

FCC TEST REPORT (PART 24)

REPORT NO.: RF990421C04C-1

MODEL NO.: EX115, EX112

FCC ID: IHDP56LJ3

RECEIVED: Aug. 17, 2010

TESTED: Aug. 19 ~ Aug. 20, 2010

ISSUED: Aug. 23, 2010

APPLICANT: Motorola Inc

ADDRESS: Mobile Devices 600 N. U.S. Highway 45,

Libertyville, Illinois, United States, 60048-5343

ISSUED BY: Bureau Veritas Consumer Products Services

(H.K.) Ltd., Taoyuan Branch

LAB ADDRESS: No. 47, 14th Ling, Chia Pau Tsuen, Lin Kou

Hsiang, Taipei Hsien 244, Taiwan, R.O.C.

TEST LOCATION: No. 19, Hwa Ya 2nd Rd, Wen Hwa Tsuen, Kwei

Shan Hsiang, Taoyuan Hsien 333, Taiwan, R.O.C.

This test report consists of 40 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product certification, approval or endorsement by TAF or any government agency. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

1	CERTIFICATION	4
2	SUMMARY OF TEST RESULTS	5
2.1	MEASUREMENT UNCERTAINTY	
3	GENERAL INFORMATION	6
3.1	GENERAL DESCRIPTION OF EUT	6
3.2	DESCRIPTION OF TEST MODES	
3.2.1	CONFIGURATION OF SYSTEM UNDER TEST	
3.2.2	TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	
3.3	GENERAL DESCRIPTION OF APPLIED STANDARDS	
3.4	DESCRIPTION OF SUPPORT UNITS	10
4	TEST TYPES AND RESULTS	11
4.1	OUTPUT POWER MEASUREMENT	
4.1.1	LIMITS OF OUTPUT POWER MEASUREMENT	
4.1.2	TEST INSTRUMENTS	
4.1.3	TEST PROCEDURES	
4.1.4	TEST SETUP	
4.1.5	EUT OPERATING CONDITIONS	
4.1.6	TEST RESULTS	
4.2	BAND EDGE MEASUREMENT	17
4.2.1	LIMITS OF BAND EDGE MEASUREMENT	
4.2.2	TEST INSTRUMENTS	
4.2.3	TEST SETUP	
4.2.4	TEST PROCEDURES	
4.2.5	EUT OPERATING CONDITION	
4.2.6	TEST RESULTS	
4.3	CONDUCTED SPURIOUS EMISSIONS	
4.3.1	LIMITS OF CONDUCTED SPURIOUS EMISSIONS MEASUREMENT	21
4.3.2	TEST INSTRUMENTS	
4.3.3	TEST PROCEDURE	22
4.3.4	TEST SETUP	22
4.3.5	EUT OPERATING CONDITIONS	22
4.3.6	TEST RESULTS	
4.4	RADIATED EMISSION MEASUREMENT (BELOW 1GHz)	28
4.4.1	LIMITS OF RADIATED EMISSION MEASUREMENT	
4.4.2	TEST INSTRUMENTS	28
4.4.3	TEST PROCEDURES	29
4.4.4	DEVIATION FROM TEST STANDARD	29
4.4.5	TEST SETUP	
4.4.6	EUT OPERATING CONDITIONS	30
4.4.7	TEST RESULTS	
4.5	RADIATED EMISSION MEASUREMENT (ABOVE 1GHz)	
4.5.1	LIMITS OF RADIATED EMISSION MEASUREMENT	
4.5.2	TEST INSTRUMENTS	32
4.5.3	TEST PROCEDURES	
4.5.4	DEVIATION FROM TEST STANDARD	33
4.5.5	TEST SETUP	
4.5.6	EUT OPERATING CONDITIONS	
4.5.7	TEST RESULTS	35

5	PHOTOGRAPHS OF THE TEST CONFIGURATION	38
6	INFORMATION ON THE TESTING LABORATORIES	
7	APPENDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING CHANG	ES
	TO THE EUT BY THE LAB	40

1 CERTIFICATION

PRODUCT: GSM / EGPRS Mobile Phone

MODEL NO.: EX115 (refer to item 3.1 for more detail)

BRAND: Motorola

APPLICANT: Motorola Inc

TESTED: Aug. 19 ~ Aug. 20, 2010

TEST SAMPLE: ENGINEERING SAMPLE

TEST STANDARDS: FCC Part 24, Subpart E

ANSI C63.4-2003

This report is issued as a supplementary report of **RF990421C04-2**. This report shall be used combined together with its original report.

PREPARED BY : ______, DATE: Aug. 23, 2010

Andrea Hsia / Specialist

TECHNICAL

ACCEPTANCE: Long Chan, DATE: Aug. 23, 2010

Responsible for RF Long Chen / Senior Engineer

APPROVED BY : Gay Cay , DATE: Aug. 23, 2010

Gary Chang / Assistant Manager

Note: Only the Peak Output Power test, conducted Spurious Emissions test, Band Edge Measurements & Radiated Spurious Emissions test were performed for this addendum. Other testing data refer to original report.

2 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part 24 & Part 2 / IC RSS-133					
STANDARD SECTION	TEST TYPE AND LIMIT	REMARK			
2.1046 24.232	Maximum Peak Output Power Limit: max. 2 watts e.i.r.p peak power		Meet the requirement of limit. Minimum passing margin is 31.9dBm at 1880.0MHz.		
2.1055 24.235	Frequency Stability AFC Freq. Error vs. Voltage AFC Freq. Error vs. Temperature Limit: max. ±2.5ppm	NA	Refer to Note as below		
2.1049 24.238(b)	Occupied Bandwidth	NA	Refer to Note as below		
24.238(b)	Band Edge Measurements	PASS	Meet the requirement of limit.		
2.1051 24.238	Conducted Spurious Emissions	PASS	Meet the requirement of limit.		
2.1053 24.238	Radiated Spurious Emissions		Meet the requirement of limit. Minimum passing margin is –25.9dB at 3760.0MHz.		

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY
Conducted emissions	9kHz~30MHz	2.44 dB
	30MHz ~ 200MHz	3.34 dB
Radiated emissions	200MHz ~1000MHz	3.35 dB
Nadiated emissions	1GHz ~ 18GHz	2.26 dB
	18GHz ~ 40GHz	1.94 dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3 GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

EUT	GSM / EGPRS Mobile Phone	
MODEL NO.	EX115 (Refer to Note for the more details)	
FCC ID	IHDP56LJ3	
POWER SUPPLY	3.7Vdc (battery) 5.0Vdc (adapter & host equipment)	
MODULATION TYPE	GMSK	
FREQUENCY RANGE	1850MHz ~ 1910MHz	
NUMBER OF CHANNEL	299	
MAX. EIRP POWER	GSM Mode: 31.9dBm (1.5488Watts)	
WAX. EIRP FOWER	GPRS Mode: 31.5dBm (1.4125Watts)	
ANTENNA TYPE	Embedded inverted-F	
MAX. ANTENNA GAIN	0.1dBi	
ANTENNA CONNECTOR	NA	
DATA CABLE	Refer to note 5 as below	
I/O PORTS	Refer to user's manual	
ACCESSORY DEVICES	Refer to note 5 as below	

NOTE:

- This report is prepared for FCC class II permissive change. The differences compared with original report are changing HW version, SW version and modifying antenna. Therefore, only the Peak Output Power test, conducted Spurious Emissions test, Band Edge Measurements & Radiated Spurious Emissions test were performed for this addendum. Other testing data refer to original report.
 - * HW change list as below.
 - a. For Motorola Security function
 - b. For improving CS Susceptibility
 - c. For ESD solution with +/- 15KV
 - d. For Antenna Matching change
- 2. The EUT is a GSM / EGPRS Mobile Phone which the EGPRS function was for receive only.
- 3. The EUT is a GSM / EGPRS Mobile Phone which has dual SIM card design (Model: EX115) and single SIM card design (Model: EX112). Both models were assessed and model EX128 was found to be worst case and was selected for the final test configuration.

Brand	Model Name	Remark
MOTOROLA	EX115	dual SIM
MOTOROLA	EX112	single SIM

4. The communicated functions of EUT listed as below:

		850MHz	1900MHz	With Bluetooth 2.1+EDR
2G	GSM	$\sqrt{}$	\checkmark	function
	GPRS	\checkmark	\checkmark	Talletion

5. The EUT has following accessories.

No.	Product	Brand	MODEL	Description
1	Adapter	MOTOROLA	DCH3-050US-0303	I/P: 100-240Vac, 50/60Hz, 0.2A O/P: 5Vdc, 550mA
2	USB cable	-		1.3m shielded cable without core
3	Battery	MOTOROLA	BK60	Rating: 3.7V, 930mAh, 3.4Wh
4	Earphone1	MOTOROLA	SYN2356A	1.3m shielded cable without core
5	Earphone2	MOTOROLA	SJYN0394A	1.4m shielded cable without core

^{**}For Earphone, only earphone 2 was chosen for final test.

6. The EUT is a GSM / EGPRS Mobile Phone. The test data are separated into following test reports.

	TEST STANDARD	REFERENCE REPORT
GSM 850	FCC Part 22	RF990421C04C
PCS 1900	FCC Part 24	RF990421C04C-1

7. IMEI Code: **Dual SIM:** 35202604001021-6, 35202604001020-8

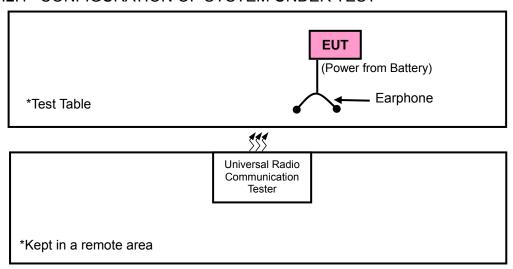
Single SIM: 35202604007028-5

8. Software vision: STARLING_G_05.13.00R_S

9. Hardware vision: PCR

10. The above EUT information was declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

3.2 DESCRIPTION OF TEST MODES


299 channels are provided to this EUT. Therefore, the low, middle and high channels are chosen for testing.

	CHANNEL	FREQUENCY	TX MODE
LOW	512	1850.2 MHz	GSM, GPRS
MIDDLE	661	1880.0 MHz	GSM, GPRS
HIGH	810	1909.8 MHz	GSM, GPRS

NOTE:

- 1. Below 1 GHz, the channel 512, 661, and 810 were pre-tested in chamber. The channel 512 was chosen for final test.
- 2. Above 1 GHz, the channel 512, 661, and 810 were tested individually.
- 3. The worst case for final test is chosen when the power control level set 0.
- 4. The channel space is 0.2MHz.
- 5. The EUT is a GPRS class 10 device (Multislot class: 10, Mobile Terminal B), which provide 2 up-link. After pre-tested both functions, found up-link with 1 time slot is worse, therefore, test results of output power, frequency stability, occupied bandwidth and band edge tests came out from this.
- 6. The EUT has GSM & GPRS functions. After pre-testing, GSM function is the worst case for all the emission tests.

3.2.1 CONFIGURATION OF SYSTEM UNDER TEST

3.2.2 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

EUT CONFIGURE MODE		А	PPLICABLE T	О		DESCRIPTION
	ОР	BE	CE	RE<1G	RE≥1G	DESCRIPTION
-	V	\checkmark	V	V	\checkmark	-

Where **OP:** Output power

CE: Conducted spurious emissions

RE≥1G: Radiated emission above 1GHz

BE: Band edge

RE<1G: Radiated emission below 1GHz

OUTPUT POWER MEASUREMENT:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	AXIS
512 to 810	512, 661, 810	GSM, GPRS	Х

BAND EDGE MEASUREMENT:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY
512 to 810	512, 810	GSM, GPRS

CONDUCTED SPURIOUS EMISSIONS MEASUREMENT:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABL	E CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY
512	to 810	512, 661, 810	GSM

RADIATED EMISSION MEASUREMENT (BELOW 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	
512 to 810	512	GSM	Х

Report No.: RF990421C04C-1 8 Report Format Version 3.0.1

Reference No.: 990817C01

RADIATED EMISSION MEASUREMENT (ABOVE 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	AXIS
512 to 810	512, 661, 810	GSM	Х

TEST CONDITION:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER (SYSTEM)	TESTED BY
OP	26deg. C, 62%RH, 1008 hPa	120Vac, 60Hz	Mark Liao
BE	26deg. C, 62%RH, 1008 hPa	120Vac, 60Hz	Mark Liao
CE	26deg. C, 62%RH, 1008 hPa	120Vac, 60Hz	Mark Liao
RE < 1G	26deg. C, 65%RH, 1020 hPa	120Vac, 60Hz	Brad Wu
RE≥1G	26deg. C, 65%RH, 1020 hPa	120Vac, 60Hz	Mark Liao

Report No.: RF990421C04C-1 9 Report Format Version 3.0.1

Reference No.: 990817C01

3.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC 47 CFR Part 2 FCC 47 CFR Part 24 IC RSS-133 ANSI C63.4-2003 ANSI/TIA/EIA-603-C 2004

NOTE: All test items have been performed and recorded as per the above standards.

3.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	UNIVERSAL RADIO COMMUNICATION TESTER	R&S	CMU200	104484	NA

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	NA

NOTE 1: All power cords of the above support units are non shielded (1.8m).

NOTE 2: Item 1 acted as a communication partners to transfer data.

4 TEST TYPES AND RESULTS

4.1 OUTPUT POWER MEASUREMENT

4.1.1 LIMITS OF OUTPUT POWER MEASUREMENT

The radiated peak output power shall be according to the specific rule Part 24.232(b) that "Mobile / Portable station are limited to 2 watts e.i.r.p" and 24.232(c) specific that "Peak transmit power must be measure over any interval of continuous transmission using instrumentation calibration in terms of rms-equivalent voltage."

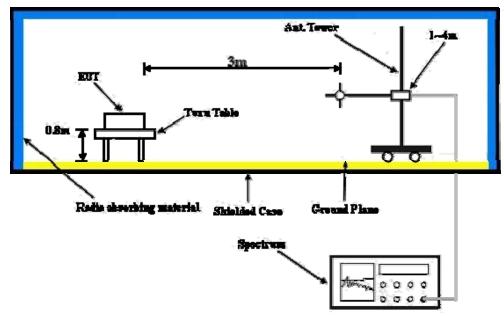
4.1.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
Test Receiver ROHDE & SCHWARZ	ESIB7	100188	Dec. 21, 2009	Dec. 20, 2010
Spectrum Analyzer ROHDE & SCHWARZ	FSP40	100269	Dec. 31, 2009	Dec. 30, 2010
BILOG Antenna SCHWARZBECK	VULB9168	9168-160	Apr. 27, 2010	Apr. 26, 2011
HORN Antenna SCHWARZBECK	9120D	9120D-405	Feb. 03, 2010	Feb. 02, 2011
HORN Antenna SCHWARZBECK	BBHA 9170	BBHA9170243	Dec. 25, 2009	Dec. 24, 2010
Preamplifier Agilent	8447D	2944A10633	Nov. 10, 2009	Nov. 09, 2010
Preamplifier Agilent	8449B	3008A01964	Nov. 09, 2009	Nov. 08, 2010
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	238141/4	May 14, 2010	May 13, 2011
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	12738/6	May 14, 2010	May 13, 2011
Software ADT.	ADT_Radiated_ V7.6.15.9.2	NA	NA	NA
Antenna Tower inn-co GmbH	MA 4000	013303	NA	NA
Antenna Tower Controller inn-co GmbH	CO2000	017303	NA	NA
Turn Table ADT.	TT100.	TT93021703	NA	NA
Turn Table Controller ADT.	SC100.	SC93021703	NA	NA

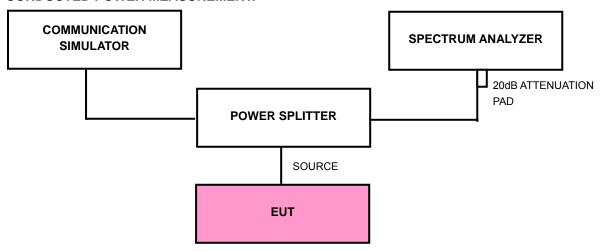
NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Chamber 3.
- 3. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
- 4. The FCC Site Registration No. is 988962.
- 5. The IC Site Registration No. is IC 7450F-3.

4.1.3 TEST PROCEDURES


- a. The power was measured with R&S Spectrum Analyzer. All measurements were done at 3 channels, 512, 661 and 810 (GSM & GPRS) (low, middle and high operational frequency range.)
- b. The conducted peak output power used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer. The path loss included the splitter loss, cable loss and 20dB pad loss. The spectrum set RB/VB 1MHz (GSM & GPRS), then read peak power value and record to the test. (All transmitted path loss shall be considered in the test report data.)
- c. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- d. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a tx cable . Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step c. Record the power level of S.G
- e. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.

Report Format Version 3.0.1


4.1.4 TEST SETUP

EIRP POWER MEASUREMENT:

For the actual test configuration, please refer to the attached file (Test Setup Photo).

CONDUCTED POWER MEASUREMENT:

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

4.1.5 EUT OPERATING CONDITIONS

- a. The EUT makes a phone call to the communication simulator.
- b. The communication simulator station system controlled an EUT to export maximum output power under transmission mode and specific channel frequency.

4.1.6 TEST RESULTS

FOR GSM MODE

CONDUCTED OUTPUT POWER					
CHANNEL NO.	NNEL NO. FREQUENCY RAW VALUE CORRECTION OUTPUT POWER				POWER
	(MHz)	(dBm)	FACTOR (dB)	dBm	Watt
512	1850.2	5.4	24.8	30.2	1.0471
661	1880.0	5.6	24.8	30.3	1.0715
810	1909.8	5.2	24.8	30.2	1.0471

FOR GPRS MODE (UP-LINK WITH 1 TIME SLOT)

CONDUCTED OUTPUT POWER						
CHANNEL NO.	FREQUENCY RAW VALUE CORRECTION OUTPUT POWER					
	(MHz)	(dBm)	FACTOR (dB)	dBm	Watt	
512	1850.2	5.4	24.8	30.2	1.0471	
661	1880.0	5.5	24.8	30.3	1.0715	
810	1909.8	5.4	24.8	30.2	1.0471	

REMARKS: 1. Peak Output Power (dBm) = Raw Value (dBm) + Correction Factor (dB).

2. Correction Factor (dB) = Power Splitter Loss (dB) + Cable Loss (dB).

FOR GSM MODE

EIRP POWER					
CHANNEL NO.	FREQUENCY	S.G VALUE	CORRECTION	ОИТРИТ	POWER
	(MHz)	(dBm)	FACTOR (dB)	dBm	Watt
512	1850.2	22.9	8.4	31.3	1.3490
661	1880.0	23.3	8.6	31.9	1.5488
810	1909.8	22.1	8.5	30.6	1.1482

FOR GPRS MODE (UP-LINK WITH 1 TIME SLOT)

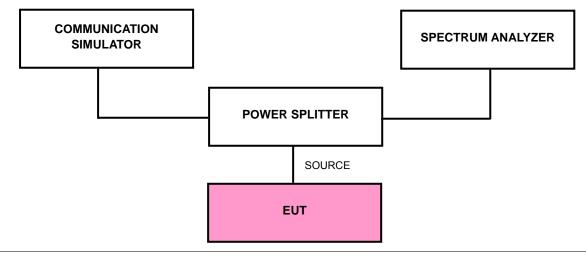
EIRP POWER						
CHANNEL NO.	FREQUENCY	S.G VALUE	CORRECTION	OUTPUT POWER		
	(MHz)	(dBm)	FACTOR (dB)	dBm	Watt	
512	1850.2	22.6	8.4	31.0	1.2589	
661	1880.0	22.9	8.6	31.5	1.4125	
810	1909.8	21.9	8.5	30.4	1.0965	

REMARKS: 1. Peak Output Power (dBm) = S.G Value (dBm) + Correction Factor (dB).

2. Correction Factor (dB) = TX Antenna Gain (dBi) + Cable Loss (dB)

4.2 BAND EDGE MEASUREMENT

4.2.1 LIMITS OF BAND EDGE MEASUREMENT


According to FCC 24.238(a) specified that power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

4.2.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
ROHDE & SCHWARZ	E4446A	MY44360128	May 14, 2009	Aug. 23, 2010
Spectrum Analyzer	E4440A	W1144300126	May 14, 2009	Aug. 23, 2010
Mini-Circuits Power Splitter	ZN2PD-9G	NA	Jul. 14, 2010	Jul. 13, 2011
RF cable	SUCOFLEX 104	274398/4	Sep. 12, 2009	Sep. 11, 2010
RF cable	SUCOFLEX 104	274388/4	Sep. 12, 2009	Sep. 11, 2010
RF cable	SUCOFLEX 104	250795/4	Sep. 12, 2009	Sep. 11, 2010
JFW 20dB attenuation	50HF-020-SMA	NA	NA	NA

NOTE: The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

4.2.3 TEST SETUP

Report No.: RF990421C04C-1 17 Report Format Version 3.0.1 Reference No.: 990817C01

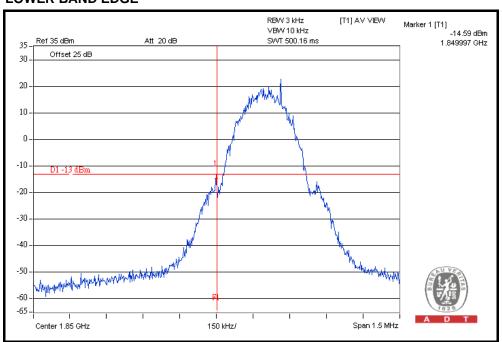
4.2.4 TEST PROCEDURES

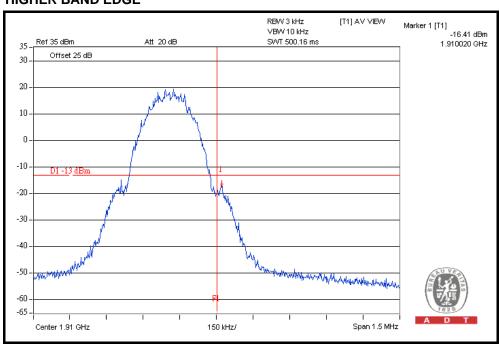
- a. The EUT makes a phone call to the communication simulator. The power was measured with R&S Spectrum Analyzer. All measurements were done at 2 channels, 512 and 810 (low and high operational frequency range.)
- b. The band edge measurement used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer. This splitter loss and cable loss are the worst loss 5dB in the transmitted path track.
- c. The center frequency of spectrum is the band edge frequency and span is 1.5 MHz. RB of the spectrum is 3kHz and VB of the spectrum is 10kHz (GSM & GPRS).
- d. Record the max trace plot into the test report.

4.2.5 EUT OPERATING CONDITION

- a. The EUT makes a phone call to the communication simulator.
- b. The communication simulator station system controlled an EUT to export maximum output power under transmission mode and specific channel frequency.

Report No.: RF990421C04C-1 18 Report Format Version 3.0.1

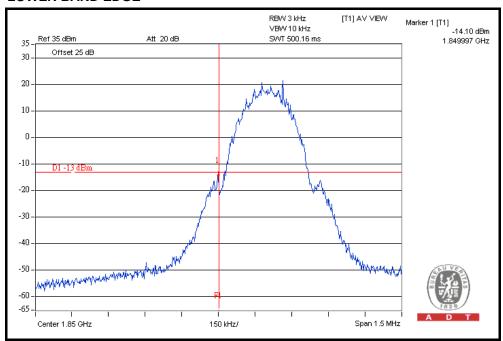

Reference No.: 990817C01


4.2.6 TEST RESULTS

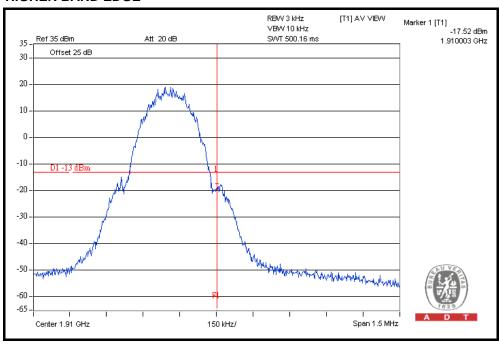
FOR GSM MODE

LOWER BAND EDGE

HIGHER BAND EDGE



Report No.: RF990421C04C-1 19 Report Format Version 3.0.1 Reference No.: 990817C01



FOR GPRS MODE (UP-LINK WITH 1 TIME SLOT)

LOWER BAND EDGE

HIGHER BAND EDGE

Report No.: RF990421C04C-1 20 Report Format Version 3.0.1

Reference No.: 990817C01

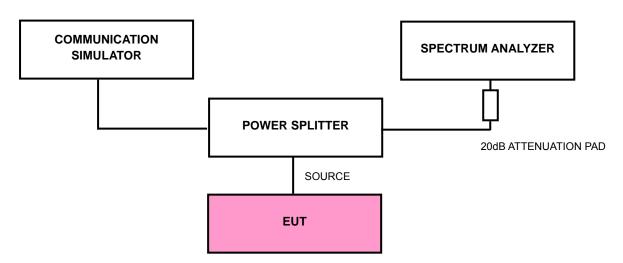
4.3 CONDUCTED SPURIOUS EMISSIONS

4.3.1 LIMITS OF CONDUCTED SPURIOUS EMISSIONS MEASUREMENT

In the FCC 24.238(a), On any frequency outside a licensee's frequency block within USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 +10 log (P) dB. The specified minimum attenuation becomes 43dB and the limit of emission equal to –13dBm.

4.3.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
ROHDE & SCHWARZ	FSP40	100041	Jul. 09, 2010	Jul. 08, 2011
Spectrum Analyzer	F3F40	100041	Jul. 09, 2010	Jul. 06, 2011
Wainwright Instruments	WRCG 824/849-810/	CNIA	Mar 25 2010	Mar 24 2011
Band Reject Filter	863-60/9SS	SN1	Mar. 25, 2010	Mar. 24, 2011
WI Highpass filter	WHK1.5/15G-10ST	SN1	Mar. 30, 2010	Mar. 29, 2011
Mini-Circuits Power Splitter	ZN2PD-9G	NA	Jun. 24, 2010	Jun. 23, 2011
RF cable	SUCOFLEX 104	274398/4	Sep. 12, 2009	Sep. 11, 2010
RF cable	SUCOFLEX 104	274388/4	Sep. 12, 2009	Sep. 11, 2010
RF cable	SUCOFLEX 104	250795/4	Sep. 12, 2009	Sep. 11, 2010
JFW 20dB attenuation	50HF-020-SMA	NA	NA	NA


NOTE: The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

4.3.3 TEST PROCEDURE

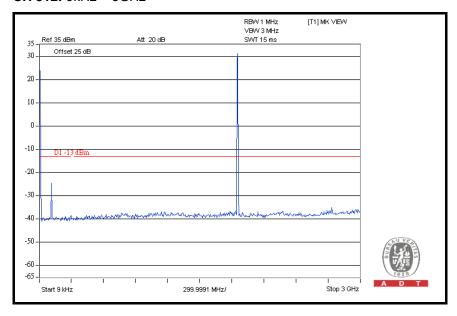
- a. The EUT makes a phone call to the communication simulator. The power was measured with R&S Spectrum Analyzer. All measurements were done at 3 channels, 512, 661 and 810 (GSM) (low, middle and high operational frequency range.)
- b. The conducted spurious emission used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer. This splitter loss and cable loss are the worst loss 5dB in the transmitted path track.
- c. When the spectrum scanned from 9kHz to 20GHz, it shall be connected to 20dB Pad. The spectrum set RB=1MHz, VB=3MHz.

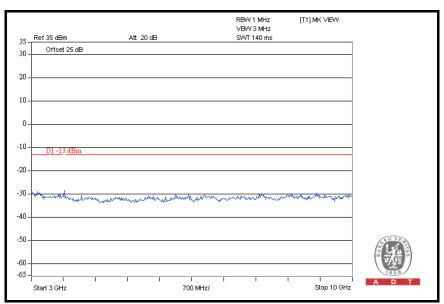
4.3.4 TEST SETUP

4.3.5 EUT OPERATING CONDITIONS

- a. The EUT makes a phone call to the communication simulator.
- The communication simulator station system controlled an EUT to export maximum output power under transmission mode and specific channel frequency.

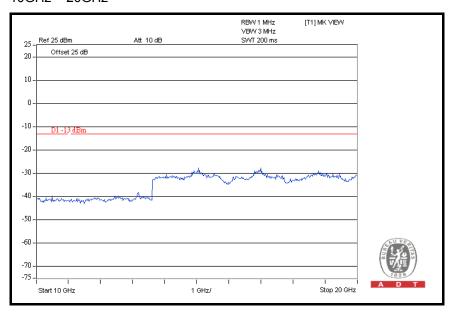
22


Report No.: RF990421C04C-1 Reference No.: 990817C01 Report Format Version 3.0.1

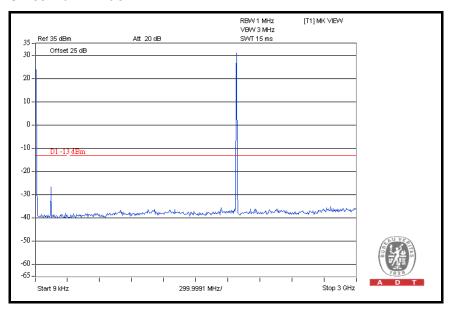

4.3.6 TEST RESULTS

FOR GSM:

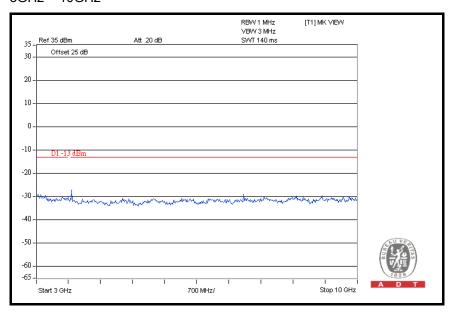
CH 512: 9kHz ~ 3GHz



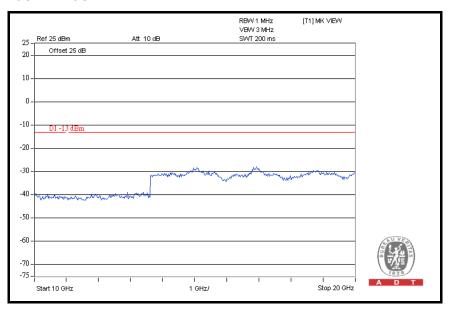
3GHz ~ 10GHz



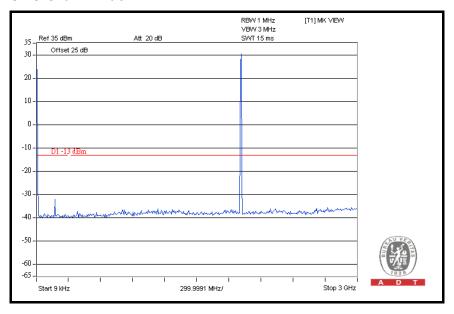
10GHz ~ 20GHz



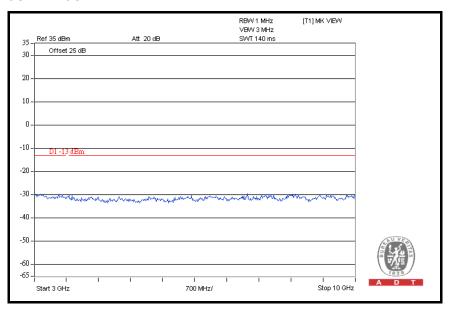
CH 661: 9kHz ~ 3GHz



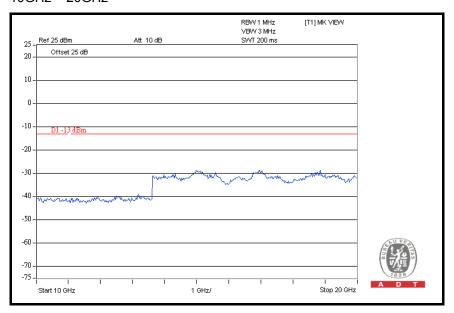
3GHz ~ 10GHz



10GHz ~ 20GHz



CH 810: 9kHz ~ 3GHz



3GHz ~ 10GHz

10GHz ~ 20GHz

4.4 RADIATED EMISSION MEASUREMENT (BELOW 1GHz)

4.4.1 LIMITS OF RADIATED EMISSION MEASUREMENT

In the FCC 24.238(a), On any frequency outside a licensee's frequency block within USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 +10 log (P) dB. The emission of limit equal to –13dBm. So the limit of emission is the same absolute specified line.

LIMIT (dBm)	EQUIVALENT FIELD STRENGTH AT 3m (dBuV/m) (NOTE)
-13	82.2

NOTE: The following formula is used to convert the equipment radiated power to field strength.

 $E = [1000000\sqrt{(30P)}] / 3 \text{ uV/m}$, where P is Watts.

4.4.2 TEST INSTRUMENTS

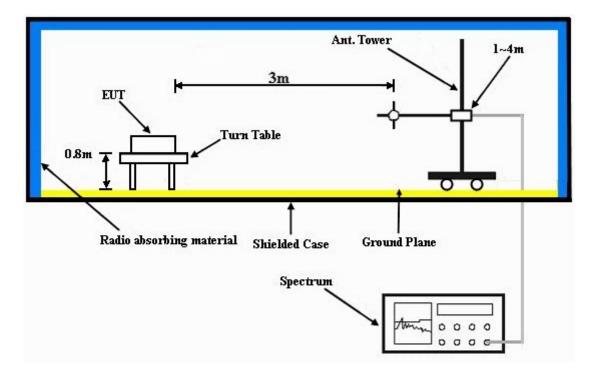
Same as 4.1.2.

Report No.: RF990421C04C-1 28 Report Format Version 3.0.1 Reference No.: 990817C01

4.4.3 TEST PROCEDURES

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meters semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

NOTE: The resolution bandwidth of spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz.


4.4.4 DEVIATION FROM TEST STANDARD

No deviation

Report Format Version 3.0.1

4.4.5 TEST SETUP

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.4.6 EUT OPERATING CONDITIONS

- a. The EUT makes a phone call to the communication simulator.
- The communication simulator station system controlled an EUT to export maximum output power under transmission mode and specific channel frequency.

4.4.7 TEST RESULTS

FOR GSM:

MODE	TX channel 512	DETECTOR FUNCTION	Peak
FREQUENCY RANGE	IRAIOW 1000 MHZ	INPUT POWER (SYSTEM)	120Vac, 60 Hz
ENVIRONMENTAL CONDITIONS	25deg. C, 68%RH, 991hPa	TESTED BY	Sun Lin

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	72.77	36.1	82.2	-46.2	1.0	187	24.9	11.2
2	142.75	38.6	82.2	-43.7	1.5	103	24.5	14.1
3	477.09	30.3	82.2	-52.0	1.5	298	11.1	19.2
4	644.27	33.7	82.2	-48.6	2.0	184	11.0	22.7
5	819.22	36.1	82.2	-46.2	2.0	256	11.2	24.9
6	918.36	36.7	82.2	-45.6	2.0	346	10.50	26.2
		ANTENNA PO	LARITY & T	EST DIST	ANCE: VE	ERTICAL A	AT 3 M	
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	31.94	45.5	82.2	-36.8	1.00 V	253	33.0	12.5
2	216.61	40.3	82.2	-42.0	1.50 V	313	29.2	11.1
3	490.70	30.7	82.2	-51.6	2.00 V	271	11.1	19.6
4	562.63	32.4	82.2	-49.9	1.00 V	169	11.2	21.2
5	671.48	34.1	82.2	-48.2	2.00 V	301	11.0	23.1
6	877.54	38.8	82.2	-43.5	1.50 V	331	13.2	25.6

NOTE:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB).
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. This is valid for all 3 channels.

Report Format Version 3.0.1

4.5 RADIATED EMISSION MEASUREMENT (ABOVE 1GHz)

4.5.1 LIMITS OF RADIATED EMISSION MEASUREMENT

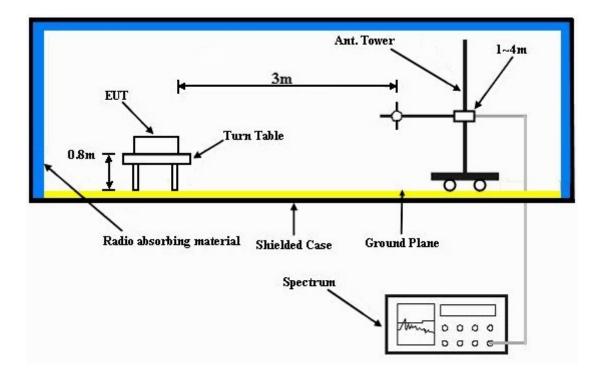
In the FCC 24.238(a), On any frequency outside a licensee's frequency block within USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 +10 log (P) dB. The specified minimum attenuation becomes 43dB and the limit of emission equal to -13dBm.

4.5.2 TEST INSTRUMENTS

Same as 4.1.2.

4.5.3 TEST PROCEDURES

- a. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- b. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a TX cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step a. Record the power level of S.G
- c. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.


NOTE: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1MHz/3MHz.

4.5.4 DEVIATION FROM TEST STANDARD

No deviation

4.5.5 TEST SETUP

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.5.6 EUT OPERATING CONDITIONS

- a. The EUT makes a phone call to the communication simulator.
- b. The communication simulator station system controlled an EUT to export maximum output power under transmission mode and specific channel frequency.

4.5.7 TEST RESULTS

FOR GSM:

MODE	TX channel 512	FREQUENCY RANGE	Above 1000 MHz
INPUT POWER	120Vac, 60 Hz	001151510110	21deg. C, 63%RH, 991hPa
TESTED BY	Mark Liao		

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M						
No.	Freq. (MHz)	Emission Level (dBuV)	Limit (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	Power Value (dBm)
1	3700.4	53.2	-13.0	-52.4	9.9	-42.5
2	5550.6	52.5	-13.0	-53.2	9.7	-43.5
	AN	TENNA POLAR	ITY & TEST DIS	STANCE: VERT	TCAL AT 3 M	
Na	_	Emission Level (dBuV) S.G Power Correction Power Value (dBm) Value (dBm) Factor (dB) (dBm)				
No.	Freq. (MHz)	(dBuV)	Limit (dBm)	Value (dBm)	Factor (dB)	(dBm)
1	3700.4		-13.0			

NOTE: Power Value (dBum) = S.G Power Value (dBm) + Correction Factor (dB).

Report No.: RF990421C04C-1 35 Report Format Version 3.0.1

Reference No.: 990817C01

MODE	TX channel 661	FREQUENCY RANGE	Above 1000 MHz
INPUT POWER	120Vac, 60 Hz		21deg. C, 63%RH, 991hPa
TESTED BY	Mark Liao		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M						
No.	Freq. (MHz)	Emission Level (dBuV)	Limit (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	Power Value (dBm)	
1	3760.0	55.3	-13.0	-48.8	9.9	-38.9	
2	5640.0	52.2	-13.0	-51.8	9.6	-42.2	
	ANT	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M					
		Limit (dRm)					
No.	Freq. (MHz)	Emission Level (dBuV)	Limit (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	Power Value (dBm)	
No.	Freq. (MHz) 3760.0		Limit (dBm) -13.0				

NOTE: Power Value (dBum) = S.G Power Value (dBm) + Correction Factor (dB).

MODE	TX channel 810	FREQUENCY RANGE	Above 1000 MHz
INPUT POWER	120Vac, 60 Hz		21deg. C, 63%RH, 991hPa
TESTED BY	Mark Liao		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M						
No.	Freq. (MHz)	Emission Level (dBuV)	Limit (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	Power Value (dBm)	
1	3819.6	52.9	-13.0	-51.1	9.9	-41.2	
2	5729.4	54.2	-13.0	-49.6	9.6	-40.0	
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M							
	AII			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10/12 / 11 O III		
No.	Freq. (MHz)	Emission Level (dBuV)	Limit (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	Power Value (dBm)	
No.		Emission Level		S.G Power	Correction		

NOTE: Power Value (dBum) = S.G Power Value (dBm) + Correction Factor (dB).

5 PHOTOGRAPHS OF THE TEST CONFIGURATION	A D T
Please refer to the attached file (Test Setup Photo).	

Report No.: RF990421C04C-1 38 Report Format Version 3.0.1 Reference No.: 990817C01

6 INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site: www.adt.com.tw/index.5/phtml. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab: Hsin Chu EMC/RF Lab:

Tel: 886-2-26052180 Tel: 886-3-5935343 Fax: 886-2-26051924 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety/Telecom Lab:

Tel: 886-3-3183232 Fax: 886-3-3185050

Web Site: www.adt.com.tw

The address and road map of all our labs can be found in our web site also.

Report No.: RF990421C04C-1 39 Report Format Version 3.0.1

Reference No.: 990817C01

7 APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.

---END---

Report No.: RF990421C04C-1 40 Report Format Version 3.0.1

Reference No.: 990817C01