

Portable Cellular Phone Supplemental SAR Test Report

Motorola Mobility, Inc.

Tests Requested By: 600 N. US Highway 45

Libertyville, IL 60048

Test Report #: 23910-1F Supplemental Report v2

Oct 27, 2010 **Date of Report:** Date of Test: Oct 13 & 15, 2010 FCC ID #: IHDP56LC1

Generic Name: MRQ7-334411A11

Motorola Mobility, Inc. - Product Safety & Compliance Laboratory

Test Laboratory: 600 N. US Highway 45

Libertyville, IL 60048

Steven Hauswirth **Report Author:**

Distinguished Member of the Technical Staff

This laboratory is accredited to ISO/IEC 17025-2005 to perform the following tests:

Accreditation:

Procedures: Electromagnetic Specific Absorption Rate IEC 62209-1

RSS-102

IEEE 1528 - 2003

FCC OET Bulletin 65 (including Supplement C) Australian Communications Authority Radio

Communications (Electromagnetic Radiation – Human

Exposure) Standard 2003 CENELEC EN 50360 ARIB Std. T-56 (2002)

On the following products or types of products:

Wireless Communications Devices (Examples): Two Way Radios; Portable Phones (including

Motorola declares under its sole responsibility that the portable cellular telephone model to which

Cellular, Licensed Non-Broadcast and PCS); Low Frequency Readers; and Pagers

this declaration relates, is in conformity with the appropriate General Population/Uncontrolled RF exposure standards, recommendations and guidelines (FCC 47 CFR §2.1093) as well as with CENELEC en50360:2001 and ANSI / IEEE C95.1. It also declares that the product was tested in accordance with IEEE 1528 / CENELEC EN62209-1 (2006), as well as other appropriate measurement standards, guidelines and recommended practices. Any deviations from these

standards, guidelines and recommended practices are noted below:

(none)

©Motorola, Inc. 2010

Statement of

Compliance:

This test report shall not be reproduced except in full, without written approval of the laboratory. The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report. Motorola encourages all feedback, both positive and negative, on this test report.

Table of Contents

1. Introduction	3
2. Description of the Device Under Test	3
3. Test Equipment Used	3
3.1 Dosimetric System	3
3.2 Additional Equipment	4
4. Electrical parameters of the tissue simulating liquid	4
5. System Accuracy Verification	5
6. Test Results	6
6.1 Head Adjacent Results	7
Appendix 1: SAR distribution comparison for the system accuracy verification	
Appendix 2: SAR distribution plots for Head Adjacent Configuration	
Appendix 3: Probe Calibration Certificate	
Appendix 4: Measurement Uncertainty Budget	
Appendix 5: Dipole Characterization Certificate	

1. Introduction

The Motorola Mobile Devices Business Product Safety Laboratory has performed measurements of the maximum potential exposure for specific bands and modes to the user of the portable cellular phone covered by this test report. The Specific Absorption Rate (SAR) of this product was measured. The results in this special supplemental filing are submitted at the specific request for this product. The portable cellular phone was tested in accordance with IEEE 1528. The SAR values measured for the portable cellular phone are below the maximum recommended levels of 1.6 W/kg in a 1 g average set in ANSI/IEEE C C95.1 (1999). These measurements were performed using a Dasy4TM v4.7 system manufactured by Schmid & Partner Engineering AG (SPEAG), of Zurich Switzerland.

2. Description of the Device Under Test

	3	3515750400	16095 (Use	d for Conduc	ted power &	SAR tests of	WCDMA 850)			
		351572040052121 (Used for Conducted power & SAR tests of GSM 850)									
Serial Number(s)	3	351573040004724 (Used for Conducted power & SAR tests of WCDMA 1900)									
	351575040007136 (Used for Conducted power & SAR tests of GSM1900 and WiFi)										
Mode(s) of Operation	GSM 850										
Modulation Mode(s)	GMSK	GMSK	GMSK	GMSK	QPSK	QPSK	BPSK	GFSK			
Maximum Output Power Setting	33.0 dBm	33.0 dBm	30.5 dBm	30.5 dBm	24.0 dBm	24.0 dBm	20 dBm	10 dBm			
Duty Cycle	1:8	1:8	1:8	1:8	1:1	1:1	1:1	1:1			
Transmitting Frequency Range(s)	824.2 - 880.2 - 1710.2 - 1850.2 - 826.4 - 1852.4 - 2412.0 - 848.8 914.8 1784.8 1909.8 846.6 1907.6 2462.5 MHz MHz MHz MHz MHz MHz MHz MHz							2402.0 - 2483.5 MHz			
Production Unit or Identical Prototype (47 CFR §2908)	Identical Prototype										
Device Category				Port	able			·			
RF Exposure Limits			Gene	eral Populati	on / Uncontr	olled					

3. Test Equipment Used

3.1 Dosimetric System

The Motorola Mobile Devices Business Product Safety & Compliance Laboratory utilizes a Dosimetric Assessment System (Dasy4TM v4.7) manufactured by Schmid & Partner Engineering AG (SPEAGTM), of Zurich Switzerland. All the SAR measurements are taken within a shielded enclosure. The overall 10 g RSS uncertainty of the measurement system is $\pm 10.8\%$ (K=1) with an expanded uncertainty of $\pm 21.6\%$ (K=2). The overall 1 g RSS uncertainty of the measurement system is $\pm 11.1\%$ (K=1) with an expanded uncertainty of $\pm 22.2\%$ (K=2). The measurement uncertainty budget is given in Appendix 5. Per IEEE 1528, this uncertainty budget is applicable to the SAR range of 0.4 W/kg to 10 W/kg.

The list of calibrated equipment used for the measurements is shown in the following table:

Description	Serial Number	Cal Date	Cal Due Date
DASY4™ DAE V1	702	May-18-2010	May-18-2011
E-Field Probe ES3DV3	3183	Jul-14-2010	July-14-2011
DASY4™ DAE V1	699	Sep-20-2010	Sep-20-2011
E-Field Probe ES3DV3	3124	Aug-11-2010	Aug-11-2011
S.A.M. Phantom used for 800/900 MHz	TP-1156		
S.A.M. Phantom used for 1800/1900 MHz	TP-1139		
S.A.M. Phantom used for 2450 MHz	TP-1250		
Dipole Validation Kit, DV835V2	4d003	Jun-21-2010	Jun-21-2012
Dipole Validation Kit, DV1800V2	2d160	Jun-15-2010	Jun-15-2012
Dipole Validation Kit, DV1800V2	2d161	Jun-15-2010	Jun-15-2012
Dipole Validation Kit, DV2450V2	808	Jun-17-2010	Jun-17-2012

3.2 Additional Equipment

Description	Serial Number	Cal Date	Cal Due Date
Signal Generator HP8648C	3847A04822	Apr-22-2009	Apr-22-2011
Power Meter E4419B	GB39511082	Apr-24-2009	Apr-24-2011
Power Sensor #1 - E9301A	US39210915	Dec-04-2009	Dec-04-2010
Power Sensor #2 - E9301A	US39210916	Nov-16-2009	Nov-16-2010
Signal Generator HP8648C	3847A04843	Apr-22-2009	Apr-22-2011
Power Meter E4419B	US39250622	Dec-22-2009	Dec-22-2011
Power Sensor #1 - E9301A	US39210929	Nov-19-2009	Nov-19-2010
Power Sensor #2 - E9301A	US39210930	Nov-19-2009	Nov-19-2010
Signal Generator HP8648C	3847A04810	Oct-30-2009	Oct-30-2011
Power Meter E4419B	GB39511087	Dec-22-2009	Dec-22-2011
Power Sensor #1 - E9301A	US39211007	Dec-04-2009	Dec-04-2010
Power Sensor #2 - E9301A	US39211008	Dec-04-2009	Dec-04-2010
Network Analyzer HP8753ES	US39172529	Jun-04-2010	Jun-04-2011
Dielectric Probe Kit HP85070C	US99360070		

4. Electrical parameters of the tissue simulating liquid

Prior to conducting SAR measurements, the relative permittivity, ε_r , and the conductivity, σ , of the tissue simulating liquids were measured with a HP85070 Dielectric Probe Kit These values, along with the temperature of the simulated tissue are shown in the table below. The recommended limits for permittivity and conductivity are also shown. A mass density of $\rho = 1$ $^g/_{cm^3}$ was entered into the system in all the cases. It can be seen that the measured parameters are within tolerance of the recommended limits specified in [1] and [5].

E-field probes calibrated at 1810 MHz were used for "1900 MHz" band (1850 MHz - 1910 MHz) SAR measurements. FCC KDB 450824 provides additional requirements on page 3 of 6 for SAR testing that is performed with probe calibration points that are more than 50 MHz removed from the measured bands. The KDB requires; "(2) When nominal tissue dielectric parameters are specified in the probe calibration data, the tissue dielectric parameters measured for routine measurements should be less than the target Er and higher than the target Sigma values to minimize SAR underestimations". The 1900 MHz simulated tissues listed below meet this criteria.

f	Tissue		Diel	lectric Parameters		
(MHz)	type	Limits / Measured	ϵ_r	σ (S/m)	Temp (°C)	
835	Head	Measured, Oct-13-2010	41.0	0.90	19.6	
835 Head		Recommended Limits	41.5 ±5%	$0.90 \pm 5\%$	18-25	
		Measured, Oct-13-2010	38.6	1.45	19.5	
1880	Head	Measured, Oct-15-2010	38.3	1.46	19.8	
		Recommended Limits	40.03 ±5%	1.40 ±5%	18-25	
2450 H		Measured, Oct-13-2010	37.4	1.83	19.6	
2450	Head	Recommended Limits	39.2 ±10%	1.80 ±5%	18-25	

5. System Accuracy Verification

A system accuracy verification of the DASY4TM was performed using the measurement equipment listed in Section 3.1. The daily system accuracy verification occurs within the flat section of the SAM phantom.

A SAR measurement was performed to verify the measured SAR was within $\pm 10\%$ from the target SAR indicated in Appendix 6. These frequencies are within $\pm 10\%$ of the compliance test mid-band frequency as required in [1] and [5]. The test was conducted on the same days as the measurement of the DUT. Recommended limits for permittivity and conductivity, specified in [5], are shown in the table below. The obtained results from the system accuracy verification are also displayed in the table below. SAR values are normalized to 1 W forward power delivered to the dipole. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values. The distributions of SAR compare well with those of the reference measurements (see Appendix 1). The tissue stimulant depth was verified to be 15.0 cm \pm 0.5 cm. Z-axis scans showing the SAR penetration are also included in Appendix 1.

f		SAR (W/kg), Dielectric Parameters Ambient		Dielectric Parameters		Tissue
(MHz)	Description	1 gram	$\mathbf{\epsilon}_r$	σ (S/m)	Temp (°C)	Temp (°C)
835	Measured, Oct-13-2010	9.55	41.0	0.90	20.0	19.0
033	Recommended Limits	9.54	41.5 ±5%	$0.90 \pm 5\%$	18-25	18-25
	Measured, Oct-13-2010	39.40	38.9	1.36	19.9	18.8
1800	Measured, Oct-15-2010	39.25	38.7	1.36	20.0	18.7
	Recommended Limits	38.50	40.0 ±5%	1.40 ±5%	18-25	18-25
2450	Measured, Oct-13-2010	55.5	37.4	1.83	20.1	19.6
2450	Recommended Limits	52.6	39.2 ±10%	$1.80 \pm 5\%$	18-25	18-25

The following probe conversion factors were used on the E-Field probe(s) used for the system accuracy verification measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe ES3DV3	3183	835	6.11	5 of 11
		1810	5.05	5 of 11
	3124	1810	4.89	5 of 11
	3124	2450	4.35	5 of 11

6. Test Results

The test sample was operated using an actual transmission through a base station simulator. The base station simulator was set up to the proper channel, transmitter power level and transmit mode of operation. The phone was tested in the configurations stipulated in [1], [4] and [5]. The phone was positioned into these configurations using the device holder supplied with the DASY4TM SAR measurement system. The default settings for the "coarse" and "cube" scans were chosen and used for measurements. Please refer to the DASY4TM manual for additional information on SAR scanning procedures and algorithms used.

The Cellular Phone model covered by this report has the following battery options: Model SNN5877A - 1500 mAH Battery

Below is a test channel to actual channel frequency cross-reference listing:

Tx Band	Chn	F (MHz)
	128	824.20
GSM 850	190	836.60
	251	848.80
	4132	826.40
WCDMA 850	4180	836.00
	4233	846.60
	975	880.20
GSM 900	1	890.20
G3W 900	62	902.40
	124	914.80
	2712	882.40
WCDMA 900	2787	897.40
	2863	912.60
	1312	1712.40
WCDMA 1700	1413	1732.50
	1513	1752.60

Tx Band	Chn	F (MHz)
	512	1710.20
GSM 1800	700	1747.80
	885	1785.00
	512	1850.20
GSM 1900	661	1880.00
	810	1909.80
	9262	1852.40
WCDMA 1900	9400	1880.00
	9538	1907.60
	9612	1922.40
WCDMA 2100	9750	1950.00
	9888	1977.60
\	1	2412.00
WiFi (802.11b/g)	6	2437.00
	11	2462.00

6.1 Head Adjacent Test Results

The SAR results shown in table 1 are maximum SAR values averaged over 1 gram of phantom tissue, to demonstrate compliance to [3] and also over 10 grams of phantom tissue, to demonstrate compliance to the [6]. Also shown are the measured conducted output power levels, the temperature of the simulated tissue after the test, the the The extrapolated measured drift and SAR. exact method of extrapolation Extrapolated SAR = Measured SAR * $10^{(-drift/10)}$. The SAR reported at the end of the measurement process by the DASY4TM measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test.

The SAR measurements were performed using the SAM phantoms listed in section 3.1. Since the same phantoms and simulated tissue were used for the system accuracy verification and the device SAR measurements, the Z-axis scans included in Appendix 1 are applicable for verification of simulated tissue depth to be 15.0 cm \pm 0.5 cm.

The following probe conversion factors were used on the E-Field probe(s) used for the Head Adjacent measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe ES3DV3	3183	835	6.11	5 of 11
		1810	5.05	5 of 11
	2124	1810	4.89	5 of 11
	3124	2450	4.35	5 of 11

£	£		Т	D:64	10 g SA	R value	1 g SAR value	
(MHz)	Description	Output Power (dBm)	Temp (°C)	Drift (dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)
GG2 5 0 50	Channel 128	33.06						
GSM 850 LH Cheek	Channel 190	32.89	19.1	-0.119	0.594	0.61	0.809	0.83
LII CHEEK	Channel 251	32.83						
GG7.5.4000	Channel 512	30.53						
GSM 1900 LH Tilt	Channel 661	30.49	19.1	0.056	0.559	0.56	1.07	1.07
DII III	Channel 810	30.34						
WCDMA	Channel 9262	23.51						
1900	Channel 9400	23.52	18.7	0.045	0.695	0.70	1.33	1.33
LH Tilt	Channel 9538	23.32						
WCDMA 850	Channel 4132	24.13	19.1	-0.219	0.809	0.85	1.08	1.14
RH Cheek	Channel 4180	24.11						
KII CIRCK	Channel 4233	24.00						
WiFi	Channel 1	17.04						
802.11b	Channel 6	17.71	19.6	-0.137	0.356	0.37	0.777	0.80
1 Mbps LH Cheek	Channel 11	18.47						

Table 1: SAR measurement results at the highest possible output power, measured in a Head Adjacent position against the ICNIRP and ANSI SAR Limit.

References

- [1] CENELEC, en62209-1:2006 "Human Exposure to Radio Frequency Fields From Hand Held and Body Mounted Wireless Communication Devices Human Models, Instrumentation, and Procedures"
- [2] CENELEC, en50360:2001 "Product standard to demonstrate the compliance of mobile phones with the basic restrictions related to human exposure to electromagnetic fields (300 MHz 3 GHz)".
- [3] ANSI / IEEE, C95.1 1999 Edition "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz"
- [4] FCC OET Bulletin 65 Supplement C 01-01
- [5] IEEE 1528 2003 Edition "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques"
- [6] ICNIRP Guidelines "Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic, and Electromagnetic Fields (up to 300 GHz)"

Appendix 1

SAR distribution comparison for the system accuracy verification

Date/Time: 10/13/2010 8:22:58 AM

Test Laboratory: Motorola - 835 MHz System Performance Check

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d003;

Procedure Notes: 835 MHz System Performance Check / PM2 Power = 201mW Refl.Pwr PM3 = -32.45 dB Sim.Temp@SPC = 19.0 C Room Temp @ SPC = 20.0 C

Communication System: CW - Dipole; Frequency: 835 MHz; Communication System Channel Number: 3; Duty Cycle: 1:1

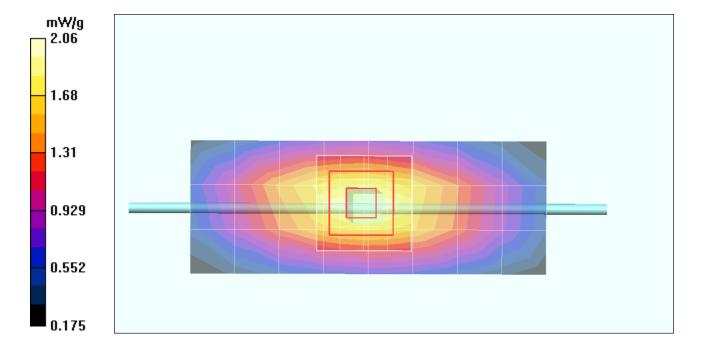
Medium: VALIDATION Only; Medium parameters used: f = 835 MHz; $\sigma = 0.9$ mho/m; $\varepsilon_r = 41$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3183; ConvF(6.11, 6.11, 6.11); Calibrated: 7/14/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn702; Calibrated: 5/18/2010
- Phantom: R1 Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1156;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Dipole Area Scan (4x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.85 mW/g


Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 48.2 V/m; Power Drift = -0.025 dB

Peak SAR (extrapolated) = 2.87 W/kg

SAR(1 g) = 1.91 mW/g; SAR(10 g) = 1.24 mW/g

Maximum value of SAR (measured) = 2.06 mW/g

1 of 1 10/27/2010 9:04 AM

Date/Time: 10/13/2010 7:10:11 AM

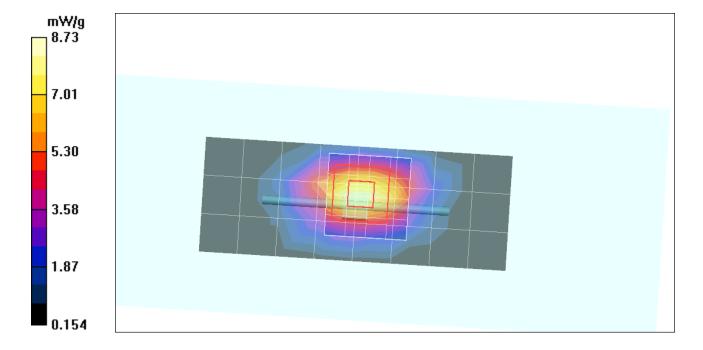
Test Laboratory: Motorola - 1800 MHz System Performance Check

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:2d161;

Procedure Notes: 1800 MHz System Performance Check / PM2 Power = 201mW Refl.Pwr PM3 = -22.95 dB Sim.Temp@SPC = 18.8 C Room Temp @ SPC = 19.9 C

Communication System: CW - Dipole; Frequency: 1800 MHz; Communication System Channel Number: 8; Duty Cycle: 1:1

Medium: VALIDATION Only; Medium parameters used: f = 1800 MHz; $\sigma = 1.36 \text{ mho/m}$; $\varepsilon_r = 38.9$; $\rho = 1000 \text{ kg/m}^3$


DASY4 Configuration:

- Probe: ES3DV3 SN3183; ConvF(5.05, 5.05, 5.05); Calibrated: 7/14/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn702; Calibrated: 5/18/2010
- Phantom: R1 Section 2, Amy Twin, Rev3 (3-Feb-10); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Dipole Area Scan (9x4x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 8.07 mW/g

Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 77.7 V/m; Power Drift = 0.003 dB Peak SAR (extrapolated) = 14.5 W/kg

SAR(1 g) = 7.88 mW/g; SAR(10 g) = 4.16 mW/gMaximum value of SAR (measured) = 8.73 mW/g

1 of 1 10/27/2010 9:09 AM

Date/Time: 10/15/2010 7:08:54 AM

Test Laboratory: Motorola - 1800 MHz System Performance Check

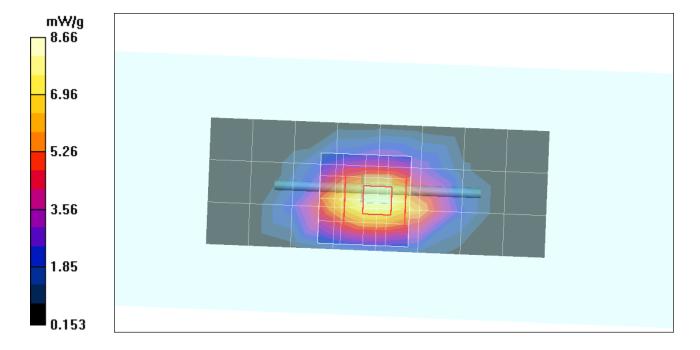
DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:2d160;

Procedure Notes: 1800 MHz System Performance Check / PM2 Power = 195 mW Refl.Pwr PM3 = -29.22 dB Sim.Temp@SPC = 18.7 C Room Temp @ SPC = 20.0 C

Communication System: CW - Dipole; Frequency: 1800 MHz; Communication System Channel Number: 8; Duty Cycle: 1:1

Medium: VALIDATION Only; Medium parameters used: f = 1800 MHz; $\sigma = 1.36$ mho/m; $\epsilon_r = 38.7$; $\rho = 1000$ kg/m³

DASY4 Configuration:


- Probe: ES3DV3 SN3124; ConvF(4.89, 4.89, 4.89); Calibrated: 8/11/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn699; Calibrated: 9/20/2010
- Phantom: R4: Sect.1, Amy Twin, Rev.3 (3-Feb-10); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Dipole Area Scan (9x4x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 8.31 mW/g

Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 77.9 V/m; Power Drift = 0.021 dB Peak SAR (extrapolated) = 14.4 W/kg

SAR(1 g) = 7.85 mW/g; SAR(10 g) = 4.12 mW/g

Maximum value of SAR (measured) = 8.66 mW/g

1 of 1 10/27/2010 11:09 AM

Date/Time: 10/13/2010 9:19:00 AM

Test Laboratory: Motorola - 2450 MHz System Performance Check

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:808;

Procedure Notes: 2450MHz System Performance Check / PM2 Power = 200mW Refl.Pwr PM3 = -25.9dB Sim.Temp@SPC = 19.6*C Room Temp @ SPC = 20.1*C

Communication System: CW - Dipole; Frequency: 2450 MHz; Communication System Channel Number: 11; Duty Cycle: 1:1

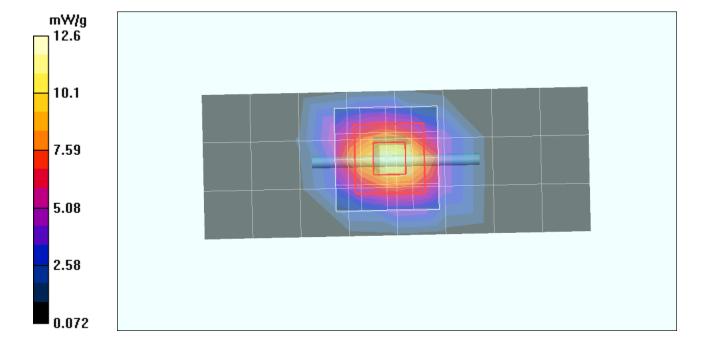
Medium: VALIDATION Only; Medium parameters used: f = 2450 MHz; $\sigma = 1.83$ mho/m; $\varepsilon_r = 37.4$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(4.35, 4.35, 4.35); Calibrated: 8/11/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn699; Calibrated: 9/20/2010
- Phantom: R#4 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1250;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Dipole Area Scan (4x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 9.13 mW/g


Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 84.7 V/m; Power Drift = -0.024 dB

Peak SAR (extrapolated) = 22.9 W/kg

SAR(1 g) = 11 mW/g; SAR(10 g) = 5.12 mW/g

Maximum value of SAR (measured) = 12.6 mW/g

1 of 1 10/27/2010 9:13 AM

Appendix 2

SAR distribution plots for Head Adjacent Configuration

Date/Time: 10/13/2010 1:23:28 PM

Test Laboratory: Motorola - GSM 850 Left Head Cheek Touch

DUT Serial: 351572040052121;

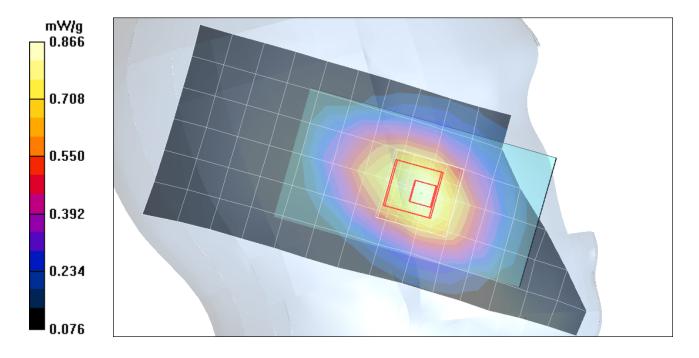
Procedure Notes: Pwr Step: 5 Battery Model #: SNN5877A DEVICE POSITION (cheek or rotated): Cheek Communication System: GSM 850; Frequency: 836.6 MHz; Communication System Channel Number: 190; Duty Cycle: 1:8.3

Medium: Low Freq Head; Medium parameters used: f = 835 MHz; $\sigma = 0.9$ mho/m; $\varepsilon_r = 41$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3183; ConvF(6.11, 6.11, 6.11); Calibrated: 7/14/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn702; Calibrated: 5/18/2010
- Phantom: R1_ Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1156;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Left Head Template/Area Scan - Normal (15mm) (7x17x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.850 mW/g


Left Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 30.3 V/m; Power Drift = -0.119 dB

Peak SAR (extrapolated) = 1.01 W/kg

SAR(1 g) = 0.809 mW/g; SAR(10 g) = 0.594 mW/g

Maximum value of SAR (measured) = 0.866 mW/g

1 of 1 10/27/2010 10:22 AM

Date/Time: 10/13/2010 2:06:09 PM

Test Laboratory: Motorola - WCDMA 850 Right Head Cheek Touch

DUT Serial: 351575040016095;

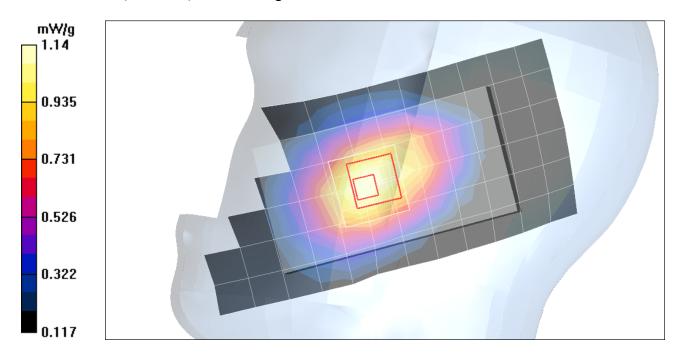
Procedure Notes: Pwr Step: Always Up Battery Model #: SNN5877A DEVICE POSITION (cheek or rotated): Cheek Communication System: 3G-WCDMA 850; Frequency: 846.6 MHz; Communication System Channel Number: 4233; Duty Cycle: 1:1

Medium: Low Freq Head; Medium parameters used: f = 835 MHz; $\sigma = 0.9$ mho/m; $\varepsilon_r = 41$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3183; ConvF(6.11, 6.11, 6.11); Calibrated: 7/14/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn702; Calibrated: 5/18/2010
- Phantom: R1 Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1156;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Right Head Template/Area Scan - Normal (15mm) (7x17x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.17 mW/g


Right Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 33.9 V/m; Power Drift = -0.219 dB

Peak SAR (extrapolated) = 1.37 W/kg

SAR(1 g) = 1.08 mW/g; SAR(10 g) = 0.809 mW/g

Maximum value of SAR (measured) = 1.14 mW/g

Date/Time: 10/13/2010 3:51:14 PM

Test Laboratory: Motorola - GSM 1900 Left Head 15 Degree Tilt

DUT Serial: 351575040007136;

Procedure Notes: Pwr Step: 0 Battery Model #: SNN5877A DEVICE POSITION (cheek or rotated): Rotated Communication System: GSM 1900; Frequency: 1880 MHz; Communication System Channel Number: 661; Duty Cycle: 1:8.3

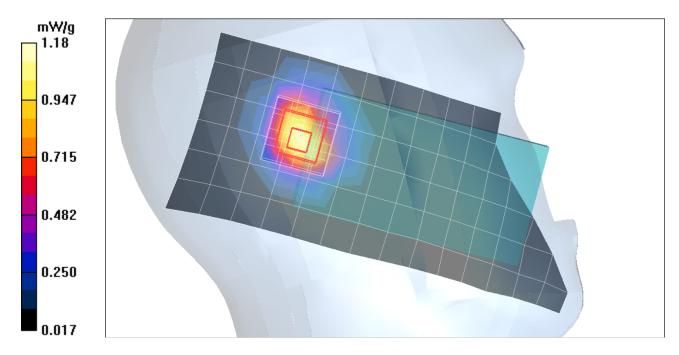
Medium: Regular Glycol Head 1750/1880; Medium parameters used: f = 1880 MHz; $\sigma = 1.45$ mho/m; $\epsilon_r = 38.6$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ES3DV3 SN3183; ConvF(5.05, 5.05, 5.05); Calibrated: 7/14/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn702; Calibrated: 5/18/2010
- Phantom: R1 Glycol, SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1139;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Left Head Template/Area Scan - Normal (15mm) (7x17x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.06 mW/g

Left Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm,


dy=8mm, dz=5mm

Reference Value = 27.3 V/m; Power Drift = 0.056 dB

Peak SAR (extrapolated) = 2.10 W/kg

SAR(1 g) = 1.07 mW/g; SAR(10 g) = 0.559 mW/g

Maximum value of SAR (measured) = 1.18 mW/g..

Date/Time: 10/15/2010 9:26:10 AM

Test Laboratory: Motorola - WCDMA 1900 Left Head 15 Degree Tilt

DUT Serial: 351573040004724;

Procedure Notes: Pwr Step: ALL UP BITS Battery Model #: SNN5877A DEVICE POSITION TILT

Communication System: 3G/WCDMA 1900; Frequency: 1880 MHz; Communication System Channel Number:

9400; Duty Cycle: 1:1

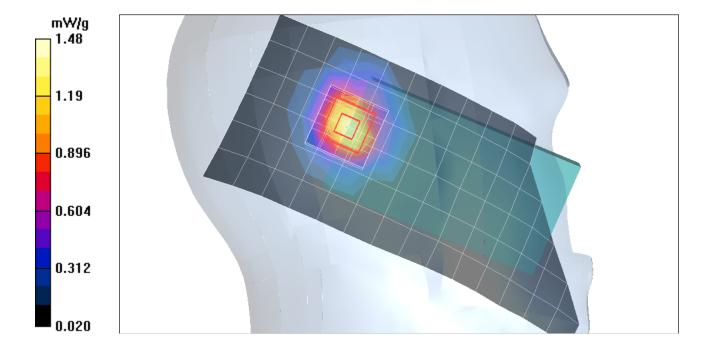
Medium: Regular Glycol Head 1750/1880; Medium parameters used: f = 1880 MHz; σ = 1.46 mho/m; ϵ_r = 38.3; ρ = 1000 kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(4.89, 4.89, 4.89); Calibrated: 8/11/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn699; Calibrated: 9/20/2010
- Phantom: R#4 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1250;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Left Head Template/Area Scan - Normal (15mm) (7x17x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.31 mW/g

Left Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm,


dy=8mm, dz=5mm

Reference Value = 28.3 V/m; Power Drift = 0.046 dB

Peak SAR (extrapolated) = 2.49 W/kg

SAR(1 g) = 1.33 mW/g; SAR(10 g) = 0.695 mW/g

Maximum value of SAR (measured) = 1.48 mW/g

1 of 1 10/27/2010 11:03 AM

Date/Time: 10/13/2010 2:30:10 PM

Test Laboratory: Motorola - WiFi 802.11b 1Mbps Left Head Cheek Touch

DUT Serial: 351575040007136;

Procedure Notes: Battery Model #: SNN5877A DEVICE POSITION CHEEK

Communication System: Wi-Fi 2450; Frequency: 2412 MHz; Communication System Channel Number: 1; Duty

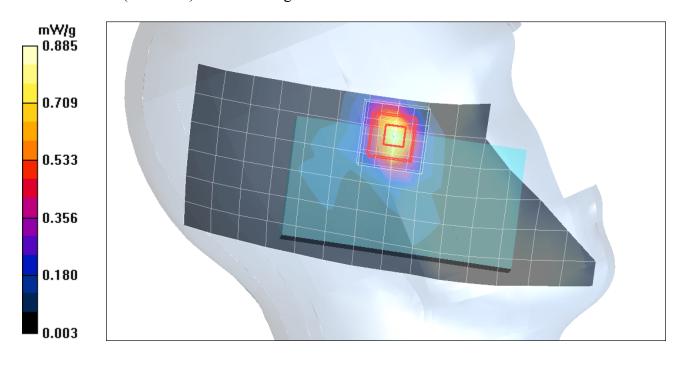
Cycle: 1:1

Medium: 2450 Glycol Head; Medium parameters used: f = 2450 MHz; $\sigma = 1.83$ mho/m; $\varepsilon_r = 37.4$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(4.35, 4.35, 4.35); Calibrated: 8/11/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn699; Calibrated: 9/20/2010
- Phantom: R#4 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1250;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Left Head Template/Area Scan - Normal (15mm) (7x17x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.869 mW/g


Left Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.6 V/m; Power Drift = -0.137 dB

Peak SAR (extrapolated) = 1.73 W/kg

SAR(1 g) = 0.777 mW/g; SAR(10 g) = 0.356 mW/g

Maximum value of SAR (measured) = 0.885 mW/g

Appendix 3 Probe Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

S

C

S

Client

Motorola MDb

Certificate No: ES3-3124_Aug10

CALIBRATION CERTIFICATE Object ES3DV3 - SN:3124 QA CAL-01.v6, QA CAL-23.v3 and QA CAL-25.v2 Calibration procedure(s) Calibration procedure for dosimetric E-field probes August 11, 2010 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) **Primary Standards** ID# Cal Date (Certificate No.) Scheduled Calibration Power meter E4419B GB41293874 1-Apr-10 (No. 217-01136) Apr-11 Power sensor E4412A MY41495277 1-Apr-10 (No. 217-01136) Apr-11 Power sensor E4412A MY41498087 1-Apr-10 (No. 217-01136) Apr-11 Reference 3 dB Attenuator SN: S5054 (3c) 30-Mar-10 (No. 217-01159) Mar-11 Reference 20 dB Attenuator SN: S5086 (20b) 30-Mar-10 (No. 217-01161) Mar-11 Reference 30 dB Attenuator SN: S5129 (30b) Mar-11 30-Mar-10 (No. 217-01160) Reference Probe ES3DV2 SN: 3013 30-Dec-09 (No. ES3-3013_Dec09) Dec-10 DAE4 SN: 660 20-Apr-10 (No. DAE4-660_Apr10) Apr-11 Secondary Standards ID# Check Date (in house) Scheduled Check US3642U01700 RF generator HP 8648C 4-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-09) In house check: Oct10 Name Function Calibrated by: Claudio Leubier Laboratory Technician Katja Pokovic Approved by: Technical Manager Issued: August 14, 2010

Certificate No: ES3-3124_Aug10

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: SCS 108

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ σ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3124_Aug10 Page 2 of 11

Probe ES3DV3

SN:3124

Manufactured: July 11, 2006
Last calibrated: April 21, 2009
Recalibrated: August 11, 2010

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ES3-3124_Aug10 Page 3 of 11

DASY/EASY - Parameters of Probe: ES3DV3 SN:3124

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.26	1.33	1.34	± 10.1%
DCP (mV) ⁸	92.9	96.4	96.7	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	С	VR mV	Unc ^e (k=2)
10000	cw	0.00	Х	0.00	0.00	1.00	300.0	± 1.5%
			Y	0.00	0.00	1.00	300.0	
			Z	0.00	0.00	1.00	300.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter; uncertainty not required.

E Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: ES3DV3 SN:3124

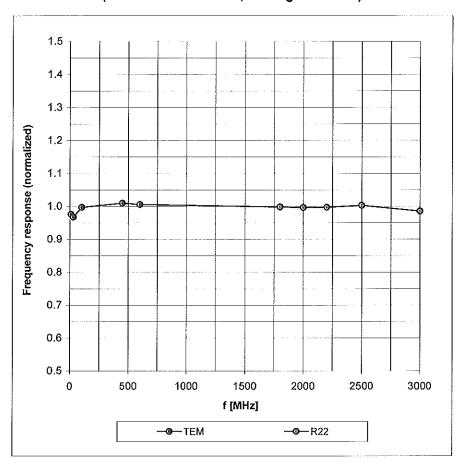
Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Co	nvFY Co	nvF Z	Alpha	Depth Unc (k=2)
835	± 50 / ± 100	41.5 ± 5%	0.90 ± 5%	5.89	5.89	5.89	0.97	1.07 ± 11.0%
1810	± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	4.89	4.89	4.89	0.49	1.54 ± 11.0%
1950	± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	4.68	4.68	4.68	0.50	1.52 ± 11.0%
2450	± 50 / ± 100	39.2 ± 5%	1.80 ± 5%	4.35	4.35	4.35	0.45	1.78 ± 11.0%

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

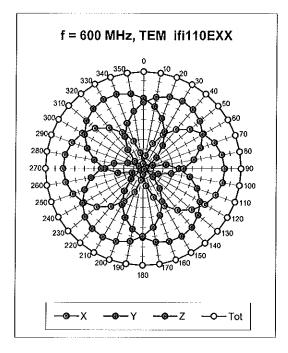
DASY/EASY - Parameters of Probe: ES3DV3 SN:3124

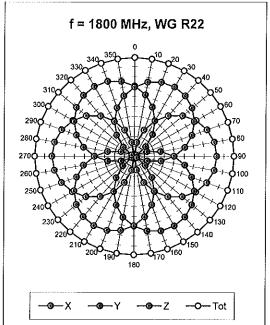
Calibration Parameter Determined in Body Tissue Simulating Media

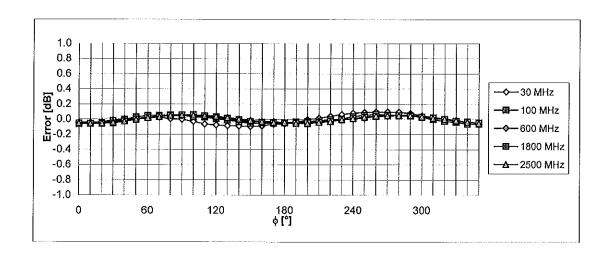

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Co	nvFY C	onvF Z	Alpha	Depth Unc (k=2)
835	± 50 / ± 100	55.2 ± 5%	0.97 ± 5%	5.86	5.86	5.86	0.96	1.11 ± 11.0%
1810	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	4.76	4.76	4.76	0.41	1.84 ± 11.0%
1950	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	4.78	4.78	4.78	0.32	2.33 ± 11.0%
2450	± 50 / ± 100	52.7 ± 5%	1.95 ± 5%	4.19	4.19	4.19	0.69	1.29 ± 11.0%

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: ES3-3124_Aug10 Page 6 of 11

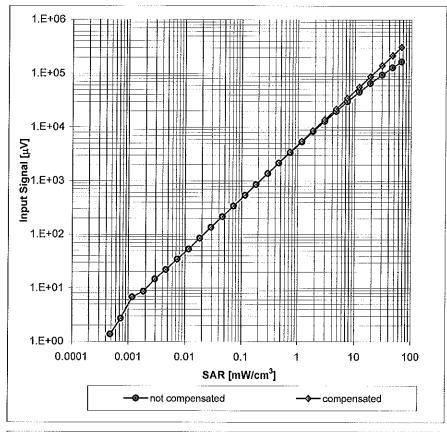

Frequency Response of E-Field

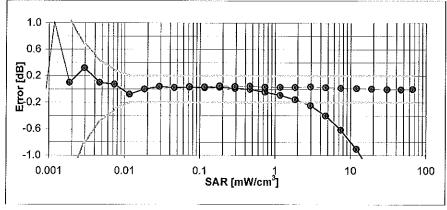

(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

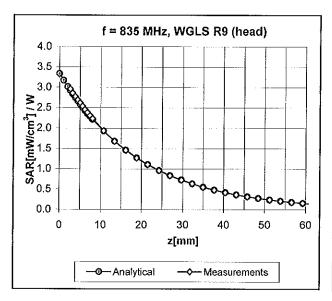
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

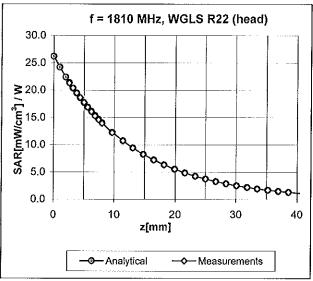




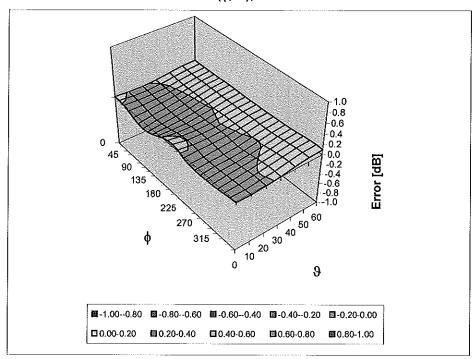
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head})


(Waveguide R22, f = 1800 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Conversion Factor Assessment

Deviation from Isotropy in HSL

Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ES3-3124_Aug10

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4.0 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Motorola MDb

Client

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: ES3-3183_Jul10

Accreditation No.: SCS 108

S

C

S

CALIBRATION CERTIFICATE ES3DV3 - SN:3183 Object Calibration procedure(s) QA CAL-01.v6, QA CAL-23.v3 and QA CAL-25.v2 Calibration procedure for dosimetric E-field probes July 14, 2010 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Scheduled Calibration Cal Date (Certificate No.) GB41293874 Power meter E4419B 1-Apr-10 (No. 217-01136) Apr-11 Power sensor E4412A MY41495277 1-Apr-10 (No. 217-01136) Арг-11 Арг-11 Power sensor E4412A MY41498087 1-Apr-10 (No. 217-01136) Reference 3 dB Attenuator SN: S5054 (3c) 30-Mar-10 (No. 217-01159) Mar-11 Reference 20 dB Attenuator SN: S5086 (20b) 30-Mar-10 (No. 217-01161) Mar-11 Reference 30 dB Attenuator SN: S5129 (30b) 30-Mar-10 (No. 217-01160) Mar-11 Reference Probe ES3DV2 SN: 3013 30-Dec-09 (No. ES3-3013_Dec09) Dec-10 DAE4 SN: 660 20-Apr-10 (No. DAE4-660_Apr10) Apr-11 ID# Secondary Standards Check Date (in house) Scheduled Check RF generator HP 8648C US3642U01700 4-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-09) In house check: Oct10 Name Function Signature Jeton Kastrati Calibrated by: Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: July 15, 2010

Certificate No: ES3-3183_Jul10

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3183_Jul10 Page 2 of 11

ES3DV3 SN:3183 July 14, 2010

Probe ES3DV3

SN:3183

Manufactured:

Last calibrated:

Recalibrated:

March 25, 2008

August 17, 2009

July 14, 2010

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ES3-3183_Jul10

Page 3 of 11

ES3DV3 SN:3183 July 14, 2010

DASY/EASY - Parameters of Probe: ES3DV3 SN:3183

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	1.21	1.15	1.07	± 10.1%
DCP (mV) ^B	88.6	86.9	89.5	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	С	VR mV	Unc ^E (k≃2)
10000	cw	0.00	Х	0.00	0.00	1.00	300.0	± 1.5%
			Υ	0.00	0.00	1.00	300.0	
			Z	0.00	0.00	1.00	300.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of NormX, Y, Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter; uncertainty not required.

E Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value.

ES3DV3 SN:3183 July 14, 2010

DASY/EASY - Parameters of Probe: ES3DV3 SN:3183

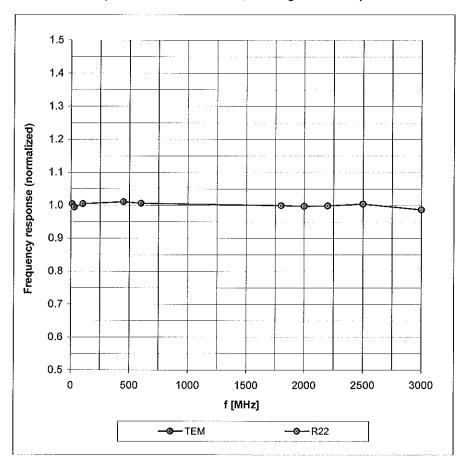
Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Co	nvFY (ConvF Z	Alpha	Depth Unc (k=2)
835	±50/±100	41.5 ± 5%	0.90 ± 5%	6.11	6.11	6.11	0.99	1.04 ± 11.0%
1810	± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	5.05	5.05	5.05	0.58	1.33 ± 11.0%
1950	± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	4.82	4.82	4.82	0.54	1.37 ± 11.0%
2450	± 50 / ± 100	39.2 ± 5%	1.80 ± 5%	4.49	4.49	4.49	0.44	1.70 ± 11.0%

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

ES3DV3 SN:3183 July 14, 2010

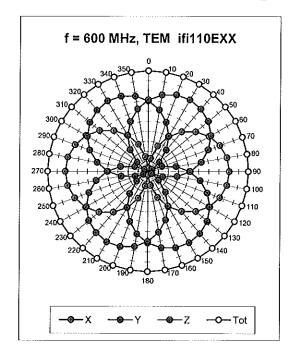
DASY/EASY - Parameters of Probe: ES3DV3 SN:3183

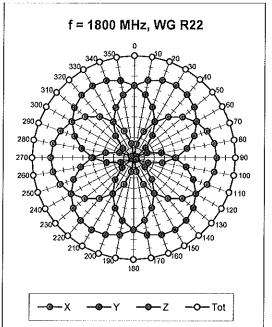

Calibration Parameter Determined in Body Tissue Simulating Media

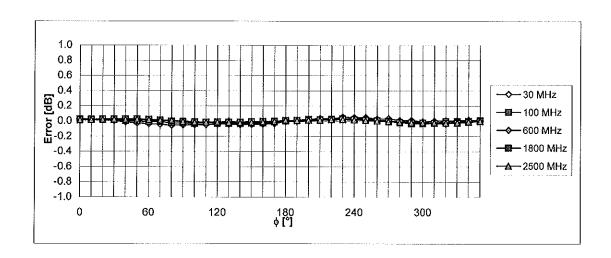
f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Con	nvFY C	onvF Z	Alpha	Depth Unc (k=2)
835	± 50 / ± 100	55.2 ± 5%	0.97 ± 5%	6.15	6.15	6.15	0.95	1.10 ± 11.0%
1810	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	4.84	4.84	4.84	0.39	1.87 ± 11.0%
1950	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	4.86	4.86	4.86	0.28	2.80 ± 11.0%
2450	± 50 / ± 100	52.7 ± 5%	1.95 ± 5%	4.36	4.36	4.36	0.69	1.31 ± 11.0%

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Frequency Response of E-Field

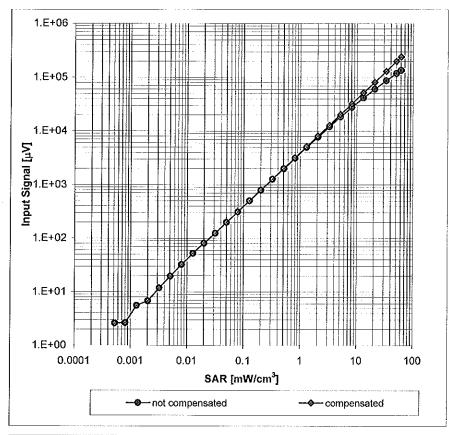

(TEM-Cell:ifi110 EXX, Waveguide: R22)

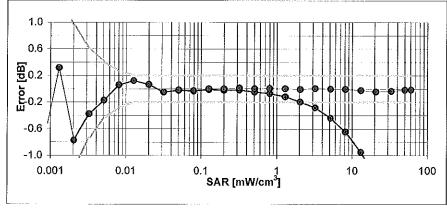



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

ES3DV3 SN:3183

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

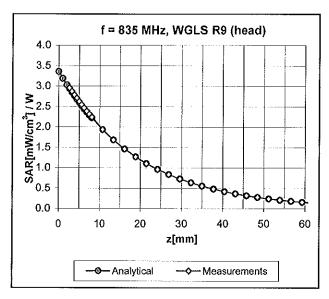


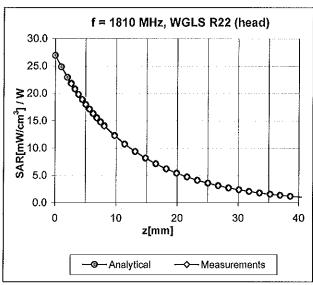


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

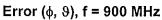
Dynamic Range f(SAR_{head})

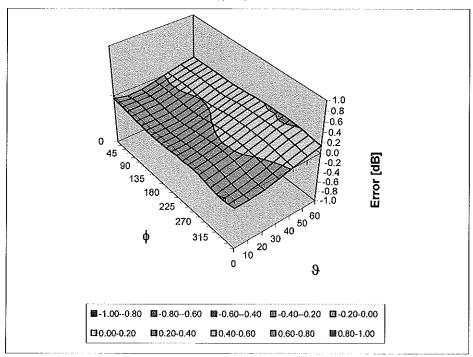
(Waveguide R22, f = 1800 MHz)





Uncertainty of Linearity Assessment: ± 0.6% (k=2)


ES3DV3 SN:3183 July 14, 2010


Conversion Factor Assessment

Deviation from Isotropy in HSL

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

ES3DV3 SN:3183 July 14, 2010

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4.0 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Appendix 4 Measurement Uncertainty Budget

				e =			h= cxf	i= cxg	
a	b	С	d	f(d,k)	f	g	/e	/e	k
	IEEE	Tol.	Prob		Ci	Ci	1 g	10 g	
	1528	(± %)	Dist		(1 g)	(10 g)	u _i	u _i	
Uncertainty Component	section			Div.			(±%)	(±%)	Vi
Measurement System									
Probe Calibration	E.2.1	5.9	N	1.00	1	1	5.9	5.9	8
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	8
Hemispherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	8
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	∞
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	∞
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	8
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3	8
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	8
Integration Time	E.2.8	1.1	R	1.73	1	1	0.6	0.6	8
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	8
RF Ambient Conditions - Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	80
Probe Positioner Mech.	L.0.1	0.0	IX.	1.73	'		0.0	0.0	
Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	∞
Probe Positioning w.r.t									
Phantom	E.6.3	1.4	R	1.73	1	1	8.0	0.8	∞
Max. SAR Evaluation (ext., int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	∞
Test sample Related	L.J	3.4	IX.	1.73	'	1	2.0	2.0	\sim
Test Sample Positioning	E.4.2	3.2	N	1.00	1	1	3.2	3.2	29
Device Holder Uncertainty	E.4.1	4.0	N	1.00	1	1	4.0	4.0	8
SAR drift	6.6.2	5.0	R	1.73	1	1	2.9	2.9	8
Phantom and Tissue	0.0.2	3.0	1	1.75	'	-	2.3	2.3	
Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	∞
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity			-					·-	-
(measurement)	E.3.3	3.3	N	1.00	0.64	0.43	2.1	1.4	~
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	∞
Liquid Permittivity									
(measurement)	E.3.3	1.9	N	1.00	0.6	0.49	1.1	0.9	∞
Combined Standard			DCC				44.4	40.0	111
Uncertainty			RSS				11.1	10.8	411
Expanded Uncertainty			1- 0				00.0	04.0	
(95% CONFIDENCE LEVEL)			k=2				22.2	21.6	

Appendix 5

Dipole Characterization Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurlch, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client SPE

SPEAG Replacement

CALIBRATION CERTIFICATE

Certificate No: D1800V2-2d161_Jun10

	D1800V2 - SN: 2	2d161	
Calibration procedure(s)	QA CAL-05.v7 Calibration proce	edure for dipole validation kits	
Calibration date:	June 15, 2010		
The measurements and the unce	ertainties with confidence p	ional standards, which realize the physical u robability are given on the following pages a ry facility: environment temperature (22 ± 3)	and are part of the certificate.
Calibration Equipment used (M&1	TE critical for calibration)		
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-09 (No. 217-01086)	Oct-10
Power sensor HP 8481A	US37292783	06-Oct-09 (No. 217-01086)	Oct-10
Power sensor HP 8481A Reference 20 dB Attenuator	US37292783 SN: 5086 (20g)	06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158)	Oct-10 Mar-11
Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	US37292783 SN: 5086 (20g) SN: 5047.2 / 06327	06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162)	Oct-10 Mar-11 Mar-11
Power sensor HP 8481A Reference 20 dB Attenuator	US37292783 SN: 5086 (20g)	06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158)	Oct-10 Mar-11
Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205	06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10)	Oct-10 Mar-11 Mar-11 Apr-11
Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601	06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10)	Oct-10 Mar-11 Mar-11 Apr-11 Jun-11
Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601	06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house)	Oct-10 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check
Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317	06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) 18-Oct-02 (in house check Oct-09)	Oct-10 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check In house check: Oct-11
Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09)	Oct-10 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check In house check: Oct-11 In house check: Oct-11
Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	Oct-10 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check In house check: Oct-11 In house check: Oct-11

Issued: September 24, 2010

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofreguency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1800V2-2d161_Jun10

Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1800 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.8 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.60 mW / g
SAR normalized	normalized to 1W	38.4 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	38.7 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.05 mW / g
SAR normalized	normalized to 1W	20.2 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	20.3 mW /g ± 16.5 % (k=2)

Certificate No: D1800V2-2d161_Jun10

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	47.6 Ω - 1.5 jΩ
Return Loss	- 30.9 dB

General Antenna Parameters and Design

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Electrical Delay (one direction)	1.214 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 30, 2007

DASY5 Validation Report for Head TSL

Date/Time: 14.06.2010 12:46:19

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:2d161

Communication System: CW; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: HSL U11 BB

Medium parameters used: f = 1800 MHz; $\sigma = 1.38 \text{ mho/m}$; $\varepsilon_r = 39.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.05, 5.05, 5.05); Calibrated: 30.04.2010

• Sensor-Surface: 3mm (Mechanical Surface Detection)

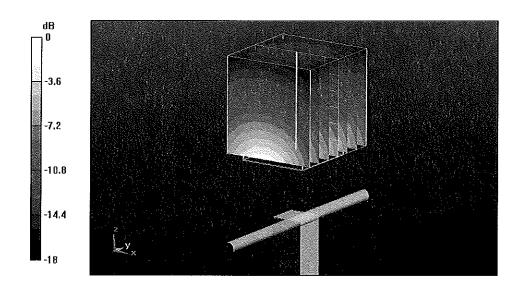
• Electronics: DAE4 Sn601; Calibrated: 10.06.2010

• Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

• Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163)

• Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe) /Zoom Scan (7x7x7) /Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.2 V/m; Power Drift = 0.025 dB

Peak SAR (extrapolated) = 17.5 W/kg

SAR(1 g) = 9.6 mW/g; SAR(10 g) = 5.05 mW/g

Maximum value of SAR (measured) = 11.9 mW/g

0 dB = 11.9 mW/g

Impedance Measurement Plot for Head TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client SPEAG Replacement

Calibration date:

Certificate No: D1800V2-2d160_Jun10

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE Object D1800V2 - SN: 2d160 Calibration procedure(s) QA CAL-05.v7 Calibration procedure for dipole validation kits

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

June 15, 2010

Calibration Equipment used (M&TE critical for calibration)

Primary Standards] ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-09 (No. 217-01086)	Oct-10
Power sensor HP 8481A	US37292783	06-Oct-09 (No. 217-01086)	Oct-10
Reference 20 dB Attenuator	SN: 5086 (20g)	30-Mar-10 (No. 217-01158)	Mar-11
Type-N mismatch combination	SN: 5047.2 / 06327	30-Mar-10 (No. 217-01162)	Mar-11
Reference Probe ES3DV3	SN: 3205	30-Apr-10 (No. ES3-3205_Apr10)	Apr-11
DAE4	SN: 601	10-Jun-10 (No. DAE4-601_Jun10)	Jun-11
	·		
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-09)	In house check: Oct-10
	Name	Function	Signature
Calibrated by:	Dimce Illey	Laboratory Technician	1/100
			W. Liler
Approved by:	Katja Pokovic	Toobaled Massager	
Approved by.	isaya Forovic	Technical Manager	66-113
			·

Issued: September 24, 2010

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1800V2-2d160_Jun10

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage

Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1800V2-2d160_Jun10 Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1800 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.8 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature during test	(22.3 ± 0.2) °C		4 M M M

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.57 mW / g
SAR normalized	normalized to 1W	38.3 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	38.5 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.04 m W / g
SAR normalized	normalized to 1W	20.2 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	20.2 mW /g ± 16.5 % (k=2)

Certificate No: D1800V2-2d160_Jun10

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.6 Ω - 1.9 jΩ
Return Loss	- 32.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.214 ns
1	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 30, 2007

Certificate No: D1800V2-2d160_Jun10 Page 4 of 6

DASY5 Validation Report for Head TSL

Date/Time: 14.06.2010 12:22:37

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:2d160

Communication System: CW; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: HSL U11 BB

Medium parameters used: f = 1800 MHz; $\sigma = 1.38 \text{ mho/m}$; $\varepsilon_r = 39.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.05, 5.05, 5.05); Calibrated: 30.04.2010

• Sensor-Surface: 3mm (Mechanical Surface Detection)

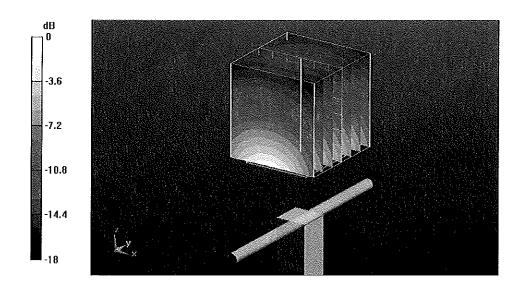
• Electronics: DAE4 Sn601; Calibrated: 10.06.2010

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163)

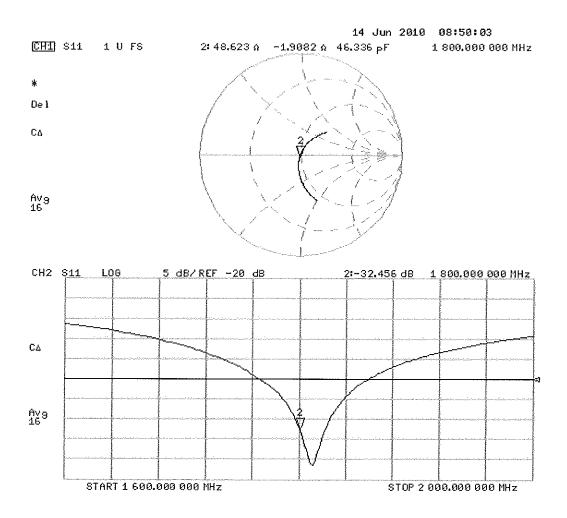
Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe) 2/Zoom Scan (7x7x7) /Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.3 V/m; Power Drift = 0.017 dB

Peak SAR (extrapolated) = 17.5 W/kg


SAR(1 g) = 9.57 mW/g; SAR(10 g) = 5.04 mW/g

Maximum value of SAR (measured) = 12 mW/g

0 dB = 12 mW/g

Impedance Measurement Plot for Head TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

C

Accreditation No.: SCS 108

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

SPEAG Replacement

Certificate No: D835V2-4d003 Jun10

CALIBRATION CERTIFICATE

Object D835V2 - SN: 4d003

Calibration procedure(s) QA CAL-05.v7

Calibration procedure for dipole validation kits

Calibration date:

June 21, 2010

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-09 (No. 217-01086)	Oct-10
Power sensor HP 8481A	US37292783	06-Oct-09 (No. 217-01086)	Oct-10
Reference 20 dB Attenuator	SN: 5086 (20g)	30-Mar-10 (No. 217-01158)	Mar-11
Type-N mismatch combination	SN: 5047.2 / 06327	30-Mar-10 (No. 217-01162)	Mar-11
Reference Probe ES3DV3	SN: 3205	30-Apr-10 (No. ES3-3205_Apr10)	Apr-11
DAE4	SN: 601	02-Mar-10 (No. DAE4-601_Mar10)	Mar-11
DAE4	SN: 601	10-Jun-10 (No. DAE4-601_Jun10)	Jun-11
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-09)	In house check: Oct-10
	Name	Function	Signature_
Calibrated by:	Jeton Kastrati	Laboratory Technician	· 1//_

Issued: September 24, 2010

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Katja Pokovic

Certificate No: D835V2-4d003_Jun10

Approved by:

Technical Manager

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-4d003_Jun10 Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.2 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.37 mW / g
SAR normalized	normalized to 1W	9.48 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.54 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.55 mW / g
SAR normalized	normalized to 1W	6.20 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.23 mW /g ± 16.5 % (k=2)

Certificate No: D835V2-4d003_Jun10 Page 3 of 6

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.1 Ω - 3.9 jΩ
Return Loss	- 27.3 dB

General Antenna Parameters and Design

	The second secon
Electrical Delay (one direction)	1.390 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 11, 2003

Certificate No: D835V2-4d003_Jun10

DASY5 Validation Report for Head TSL

Date/Time: 21.06.2010 10:59:08

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d003

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL900

Medium parameters used: f = 835 MHz; $\sigma = 0.89$ mho/m; $\varepsilon_r = 41.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.03, 6.03, 6.03); Calibrated: 30.04.2010

Sensor-Surface: 3mm (Mechanical Surface Detection)

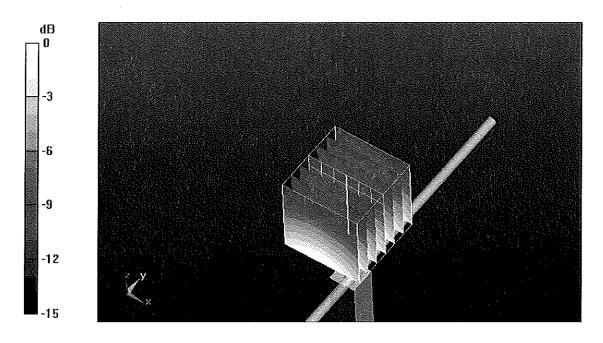
• Electronics: DAE4 Sn601; Calibrated: 10.06.2010

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163)

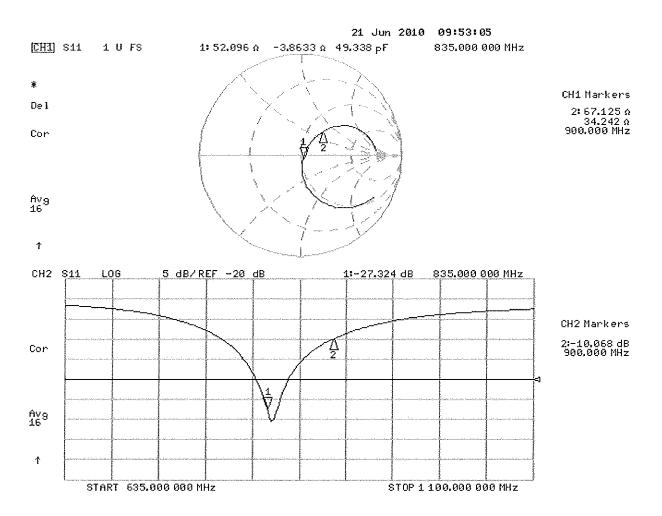
Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685)

Pin=250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57 V/m; Power Drift = 0.044 dB

Peak SAR (extrapolated) = 3.58 W/kg


SAR(1 g) = 2.37 mW/g; SAR(10 g) = 1.55 mW/g

Maximum value of SAR (measured) = 2.75 mW/g

0 dB = 2.75 mW/g

Impedance Measurement Plot for Head TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

SPEAG Replacement

Certificate No: D2450V2-808_Jun10

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE Object D2450V2 - SN: 808 Calibration procedure(s) QA CAL-05.v7 Calibration procedure for dipole validation kits Calibration date: June 17, 2010

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-09 (No. 217-01086)	Oct-10
Power sensor HP 8481A	US37292783	06-Oct-09 (No. 217-01086)	Oct-10
Reference 20 dB Attenuator	SN: 5086 (20g)	30-Mar-10 (No. 217-01158)	Mar-11
Type-N mismatch combination	SN: 5047.2 / 06327	30-Mar-10 (No. 217-01162)	Mar-11
Reference Probe ES3DV3	SN: 3205	30-Apr-10 (No. ES3-3205_Apr10)	Apr-11
DAE4	SN: 601	10-Jun-10 (No. DAE4-601_Jun10)	Jun-11
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-09)	In house check: Oct-10
	Name	Function	Signature \
Calibrated by:	Claudio Leubler	Laboratory Technician	(Mh
Approved by:	Katja Pokovic	Technical Manager	

Issued: September 24, 2010

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D2450V2-808_Jun10 Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.9 ± 6 %	1.78 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.1 mW / g
SAR normalized	normalized to 1W	52.4 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	52.6 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.12 mW / g
SAR normalized	normalized to 1W	24.5 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.5 mW /g ± 16.5 % (k=2)

Certificate No: D2450V2-808_Jun10

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.9 Ω + 3.1 jΩ
Return Loss	- 27.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.156 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 23, 2007

Certificate No: D2450V2-808_Jun10 Page 4 of 6

DASY5 Validation Report for Head TSL

Date/Time: 16.06.2010 12:00:26

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:808

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL U11 BB

Medium parameters used: f = 2450 MHz; $\sigma = 1.78 \text{ mho/m}$; $\varepsilon_r = 38.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 30.04.2010

Sensor-Surface: 3mm (Mechanical Surface Detection)

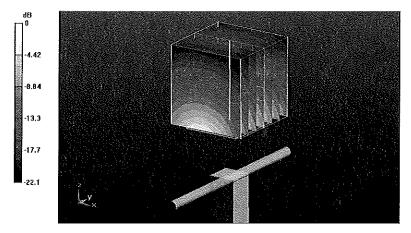
Electronics: DAE4 Sn601; Calibrated: 10.06.2010

• Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163)

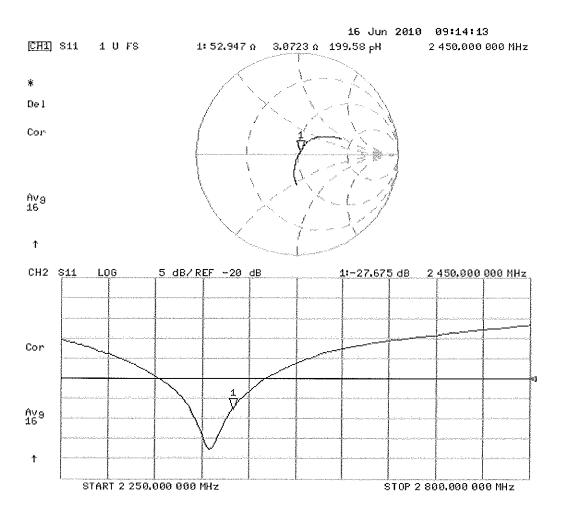
Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685)

Head/d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 99.9 V/m; Power Drift = 0.038 dB

Peak SAR (extrapolated) = 26.7 W/kg


SAR(1 g) = 13.1 mW/g; SAR(10 g) = 6.12 mW/g

Maximum value of SAR (measured) = 16.5 mW/g

0 dB = 16.5 mW/g

Impedance Measurement Plot for Head TSL

END OF REPORT