	0.1	0.1			0.1	

5. Test Results

The test sample was operated using an actual transmission through a base station simulator. The base station simulator or test software was set up for the proper channels, transmitter power levels and transmit modes of operation.

The phone was tested in configurations specified by the FCC for this device in order to demonstrate the effective utilization of power reduction conditions specified in Exhibit 12. Testing was performed with a separation of 1 cm between the DUT and the "flat" phantom. The phone was positioned into these configurations using the device holder supplied with the DASY4TM SAR measurement system. The default settings for the "coarse" and "cube" scans were chosen and used for measurements. The grid spacing of the coarse scan was set to 15 mm or less as shown in the SAR plots included in Appendix 1. Please refer to the DASY4TM manual for additional information on SAR scanning procedures and algorithms used.

The SAR results shown in the table below are maximum SAR values averaged over 1 gram of phantom tissue. Also shown is the extrapolated SAR to account for drift. The exact method of extrapolation is Extrapolated SAR = Measured SAR * $10^{(-drift/10)}$. The SAR reported at the end of the measurement process by the DASY4TM measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test.

The DUT utilizes a reduced limit for the maximum transmit power for the WCDMA 1900 mode when the mobile hotspot functionality is enabled. A description of this functionality is provided in the "Operational Description" contained within Exhibit 12.

The Cellular Phone model covered by this report has the following battery options: Model SNN5899A - 1800 mAH battery

The battery SNN5899A was used to do all of the SAR testing. The phone was placed in the SAR measurement system with a fully charged battery.

A "flat" phantom was for the body-worn tests. This "flat" phantom is made out of 1" thick natural High Density Polyethylene with a thickness at the bottom equal to 2.0 mm. It measures 52.7 cm(long) x 26.7 cm(wide) x 21.2 cm(tall). The simulated tissue depth was verified to be 15.0 cm \pm 0.5 cm for frequencies below 3 GHz.

The following probe conversion factors were used on the E-Field probe(s) used for the body-worn mobile hotspot measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe ES3DV3	3115	1810	4.61	6 of 11
E-Field Probe ES3DV3	3184	1810	4.90	6 of 11

Per direction of the FCC, the following SAR test data is being provided to demonstrate the device's effective utilization of power reduction conditions specified in Exhibit 12 - Operational Description. The values in the table are provided solely for purposes of confirming compliant power reduction operation and do not represent maximum SAR values of the product. For maximum reported SAR compliance values, refer to the Exhibit 11 SAR test report.

Mobile Hotspot, Phone 10 mm from Phantom							
F (MHz)	Mode	Test Configuration	Channel	I g SAR value w/o Pwr Reduction (W/kg)	I g SAR value w/ Pwr Reduction (W/kg)	Pwr Reduction Specification (dB)	Measured Pwr Reduction (dB)
1880	WCDMA 1900, 12.2 kbps RMC	Bottom of Device 10 mm from Phantom	9538	1.66	0.977	-2.0	-2.2

References

- [1] CENELEC, en62209-1:2006 "Human Exposure to Radio Frequency Fields From Hand Held and Body Mounted Wireless Communication Devices Human Models, Instrumentation, and Procedures"
- [2] CENELEC, en50360:2001 "Product standard to demonstrate the compliance of mobile phones with the basic restrictions related to human exposure to electromagnetic fields (300 MHz 3 GHz)".
- [3] ANSI / IEEE, C95.1 1992 Edition "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz"
- [4] FCC OET Bulletin 65 Supplement C 01-01
- [5] IEEE 1528 2003 Edition "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques"
- [6] ICNIRP Guidelines "Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic, and Electromagnetic Fields (up to 300 GHz)"

Appendix 1

SAR distribution plots for Mobile Hotspot Configuration

Date/Time: 8/29/2011 10:56:38 AM

Test Laboratory: Motorola WCDMA 1900 Mobile Hotpot without Power Reduction

DUT: Serial: LS3A280035, FCC ID: IHDP56ME2

Procedure Notes: Pwr Step: always up Battery Model #:internal Test COnfiguration =BODY, BOTTOM EDGE OF PHONE 10MM FROM PHANTOM

Communication System: 3G/WCDMA 1900; Frequency: 1907.5 MHz; Duty Cycle: 1:1

Medium: Regular Glycol Body 1750/1880; Medium parameters used: f = 1880 MHz; $\sigma = 1.58$ mho/m; $\epsilon_r = 50.9$; $\rho = 1000$ kg/m³

DASY4 Configuration:

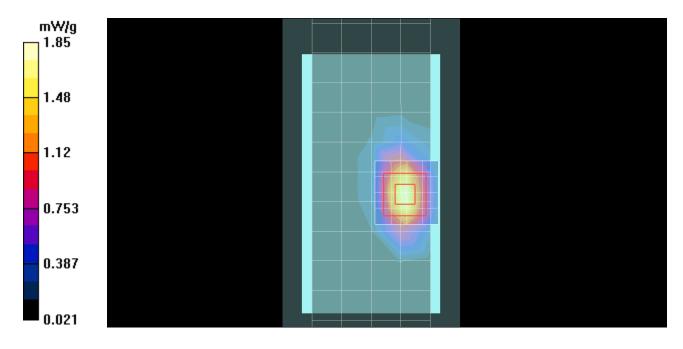
- Probe: ES3DV3 SN3184; ConvF(4.9, 4.9, 4.9); Calibrated: 3/11/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn699; Calibrated: 9/20/2010
- Phantom: R#2_ Section 1, Amy Twin, Rev3 (3-Feb-10); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Amy Twin Phone Template/Area Scan - Normal Extended Body (15mm) (16x7x1): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.81 mW/g

Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm,


dy=8mm, dz=5mm

Reference Value = 16.3 V/m; Power Drift = 0.046 dB

Peak SAR (extrapolated) = 2.87 W/kg

SAR(1 g) = 1.66 mW/g; SAR(10 g) = 0.854 mW/g

Maximum value of SAR (measured) = 1.85 mW/g

Date/Time: 9/21/2011 1:23:38 PM

Test Laboratory: Motorola WCDMA 1900 Mobile Hotspot with Power Reduction

DUT: Serial: LS3A280035, FCC ID: IHDP56ME2

Procedure Notes: Pwr Step: ALL UP BITS Battery Model #: INTERNAL Test Configuration = Body, Bottom Edge of Phone 10mm from Phantom

Communication System: 3G/WCDMA 1900; Frequency: 1907.5 MHz; Duty Cycle: 1:1

Medium: Regular Glycol Body 1750/1880; Medium parameters used: f = 1880 MHz; $\sigma = 1.59$ mho/m; $\epsilon_r = 51.3$; $\rho = 1000$ kg/m³

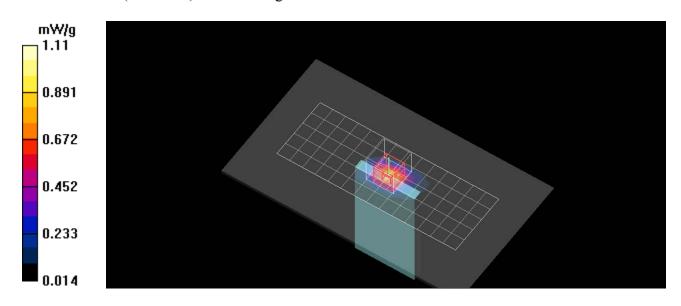
DASY4 Configuration:

- Probe: ES3DV3 SN3115; ConvF(4.61, 4.61, 4.61); Calibrated: 1/12/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn434; Calibrated: 1/13/2011
- Phantom: R#6 Triple Flat Phantom 5.1C (rev.2); Type: QD 000 P51 CA; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Triple Flat Phone Template/Tablet Short Edge Area Scan - Body (15mm) (15x6x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.823 mW/g

Triple Flat Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm,


dy=8mm, dz=5mm

Reference Value = 22.2 V/m; Power Drift = 0.085 dB

Peak SAR (extrapolated) = 1.68 W/kg

SAR(1 g) = 0.977 mW/g; SAR(10 g) = 0.501 mW/g

Maximum value of SAR (measured) = 1.11 mW/g

FCC ID: IHDP56ME2

END OF REPORT