

Date: Sep 01, 2010

Subject: Request for additional information regarding FCC ID: IHDP56LD1

Reference:

Correspondence Reference Number: IHD100977
Confirmation Number: Y1008170977-80
Date of Original Email: Aug 24, 2010

Prepared by:

Andrew Bachler, Principal Staff Engineer Motorola Mobile Device Business Libertyville, Illinois 60048

Questions and responses follow:

1. The Operational Description lists 802.11n 40 MHz channels and MIMO capability- please confirm that these are not implemented in the EUT.

Response: It is confirmed that this EUT does not support 40MHz channels and MIMO architecture. Please refer to the revised operational description submitted online.

2. On p. 19/69 of the DTS EMC report, the Heading states "Peak output power", but the data tables all state "Average power". Please reconcile.

Response: The table on page 16 of the DTS EMC report contains initial average power measurements of all data rates in all supported modes. These measurements are used to determine which data rates in each supported mode will be fully tested. The plots following that table, starting on page 17, show final peak power measurements for the fully tested data rates.

3. Page 52/60 of the User's Manual lists the maximum SAR level in data transmission mode as 0.23 W/kg. How is this value derived? Please clarify.

Response: The SAR value in data transmission mode is from GPRS Class 10 body warn table(Table 9) of the SAR report.

4. Due to the simultaneous transmission SAR measurement requirement, this application is classified as Permit but Ask. Please submit the KDB response received by the SAR lab from the FCC accepting the proposed simultaneous SAR measurement procedure and test configurations, if available.

Response: Please refer to the tracking number 294775 for the PBA submitted to the FCC.

5. The FCC has stated that, given modern phone design, when body SAR data is provided with the front of the phone facing the phantom, it should be made clear that it is to cover the use of potential accessories that may cause the front of the phone to face the user (in other words, it is not because the assumption is being made that the phone may be kept in a pocket with the front facing the user, as a separation distance of 0.5 cm is more realistic for this configuration). As a result, since the SAR report contains body data with the front of the phone facing the phantom, please provide the referenced attestation. Alternatively, you may remove all references and data for the phone facing the phantom configuration from the SAR report and resubmit it.

Response: Please refer to the added statement in Sec 6.2 of the revised SAR report submitted online.

6. The SAR plot on p.63/89 of the SAR report shows a power drift of more than 0.5 dB (5%)- this is not is accordance with the requirements of IEEE P1528. Please address.

Response: The SAR measurement was on a low power Bluetooth signal that is aperiodic by nature. The measured drift was a negative drift, which indicates that the power measured at the end of the SAR scan was lower than the power measured at the beginning of the scan. This decrease in power is accounted for in the tabulated results, in a worst-case manner, by extrapolating for the SAR value at the beginning of the scan by the formula Extrapolated SAR = Measured SAR * 10^(-drift/10). As the extrapolated SAR value is below 0.00 mW/g (1 g), no further investigation was deemed necessary.

7. FYI: in the DTS EMC report, the RF conducted spurious emission plots (including the bandedge plots) all set the D.L. at 20 dBc. Please note that, in order to use the average detector for the conducted output power measurements, the oob limit for which compliance must be demonstrated is 30 dBc, not 20 dBc.

Response: Since the final power measurements were taken using the peak detector, the 20dBc DL used is correct.

8. FYI: the FCC is now requiring that, for SAR dipoles with calibration more than 1 year old, additional justification for an extended calibration cycle must be provided. This includes a comparison of return loss and impedance values from one calibration to the next. Please see the appropriate KDB (attached to a previous email), and, if appropriate, include the required data in future submittals.

Response: Noted.